xref: /openbmc/qemu/gdbstub/user.c (revision d884e272)
1 /*
2  * gdbstub user-mode helper routines.
3  *
4  * We know for user-mode we are using TCG so we can call stuff directly.
5  *
6  * Copyright (c) 2003-2005 Fabrice Bellard
7  * Copyright (c) 2022 Linaro Ltd
8  *
9  * SPDX-License-Identifier: LGPL-2.0+
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/bitops.h"
14 #include "qemu/cutils.h"
15 #include "qemu/sockets.h"
16 #include "exec/hwaddr.h"
17 #include "exec/tb-flush.h"
18 #include "exec/gdbstub.h"
19 #include "gdbstub/syscalls.h"
20 #include "gdbstub/user.h"
21 #include "hw/core/cpu.h"
22 #include "trace.h"
23 #include "internals.h"
24 
25 #define GDB_NR_SYSCALLS 1024
26 typedef unsigned long GDBSyscallsMask[BITS_TO_LONGS(GDB_NR_SYSCALLS)];
27 
28 /*
29  * Forked child talks to its parent in order to let GDB enforce the
30  * follow-fork-mode. This happens inside a start_exclusive() section, so that
31  * the other threads, which may be forking too, do not interfere. The
32  * implementation relies on GDB not sending $vCont until it has detached
33  * either from the parent (follow-fork-mode child) or from the child
34  * (follow-fork-mode parent).
35  *
36  * The parent and the child share the GDB socket; at any given time only one
37  * of them is allowed to use it, as is reflected in the respective fork_state.
38  * This is negotiated via the fork_sockets pair as a reaction to $Hg.
39  *
40  * Below is a short summary of the possible state transitions:
41  *
42  *     ENABLED                     : Terminal state.
43  *     DISABLED                    : Terminal state.
44  *     ACTIVE                      : Parent initial state.
45  *     INACTIVE                    : Child initial state.
46  *     ACTIVE       -> DEACTIVATING: On $Hg.
47  *     ACTIVE       -> ENABLING    : On $D.
48  *     ACTIVE       -> DISABLING   : On $D.
49  *     ACTIVE       -> DISABLED    : On communication error.
50  *     DEACTIVATING -> INACTIVE    : On gdb_read_byte() return.
51  *     DEACTIVATING -> DISABLED    : On communication error.
52  *     INACTIVE     -> ACTIVE      : On $Hg in the peer.
53  *     INACTIVE     -> ENABLE      : On $D in the peer.
54  *     INACTIVE     -> DISABLE     : On $D in the peer.
55  *     INACTIVE     -> DISABLED    : On communication error.
56  *     ENABLING     -> ENABLED     : On gdb_read_byte() return.
57  *     ENABLING     -> DISABLED    : On communication error.
58  *     DISABLING    -> DISABLED    : On gdb_read_byte() return.
59  */
60 enum GDBForkState {
61     /* Fully owning the GDB socket. */
62     GDB_FORK_ENABLED,
63     /* Working with the GDB socket; the peer is inactive. */
64     GDB_FORK_ACTIVE,
65     /* Handing off the GDB socket to the peer. */
66     GDB_FORK_DEACTIVATING,
67     /* The peer is working with the GDB socket. */
68     GDB_FORK_INACTIVE,
69     /* Asking the peer to close its GDB socket fd. */
70     GDB_FORK_ENABLING,
71     /* Asking the peer to take over, closing our GDB socket fd. */
72     GDB_FORK_DISABLING,
73     /* The peer has taken over, our GDB socket fd is closed. */
74     GDB_FORK_DISABLED,
75 };
76 
77 enum GDBForkMessage {
78     GDB_FORK_ACTIVATE = 'a',
79     GDB_FORK_ENABLE = 'e',
80     GDB_FORK_DISABLE = 'd',
81 };
82 
83 /* User-mode specific state */
84 typedef struct {
85     int fd;
86     char *socket_path;
87     int running_state;
88     /*
89      * Store syscalls mask without memory allocation in order to avoid
90      * implementing synchronization.
91      */
92     bool catch_all_syscalls;
93     GDBSyscallsMask catch_syscalls_mask;
94     bool fork_events;
95     enum GDBForkState fork_state;
96     int fork_sockets[2];
97     pid_t fork_peer_pid, fork_peer_tid;
98 } GDBUserState;
99 
100 static GDBUserState gdbserver_user_state;
101 
102 int gdb_get_char(void)
103 {
104     uint8_t ch;
105     int ret;
106 
107     for (;;) {
108         ret = recv(gdbserver_user_state.fd, &ch, 1, 0);
109         if (ret < 0) {
110             if (errno == ECONNRESET) {
111                 gdbserver_user_state.fd = -1;
112             }
113             if (errno != EINTR) {
114                 return -1;
115             }
116         } else if (ret == 0) {
117             close(gdbserver_user_state.fd);
118             gdbserver_user_state.fd = -1;
119             return -1;
120         } else {
121             break;
122         }
123     }
124     return ch;
125 }
126 
127 bool gdb_got_immediate_ack(void)
128 {
129     int i;
130 
131     i = gdb_get_char();
132     if (i < 0) {
133         /* no response, continue anyway */
134         return true;
135     }
136 
137     if (i == '+') {
138         /* received correctly, continue */
139         return true;
140     }
141 
142     /* anything else, including '-' then try again */
143     return false;
144 }
145 
146 void gdb_put_buffer(const uint8_t *buf, int len)
147 {
148     int ret;
149 
150     while (len > 0) {
151         ret = send(gdbserver_user_state.fd, buf, len, 0);
152         if (ret < 0) {
153             if (errno != EINTR) {
154                 return;
155             }
156         } else {
157             buf += ret;
158             len -= ret;
159         }
160     }
161 }
162 
163 /* Tell the remote gdb that the process has exited.  */
164 void gdb_exit(int code)
165 {
166     char buf[4];
167 
168     if (!gdbserver_state.init) {
169         return;
170     }
171     if (gdbserver_user_state.socket_path) {
172         unlink(gdbserver_user_state.socket_path);
173     }
174     if (gdbserver_user_state.fd < 0) {
175         return;
176     }
177 
178     trace_gdbstub_op_exiting((uint8_t)code);
179 
180     if (gdbserver_state.allow_stop_reply) {
181         snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
182         gdb_put_packet(buf);
183         gdbserver_state.allow_stop_reply = false;
184     }
185 
186 }
187 
188 void gdb_qemu_exit(int code)
189 {
190     exit(code);
191 }
192 
193 int gdb_handlesig_reason(CPUState *cpu, int sig, const char *reason)
194 {
195     char buf[256];
196     int n;
197 
198     if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
199         return sig;
200     }
201 
202     /* disable single step if it was enabled */
203     cpu_single_step(cpu, 0);
204     tb_flush(cpu);
205 
206     if (sig != 0) {
207         gdb_set_stop_cpu(cpu);
208         if (gdbserver_state.allow_stop_reply) {
209             g_string_printf(gdbserver_state.str_buf,
210                             "T%02xthread:", gdb_target_signal_to_gdb(sig));
211             gdb_append_thread_id(cpu, gdbserver_state.str_buf);
212             g_string_append_c(gdbserver_state.str_buf, ';');
213             if (reason) {
214                 g_string_append(gdbserver_state.str_buf, reason);
215             }
216             gdb_put_strbuf();
217             gdbserver_state.allow_stop_reply = false;
218         }
219     }
220     /*
221      * gdb_put_packet() might have detected that the peer terminated the
222      * connection.
223      */
224     if (gdbserver_user_state.fd < 0) {
225         return sig;
226     }
227 
228     sig = 0;
229     gdbserver_state.state = RS_IDLE;
230     gdbserver_user_state.running_state = 0;
231     while (gdbserver_user_state.running_state == 0) {
232         n = read(gdbserver_user_state.fd, buf, 256);
233         if (n > 0) {
234             int i;
235 
236             for (i = 0; i < n; i++) {
237                 gdb_read_byte(buf[i]);
238             }
239         } else {
240             /*
241              * XXX: Connection closed.  Should probably wait for another
242              * connection before continuing.
243              */
244             if (n == 0) {
245                 close(gdbserver_user_state.fd);
246             }
247             gdbserver_user_state.fd = -1;
248             return sig;
249         }
250     }
251     sig = gdbserver_state.signal;
252     gdbserver_state.signal = 0;
253     return sig;
254 }
255 
256 /* Tell the remote gdb that the process has exited due to SIG.  */
257 void gdb_signalled(CPUArchState *env, int sig)
258 {
259     char buf[4];
260 
261     if (!gdbserver_state.init || gdbserver_user_state.fd < 0 ||
262         !gdbserver_state.allow_stop_reply) {
263         return;
264     }
265 
266     snprintf(buf, sizeof(buf), "X%02x", gdb_target_signal_to_gdb(sig));
267     gdb_put_packet(buf);
268     gdbserver_state.allow_stop_reply = false;
269 }
270 
271 static void gdb_accept_init(int fd)
272 {
273     gdb_init_gdbserver_state();
274     gdb_create_default_process(&gdbserver_state);
275     gdbserver_state.processes[0].attached = true;
276     gdbserver_state.c_cpu = gdb_first_attached_cpu();
277     gdbserver_state.g_cpu = gdbserver_state.c_cpu;
278     gdbserver_user_state.fd = fd;
279 }
280 
281 static bool gdb_accept_socket(int gdb_fd)
282 {
283     int fd;
284 
285     for (;;) {
286         fd = accept(gdb_fd, NULL, NULL);
287         if (fd < 0 && errno != EINTR) {
288             perror("accept socket");
289             return false;
290         } else if (fd >= 0) {
291             qemu_set_cloexec(fd);
292             break;
293         }
294     }
295 
296     gdb_accept_init(fd);
297     return true;
298 }
299 
300 static int gdbserver_open_socket(const char *path)
301 {
302     struct sockaddr_un sockaddr = {};
303     int fd, ret;
304 
305     fd = socket(AF_UNIX, SOCK_STREAM, 0);
306     if (fd < 0) {
307         perror("create socket");
308         return -1;
309     }
310 
311     sockaddr.sun_family = AF_UNIX;
312     pstrcpy(sockaddr.sun_path, sizeof(sockaddr.sun_path) - 1, path);
313     ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
314     if (ret < 0) {
315         perror("bind socket");
316         close(fd);
317         return -1;
318     }
319     ret = listen(fd, 1);
320     if (ret < 0) {
321         perror("listen socket");
322         close(fd);
323         return -1;
324     }
325 
326     return fd;
327 }
328 
329 static bool gdb_accept_tcp(int gdb_fd)
330 {
331     struct sockaddr_in sockaddr = {};
332     socklen_t len;
333     int fd;
334 
335     for (;;) {
336         len = sizeof(sockaddr);
337         fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
338         if (fd < 0 && errno != EINTR) {
339             perror("accept");
340             return false;
341         } else if (fd >= 0) {
342             qemu_set_cloexec(fd);
343             break;
344         }
345     }
346 
347     /* set short latency */
348     if (socket_set_nodelay(fd)) {
349         perror("setsockopt");
350         close(fd);
351         return false;
352     }
353 
354     gdb_accept_init(fd);
355     return true;
356 }
357 
358 static int gdbserver_open_port(int port)
359 {
360     struct sockaddr_in sockaddr;
361     int fd, ret;
362 
363     fd = socket(PF_INET, SOCK_STREAM, 0);
364     if (fd < 0) {
365         perror("socket");
366         return -1;
367     }
368     qemu_set_cloexec(fd);
369 
370     socket_set_fast_reuse(fd);
371 
372     sockaddr.sin_family = AF_INET;
373     sockaddr.sin_port = htons(port);
374     sockaddr.sin_addr.s_addr = 0;
375     ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
376     if (ret < 0) {
377         perror("bind");
378         close(fd);
379         return -1;
380     }
381     ret = listen(fd, 1);
382     if (ret < 0) {
383         perror("listen");
384         close(fd);
385         return -1;
386     }
387 
388     return fd;
389 }
390 
391 int gdbserver_start(const char *port_or_path)
392 {
393     int port = g_ascii_strtoull(port_or_path, NULL, 10);
394     int gdb_fd;
395 
396     if (port > 0) {
397         gdb_fd = gdbserver_open_port(port);
398     } else {
399         gdb_fd = gdbserver_open_socket(port_or_path);
400     }
401 
402     if (gdb_fd < 0) {
403         return -1;
404     }
405 
406     if (port > 0 && gdb_accept_tcp(gdb_fd)) {
407         return 0;
408     } else if (gdb_accept_socket(gdb_fd)) {
409         gdbserver_user_state.socket_path = g_strdup(port_or_path);
410         return 0;
411     }
412 
413     /* gone wrong */
414     close(gdb_fd);
415     return -1;
416 }
417 
418 void gdbserver_fork_start(void)
419 {
420     if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
421         return;
422     }
423     if (!gdbserver_user_state.fork_events ||
424             qemu_socketpair(AF_UNIX, SOCK_STREAM, 0,
425                             gdbserver_user_state.fork_sockets) < 0) {
426         gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
427         return;
428     }
429     gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
430     gdbserver_user_state.fork_peer_pid = getpid();
431     gdbserver_user_state.fork_peer_tid = qemu_get_thread_id();
432 }
433 
434 static void disable_gdbstub(CPUState *thread_cpu)
435 {
436     CPUState *cpu;
437 
438     close(gdbserver_user_state.fd);
439     gdbserver_user_state.fd = -1;
440     CPU_FOREACH(cpu) {
441         cpu_breakpoint_remove_all(cpu, BP_GDB);
442         /* no cpu_watchpoint_remove_all for user-mode */
443         cpu_single_step(cpu, 0);
444     }
445     tb_flush(thread_cpu);
446 }
447 
448 void gdbserver_fork_end(CPUState *cpu, pid_t pid)
449 {
450     char b;
451     int fd;
452 
453     if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
454         return;
455     }
456 
457     if (pid == -1) {
458         if (gdbserver_user_state.fork_state != GDB_FORK_DISABLED) {
459             g_assert(gdbserver_user_state.fork_state == GDB_FORK_INACTIVE);
460             close(gdbserver_user_state.fork_sockets[0]);
461             close(gdbserver_user_state.fork_sockets[1]);
462         }
463         return;
464     }
465 
466     if (gdbserver_user_state.fork_state == GDB_FORK_DISABLED) {
467         if (pid == 0) {
468             disable_gdbstub(cpu);
469         }
470         return;
471     }
472 
473     if (pid == 0) {
474         close(gdbserver_user_state.fork_sockets[0]);
475         fd = gdbserver_user_state.fork_sockets[1];
476         g_assert(gdbserver_state.process_num == 1);
477         g_assert(gdbserver_state.processes[0].pid ==
478                      gdbserver_user_state.fork_peer_pid);
479         g_assert(gdbserver_state.processes[0].attached);
480         gdbserver_state.processes[0].pid = getpid();
481     } else {
482         close(gdbserver_user_state.fork_sockets[1]);
483         fd = gdbserver_user_state.fork_sockets[0];
484         gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
485         gdbserver_user_state.fork_peer_pid = pid;
486         gdbserver_user_state.fork_peer_tid = pid;
487 
488         if (!gdbserver_state.allow_stop_reply) {
489             goto fail;
490         }
491         g_string_printf(gdbserver_state.str_buf,
492                         "T%02xfork:p%02x.%02x;thread:p%02x.%02x;",
493                         gdb_target_signal_to_gdb(gdb_target_sigtrap()),
494                         pid, pid, (int)getpid(), qemu_get_thread_id());
495         gdb_put_strbuf();
496     }
497 
498     gdbserver_state.state = RS_IDLE;
499     gdbserver_state.allow_stop_reply = false;
500     gdbserver_user_state.running_state = 0;
501     for (;;) {
502         switch (gdbserver_user_state.fork_state) {
503         case GDB_FORK_ENABLED:
504             if (gdbserver_user_state.running_state) {
505                 return;
506             }
507             QEMU_FALLTHROUGH;
508         case GDB_FORK_ACTIVE:
509             if (read(gdbserver_user_state.fd, &b, 1) != 1) {
510                 goto fail;
511             }
512             gdb_read_byte(b);
513             break;
514         case GDB_FORK_DEACTIVATING:
515             b = GDB_FORK_ACTIVATE;
516             if (write(fd, &b, 1) != 1) {
517                 goto fail;
518             }
519             gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
520             break;
521         case GDB_FORK_INACTIVE:
522             if (read(fd, &b, 1) != 1) {
523                 goto fail;
524             }
525             switch (b) {
526             case GDB_FORK_ACTIVATE:
527                 gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
528                 break;
529             case GDB_FORK_ENABLE:
530                 close(fd);
531                 gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
532                 break;
533             case GDB_FORK_DISABLE:
534                 gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
535                 break;
536             default:
537                 g_assert_not_reached();
538             }
539             break;
540         case GDB_FORK_ENABLING:
541             b = GDB_FORK_DISABLE;
542             if (write(fd, &b, 1) != 1) {
543                 goto fail;
544             }
545             close(fd);
546             gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
547             break;
548         case GDB_FORK_DISABLING:
549             b = GDB_FORK_ENABLE;
550             if (write(fd, &b, 1) != 1) {
551                 goto fail;
552             }
553             gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
554             break;
555         case GDB_FORK_DISABLED:
556             close(fd);
557             disable_gdbstub(cpu);
558             return;
559         default:
560             g_assert_not_reached();
561         }
562     }
563 
564 fail:
565     close(fd);
566     if (pid == 0) {
567         disable_gdbstub(cpu);
568     }
569 }
570 
571 void gdb_handle_query_supported_user(const char *gdb_supported)
572 {
573     if (strstr(gdb_supported, "fork-events+")) {
574         gdbserver_user_state.fork_events = true;
575     }
576     g_string_append(gdbserver_state.str_buf, ";fork-events+");
577 }
578 
579 bool gdb_handle_set_thread_user(uint32_t pid, uint32_t tid)
580 {
581     if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE &&
582             pid == gdbserver_user_state.fork_peer_pid &&
583             tid == gdbserver_user_state.fork_peer_tid) {
584         gdbserver_user_state.fork_state = GDB_FORK_DEACTIVATING;
585         gdb_put_packet("OK");
586         return true;
587     }
588     return false;
589 }
590 
591 bool gdb_handle_detach_user(uint32_t pid)
592 {
593     bool enable;
594 
595     if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE) {
596         enable = pid == gdbserver_user_state.fork_peer_pid;
597         if (enable || pid == getpid()) {
598             gdbserver_user_state.fork_state = enable ? GDB_FORK_ENABLING :
599                                                        GDB_FORK_DISABLING;
600             gdb_put_packet("OK");
601             return true;
602         }
603     }
604     return false;
605 }
606 
607 /*
608  * Execution state helpers
609  */
610 
611 void gdb_handle_query_attached(GArray *params, void *user_ctx)
612 {
613     gdb_put_packet("0");
614 }
615 
616 void gdb_continue(void)
617 {
618     gdbserver_user_state.running_state = 1;
619     trace_gdbstub_op_continue();
620 }
621 
622 /*
623  * Resume execution, for user-mode emulation it's equivalent to
624  * gdb_continue.
625  */
626 int gdb_continue_partial(char *newstates)
627 {
628     CPUState *cpu;
629     int res = 0;
630     /*
631      * This is not exactly accurate, but it's an improvement compared to the
632      * previous situation, where only one CPU would be single-stepped.
633      */
634     CPU_FOREACH(cpu) {
635         if (newstates[cpu->cpu_index] == 's') {
636             trace_gdbstub_op_stepping(cpu->cpu_index);
637             cpu_single_step(cpu, gdbserver_state.sstep_flags);
638         }
639     }
640     gdbserver_user_state.running_state = 1;
641     return res;
642 }
643 
644 /*
645  * Memory access helpers
646  */
647 int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
648                                uint8_t *buf, int len, bool is_write)
649 {
650     CPUClass *cc;
651 
652     cc = CPU_GET_CLASS(cpu);
653     if (cc->memory_rw_debug) {
654         return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
655     }
656     return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
657 }
658 
659 /*
660  * cpu helpers
661  */
662 
663 unsigned int gdb_get_max_cpus(void)
664 {
665     CPUState *cpu;
666     unsigned int max_cpus = 1;
667 
668     CPU_FOREACH(cpu) {
669         max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
670     }
671 
672     return max_cpus;
673 }
674 
675 /* replay not supported for user-mode */
676 bool gdb_can_reverse(void)
677 {
678     return false;
679 }
680 
681 /*
682  * Break/Watch point helpers
683  */
684 
685 bool gdb_supports_guest_debug(void)
686 {
687     /* user-mode == TCG == supported */
688     return true;
689 }
690 
691 int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
692 {
693     CPUState *cpu;
694     int err = 0;
695 
696     switch (type) {
697     case GDB_BREAKPOINT_SW:
698     case GDB_BREAKPOINT_HW:
699         CPU_FOREACH(cpu) {
700             err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
701             if (err) {
702                 break;
703             }
704         }
705         return err;
706     default:
707         /* user-mode doesn't support watchpoints */
708         return -ENOSYS;
709     }
710 }
711 
712 int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
713 {
714     CPUState *cpu;
715     int err = 0;
716 
717     switch (type) {
718     case GDB_BREAKPOINT_SW:
719     case GDB_BREAKPOINT_HW:
720         CPU_FOREACH(cpu) {
721             err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
722             if (err) {
723                 break;
724             }
725         }
726         return err;
727     default:
728         /* user-mode doesn't support watchpoints */
729         return -ENOSYS;
730     }
731 }
732 
733 void gdb_breakpoint_remove_all(CPUState *cs)
734 {
735     cpu_breakpoint_remove_all(cs, BP_GDB);
736 }
737 
738 /*
739  * For user-mode syscall support we send the system call immediately
740  * and then return control to gdb for it to process the syscall request.
741  * Since the protocol requires that gdb hands control back to us
742  * using a "here are the results" F packet, we don't need to check
743  * gdb_handlesig's return value (which is the signal to deliver if
744  * execution was resumed via a continue packet).
745  */
746 void gdb_syscall_handling(const char *syscall_packet)
747 {
748     gdb_put_packet(syscall_packet);
749     gdb_handlesig(gdbserver_state.c_cpu, 0);
750 }
751 
752 static bool should_catch_syscall(int num)
753 {
754     if (gdbserver_user_state.catch_all_syscalls) {
755         return true;
756     }
757     if (num < 0 || num >= GDB_NR_SYSCALLS) {
758         return false;
759     }
760     return test_bit(num, gdbserver_user_state.catch_syscalls_mask);
761 }
762 
763 void gdb_syscall_entry(CPUState *cs, int num)
764 {
765     if (should_catch_syscall(num)) {
766         g_autofree char *reason = g_strdup_printf("syscall_entry:%x;", num);
767         gdb_handlesig_reason(cs, gdb_target_sigtrap(), reason);
768     }
769 }
770 
771 void gdb_syscall_return(CPUState *cs, int num)
772 {
773     if (should_catch_syscall(num)) {
774         g_autofree char *reason = g_strdup_printf("syscall_return:%x;", num);
775         gdb_handlesig_reason(cs, gdb_target_sigtrap(), reason);
776     }
777 }
778 
779 void gdb_handle_set_catch_syscalls(GArray *params, void *user_ctx)
780 {
781     const char *param = get_param(params, 0)->data;
782     GDBSyscallsMask catch_syscalls_mask;
783     bool catch_all_syscalls;
784     unsigned int num;
785     const char *p;
786 
787     /* "0" means not catching any syscalls. */
788     if (strcmp(param, "0") == 0) {
789         gdbserver_user_state.catch_all_syscalls = false;
790         memset(gdbserver_user_state.catch_syscalls_mask, 0,
791                sizeof(gdbserver_user_state.catch_syscalls_mask));
792         gdb_put_packet("OK");
793         return;
794     }
795 
796     /* "1" means catching all syscalls. */
797     if (strcmp(param, "1") == 0) {
798         gdbserver_user_state.catch_all_syscalls = true;
799         gdb_put_packet("OK");
800         return;
801     }
802 
803     /*
804      * "1;..." means catching only the specified syscalls.
805      * The syscall list must not be empty.
806      */
807     if (param[0] == '1' && param[1] == ';') {
808         catch_all_syscalls = false;
809         memset(catch_syscalls_mask, 0, sizeof(catch_syscalls_mask));
810         for (p = &param[2];; p++) {
811             if (qemu_strtoui(p, &p, 16, &num) || (*p && *p != ';')) {
812                 goto err;
813             }
814             if (num >= GDB_NR_SYSCALLS) {
815                 /*
816                  * Fall back to reporting all syscalls. Reporting extra
817                  * syscalls is inefficient, but the spec explicitly allows it.
818                  * Keep parsing in case there is a syntax error ahead.
819                  */
820                 catch_all_syscalls = true;
821             } else {
822                 set_bit(num, catch_syscalls_mask);
823             }
824             if (!*p) {
825                 break;
826             }
827         }
828         gdbserver_user_state.catch_all_syscalls = catch_all_syscalls;
829         if (!catch_all_syscalls) {
830             memcpy(gdbserver_user_state.catch_syscalls_mask,
831                    catch_syscalls_mask, sizeof(catch_syscalls_mask));
832         }
833         gdb_put_packet("OK");
834         return;
835     }
836 
837 err:
838     gdb_put_packet("E00");
839 }
840