xref: /openbmc/qemu/gdbstub/system.c (revision efb91426)
1 /*
2  * gdb server stub - softmmu specific bits
3  *
4  * Debug integration depends on support from the individual
5  * accelerators so most of this involves calling the ops helpers.
6  *
7  * Copyright (c) 2003-2005 Fabrice Bellard
8  * Copyright (c) 2022 Linaro Ltd
9  *
10  * SPDX-License-Identifier: LGPL-2.0+
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu/error-report.h"
16 #include "qemu/cutils.h"
17 #include "exec/gdbstub.h"
18 #include "gdbstub/syscalls.h"
19 #include "exec/hwaddr.h"
20 #include "exec/tb-flush.h"
21 #include "sysemu/cpus.h"
22 #include "sysemu/runstate.h"
23 #include "sysemu/replay.h"
24 #include "hw/core/cpu.h"
25 #include "hw/cpu/cluster.h"
26 #include "hw/boards.h"
27 #include "chardev/char.h"
28 #include "chardev/char-fe.h"
29 #include "monitor/monitor.h"
30 #include "trace.h"
31 #include "internals.h"
32 
33 /* System emulation specific state */
34 typedef struct {
35     CharBackend chr;
36     Chardev *mon_chr;
37 } GDBSystemState;
38 
39 GDBSystemState gdbserver_system_state;
40 
41 static void reset_gdbserver_state(void)
42 {
43     g_free(gdbserver_state.processes);
44     gdbserver_state.processes = NULL;
45     gdbserver_state.process_num = 0;
46     gdbserver_state.allow_stop_reply = false;
47 }
48 
49 /*
50  * Return the GDB index for a given vCPU state.
51  *
52  * In system mode GDB numbers CPUs from 1 as 0 is reserved as an "any
53  * cpu" index.
54  */
55 int gdb_get_cpu_index(CPUState *cpu)
56 {
57     return cpu->cpu_index + 1;
58 }
59 
60 /*
61  * We check the status of the last message in the chardev receive code
62  */
63 bool gdb_got_immediate_ack(void)
64 {
65     return true;
66 }
67 
68 /*
69  * GDB Connection management. For system emulation we do all of this
70  * via our existing Chardev infrastructure which allows us to support
71  * network and unix sockets.
72  */
73 
74 void gdb_put_buffer(const uint8_t *buf, int len)
75 {
76     /*
77      * XXX this blocks entire thread. Rewrite to use
78      * qemu_chr_fe_write and background I/O callbacks
79      */
80     qemu_chr_fe_write_all(&gdbserver_system_state.chr, buf, len);
81 }
82 
83 static void gdb_chr_event(void *opaque, QEMUChrEvent event)
84 {
85     int i;
86     GDBState *s = (GDBState *) opaque;
87 
88     switch (event) {
89     case CHR_EVENT_OPENED:
90         /* Start with first process attached, others detached */
91         for (i = 0; i < s->process_num; i++) {
92             s->processes[i].attached = !i;
93         }
94 
95         s->c_cpu = gdb_first_attached_cpu();
96         s->g_cpu = s->c_cpu;
97 
98         vm_stop(RUN_STATE_PAUSED);
99         replay_gdb_attached();
100         break;
101     default:
102         break;
103     }
104 }
105 
106 /*
107  * In system-mode we stop the VM and wait to send the syscall packet
108  * until notification that the CPU has stopped. This must be done
109  * because if the packet is sent now the reply from the syscall
110  * request could be received while the CPU is still in the running
111  * state, which can cause packets to be dropped and state transition
112  * 'T' packets to be sent while the syscall is still being processed.
113  */
114 void gdb_syscall_handling(const char *syscall_packet)
115 {
116     vm_stop(RUN_STATE_DEBUG);
117     qemu_cpu_kick(gdbserver_state.c_cpu);
118 }
119 
120 static void gdb_vm_state_change(void *opaque, bool running, RunState state)
121 {
122     CPUState *cpu = gdbserver_state.c_cpu;
123     g_autoptr(GString) buf = g_string_new(NULL);
124     g_autoptr(GString) tid = g_string_new(NULL);
125     const char *type;
126     int ret;
127 
128     if (running || gdbserver_state.state == RS_INACTIVE) {
129         return;
130     }
131 
132     /* Is there a GDB syscall waiting to be sent?  */
133     if (gdb_handled_syscall()) {
134         return;
135     }
136 
137     if (cpu == NULL) {
138         /* No process attached */
139         return;
140     }
141 
142     if (!gdbserver_state.allow_stop_reply) {
143         return;
144     }
145 
146     gdb_append_thread_id(cpu, tid);
147 
148     switch (state) {
149     case RUN_STATE_DEBUG:
150         if (cpu->watchpoint_hit) {
151             switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
152             case BP_MEM_READ:
153                 type = "r";
154                 break;
155             case BP_MEM_ACCESS:
156                 type = "a";
157                 break;
158             default:
159                 type = "";
160                 break;
161             }
162             trace_gdbstub_hit_watchpoint(type,
163                                          gdb_get_cpu_index(cpu),
164                                          cpu->watchpoint_hit->vaddr);
165             g_string_printf(buf, "T%02xthread:%s;%swatch:%" VADDR_PRIx ";",
166                             GDB_SIGNAL_TRAP, tid->str, type,
167                             cpu->watchpoint_hit->vaddr);
168             cpu->watchpoint_hit = NULL;
169             goto send_packet;
170         } else {
171             trace_gdbstub_hit_break();
172         }
173         tb_flush(cpu);
174         ret = GDB_SIGNAL_TRAP;
175         break;
176     case RUN_STATE_PAUSED:
177         trace_gdbstub_hit_paused();
178         ret = GDB_SIGNAL_INT;
179         break;
180     case RUN_STATE_SHUTDOWN:
181         trace_gdbstub_hit_shutdown();
182         ret = GDB_SIGNAL_QUIT;
183         break;
184     case RUN_STATE_IO_ERROR:
185         trace_gdbstub_hit_io_error();
186         ret = GDB_SIGNAL_STOP;
187         break;
188     case RUN_STATE_WATCHDOG:
189         trace_gdbstub_hit_watchdog();
190         ret = GDB_SIGNAL_ALRM;
191         break;
192     case RUN_STATE_INTERNAL_ERROR:
193         trace_gdbstub_hit_internal_error();
194         ret = GDB_SIGNAL_ABRT;
195         break;
196     case RUN_STATE_SAVE_VM:
197     case RUN_STATE_RESTORE_VM:
198         return;
199     case RUN_STATE_FINISH_MIGRATE:
200         ret = GDB_SIGNAL_XCPU;
201         break;
202     default:
203         trace_gdbstub_hit_unknown(state);
204         ret = GDB_SIGNAL_UNKNOWN;
205         break;
206     }
207     gdb_set_stop_cpu(cpu);
208     g_string_printf(buf, "T%02xthread:%s;", ret, tid->str);
209 
210 send_packet:
211     gdb_put_packet(buf->str);
212     gdbserver_state.allow_stop_reply = false;
213 
214     /* disable single step if it was enabled */
215     cpu_single_step(cpu, 0);
216 }
217 
218 #ifndef _WIN32
219 static void gdb_sigterm_handler(int signal)
220 {
221     if (runstate_is_running()) {
222         vm_stop(RUN_STATE_PAUSED);
223     }
224 }
225 #endif
226 
227 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
228 {
229     g_autoptr(GString) hex_buf = g_string_new("O");
230     gdb_memtohex(hex_buf, buf, len);
231     gdb_put_packet(hex_buf->str);
232     return len;
233 }
234 
235 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
236                              bool *be_opened, Error **errp)
237 {
238     *be_opened = false;
239 }
240 
241 static void char_gdb_class_init(ObjectClass *oc, void *data)
242 {
243     ChardevClass *cc = CHARDEV_CLASS(oc);
244 
245     cc->internal = true;
246     cc->open = gdb_monitor_open;
247     cc->chr_write = gdb_monitor_write;
248 }
249 
250 #define TYPE_CHARDEV_GDB "chardev-gdb"
251 
252 static const TypeInfo char_gdb_type_info = {
253     .name = TYPE_CHARDEV_GDB,
254     .parent = TYPE_CHARDEV,
255     .class_init = char_gdb_class_init,
256 };
257 
258 static int gdb_chr_can_receive(void *opaque)
259 {
260   /*
261    * We can handle an arbitrarily large amount of data.
262    * Pick the maximum packet size, which is as good as anything.
263    */
264   return MAX_PACKET_LENGTH;
265 }
266 
267 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
268 {
269     int i;
270 
271     for (i = 0; i < size; i++) {
272         gdb_read_byte(buf[i]);
273     }
274 }
275 
276 static int find_cpu_clusters(Object *child, void *opaque)
277 {
278     if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
279         GDBState *s = (GDBState *) opaque;
280         CPUClusterState *cluster = CPU_CLUSTER(child);
281         GDBProcess *process;
282 
283         s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
284 
285         process = &s->processes[s->process_num - 1];
286 
287         /*
288          * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
289          * runtime, we enforce here that the machine does not use a cluster ID
290          * that would lead to PID 0.
291          */
292         assert(cluster->cluster_id != UINT32_MAX);
293         process->pid = cluster->cluster_id + 1;
294         process->attached = false;
295         process->target_xml = NULL;
296 
297         return 0;
298     }
299 
300     return object_child_foreach(child, find_cpu_clusters, opaque);
301 }
302 
303 static int pid_order(const void *a, const void *b)
304 {
305     GDBProcess *pa = (GDBProcess *) a;
306     GDBProcess *pb = (GDBProcess *) b;
307 
308     if (pa->pid < pb->pid) {
309         return -1;
310     } else if (pa->pid > pb->pid) {
311         return 1;
312     } else {
313         return 0;
314     }
315 }
316 
317 static void create_processes(GDBState *s)
318 {
319     object_child_foreach(object_get_root(), find_cpu_clusters, s);
320 
321     if (gdbserver_state.processes) {
322         /* Sort by PID */
323         qsort(gdbserver_state.processes,
324               gdbserver_state.process_num,
325               sizeof(gdbserver_state.processes[0]),
326               pid_order);
327     }
328 
329     gdb_create_default_process(s);
330 }
331 
332 int gdbserver_start(const char *device)
333 {
334     Chardev *chr = NULL;
335     Chardev *mon_chr;
336     g_autoptr(GString) cs = g_string_new(device);
337 
338     if (!first_cpu) {
339         error_report("gdbstub: meaningless to attach gdb to a "
340                      "machine without any CPU.");
341         return -1;
342     }
343 
344     if (!gdb_supports_guest_debug()) {
345         error_report("gdbstub: current accelerator doesn't "
346                      "support guest debugging");
347         return -1;
348     }
349 
350     if (cs->len == 0) {
351         return -1;
352     }
353 
354     trace_gdbstub_op_start(cs->str);
355 
356     if (g_strcmp0(cs->str, "none") != 0) {
357         if (g_str_has_prefix(cs->str, "tcp:")) {
358             /* enforce required TCP attributes */
359             g_string_append_printf(cs, ",wait=off,nodelay=on,server=on");
360         }
361 #ifndef _WIN32
362         else if (strcmp(device, "stdio") == 0) {
363             struct sigaction act;
364 
365             memset(&act, 0, sizeof(act));
366             act.sa_handler = gdb_sigterm_handler;
367             sigaction(SIGINT, &act, NULL);
368         }
369 #endif
370         /*
371          * FIXME: it's a bit weird to allow using a mux chardev here
372          * and implicitly setup a monitor. We may want to break this.
373          */
374         chr = qemu_chr_new_noreplay("gdb", cs->str, true, NULL);
375         if (!chr) {
376             return -1;
377         }
378     }
379 
380     if (!gdbserver_state.init) {
381         gdb_init_gdbserver_state();
382 
383         qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
384 
385         /* Initialize a monitor terminal for gdb */
386         mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
387                                    NULL, NULL, &error_abort);
388         monitor_init_hmp(mon_chr, false, &error_abort);
389     } else {
390         qemu_chr_fe_deinit(&gdbserver_system_state.chr, true);
391         mon_chr = gdbserver_system_state.mon_chr;
392         reset_gdbserver_state();
393     }
394 
395     create_processes(&gdbserver_state);
396 
397     if (chr) {
398         qemu_chr_fe_init(&gdbserver_system_state.chr, chr, &error_abort);
399         qemu_chr_fe_set_handlers(&gdbserver_system_state.chr,
400                                  gdb_chr_can_receive,
401                                  gdb_chr_receive, gdb_chr_event,
402                                  NULL, &gdbserver_state, NULL, true);
403     }
404     gdbserver_state.state = chr ? RS_IDLE : RS_INACTIVE;
405     gdbserver_system_state.mon_chr = mon_chr;
406     gdb_syscall_reset();
407 
408     return 0;
409 }
410 
411 static void register_types(void)
412 {
413     type_register_static(&char_gdb_type_info);
414 }
415 
416 type_init(register_types);
417 
418 /* Tell the remote gdb that the process has exited.  */
419 void gdb_exit(int code)
420 {
421     char buf[4];
422 
423     if (!gdbserver_state.init) {
424         return;
425     }
426 
427     trace_gdbstub_op_exiting((uint8_t)code);
428 
429     if (gdbserver_state.allow_stop_reply) {
430         snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
431         gdb_put_packet(buf);
432         gdbserver_state.allow_stop_reply = false;
433     }
434 
435     qemu_chr_fe_deinit(&gdbserver_system_state.chr, true);
436 }
437 
438 void gdb_qemu_exit(int code)
439 {
440     qemu_system_shutdown_request_with_code(SHUTDOWN_CAUSE_GUEST_SHUTDOWN,
441                                            code);
442 }
443 
444 /*
445  * Memory access
446  */
447 static int phy_memory_mode;
448 
449 int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
450                                uint8_t *buf, int len, bool is_write)
451 {
452     CPUClass *cc;
453 
454     if (phy_memory_mode) {
455         if (is_write) {
456             cpu_physical_memory_write(addr, buf, len);
457         } else {
458             cpu_physical_memory_read(addr, buf, len);
459         }
460         return 0;
461     }
462 
463     cc = CPU_GET_CLASS(cpu);
464     if (cc->memory_rw_debug) {
465         return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
466     }
467 
468     return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
469 }
470 
471 /*
472  * cpu helpers
473  */
474 
475 unsigned int gdb_get_max_cpus(void)
476 {
477     MachineState *ms = MACHINE(qdev_get_machine());
478     return ms->smp.max_cpus;
479 }
480 
481 bool gdb_can_reverse(void)
482 {
483     return replay_mode == REPLAY_MODE_PLAY;
484 }
485 
486 /*
487  * Softmmu specific command helpers
488  */
489 
490 void gdb_handle_query_qemu_phy_mem_mode(GArray *params,
491                                         void *user_ctx)
492 {
493     g_string_printf(gdbserver_state.str_buf, "%d", phy_memory_mode);
494     gdb_put_strbuf();
495 }
496 
497 void gdb_handle_set_qemu_phy_mem_mode(GArray *params, void *user_ctx)
498 {
499     if (!params->len) {
500         gdb_put_packet("E22");
501         return;
502     }
503 
504     if (!get_param(params, 0)->val_ul) {
505         phy_memory_mode = 0;
506     } else {
507         phy_memory_mode = 1;
508     }
509     gdb_put_packet("OK");
510 }
511 
512 void gdb_handle_query_rcmd(GArray *params, void *user_ctx)
513 {
514     const guint8 zero = 0;
515     int len;
516 
517     if (!params->len) {
518         gdb_put_packet("E22");
519         return;
520     }
521 
522     len = strlen(get_param(params, 0)->data);
523     if (len % 2) {
524         gdb_put_packet("E01");
525         return;
526     }
527 
528     g_assert(gdbserver_state.mem_buf->len == 0);
529     len = len / 2;
530     gdb_hextomem(gdbserver_state.mem_buf, get_param(params, 0)->data, len);
531     g_byte_array_append(gdbserver_state.mem_buf, &zero, 1);
532     qemu_chr_be_write(gdbserver_system_state.mon_chr,
533                       gdbserver_state.mem_buf->data,
534                       gdbserver_state.mem_buf->len);
535     gdb_put_packet("OK");
536 }
537 
538 /*
539  * Execution state helpers
540  */
541 
542 void gdb_handle_query_attached(GArray *params, void *user_ctx)
543 {
544     gdb_put_packet("1");
545 }
546 
547 void gdb_continue(void)
548 {
549     if (!runstate_needs_reset()) {
550         trace_gdbstub_op_continue();
551         vm_start();
552     }
553 }
554 
555 /*
556  * Resume execution, per CPU actions.
557  */
558 int gdb_continue_partial(char *newstates)
559 {
560     CPUState *cpu;
561     int res = 0;
562     int flag = 0;
563 
564     if (!runstate_needs_reset()) {
565         bool step_requested = false;
566         CPU_FOREACH(cpu) {
567             if (newstates[cpu->cpu_index] == 's') {
568                 step_requested = true;
569                 break;
570             }
571         }
572 
573         if (vm_prepare_start(step_requested)) {
574             return 0;
575         }
576 
577         CPU_FOREACH(cpu) {
578             switch (newstates[cpu->cpu_index]) {
579             case 0:
580             case 1:
581                 break; /* nothing to do here */
582             case 's':
583                 trace_gdbstub_op_stepping(cpu->cpu_index);
584                 cpu_single_step(cpu, gdbserver_state.sstep_flags);
585                 cpu_resume(cpu);
586                 flag = 1;
587                 break;
588             case 'c':
589                 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
590                 cpu_resume(cpu);
591                 flag = 1;
592                 break;
593             default:
594                 res = -1;
595                 break;
596             }
597         }
598     }
599     if (flag) {
600         qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
601     }
602     return res;
603 }
604 
605 /*
606  * Signal Handling - in system mode we only need SIGINT and SIGTRAP; other
607  * signals are not yet supported.
608  */
609 
610 enum {
611     TARGET_SIGINT = 2,
612     TARGET_SIGTRAP = 5
613 };
614 
615 int gdb_signal_to_target(int sig)
616 {
617     switch (sig) {
618     case 2:
619         return TARGET_SIGINT;
620     case 5:
621         return TARGET_SIGTRAP;
622     default:
623         return -1;
624     }
625 }
626 
627 /*
628  * Break/Watch point helpers
629  */
630 
631 bool gdb_supports_guest_debug(void)
632 {
633     const AccelOpsClass *ops = cpus_get_accel();
634     if (ops->supports_guest_debug) {
635         return ops->supports_guest_debug();
636     }
637     return false;
638 }
639 
640 int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
641 {
642     const AccelOpsClass *ops = cpus_get_accel();
643     if (ops->insert_breakpoint) {
644         return ops->insert_breakpoint(cs, type, addr, len);
645     }
646     return -ENOSYS;
647 }
648 
649 int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
650 {
651     const AccelOpsClass *ops = cpus_get_accel();
652     if (ops->remove_breakpoint) {
653         return ops->remove_breakpoint(cs, type, addr, len);
654     }
655     return -ENOSYS;
656 }
657 
658 void gdb_breakpoint_remove_all(CPUState *cs)
659 {
660     const AccelOpsClass *ops = cpus_get_accel();
661     if (ops->remove_all_breakpoints) {
662         ops->remove_all_breakpoints(cs);
663     }
664 }
665