1 /* 2 * QEMU float support 3 * 4 * The code in this source file is derived from release 2a of the SoftFloat 5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and 6 * some later contributions) are provided under that license, as detailed below. 7 * It has subsequently been modified by contributors to the QEMU Project, 8 * so some portions are provided under: 9 * the SoftFloat-2a license 10 * the BSD license 11 * GPL-v2-or-later 12 * 13 * Any future contributions to this file after December 1st 2014 will be 14 * taken to be licensed under the Softfloat-2a license unless specifically 15 * indicated otherwise. 16 */ 17 18 /* 19 =============================================================================== 20 This C source file is part of the SoftFloat IEC/IEEE Floating-point 21 Arithmetic Package, Release 2a. 22 23 Written by John R. Hauser. This work was made possible in part by the 24 International Computer Science Institute, located at Suite 600, 1947 Center 25 Street, Berkeley, California 94704. Funding was partially provided by the 26 National Science Foundation under grant MIP-9311980. The original version 27 of this code was written as part of a project to build a fixed-point vector 28 processor in collaboration with the University of California at Berkeley, 29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 31 arithmetic/SoftFloat.html'. 32 33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 38 39 Derivative works are acceptable, even for commercial purposes, so long as 40 (1) they include prominent notice that the work is derivative, and (2) they 41 include prominent notice akin to these four paragraphs for those parts of 42 this code that are retained. 43 44 =============================================================================== 45 */ 46 47 /* BSD licensing: 48 * Copyright (c) 2006, Fabrice Bellard 49 * All rights reserved. 50 * 51 * Redistribution and use in source and binary forms, with or without 52 * modification, are permitted provided that the following conditions are met: 53 * 54 * 1. Redistributions of source code must retain the above copyright notice, 55 * this list of conditions and the following disclaimer. 56 * 57 * 2. Redistributions in binary form must reproduce the above copyright notice, 58 * this list of conditions and the following disclaimer in the documentation 59 * and/or other materials provided with the distribution. 60 * 61 * 3. Neither the name of the copyright holder nor the names of its contributors 62 * may be used to endorse or promote products derived from this software without 63 * specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 75 * THE POSSIBILITY OF SUCH DAMAGE. 76 */ 77 78 /* Portions of this work are licensed under the terms of the GNU GPL, 79 * version 2 or later. See the COPYING file in the top-level directory. 80 */ 81 82 /* softfloat (and in particular the code in softfloat-specialize.h) is 83 * target-dependent and needs the TARGET_* macros. 84 */ 85 #include "qemu/osdep.h" 86 87 #include "fpu/softfloat.h" 88 89 /* We only need stdlib for abort() */ 90 91 /*---------------------------------------------------------------------------- 92 | Primitive arithmetic functions, including multi-word arithmetic, and 93 | division and square root approximations. (Can be specialized to target if 94 | desired.) 95 *----------------------------------------------------------------------------*/ 96 #include "softfloat-macros.h" 97 98 /*---------------------------------------------------------------------------- 99 | Functions and definitions to determine: (1) whether tininess for underflow 100 | is detected before or after rounding by default, (2) what (if anything) 101 | happens when exceptions are raised, (3) how signaling NaNs are distinguished 102 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs 103 | are propagated from function inputs to output. These details are target- 104 | specific. 105 *----------------------------------------------------------------------------*/ 106 #include "softfloat-specialize.h" 107 108 /*---------------------------------------------------------------------------- 109 | Returns the fraction bits of the half-precision floating-point value `a'. 110 *----------------------------------------------------------------------------*/ 111 112 static inline uint32_t extractFloat16Frac(float16 a) 113 { 114 return float16_val(a) & 0x3ff; 115 } 116 117 /*---------------------------------------------------------------------------- 118 | Returns the exponent bits of the half-precision floating-point value `a'. 119 *----------------------------------------------------------------------------*/ 120 121 static inline int extractFloat16Exp(float16 a) 122 { 123 return (float16_val(a) >> 10) & 0x1f; 124 } 125 126 /*---------------------------------------------------------------------------- 127 | Returns the sign bit of the single-precision floating-point value `a'. 128 *----------------------------------------------------------------------------*/ 129 130 static inline flag extractFloat16Sign(float16 a) 131 { 132 return float16_val(a)>>15; 133 } 134 135 /*---------------------------------------------------------------------------- 136 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 137 | and 7, and returns the properly rounded 32-bit integer corresponding to the 138 | input. If `zSign' is 1, the input is negated before being converted to an 139 | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input 140 | is simply rounded to an integer, with the inexact exception raised if the 141 | input cannot be represented exactly as an integer. However, if the fixed- 142 | point input is too large, the invalid exception is raised and the largest 143 | positive or negative integer is returned. 144 *----------------------------------------------------------------------------*/ 145 146 static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status) 147 { 148 int8_t roundingMode; 149 flag roundNearestEven; 150 int8_t roundIncrement, roundBits; 151 int32_t z; 152 153 roundingMode = status->float_rounding_mode; 154 roundNearestEven = ( roundingMode == float_round_nearest_even ); 155 switch (roundingMode) { 156 case float_round_nearest_even: 157 case float_round_ties_away: 158 roundIncrement = 0x40; 159 break; 160 case float_round_to_zero: 161 roundIncrement = 0; 162 break; 163 case float_round_up: 164 roundIncrement = zSign ? 0 : 0x7f; 165 break; 166 case float_round_down: 167 roundIncrement = zSign ? 0x7f : 0; 168 break; 169 default: 170 abort(); 171 } 172 roundBits = absZ & 0x7F; 173 absZ = ( absZ + roundIncrement )>>7; 174 absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); 175 z = absZ; 176 if ( zSign ) z = - z; 177 if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { 178 float_raise(float_flag_invalid, status); 179 return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 180 } 181 if (roundBits) { 182 status->float_exception_flags |= float_flag_inexact; 183 } 184 return z; 185 186 } 187 188 /*---------------------------------------------------------------------------- 189 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and 190 | `absZ1', with binary point between bits 63 and 64 (between the input words), 191 | and returns the properly rounded 64-bit integer corresponding to the input. 192 | If `zSign' is 1, the input is negated before being converted to an integer. 193 | Ordinarily, the fixed-point input is simply rounded to an integer, with 194 | the inexact exception raised if the input cannot be represented exactly as 195 | an integer. However, if the fixed-point input is too large, the invalid 196 | exception is raised and the largest positive or negative integer is 197 | returned. 198 *----------------------------------------------------------------------------*/ 199 200 static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1, 201 float_status *status) 202 { 203 int8_t roundingMode; 204 flag roundNearestEven, increment; 205 int64_t z; 206 207 roundingMode = status->float_rounding_mode; 208 roundNearestEven = ( roundingMode == float_round_nearest_even ); 209 switch (roundingMode) { 210 case float_round_nearest_even: 211 case float_round_ties_away: 212 increment = ((int64_t) absZ1 < 0); 213 break; 214 case float_round_to_zero: 215 increment = 0; 216 break; 217 case float_round_up: 218 increment = !zSign && absZ1; 219 break; 220 case float_round_down: 221 increment = zSign && absZ1; 222 break; 223 default: 224 abort(); 225 } 226 if ( increment ) { 227 ++absZ0; 228 if ( absZ0 == 0 ) goto overflow; 229 absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); 230 } 231 z = absZ0; 232 if ( zSign ) z = - z; 233 if ( z && ( ( z < 0 ) ^ zSign ) ) { 234 overflow: 235 float_raise(float_flag_invalid, status); 236 return 237 zSign ? (int64_t) LIT64( 0x8000000000000000 ) 238 : LIT64( 0x7FFFFFFFFFFFFFFF ); 239 } 240 if (absZ1) { 241 status->float_exception_flags |= float_flag_inexact; 242 } 243 return z; 244 245 } 246 247 /*---------------------------------------------------------------------------- 248 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and 249 | `absZ1', with binary point between bits 63 and 64 (between the input words), 250 | and returns the properly rounded 64-bit unsigned integer corresponding to the 251 | input. Ordinarily, the fixed-point input is simply rounded to an integer, 252 | with the inexact exception raised if the input cannot be represented exactly 253 | as an integer. However, if the fixed-point input is too large, the invalid 254 | exception is raised and the largest unsigned integer is returned. 255 *----------------------------------------------------------------------------*/ 256 257 static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0, 258 uint64_t absZ1, float_status *status) 259 { 260 int8_t roundingMode; 261 flag roundNearestEven, increment; 262 263 roundingMode = status->float_rounding_mode; 264 roundNearestEven = (roundingMode == float_round_nearest_even); 265 switch (roundingMode) { 266 case float_round_nearest_even: 267 case float_round_ties_away: 268 increment = ((int64_t)absZ1 < 0); 269 break; 270 case float_round_to_zero: 271 increment = 0; 272 break; 273 case float_round_up: 274 increment = !zSign && absZ1; 275 break; 276 case float_round_down: 277 increment = zSign && absZ1; 278 break; 279 default: 280 abort(); 281 } 282 if (increment) { 283 ++absZ0; 284 if (absZ0 == 0) { 285 float_raise(float_flag_invalid, status); 286 return LIT64(0xFFFFFFFFFFFFFFFF); 287 } 288 absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); 289 } 290 291 if (zSign && absZ0) { 292 float_raise(float_flag_invalid, status); 293 return 0; 294 } 295 296 if (absZ1) { 297 status->float_exception_flags |= float_flag_inexact; 298 } 299 return absZ0; 300 } 301 302 /*---------------------------------------------------------------------------- 303 | Returns the fraction bits of the single-precision floating-point value `a'. 304 *----------------------------------------------------------------------------*/ 305 306 static inline uint32_t extractFloat32Frac( float32 a ) 307 { 308 309 return float32_val(a) & 0x007FFFFF; 310 311 } 312 313 /*---------------------------------------------------------------------------- 314 | Returns the exponent bits of the single-precision floating-point value `a'. 315 *----------------------------------------------------------------------------*/ 316 317 static inline int extractFloat32Exp(float32 a) 318 { 319 320 return ( float32_val(a)>>23 ) & 0xFF; 321 322 } 323 324 /*---------------------------------------------------------------------------- 325 | Returns the sign bit of the single-precision floating-point value `a'. 326 *----------------------------------------------------------------------------*/ 327 328 static inline flag extractFloat32Sign( float32 a ) 329 { 330 331 return float32_val(a)>>31; 332 333 } 334 335 /*---------------------------------------------------------------------------- 336 | If `a' is denormal and we are in flush-to-zero mode then set the 337 | input-denormal exception and return zero. Otherwise just return the value. 338 *----------------------------------------------------------------------------*/ 339 float32 float32_squash_input_denormal(float32 a, float_status *status) 340 { 341 if (status->flush_inputs_to_zero) { 342 if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { 343 float_raise(float_flag_input_denormal, status); 344 return make_float32(float32_val(a) & 0x80000000); 345 } 346 } 347 return a; 348 } 349 350 /*---------------------------------------------------------------------------- 351 | Normalizes the subnormal single-precision floating-point value represented 352 | by the denormalized significand `aSig'. The normalized exponent and 353 | significand are stored at the locations pointed to by `zExpPtr' and 354 | `zSigPtr', respectively. 355 *----------------------------------------------------------------------------*/ 356 357 static void 358 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr) 359 { 360 int8_t shiftCount; 361 362 shiftCount = countLeadingZeros32( aSig ) - 8; 363 *zSigPtr = aSig<<shiftCount; 364 *zExpPtr = 1 - shiftCount; 365 366 } 367 368 /*---------------------------------------------------------------------------- 369 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a 370 | single-precision floating-point value, returning the result. After being 371 | shifted into the proper positions, the three fields are simply added 372 | together to form the result. This means that any integer portion of `zSig' 373 | will be added into the exponent. Since a properly normalized significand 374 | will have an integer portion equal to 1, the `zExp' input should be 1 less 375 | than the desired result exponent whenever `zSig' is a complete, normalized 376 | significand. 377 *----------------------------------------------------------------------------*/ 378 379 static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig) 380 { 381 382 return make_float32( 383 ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig); 384 385 } 386 387 /*---------------------------------------------------------------------------- 388 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 389 | and significand `zSig', and returns the proper single-precision floating- 390 | point value corresponding to the abstract input. Ordinarily, the abstract 391 | value is simply rounded and packed into the single-precision format, with 392 | the inexact exception raised if the abstract input cannot be represented 393 | exactly. However, if the abstract value is too large, the overflow and 394 | inexact exceptions are raised and an infinity or maximal finite value is 395 | returned. If the abstract value is too small, the input value is rounded to 396 | a subnormal number, and the underflow and inexact exceptions are raised if 397 | the abstract input cannot be represented exactly as a subnormal single- 398 | precision floating-point number. 399 | The input significand `zSig' has its binary point between bits 30 400 | and 29, which is 7 bits to the left of the usual location. This shifted 401 | significand must be normalized or smaller. If `zSig' is not normalized, 402 | `zExp' must be 0; in that case, the result returned is a subnormal number, 403 | and it must not require rounding. In the usual case that `zSig' is 404 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. 405 | The handling of underflow and overflow follows the IEC/IEEE Standard for 406 | Binary Floating-Point Arithmetic. 407 *----------------------------------------------------------------------------*/ 408 409 static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, 410 float_status *status) 411 { 412 int8_t roundingMode; 413 flag roundNearestEven; 414 int8_t roundIncrement, roundBits; 415 flag isTiny; 416 417 roundingMode = status->float_rounding_mode; 418 roundNearestEven = ( roundingMode == float_round_nearest_even ); 419 switch (roundingMode) { 420 case float_round_nearest_even: 421 case float_round_ties_away: 422 roundIncrement = 0x40; 423 break; 424 case float_round_to_zero: 425 roundIncrement = 0; 426 break; 427 case float_round_up: 428 roundIncrement = zSign ? 0 : 0x7f; 429 break; 430 case float_round_down: 431 roundIncrement = zSign ? 0x7f : 0; 432 break; 433 default: 434 abort(); 435 break; 436 } 437 roundBits = zSig & 0x7F; 438 if ( 0xFD <= (uint16_t) zExp ) { 439 if ( ( 0xFD < zExp ) 440 || ( ( zExp == 0xFD ) 441 && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) 442 ) { 443 float_raise(float_flag_overflow | float_flag_inexact, status); 444 return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); 445 } 446 if ( zExp < 0 ) { 447 if (status->flush_to_zero) { 448 float_raise(float_flag_output_denormal, status); 449 return packFloat32(zSign, 0, 0); 450 } 451 isTiny = 452 (status->float_detect_tininess 453 == float_tininess_before_rounding) 454 || ( zExp < -1 ) 455 || ( zSig + roundIncrement < 0x80000000 ); 456 shift32RightJamming( zSig, - zExp, &zSig ); 457 zExp = 0; 458 roundBits = zSig & 0x7F; 459 if (isTiny && roundBits) { 460 float_raise(float_flag_underflow, status); 461 } 462 } 463 } 464 if (roundBits) { 465 status->float_exception_flags |= float_flag_inexact; 466 } 467 zSig = ( zSig + roundIncrement )>>7; 468 zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); 469 if ( zSig == 0 ) zExp = 0; 470 return packFloat32( zSign, zExp, zSig ); 471 472 } 473 474 /*---------------------------------------------------------------------------- 475 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 476 | and significand `zSig', and returns the proper single-precision floating- 477 | point value corresponding to the abstract input. This routine is just like 478 | `roundAndPackFloat32' except that `zSig' does not have to be normalized. 479 | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' 480 | floating-point exponent. 481 *----------------------------------------------------------------------------*/ 482 483 static float32 484 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, 485 float_status *status) 486 { 487 int8_t shiftCount; 488 489 shiftCount = countLeadingZeros32( zSig ) - 1; 490 return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, 491 status); 492 493 } 494 495 /*---------------------------------------------------------------------------- 496 | Returns the fraction bits of the double-precision floating-point value `a'. 497 *----------------------------------------------------------------------------*/ 498 499 static inline uint64_t extractFloat64Frac( float64 a ) 500 { 501 502 return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF ); 503 504 } 505 506 /*---------------------------------------------------------------------------- 507 | Returns the exponent bits of the double-precision floating-point value `a'. 508 *----------------------------------------------------------------------------*/ 509 510 static inline int extractFloat64Exp(float64 a) 511 { 512 513 return ( float64_val(a)>>52 ) & 0x7FF; 514 515 } 516 517 /*---------------------------------------------------------------------------- 518 | Returns the sign bit of the double-precision floating-point value `a'. 519 *----------------------------------------------------------------------------*/ 520 521 static inline flag extractFloat64Sign( float64 a ) 522 { 523 524 return float64_val(a)>>63; 525 526 } 527 528 /*---------------------------------------------------------------------------- 529 | If `a' is denormal and we are in flush-to-zero mode then set the 530 | input-denormal exception and return zero. Otherwise just return the value. 531 *----------------------------------------------------------------------------*/ 532 float64 float64_squash_input_denormal(float64 a, float_status *status) 533 { 534 if (status->flush_inputs_to_zero) { 535 if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { 536 float_raise(float_flag_input_denormal, status); 537 return make_float64(float64_val(a) & (1ULL << 63)); 538 } 539 } 540 return a; 541 } 542 543 /*---------------------------------------------------------------------------- 544 | Normalizes the subnormal double-precision floating-point value represented 545 | by the denormalized significand `aSig'. The normalized exponent and 546 | significand are stored at the locations pointed to by `zExpPtr' and 547 | `zSigPtr', respectively. 548 *----------------------------------------------------------------------------*/ 549 550 static void 551 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr) 552 { 553 int8_t shiftCount; 554 555 shiftCount = countLeadingZeros64( aSig ) - 11; 556 *zSigPtr = aSig<<shiftCount; 557 *zExpPtr = 1 - shiftCount; 558 559 } 560 561 /*---------------------------------------------------------------------------- 562 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a 563 | double-precision floating-point value, returning the result. After being 564 | shifted into the proper positions, the three fields are simply added 565 | together to form the result. This means that any integer portion of `zSig' 566 | will be added into the exponent. Since a properly normalized significand 567 | will have an integer portion equal to 1, the `zExp' input should be 1 less 568 | than the desired result exponent whenever `zSig' is a complete, normalized 569 | significand. 570 *----------------------------------------------------------------------------*/ 571 572 static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig) 573 { 574 575 return make_float64( 576 ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); 577 578 } 579 580 /*---------------------------------------------------------------------------- 581 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 582 | and significand `zSig', and returns the proper double-precision floating- 583 | point value corresponding to the abstract input. Ordinarily, the abstract 584 | value is simply rounded and packed into the double-precision format, with 585 | the inexact exception raised if the abstract input cannot be represented 586 | exactly. However, if the abstract value is too large, the overflow and 587 | inexact exceptions are raised and an infinity or maximal finite value is 588 | returned. If the abstract value is too small, the input value is rounded to 589 | a subnormal number, and the underflow and inexact exceptions are raised if 590 | the abstract input cannot be represented exactly as a subnormal double- 591 | precision floating-point number. 592 | The input significand `zSig' has its binary point between bits 62 593 | and 61, which is 10 bits to the left of the usual location. This shifted 594 | significand must be normalized or smaller. If `zSig' is not normalized, 595 | `zExp' must be 0; in that case, the result returned is a subnormal number, 596 | and it must not require rounding. In the usual case that `zSig' is 597 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. 598 | The handling of underflow and overflow follows the IEC/IEEE Standard for 599 | Binary Floating-Point Arithmetic. 600 *----------------------------------------------------------------------------*/ 601 602 static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, 603 float_status *status) 604 { 605 int8_t roundingMode; 606 flag roundNearestEven; 607 int roundIncrement, roundBits; 608 flag isTiny; 609 610 roundingMode = status->float_rounding_mode; 611 roundNearestEven = ( roundingMode == float_round_nearest_even ); 612 switch (roundingMode) { 613 case float_round_nearest_even: 614 case float_round_ties_away: 615 roundIncrement = 0x200; 616 break; 617 case float_round_to_zero: 618 roundIncrement = 0; 619 break; 620 case float_round_up: 621 roundIncrement = zSign ? 0 : 0x3ff; 622 break; 623 case float_round_down: 624 roundIncrement = zSign ? 0x3ff : 0; 625 break; 626 default: 627 abort(); 628 } 629 roundBits = zSig & 0x3FF; 630 if ( 0x7FD <= (uint16_t) zExp ) { 631 if ( ( 0x7FD < zExp ) 632 || ( ( zExp == 0x7FD ) 633 && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) 634 ) { 635 float_raise(float_flag_overflow | float_flag_inexact, status); 636 return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 )); 637 } 638 if ( zExp < 0 ) { 639 if (status->flush_to_zero) { 640 float_raise(float_flag_output_denormal, status); 641 return packFloat64(zSign, 0, 0); 642 } 643 isTiny = 644 (status->float_detect_tininess 645 == float_tininess_before_rounding) 646 || ( zExp < -1 ) 647 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); 648 shift64RightJamming( zSig, - zExp, &zSig ); 649 zExp = 0; 650 roundBits = zSig & 0x3FF; 651 if (isTiny && roundBits) { 652 float_raise(float_flag_underflow, status); 653 } 654 } 655 } 656 if (roundBits) { 657 status->float_exception_flags |= float_flag_inexact; 658 } 659 zSig = ( zSig + roundIncrement )>>10; 660 zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); 661 if ( zSig == 0 ) zExp = 0; 662 return packFloat64( zSign, zExp, zSig ); 663 664 } 665 666 /*---------------------------------------------------------------------------- 667 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 668 | and significand `zSig', and returns the proper double-precision floating- 669 | point value corresponding to the abstract input. This routine is just like 670 | `roundAndPackFloat64' except that `zSig' does not have to be normalized. 671 | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' 672 | floating-point exponent. 673 *----------------------------------------------------------------------------*/ 674 675 static float64 676 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, 677 float_status *status) 678 { 679 int8_t shiftCount; 680 681 shiftCount = countLeadingZeros64( zSig ) - 1; 682 return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, 683 status); 684 685 } 686 687 /*---------------------------------------------------------------------------- 688 | Returns the fraction bits of the extended double-precision floating-point 689 | value `a'. 690 *----------------------------------------------------------------------------*/ 691 692 static inline uint64_t extractFloatx80Frac( floatx80 a ) 693 { 694 695 return a.low; 696 697 } 698 699 /*---------------------------------------------------------------------------- 700 | Returns the exponent bits of the extended double-precision floating-point 701 | value `a'. 702 *----------------------------------------------------------------------------*/ 703 704 static inline int32_t extractFloatx80Exp( floatx80 a ) 705 { 706 707 return a.high & 0x7FFF; 708 709 } 710 711 /*---------------------------------------------------------------------------- 712 | Returns the sign bit of the extended double-precision floating-point value 713 | `a'. 714 *----------------------------------------------------------------------------*/ 715 716 static inline flag extractFloatx80Sign( floatx80 a ) 717 { 718 719 return a.high>>15; 720 721 } 722 723 /*---------------------------------------------------------------------------- 724 | Normalizes the subnormal extended double-precision floating-point value 725 | represented by the denormalized significand `aSig'. The normalized exponent 726 | and significand are stored at the locations pointed to by `zExpPtr' and 727 | `zSigPtr', respectively. 728 *----------------------------------------------------------------------------*/ 729 730 static void 731 normalizeFloatx80Subnormal( uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr ) 732 { 733 int8_t shiftCount; 734 735 shiftCount = countLeadingZeros64( aSig ); 736 *zSigPtr = aSig<<shiftCount; 737 *zExpPtr = 1 - shiftCount; 738 739 } 740 741 /*---------------------------------------------------------------------------- 742 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an 743 | extended double-precision floating-point value, returning the result. 744 *----------------------------------------------------------------------------*/ 745 746 static inline floatx80 packFloatx80( flag zSign, int32_t zExp, uint64_t zSig ) 747 { 748 floatx80 z; 749 750 z.low = zSig; 751 z.high = ( ( (uint16_t) zSign )<<15 ) + zExp; 752 return z; 753 754 } 755 756 /*---------------------------------------------------------------------------- 757 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 758 | and extended significand formed by the concatenation of `zSig0' and `zSig1', 759 | and returns the proper extended double-precision floating-point value 760 | corresponding to the abstract input. Ordinarily, the abstract value is 761 | rounded and packed into the extended double-precision format, with the 762 | inexact exception raised if the abstract input cannot be represented 763 | exactly. However, if the abstract value is too large, the overflow and 764 | inexact exceptions are raised and an infinity or maximal finite value is 765 | returned. If the abstract value is too small, the input value is rounded to 766 | a subnormal number, and the underflow and inexact exceptions are raised if 767 | the abstract input cannot be represented exactly as a subnormal extended 768 | double-precision floating-point number. 769 | If `roundingPrecision' is 32 or 64, the result is rounded to the same 770 | number of bits as single or double precision, respectively. Otherwise, the 771 | result is rounded to the full precision of the extended double-precision 772 | format. 773 | The input significand must be normalized or smaller. If the input 774 | significand is not normalized, `zExp' must be 0; in that case, the result 775 | returned is a subnormal number, and it must not require rounding. The 776 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary 777 | Floating-Point Arithmetic. 778 *----------------------------------------------------------------------------*/ 779 780 static floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign, 781 int32_t zExp, uint64_t zSig0, uint64_t zSig1, 782 float_status *status) 783 { 784 int8_t roundingMode; 785 flag roundNearestEven, increment, isTiny; 786 int64_t roundIncrement, roundMask, roundBits; 787 788 roundingMode = status->float_rounding_mode; 789 roundNearestEven = ( roundingMode == float_round_nearest_even ); 790 if ( roundingPrecision == 80 ) goto precision80; 791 if ( roundingPrecision == 64 ) { 792 roundIncrement = LIT64( 0x0000000000000400 ); 793 roundMask = LIT64( 0x00000000000007FF ); 794 } 795 else if ( roundingPrecision == 32 ) { 796 roundIncrement = LIT64( 0x0000008000000000 ); 797 roundMask = LIT64( 0x000000FFFFFFFFFF ); 798 } 799 else { 800 goto precision80; 801 } 802 zSig0 |= ( zSig1 != 0 ); 803 switch (roundingMode) { 804 case float_round_nearest_even: 805 case float_round_ties_away: 806 break; 807 case float_round_to_zero: 808 roundIncrement = 0; 809 break; 810 case float_round_up: 811 roundIncrement = zSign ? 0 : roundMask; 812 break; 813 case float_round_down: 814 roundIncrement = zSign ? roundMask : 0; 815 break; 816 default: 817 abort(); 818 } 819 roundBits = zSig0 & roundMask; 820 if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { 821 if ( ( 0x7FFE < zExp ) 822 || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) 823 ) { 824 goto overflow; 825 } 826 if ( zExp <= 0 ) { 827 if (status->flush_to_zero) { 828 float_raise(float_flag_output_denormal, status); 829 return packFloatx80(zSign, 0, 0); 830 } 831 isTiny = 832 (status->float_detect_tininess 833 == float_tininess_before_rounding) 834 || ( zExp < 0 ) 835 || ( zSig0 <= zSig0 + roundIncrement ); 836 shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); 837 zExp = 0; 838 roundBits = zSig0 & roundMask; 839 if (isTiny && roundBits) { 840 float_raise(float_flag_underflow, status); 841 } 842 if (roundBits) { 843 status->float_exception_flags |= float_flag_inexact; 844 } 845 zSig0 += roundIncrement; 846 if ( (int64_t) zSig0 < 0 ) zExp = 1; 847 roundIncrement = roundMask + 1; 848 if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { 849 roundMask |= roundIncrement; 850 } 851 zSig0 &= ~ roundMask; 852 return packFloatx80( zSign, zExp, zSig0 ); 853 } 854 } 855 if (roundBits) { 856 status->float_exception_flags |= float_flag_inexact; 857 } 858 zSig0 += roundIncrement; 859 if ( zSig0 < roundIncrement ) { 860 ++zExp; 861 zSig0 = LIT64( 0x8000000000000000 ); 862 } 863 roundIncrement = roundMask + 1; 864 if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { 865 roundMask |= roundIncrement; 866 } 867 zSig0 &= ~ roundMask; 868 if ( zSig0 == 0 ) zExp = 0; 869 return packFloatx80( zSign, zExp, zSig0 ); 870 precision80: 871 switch (roundingMode) { 872 case float_round_nearest_even: 873 case float_round_ties_away: 874 increment = ((int64_t)zSig1 < 0); 875 break; 876 case float_round_to_zero: 877 increment = 0; 878 break; 879 case float_round_up: 880 increment = !zSign && zSig1; 881 break; 882 case float_round_down: 883 increment = zSign && zSig1; 884 break; 885 default: 886 abort(); 887 } 888 if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { 889 if ( ( 0x7FFE < zExp ) 890 || ( ( zExp == 0x7FFE ) 891 && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) 892 && increment 893 ) 894 ) { 895 roundMask = 0; 896 overflow: 897 float_raise(float_flag_overflow | float_flag_inexact, status); 898 if ( ( roundingMode == float_round_to_zero ) 899 || ( zSign && ( roundingMode == float_round_up ) ) 900 || ( ! zSign && ( roundingMode == float_round_down ) ) 901 ) { 902 return packFloatx80( zSign, 0x7FFE, ~ roundMask ); 903 } 904 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 905 } 906 if ( zExp <= 0 ) { 907 isTiny = 908 (status->float_detect_tininess 909 == float_tininess_before_rounding) 910 || ( zExp < 0 ) 911 || ! increment 912 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); 913 shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); 914 zExp = 0; 915 if (isTiny && zSig1) { 916 float_raise(float_flag_underflow, status); 917 } 918 if (zSig1) { 919 status->float_exception_flags |= float_flag_inexact; 920 } 921 switch (roundingMode) { 922 case float_round_nearest_even: 923 case float_round_ties_away: 924 increment = ((int64_t)zSig1 < 0); 925 break; 926 case float_round_to_zero: 927 increment = 0; 928 break; 929 case float_round_up: 930 increment = !zSign && zSig1; 931 break; 932 case float_round_down: 933 increment = zSign && zSig1; 934 break; 935 default: 936 abort(); 937 } 938 if ( increment ) { 939 ++zSig0; 940 zSig0 &= 941 ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); 942 if ( (int64_t) zSig0 < 0 ) zExp = 1; 943 } 944 return packFloatx80( zSign, zExp, zSig0 ); 945 } 946 } 947 if (zSig1) { 948 status->float_exception_flags |= float_flag_inexact; 949 } 950 if ( increment ) { 951 ++zSig0; 952 if ( zSig0 == 0 ) { 953 ++zExp; 954 zSig0 = LIT64( 0x8000000000000000 ); 955 } 956 else { 957 zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); 958 } 959 } 960 else { 961 if ( zSig0 == 0 ) zExp = 0; 962 } 963 return packFloatx80( zSign, zExp, zSig0 ); 964 965 } 966 967 /*---------------------------------------------------------------------------- 968 | Takes an abstract floating-point value having sign `zSign', exponent 969 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', 970 | and returns the proper extended double-precision floating-point value 971 | corresponding to the abstract input. This routine is just like 972 | `roundAndPackFloatx80' except that the input significand does not have to be 973 | normalized. 974 *----------------------------------------------------------------------------*/ 975 976 static floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, 977 flag zSign, int32_t zExp, 978 uint64_t zSig0, uint64_t zSig1, 979 float_status *status) 980 { 981 int8_t shiftCount; 982 983 if ( zSig0 == 0 ) { 984 zSig0 = zSig1; 985 zSig1 = 0; 986 zExp -= 64; 987 } 988 shiftCount = countLeadingZeros64( zSig0 ); 989 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 990 zExp -= shiftCount; 991 return roundAndPackFloatx80(roundingPrecision, zSign, zExp, 992 zSig0, zSig1, status); 993 994 } 995 996 /*---------------------------------------------------------------------------- 997 | Returns the least-significant 64 fraction bits of the quadruple-precision 998 | floating-point value `a'. 999 *----------------------------------------------------------------------------*/ 1000 1001 static inline uint64_t extractFloat128Frac1( float128 a ) 1002 { 1003 1004 return a.low; 1005 1006 } 1007 1008 /*---------------------------------------------------------------------------- 1009 | Returns the most-significant 48 fraction bits of the quadruple-precision 1010 | floating-point value `a'. 1011 *----------------------------------------------------------------------------*/ 1012 1013 static inline uint64_t extractFloat128Frac0( float128 a ) 1014 { 1015 1016 return a.high & LIT64( 0x0000FFFFFFFFFFFF ); 1017 1018 } 1019 1020 /*---------------------------------------------------------------------------- 1021 | Returns the exponent bits of the quadruple-precision floating-point value 1022 | `a'. 1023 *----------------------------------------------------------------------------*/ 1024 1025 static inline int32_t extractFloat128Exp( float128 a ) 1026 { 1027 1028 return ( a.high>>48 ) & 0x7FFF; 1029 1030 } 1031 1032 /*---------------------------------------------------------------------------- 1033 | Returns the sign bit of the quadruple-precision floating-point value `a'. 1034 *----------------------------------------------------------------------------*/ 1035 1036 static inline flag extractFloat128Sign( float128 a ) 1037 { 1038 1039 return a.high>>63; 1040 1041 } 1042 1043 /*---------------------------------------------------------------------------- 1044 | Normalizes the subnormal quadruple-precision floating-point value 1045 | represented by the denormalized significand formed by the concatenation of 1046 | `aSig0' and `aSig1'. The normalized exponent is stored at the location 1047 | pointed to by `zExpPtr'. The most significant 49 bits of the normalized 1048 | significand are stored at the location pointed to by `zSig0Ptr', and the 1049 | least significant 64 bits of the normalized significand are stored at the 1050 | location pointed to by `zSig1Ptr'. 1051 *----------------------------------------------------------------------------*/ 1052 1053 static void 1054 normalizeFloat128Subnormal( 1055 uint64_t aSig0, 1056 uint64_t aSig1, 1057 int32_t *zExpPtr, 1058 uint64_t *zSig0Ptr, 1059 uint64_t *zSig1Ptr 1060 ) 1061 { 1062 int8_t shiftCount; 1063 1064 if ( aSig0 == 0 ) { 1065 shiftCount = countLeadingZeros64( aSig1 ) - 15; 1066 if ( shiftCount < 0 ) { 1067 *zSig0Ptr = aSig1>>( - shiftCount ); 1068 *zSig1Ptr = aSig1<<( shiftCount & 63 ); 1069 } 1070 else { 1071 *zSig0Ptr = aSig1<<shiftCount; 1072 *zSig1Ptr = 0; 1073 } 1074 *zExpPtr = - shiftCount - 63; 1075 } 1076 else { 1077 shiftCount = countLeadingZeros64( aSig0 ) - 15; 1078 shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); 1079 *zExpPtr = 1 - shiftCount; 1080 } 1081 1082 } 1083 1084 /*---------------------------------------------------------------------------- 1085 | Packs the sign `zSign', the exponent `zExp', and the significand formed 1086 | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision 1087 | floating-point value, returning the result. After being shifted into the 1088 | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply 1089 | added together to form the most significant 32 bits of the result. This 1090 | means that any integer portion of `zSig0' will be added into the exponent. 1091 | Since a properly normalized significand will have an integer portion equal 1092 | to 1, the `zExp' input should be 1 less than the desired result exponent 1093 | whenever `zSig0' and `zSig1' concatenated form a complete, normalized 1094 | significand. 1095 *----------------------------------------------------------------------------*/ 1096 1097 static inline float128 1098 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 ) 1099 { 1100 float128 z; 1101 1102 z.low = zSig1; 1103 z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; 1104 return z; 1105 1106 } 1107 1108 /*---------------------------------------------------------------------------- 1109 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 1110 | and extended significand formed by the concatenation of `zSig0', `zSig1', 1111 | and `zSig2', and returns the proper quadruple-precision floating-point value 1112 | corresponding to the abstract input. Ordinarily, the abstract value is 1113 | simply rounded and packed into the quadruple-precision format, with the 1114 | inexact exception raised if the abstract input cannot be represented 1115 | exactly. However, if the abstract value is too large, the overflow and 1116 | inexact exceptions are raised and an infinity or maximal finite value is 1117 | returned. If the abstract value is too small, the input value is rounded to 1118 | a subnormal number, and the underflow and inexact exceptions are raised if 1119 | the abstract input cannot be represented exactly as a subnormal quadruple- 1120 | precision floating-point number. 1121 | The input significand must be normalized or smaller. If the input 1122 | significand is not normalized, `zExp' must be 0; in that case, the result 1123 | returned is a subnormal number, and it must not require rounding. In the 1124 | usual case that the input significand is normalized, `zExp' must be 1 less 1125 | than the ``true'' floating-point exponent. The handling of underflow and 1126 | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1127 *----------------------------------------------------------------------------*/ 1128 1129 static float128 roundAndPackFloat128(flag zSign, int32_t zExp, 1130 uint64_t zSig0, uint64_t zSig1, 1131 uint64_t zSig2, float_status *status) 1132 { 1133 int8_t roundingMode; 1134 flag roundNearestEven, increment, isTiny; 1135 1136 roundingMode = status->float_rounding_mode; 1137 roundNearestEven = ( roundingMode == float_round_nearest_even ); 1138 switch (roundingMode) { 1139 case float_round_nearest_even: 1140 case float_round_ties_away: 1141 increment = ((int64_t)zSig2 < 0); 1142 break; 1143 case float_round_to_zero: 1144 increment = 0; 1145 break; 1146 case float_round_up: 1147 increment = !zSign && zSig2; 1148 break; 1149 case float_round_down: 1150 increment = zSign && zSig2; 1151 break; 1152 default: 1153 abort(); 1154 } 1155 if ( 0x7FFD <= (uint32_t) zExp ) { 1156 if ( ( 0x7FFD < zExp ) 1157 || ( ( zExp == 0x7FFD ) 1158 && eq128( 1159 LIT64( 0x0001FFFFFFFFFFFF ), 1160 LIT64( 0xFFFFFFFFFFFFFFFF ), 1161 zSig0, 1162 zSig1 1163 ) 1164 && increment 1165 ) 1166 ) { 1167 float_raise(float_flag_overflow | float_flag_inexact, status); 1168 if ( ( roundingMode == float_round_to_zero ) 1169 || ( zSign && ( roundingMode == float_round_up ) ) 1170 || ( ! zSign && ( roundingMode == float_round_down ) ) 1171 ) { 1172 return 1173 packFloat128( 1174 zSign, 1175 0x7FFE, 1176 LIT64( 0x0000FFFFFFFFFFFF ), 1177 LIT64( 0xFFFFFFFFFFFFFFFF ) 1178 ); 1179 } 1180 return packFloat128( zSign, 0x7FFF, 0, 0 ); 1181 } 1182 if ( zExp < 0 ) { 1183 if (status->flush_to_zero) { 1184 float_raise(float_flag_output_denormal, status); 1185 return packFloat128(zSign, 0, 0, 0); 1186 } 1187 isTiny = 1188 (status->float_detect_tininess 1189 == float_tininess_before_rounding) 1190 || ( zExp < -1 ) 1191 || ! increment 1192 || lt128( 1193 zSig0, 1194 zSig1, 1195 LIT64( 0x0001FFFFFFFFFFFF ), 1196 LIT64( 0xFFFFFFFFFFFFFFFF ) 1197 ); 1198 shift128ExtraRightJamming( 1199 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); 1200 zExp = 0; 1201 if (isTiny && zSig2) { 1202 float_raise(float_flag_underflow, status); 1203 } 1204 switch (roundingMode) { 1205 case float_round_nearest_even: 1206 case float_round_ties_away: 1207 increment = ((int64_t)zSig2 < 0); 1208 break; 1209 case float_round_to_zero: 1210 increment = 0; 1211 break; 1212 case float_round_up: 1213 increment = !zSign && zSig2; 1214 break; 1215 case float_round_down: 1216 increment = zSign && zSig2; 1217 break; 1218 default: 1219 abort(); 1220 } 1221 } 1222 } 1223 if (zSig2) { 1224 status->float_exception_flags |= float_flag_inexact; 1225 } 1226 if ( increment ) { 1227 add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); 1228 zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); 1229 } 1230 else { 1231 if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; 1232 } 1233 return packFloat128( zSign, zExp, zSig0, zSig1 ); 1234 1235 } 1236 1237 /*---------------------------------------------------------------------------- 1238 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 1239 | and significand formed by the concatenation of `zSig0' and `zSig1', and 1240 | returns the proper quadruple-precision floating-point value corresponding 1241 | to the abstract input. This routine is just like `roundAndPackFloat128' 1242 | except that the input significand has fewer bits and does not have to be 1243 | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- 1244 | point exponent. 1245 *----------------------------------------------------------------------------*/ 1246 1247 static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp, 1248 uint64_t zSig0, uint64_t zSig1, 1249 float_status *status) 1250 { 1251 int8_t shiftCount; 1252 uint64_t zSig2; 1253 1254 if ( zSig0 == 0 ) { 1255 zSig0 = zSig1; 1256 zSig1 = 0; 1257 zExp -= 64; 1258 } 1259 shiftCount = countLeadingZeros64( zSig0 ) - 15; 1260 if ( 0 <= shiftCount ) { 1261 zSig2 = 0; 1262 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 1263 } 1264 else { 1265 shift128ExtraRightJamming( 1266 zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); 1267 } 1268 zExp -= shiftCount; 1269 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); 1270 1271 } 1272 1273 /*---------------------------------------------------------------------------- 1274 | Returns the result of converting the 32-bit two's complement integer `a' 1275 | to the single-precision floating-point format. The conversion is performed 1276 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1277 *----------------------------------------------------------------------------*/ 1278 1279 float32 int32_to_float32(int32_t a, float_status *status) 1280 { 1281 flag zSign; 1282 1283 if ( a == 0 ) return float32_zero; 1284 if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); 1285 zSign = ( a < 0 ); 1286 return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status); 1287 } 1288 1289 /*---------------------------------------------------------------------------- 1290 | Returns the result of converting the 32-bit two's complement integer `a' 1291 | to the double-precision floating-point format. The conversion is performed 1292 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1293 *----------------------------------------------------------------------------*/ 1294 1295 float64 int32_to_float64(int32_t a, float_status *status) 1296 { 1297 flag zSign; 1298 uint32_t absA; 1299 int8_t shiftCount; 1300 uint64_t zSig; 1301 1302 if ( a == 0 ) return float64_zero; 1303 zSign = ( a < 0 ); 1304 absA = zSign ? - a : a; 1305 shiftCount = countLeadingZeros32( absA ) + 21; 1306 zSig = absA; 1307 return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); 1308 1309 } 1310 1311 /*---------------------------------------------------------------------------- 1312 | Returns the result of converting the 32-bit two's complement integer `a' 1313 | to the extended double-precision floating-point format. The conversion 1314 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 1315 | Arithmetic. 1316 *----------------------------------------------------------------------------*/ 1317 1318 floatx80 int32_to_floatx80(int32_t a, float_status *status) 1319 { 1320 flag zSign; 1321 uint32_t absA; 1322 int8_t shiftCount; 1323 uint64_t zSig; 1324 1325 if ( a == 0 ) return packFloatx80( 0, 0, 0 ); 1326 zSign = ( a < 0 ); 1327 absA = zSign ? - a : a; 1328 shiftCount = countLeadingZeros32( absA ) + 32; 1329 zSig = absA; 1330 return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); 1331 1332 } 1333 1334 /*---------------------------------------------------------------------------- 1335 | Returns the result of converting the 32-bit two's complement integer `a' to 1336 | the quadruple-precision floating-point format. The conversion is performed 1337 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1338 *----------------------------------------------------------------------------*/ 1339 1340 float128 int32_to_float128(int32_t a, float_status *status) 1341 { 1342 flag zSign; 1343 uint32_t absA; 1344 int8_t shiftCount; 1345 uint64_t zSig0; 1346 1347 if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); 1348 zSign = ( a < 0 ); 1349 absA = zSign ? - a : a; 1350 shiftCount = countLeadingZeros32( absA ) + 17; 1351 zSig0 = absA; 1352 return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); 1353 1354 } 1355 1356 /*---------------------------------------------------------------------------- 1357 | Returns the result of converting the 64-bit two's complement integer `a' 1358 | to the single-precision floating-point format. The conversion is performed 1359 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1360 *----------------------------------------------------------------------------*/ 1361 1362 float32 int64_to_float32(int64_t a, float_status *status) 1363 { 1364 flag zSign; 1365 uint64_t absA; 1366 int8_t shiftCount; 1367 1368 if ( a == 0 ) return float32_zero; 1369 zSign = ( a < 0 ); 1370 absA = zSign ? - a : a; 1371 shiftCount = countLeadingZeros64( absA ) - 40; 1372 if ( 0 <= shiftCount ) { 1373 return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); 1374 } 1375 else { 1376 shiftCount += 7; 1377 if ( shiftCount < 0 ) { 1378 shift64RightJamming( absA, - shiftCount, &absA ); 1379 } 1380 else { 1381 absA <<= shiftCount; 1382 } 1383 return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status); 1384 } 1385 1386 } 1387 1388 /*---------------------------------------------------------------------------- 1389 | Returns the result of converting the 64-bit two's complement integer `a' 1390 | to the double-precision floating-point format. The conversion is performed 1391 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1392 *----------------------------------------------------------------------------*/ 1393 1394 float64 int64_to_float64(int64_t a, float_status *status) 1395 { 1396 flag zSign; 1397 1398 if ( a == 0 ) return float64_zero; 1399 if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) { 1400 return packFloat64( 1, 0x43E, 0 ); 1401 } 1402 zSign = ( a < 0 ); 1403 return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status); 1404 } 1405 1406 /*---------------------------------------------------------------------------- 1407 | Returns the result of converting the 64-bit two's complement integer `a' 1408 | to the extended double-precision floating-point format. The conversion 1409 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 1410 | Arithmetic. 1411 *----------------------------------------------------------------------------*/ 1412 1413 floatx80 int64_to_floatx80(int64_t a, float_status *status) 1414 { 1415 flag zSign; 1416 uint64_t absA; 1417 int8_t shiftCount; 1418 1419 if ( a == 0 ) return packFloatx80( 0, 0, 0 ); 1420 zSign = ( a < 0 ); 1421 absA = zSign ? - a : a; 1422 shiftCount = countLeadingZeros64( absA ); 1423 return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); 1424 1425 } 1426 1427 /*---------------------------------------------------------------------------- 1428 | Returns the result of converting the 64-bit two's complement integer `a' to 1429 | the quadruple-precision floating-point format. The conversion is performed 1430 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1431 *----------------------------------------------------------------------------*/ 1432 1433 float128 int64_to_float128(int64_t a, float_status *status) 1434 { 1435 flag zSign; 1436 uint64_t absA; 1437 int8_t shiftCount; 1438 int32_t zExp; 1439 uint64_t zSig0, zSig1; 1440 1441 if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); 1442 zSign = ( a < 0 ); 1443 absA = zSign ? - a : a; 1444 shiftCount = countLeadingZeros64( absA ) + 49; 1445 zExp = 0x406E - shiftCount; 1446 if ( 64 <= shiftCount ) { 1447 zSig1 = 0; 1448 zSig0 = absA; 1449 shiftCount -= 64; 1450 } 1451 else { 1452 zSig1 = absA; 1453 zSig0 = 0; 1454 } 1455 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 1456 return packFloat128( zSign, zExp, zSig0, zSig1 ); 1457 1458 } 1459 1460 /*---------------------------------------------------------------------------- 1461 | Returns the result of converting the 64-bit unsigned integer `a' 1462 | to the single-precision floating-point format. The conversion is performed 1463 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1464 *----------------------------------------------------------------------------*/ 1465 1466 float32 uint64_to_float32(uint64_t a, float_status *status) 1467 { 1468 int shiftcount; 1469 1470 if (a == 0) { 1471 return float32_zero; 1472 } 1473 1474 /* Determine (left) shift needed to put first set bit into bit posn 23 1475 * (since packFloat32() expects the binary point between bits 23 and 22); 1476 * this is the fast case for smallish numbers. 1477 */ 1478 shiftcount = countLeadingZeros64(a) - 40; 1479 if (shiftcount >= 0) { 1480 return packFloat32(0, 0x95 - shiftcount, a << shiftcount); 1481 } 1482 /* Otherwise we need to do a round-and-pack. roundAndPackFloat32() 1483 * expects the binary point between bits 30 and 29, hence the + 7. 1484 */ 1485 shiftcount += 7; 1486 if (shiftcount < 0) { 1487 shift64RightJamming(a, -shiftcount, &a); 1488 } else { 1489 a <<= shiftcount; 1490 } 1491 1492 return roundAndPackFloat32(0, 0x9c - shiftcount, a, status); 1493 } 1494 1495 /*---------------------------------------------------------------------------- 1496 | Returns the result of converting the 64-bit unsigned integer `a' 1497 | to the double-precision floating-point format. The conversion is performed 1498 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1499 *----------------------------------------------------------------------------*/ 1500 1501 float64 uint64_to_float64(uint64_t a, float_status *status) 1502 { 1503 int exp = 0x43C; 1504 int shiftcount; 1505 1506 if (a == 0) { 1507 return float64_zero; 1508 } 1509 1510 shiftcount = countLeadingZeros64(a) - 1; 1511 if (shiftcount < 0) { 1512 shift64RightJamming(a, -shiftcount, &a); 1513 } else { 1514 a <<= shiftcount; 1515 } 1516 return roundAndPackFloat64(0, exp - shiftcount, a, status); 1517 } 1518 1519 /*---------------------------------------------------------------------------- 1520 | Returns the result of converting the 64-bit unsigned integer `a' 1521 | to the quadruple-precision floating-point format. The conversion is performed 1522 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1523 *----------------------------------------------------------------------------*/ 1524 1525 float128 uint64_to_float128(uint64_t a, float_status *status) 1526 { 1527 if (a == 0) { 1528 return float128_zero; 1529 } 1530 return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status); 1531 } 1532 1533 /*---------------------------------------------------------------------------- 1534 | Returns the result of converting the single-precision floating-point value 1535 | `a' to the 32-bit two's complement integer format. The conversion is 1536 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1537 | Arithmetic---which means in particular that the conversion is rounded 1538 | according to the current rounding mode. If `a' is a NaN, the largest 1539 | positive integer is returned. Otherwise, if the conversion overflows, the 1540 | largest integer with the same sign as `a' is returned. 1541 *----------------------------------------------------------------------------*/ 1542 1543 int32_t float32_to_int32(float32 a, float_status *status) 1544 { 1545 flag aSign; 1546 int aExp; 1547 int shiftCount; 1548 uint32_t aSig; 1549 uint64_t aSig64; 1550 1551 a = float32_squash_input_denormal(a, status); 1552 aSig = extractFloat32Frac( a ); 1553 aExp = extractFloat32Exp( a ); 1554 aSign = extractFloat32Sign( a ); 1555 if ( ( aExp == 0xFF ) && aSig ) aSign = 0; 1556 if ( aExp ) aSig |= 0x00800000; 1557 shiftCount = 0xAF - aExp; 1558 aSig64 = aSig; 1559 aSig64 <<= 32; 1560 if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); 1561 return roundAndPackInt32(aSign, aSig64, status); 1562 1563 } 1564 1565 /*---------------------------------------------------------------------------- 1566 | Returns the result of converting the single-precision floating-point value 1567 | `a' to the 32-bit two's complement integer format. The conversion is 1568 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1569 | Arithmetic, except that the conversion is always rounded toward zero. 1570 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 1571 | the conversion overflows, the largest integer with the same sign as `a' is 1572 | returned. 1573 *----------------------------------------------------------------------------*/ 1574 1575 int32_t float32_to_int32_round_to_zero(float32 a, float_status *status) 1576 { 1577 flag aSign; 1578 int aExp; 1579 int shiftCount; 1580 uint32_t aSig; 1581 int32_t z; 1582 a = float32_squash_input_denormal(a, status); 1583 1584 aSig = extractFloat32Frac( a ); 1585 aExp = extractFloat32Exp( a ); 1586 aSign = extractFloat32Sign( a ); 1587 shiftCount = aExp - 0x9E; 1588 if ( 0 <= shiftCount ) { 1589 if ( float32_val(a) != 0xCF000000 ) { 1590 float_raise(float_flag_invalid, status); 1591 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; 1592 } 1593 return (int32_t) 0x80000000; 1594 } 1595 else if ( aExp <= 0x7E ) { 1596 if (aExp | aSig) { 1597 status->float_exception_flags |= float_flag_inexact; 1598 } 1599 return 0; 1600 } 1601 aSig = ( aSig | 0x00800000 )<<8; 1602 z = aSig>>( - shiftCount ); 1603 if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { 1604 status->float_exception_flags |= float_flag_inexact; 1605 } 1606 if ( aSign ) z = - z; 1607 return z; 1608 1609 } 1610 1611 /*---------------------------------------------------------------------------- 1612 | Returns the result of converting the single-precision floating-point value 1613 | `a' to the 16-bit two's complement integer format. The conversion is 1614 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1615 | Arithmetic, except that the conversion is always rounded toward zero. 1616 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 1617 | the conversion overflows, the largest integer with the same sign as `a' is 1618 | returned. 1619 *----------------------------------------------------------------------------*/ 1620 1621 int16_t float32_to_int16_round_to_zero(float32 a, float_status *status) 1622 { 1623 flag aSign; 1624 int aExp; 1625 int shiftCount; 1626 uint32_t aSig; 1627 int32_t z; 1628 1629 aSig = extractFloat32Frac( a ); 1630 aExp = extractFloat32Exp( a ); 1631 aSign = extractFloat32Sign( a ); 1632 shiftCount = aExp - 0x8E; 1633 if ( 0 <= shiftCount ) { 1634 if ( float32_val(a) != 0xC7000000 ) { 1635 float_raise(float_flag_invalid, status); 1636 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { 1637 return 0x7FFF; 1638 } 1639 } 1640 return (int32_t) 0xffff8000; 1641 } 1642 else if ( aExp <= 0x7E ) { 1643 if ( aExp | aSig ) { 1644 status->float_exception_flags |= float_flag_inexact; 1645 } 1646 return 0; 1647 } 1648 shiftCount -= 0x10; 1649 aSig = ( aSig | 0x00800000 )<<8; 1650 z = aSig>>( - shiftCount ); 1651 if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { 1652 status->float_exception_flags |= float_flag_inexact; 1653 } 1654 if ( aSign ) { 1655 z = - z; 1656 } 1657 return z; 1658 1659 } 1660 1661 /*---------------------------------------------------------------------------- 1662 | Returns the result of converting the single-precision floating-point value 1663 | `a' to the 64-bit two's complement integer format. The conversion is 1664 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1665 | Arithmetic---which means in particular that the conversion is rounded 1666 | according to the current rounding mode. If `a' is a NaN, the largest 1667 | positive integer is returned. Otherwise, if the conversion overflows, the 1668 | largest integer with the same sign as `a' is returned. 1669 *----------------------------------------------------------------------------*/ 1670 1671 int64_t float32_to_int64(float32 a, float_status *status) 1672 { 1673 flag aSign; 1674 int aExp; 1675 int shiftCount; 1676 uint32_t aSig; 1677 uint64_t aSig64, aSigExtra; 1678 a = float32_squash_input_denormal(a, status); 1679 1680 aSig = extractFloat32Frac( a ); 1681 aExp = extractFloat32Exp( a ); 1682 aSign = extractFloat32Sign( a ); 1683 shiftCount = 0xBE - aExp; 1684 if ( shiftCount < 0 ) { 1685 float_raise(float_flag_invalid, status); 1686 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { 1687 return LIT64( 0x7FFFFFFFFFFFFFFF ); 1688 } 1689 return (int64_t) LIT64( 0x8000000000000000 ); 1690 } 1691 if ( aExp ) aSig |= 0x00800000; 1692 aSig64 = aSig; 1693 aSig64 <<= 40; 1694 shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); 1695 return roundAndPackInt64(aSign, aSig64, aSigExtra, status); 1696 1697 } 1698 1699 /*---------------------------------------------------------------------------- 1700 | Returns the result of converting the single-precision floating-point value 1701 | `a' to the 64-bit unsigned integer format. The conversion is 1702 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1703 | Arithmetic---which means in particular that the conversion is rounded 1704 | according to the current rounding mode. If `a' is a NaN, the largest 1705 | unsigned integer is returned. Otherwise, if the conversion overflows, the 1706 | largest unsigned integer is returned. If the 'a' is negative, the result 1707 | is rounded and zero is returned; values that do not round to zero will 1708 | raise the inexact exception flag. 1709 *----------------------------------------------------------------------------*/ 1710 1711 uint64_t float32_to_uint64(float32 a, float_status *status) 1712 { 1713 flag aSign; 1714 int aExp; 1715 int shiftCount; 1716 uint32_t aSig; 1717 uint64_t aSig64, aSigExtra; 1718 a = float32_squash_input_denormal(a, status); 1719 1720 aSig = extractFloat32Frac(a); 1721 aExp = extractFloat32Exp(a); 1722 aSign = extractFloat32Sign(a); 1723 if ((aSign) && (aExp > 126)) { 1724 float_raise(float_flag_invalid, status); 1725 if (float32_is_any_nan(a)) { 1726 return LIT64(0xFFFFFFFFFFFFFFFF); 1727 } else { 1728 return 0; 1729 } 1730 } 1731 shiftCount = 0xBE - aExp; 1732 if (aExp) { 1733 aSig |= 0x00800000; 1734 } 1735 if (shiftCount < 0) { 1736 float_raise(float_flag_invalid, status); 1737 return LIT64(0xFFFFFFFFFFFFFFFF); 1738 } 1739 1740 aSig64 = aSig; 1741 aSig64 <<= 40; 1742 shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra); 1743 return roundAndPackUint64(aSign, aSig64, aSigExtra, status); 1744 } 1745 1746 /*---------------------------------------------------------------------------- 1747 | Returns the result of converting the single-precision floating-point value 1748 | `a' to the 64-bit unsigned integer format. The conversion is 1749 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1750 | Arithmetic, except that the conversion is always rounded toward zero. If 1751 | `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the 1752 | conversion overflows, the largest unsigned integer is returned. If the 1753 | 'a' is negative, the result is rounded and zero is returned; values that do 1754 | not round to zero will raise the inexact flag. 1755 *----------------------------------------------------------------------------*/ 1756 1757 uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status) 1758 { 1759 signed char current_rounding_mode = status->float_rounding_mode; 1760 set_float_rounding_mode(float_round_to_zero, status); 1761 int64_t v = float32_to_uint64(a, status); 1762 set_float_rounding_mode(current_rounding_mode, status); 1763 return v; 1764 } 1765 1766 /*---------------------------------------------------------------------------- 1767 | Returns the result of converting the single-precision floating-point value 1768 | `a' to the 64-bit two's complement integer format. The conversion is 1769 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1770 | Arithmetic, except that the conversion is always rounded toward zero. If 1771 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the 1772 | conversion overflows, the largest integer with the same sign as `a' is 1773 | returned. 1774 *----------------------------------------------------------------------------*/ 1775 1776 int64_t float32_to_int64_round_to_zero(float32 a, float_status *status) 1777 { 1778 flag aSign; 1779 int aExp; 1780 int shiftCount; 1781 uint32_t aSig; 1782 uint64_t aSig64; 1783 int64_t z; 1784 a = float32_squash_input_denormal(a, status); 1785 1786 aSig = extractFloat32Frac( a ); 1787 aExp = extractFloat32Exp( a ); 1788 aSign = extractFloat32Sign( a ); 1789 shiftCount = aExp - 0xBE; 1790 if ( 0 <= shiftCount ) { 1791 if ( float32_val(a) != 0xDF000000 ) { 1792 float_raise(float_flag_invalid, status); 1793 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { 1794 return LIT64( 0x7FFFFFFFFFFFFFFF ); 1795 } 1796 } 1797 return (int64_t) LIT64( 0x8000000000000000 ); 1798 } 1799 else if ( aExp <= 0x7E ) { 1800 if (aExp | aSig) { 1801 status->float_exception_flags |= float_flag_inexact; 1802 } 1803 return 0; 1804 } 1805 aSig64 = aSig | 0x00800000; 1806 aSig64 <<= 40; 1807 z = aSig64>>( - shiftCount ); 1808 if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) { 1809 status->float_exception_flags |= float_flag_inexact; 1810 } 1811 if ( aSign ) z = - z; 1812 return z; 1813 1814 } 1815 1816 /*---------------------------------------------------------------------------- 1817 | Returns the result of converting the single-precision floating-point value 1818 | `a' to the double-precision floating-point format. The conversion is 1819 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1820 | Arithmetic. 1821 *----------------------------------------------------------------------------*/ 1822 1823 float64 float32_to_float64(float32 a, float_status *status) 1824 { 1825 flag aSign; 1826 int aExp; 1827 uint32_t aSig; 1828 a = float32_squash_input_denormal(a, status); 1829 1830 aSig = extractFloat32Frac( a ); 1831 aExp = extractFloat32Exp( a ); 1832 aSign = extractFloat32Sign( a ); 1833 if ( aExp == 0xFF ) { 1834 if (aSig) { 1835 return commonNaNToFloat64(float32ToCommonNaN(a, status), status); 1836 } 1837 return packFloat64( aSign, 0x7FF, 0 ); 1838 } 1839 if ( aExp == 0 ) { 1840 if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); 1841 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 1842 --aExp; 1843 } 1844 return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); 1845 1846 } 1847 1848 /*---------------------------------------------------------------------------- 1849 | Returns the result of converting the single-precision floating-point value 1850 | `a' to the extended double-precision floating-point format. The conversion 1851 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 1852 | Arithmetic. 1853 *----------------------------------------------------------------------------*/ 1854 1855 floatx80 float32_to_floatx80(float32 a, float_status *status) 1856 { 1857 flag aSign; 1858 int aExp; 1859 uint32_t aSig; 1860 1861 a = float32_squash_input_denormal(a, status); 1862 aSig = extractFloat32Frac( a ); 1863 aExp = extractFloat32Exp( a ); 1864 aSign = extractFloat32Sign( a ); 1865 if ( aExp == 0xFF ) { 1866 if (aSig) { 1867 return commonNaNToFloatx80(float32ToCommonNaN(a, status), status); 1868 } 1869 return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 1870 } 1871 if ( aExp == 0 ) { 1872 if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); 1873 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 1874 } 1875 aSig |= 0x00800000; 1876 return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); 1877 1878 } 1879 1880 /*---------------------------------------------------------------------------- 1881 | Returns the result of converting the single-precision floating-point value 1882 | `a' to the double-precision floating-point format. The conversion is 1883 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1884 | Arithmetic. 1885 *----------------------------------------------------------------------------*/ 1886 1887 float128 float32_to_float128(float32 a, float_status *status) 1888 { 1889 flag aSign; 1890 int aExp; 1891 uint32_t aSig; 1892 1893 a = float32_squash_input_denormal(a, status); 1894 aSig = extractFloat32Frac( a ); 1895 aExp = extractFloat32Exp( a ); 1896 aSign = extractFloat32Sign( a ); 1897 if ( aExp == 0xFF ) { 1898 if (aSig) { 1899 return commonNaNToFloat128(float32ToCommonNaN(a, status), status); 1900 } 1901 return packFloat128( aSign, 0x7FFF, 0, 0 ); 1902 } 1903 if ( aExp == 0 ) { 1904 if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); 1905 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 1906 --aExp; 1907 } 1908 return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); 1909 1910 } 1911 1912 /*---------------------------------------------------------------------------- 1913 | Rounds the single-precision floating-point value `a' to an integer, and 1914 | returns the result as a single-precision floating-point value. The 1915 | operation is performed according to the IEC/IEEE Standard for Binary 1916 | Floating-Point Arithmetic. 1917 *----------------------------------------------------------------------------*/ 1918 1919 float32 float32_round_to_int(float32 a, float_status *status) 1920 { 1921 flag aSign; 1922 int aExp; 1923 uint32_t lastBitMask, roundBitsMask; 1924 uint32_t z; 1925 a = float32_squash_input_denormal(a, status); 1926 1927 aExp = extractFloat32Exp( a ); 1928 if ( 0x96 <= aExp ) { 1929 if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { 1930 return propagateFloat32NaN(a, a, status); 1931 } 1932 return a; 1933 } 1934 if ( aExp <= 0x7E ) { 1935 if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a; 1936 status->float_exception_flags |= float_flag_inexact; 1937 aSign = extractFloat32Sign( a ); 1938 switch (status->float_rounding_mode) { 1939 case float_round_nearest_even: 1940 if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { 1941 return packFloat32( aSign, 0x7F, 0 ); 1942 } 1943 break; 1944 case float_round_ties_away: 1945 if (aExp == 0x7E) { 1946 return packFloat32(aSign, 0x7F, 0); 1947 } 1948 break; 1949 case float_round_down: 1950 return make_float32(aSign ? 0xBF800000 : 0); 1951 case float_round_up: 1952 return make_float32(aSign ? 0x80000000 : 0x3F800000); 1953 } 1954 return packFloat32( aSign, 0, 0 ); 1955 } 1956 lastBitMask = 1; 1957 lastBitMask <<= 0x96 - aExp; 1958 roundBitsMask = lastBitMask - 1; 1959 z = float32_val(a); 1960 switch (status->float_rounding_mode) { 1961 case float_round_nearest_even: 1962 z += lastBitMask>>1; 1963 if ((z & roundBitsMask) == 0) { 1964 z &= ~lastBitMask; 1965 } 1966 break; 1967 case float_round_ties_away: 1968 z += lastBitMask >> 1; 1969 break; 1970 case float_round_to_zero: 1971 break; 1972 case float_round_up: 1973 if (!extractFloat32Sign(make_float32(z))) { 1974 z += roundBitsMask; 1975 } 1976 break; 1977 case float_round_down: 1978 if (extractFloat32Sign(make_float32(z))) { 1979 z += roundBitsMask; 1980 } 1981 break; 1982 default: 1983 abort(); 1984 } 1985 z &= ~ roundBitsMask; 1986 if (z != float32_val(a)) { 1987 status->float_exception_flags |= float_flag_inexact; 1988 } 1989 return make_float32(z); 1990 1991 } 1992 1993 /*---------------------------------------------------------------------------- 1994 | Returns the result of adding the absolute values of the single-precision 1995 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated 1996 | before being returned. `zSign' is ignored if the result is a NaN. 1997 | The addition is performed according to the IEC/IEEE Standard for Binary 1998 | Floating-Point Arithmetic. 1999 *----------------------------------------------------------------------------*/ 2000 2001 static float32 addFloat32Sigs(float32 a, float32 b, flag zSign, 2002 float_status *status) 2003 { 2004 int aExp, bExp, zExp; 2005 uint32_t aSig, bSig, zSig; 2006 int expDiff; 2007 2008 aSig = extractFloat32Frac( a ); 2009 aExp = extractFloat32Exp( a ); 2010 bSig = extractFloat32Frac( b ); 2011 bExp = extractFloat32Exp( b ); 2012 expDiff = aExp - bExp; 2013 aSig <<= 6; 2014 bSig <<= 6; 2015 if ( 0 < expDiff ) { 2016 if ( aExp == 0xFF ) { 2017 if (aSig) { 2018 return propagateFloat32NaN(a, b, status); 2019 } 2020 return a; 2021 } 2022 if ( bExp == 0 ) { 2023 --expDiff; 2024 } 2025 else { 2026 bSig |= 0x20000000; 2027 } 2028 shift32RightJamming( bSig, expDiff, &bSig ); 2029 zExp = aExp; 2030 } 2031 else if ( expDiff < 0 ) { 2032 if ( bExp == 0xFF ) { 2033 if (bSig) { 2034 return propagateFloat32NaN(a, b, status); 2035 } 2036 return packFloat32( zSign, 0xFF, 0 ); 2037 } 2038 if ( aExp == 0 ) { 2039 ++expDiff; 2040 } 2041 else { 2042 aSig |= 0x20000000; 2043 } 2044 shift32RightJamming( aSig, - expDiff, &aSig ); 2045 zExp = bExp; 2046 } 2047 else { 2048 if ( aExp == 0xFF ) { 2049 if (aSig | bSig) { 2050 return propagateFloat32NaN(a, b, status); 2051 } 2052 return a; 2053 } 2054 if ( aExp == 0 ) { 2055 if (status->flush_to_zero) { 2056 if (aSig | bSig) { 2057 float_raise(float_flag_output_denormal, status); 2058 } 2059 return packFloat32(zSign, 0, 0); 2060 } 2061 return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); 2062 } 2063 zSig = 0x40000000 + aSig + bSig; 2064 zExp = aExp; 2065 goto roundAndPack; 2066 } 2067 aSig |= 0x20000000; 2068 zSig = ( aSig + bSig )<<1; 2069 --zExp; 2070 if ( (int32_t) zSig < 0 ) { 2071 zSig = aSig + bSig; 2072 ++zExp; 2073 } 2074 roundAndPack: 2075 return roundAndPackFloat32(zSign, zExp, zSig, status); 2076 2077 } 2078 2079 /*---------------------------------------------------------------------------- 2080 | Returns the result of subtracting the absolute values of the single- 2081 | precision floating-point values `a' and `b'. If `zSign' is 1, the 2082 | difference is negated before being returned. `zSign' is ignored if the 2083 | result is a NaN. The subtraction is performed according to the IEC/IEEE 2084 | Standard for Binary Floating-Point Arithmetic. 2085 *----------------------------------------------------------------------------*/ 2086 2087 static float32 subFloat32Sigs(float32 a, float32 b, flag zSign, 2088 float_status *status) 2089 { 2090 int aExp, bExp, zExp; 2091 uint32_t aSig, bSig, zSig; 2092 int expDiff; 2093 2094 aSig = extractFloat32Frac( a ); 2095 aExp = extractFloat32Exp( a ); 2096 bSig = extractFloat32Frac( b ); 2097 bExp = extractFloat32Exp( b ); 2098 expDiff = aExp - bExp; 2099 aSig <<= 7; 2100 bSig <<= 7; 2101 if ( 0 < expDiff ) goto aExpBigger; 2102 if ( expDiff < 0 ) goto bExpBigger; 2103 if ( aExp == 0xFF ) { 2104 if (aSig | bSig) { 2105 return propagateFloat32NaN(a, b, status); 2106 } 2107 float_raise(float_flag_invalid, status); 2108 return float32_default_nan; 2109 } 2110 if ( aExp == 0 ) { 2111 aExp = 1; 2112 bExp = 1; 2113 } 2114 if ( bSig < aSig ) goto aBigger; 2115 if ( aSig < bSig ) goto bBigger; 2116 return packFloat32(status->float_rounding_mode == float_round_down, 0, 0); 2117 bExpBigger: 2118 if ( bExp == 0xFF ) { 2119 if (bSig) { 2120 return propagateFloat32NaN(a, b, status); 2121 } 2122 return packFloat32( zSign ^ 1, 0xFF, 0 ); 2123 } 2124 if ( aExp == 0 ) { 2125 ++expDiff; 2126 } 2127 else { 2128 aSig |= 0x40000000; 2129 } 2130 shift32RightJamming( aSig, - expDiff, &aSig ); 2131 bSig |= 0x40000000; 2132 bBigger: 2133 zSig = bSig - aSig; 2134 zExp = bExp; 2135 zSign ^= 1; 2136 goto normalizeRoundAndPack; 2137 aExpBigger: 2138 if ( aExp == 0xFF ) { 2139 if (aSig) { 2140 return propagateFloat32NaN(a, b, status); 2141 } 2142 return a; 2143 } 2144 if ( bExp == 0 ) { 2145 --expDiff; 2146 } 2147 else { 2148 bSig |= 0x40000000; 2149 } 2150 shift32RightJamming( bSig, expDiff, &bSig ); 2151 aSig |= 0x40000000; 2152 aBigger: 2153 zSig = aSig - bSig; 2154 zExp = aExp; 2155 normalizeRoundAndPack: 2156 --zExp; 2157 return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status); 2158 2159 } 2160 2161 /*---------------------------------------------------------------------------- 2162 | Returns the result of adding the single-precision floating-point values `a' 2163 | and `b'. The operation is performed according to the IEC/IEEE Standard for 2164 | Binary Floating-Point Arithmetic. 2165 *----------------------------------------------------------------------------*/ 2166 2167 float32 float32_add(float32 a, float32 b, float_status *status) 2168 { 2169 flag aSign, bSign; 2170 a = float32_squash_input_denormal(a, status); 2171 b = float32_squash_input_denormal(b, status); 2172 2173 aSign = extractFloat32Sign( a ); 2174 bSign = extractFloat32Sign( b ); 2175 if ( aSign == bSign ) { 2176 return addFloat32Sigs(a, b, aSign, status); 2177 } 2178 else { 2179 return subFloat32Sigs(a, b, aSign, status); 2180 } 2181 2182 } 2183 2184 /*---------------------------------------------------------------------------- 2185 | Returns the result of subtracting the single-precision floating-point values 2186 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 2187 | for Binary Floating-Point Arithmetic. 2188 *----------------------------------------------------------------------------*/ 2189 2190 float32 float32_sub(float32 a, float32 b, float_status *status) 2191 { 2192 flag aSign, bSign; 2193 a = float32_squash_input_denormal(a, status); 2194 b = float32_squash_input_denormal(b, status); 2195 2196 aSign = extractFloat32Sign( a ); 2197 bSign = extractFloat32Sign( b ); 2198 if ( aSign == bSign ) { 2199 return subFloat32Sigs(a, b, aSign, status); 2200 } 2201 else { 2202 return addFloat32Sigs(a, b, aSign, status); 2203 } 2204 2205 } 2206 2207 /*---------------------------------------------------------------------------- 2208 | Returns the result of multiplying the single-precision floating-point values 2209 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 2210 | for Binary Floating-Point Arithmetic. 2211 *----------------------------------------------------------------------------*/ 2212 2213 float32 float32_mul(float32 a, float32 b, float_status *status) 2214 { 2215 flag aSign, bSign, zSign; 2216 int aExp, bExp, zExp; 2217 uint32_t aSig, bSig; 2218 uint64_t zSig64; 2219 uint32_t zSig; 2220 2221 a = float32_squash_input_denormal(a, status); 2222 b = float32_squash_input_denormal(b, status); 2223 2224 aSig = extractFloat32Frac( a ); 2225 aExp = extractFloat32Exp( a ); 2226 aSign = extractFloat32Sign( a ); 2227 bSig = extractFloat32Frac( b ); 2228 bExp = extractFloat32Exp( b ); 2229 bSign = extractFloat32Sign( b ); 2230 zSign = aSign ^ bSign; 2231 if ( aExp == 0xFF ) { 2232 if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { 2233 return propagateFloat32NaN(a, b, status); 2234 } 2235 if ( ( bExp | bSig ) == 0 ) { 2236 float_raise(float_flag_invalid, status); 2237 return float32_default_nan; 2238 } 2239 return packFloat32( zSign, 0xFF, 0 ); 2240 } 2241 if ( bExp == 0xFF ) { 2242 if (bSig) { 2243 return propagateFloat32NaN(a, b, status); 2244 } 2245 if ( ( aExp | aSig ) == 0 ) { 2246 float_raise(float_flag_invalid, status); 2247 return float32_default_nan; 2248 } 2249 return packFloat32( zSign, 0xFF, 0 ); 2250 } 2251 if ( aExp == 0 ) { 2252 if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); 2253 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2254 } 2255 if ( bExp == 0 ) { 2256 if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); 2257 normalizeFloat32Subnormal( bSig, &bExp, &bSig ); 2258 } 2259 zExp = aExp + bExp - 0x7F; 2260 aSig = ( aSig | 0x00800000 )<<7; 2261 bSig = ( bSig | 0x00800000 )<<8; 2262 shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 ); 2263 zSig = zSig64; 2264 if ( 0 <= (int32_t) ( zSig<<1 ) ) { 2265 zSig <<= 1; 2266 --zExp; 2267 } 2268 return roundAndPackFloat32(zSign, zExp, zSig, status); 2269 2270 } 2271 2272 /*---------------------------------------------------------------------------- 2273 | Returns the result of dividing the single-precision floating-point value `a' 2274 | by the corresponding value `b'. The operation is performed according to the 2275 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2276 *----------------------------------------------------------------------------*/ 2277 2278 float32 float32_div(float32 a, float32 b, float_status *status) 2279 { 2280 flag aSign, bSign, zSign; 2281 int aExp, bExp, zExp; 2282 uint32_t aSig, bSig, zSig; 2283 a = float32_squash_input_denormal(a, status); 2284 b = float32_squash_input_denormal(b, status); 2285 2286 aSig = extractFloat32Frac( a ); 2287 aExp = extractFloat32Exp( a ); 2288 aSign = extractFloat32Sign( a ); 2289 bSig = extractFloat32Frac( b ); 2290 bExp = extractFloat32Exp( b ); 2291 bSign = extractFloat32Sign( b ); 2292 zSign = aSign ^ bSign; 2293 if ( aExp == 0xFF ) { 2294 if (aSig) { 2295 return propagateFloat32NaN(a, b, status); 2296 } 2297 if ( bExp == 0xFF ) { 2298 if (bSig) { 2299 return propagateFloat32NaN(a, b, status); 2300 } 2301 float_raise(float_flag_invalid, status); 2302 return float32_default_nan; 2303 } 2304 return packFloat32( zSign, 0xFF, 0 ); 2305 } 2306 if ( bExp == 0xFF ) { 2307 if (bSig) { 2308 return propagateFloat32NaN(a, b, status); 2309 } 2310 return packFloat32( zSign, 0, 0 ); 2311 } 2312 if ( bExp == 0 ) { 2313 if ( bSig == 0 ) { 2314 if ( ( aExp | aSig ) == 0 ) { 2315 float_raise(float_flag_invalid, status); 2316 return float32_default_nan; 2317 } 2318 float_raise(float_flag_divbyzero, status); 2319 return packFloat32( zSign, 0xFF, 0 ); 2320 } 2321 normalizeFloat32Subnormal( bSig, &bExp, &bSig ); 2322 } 2323 if ( aExp == 0 ) { 2324 if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); 2325 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2326 } 2327 zExp = aExp - bExp + 0x7D; 2328 aSig = ( aSig | 0x00800000 )<<7; 2329 bSig = ( bSig | 0x00800000 )<<8; 2330 if ( bSig <= ( aSig + aSig ) ) { 2331 aSig >>= 1; 2332 ++zExp; 2333 } 2334 zSig = ( ( (uint64_t) aSig )<<32 ) / bSig; 2335 if ( ( zSig & 0x3F ) == 0 ) { 2336 zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 ); 2337 } 2338 return roundAndPackFloat32(zSign, zExp, zSig, status); 2339 2340 } 2341 2342 /*---------------------------------------------------------------------------- 2343 | Returns the remainder of the single-precision floating-point value `a' 2344 | with respect to the corresponding value `b'. The operation is performed 2345 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2346 *----------------------------------------------------------------------------*/ 2347 2348 float32 float32_rem(float32 a, float32 b, float_status *status) 2349 { 2350 flag aSign, zSign; 2351 int aExp, bExp, expDiff; 2352 uint32_t aSig, bSig; 2353 uint32_t q; 2354 uint64_t aSig64, bSig64, q64; 2355 uint32_t alternateASig; 2356 int32_t sigMean; 2357 a = float32_squash_input_denormal(a, status); 2358 b = float32_squash_input_denormal(b, status); 2359 2360 aSig = extractFloat32Frac( a ); 2361 aExp = extractFloat32Exp( a ); 2362 aSign = extractFloat32Sign( a ); 2363 bSig = extractFloat32Frac( b ); 2364 bExp = extractFloat32Exp( b ); 2365 if ( aExp == 0xFF ) { 2366 if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { 2367 return propagateFloat32NaN(a, b, status); 2368 } 2369 float_raise(float_flag_invalid, status); 2370 return float32_default_nan; 2371 } 2372 if ( bExp == 0xFF ) { 2373 if (bSig) { 2374 return propagateFloat32NaN(a, b, status); 2375 } 2376 return a; 2377 } 2378 if ( bExp == 0 ) { 2379 if ( bSig == 0 ) { 2380 float_raise(float_flag_invalid, status); 2381 return float32_default_nan; 2382 } 2383 normalizeFloat32Subnormal( bSig, &bExp, &bSig ); 2384 } 2385 if ( aExp == 0 ) { 2386 if ( aSig == 0 ) return a; 2387 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2388 } 2389 expDiff = aExp - bExp; 2390 aSig |= 0x00800000; 2391 bSig |= 0x00800000; 2392 if ( expDiff < 32 ) { 2393 aSig <<= 8; 2394 bSig <<= 8; 2395 if ( expDiff < 0 ) { 2396 if ( expDiff < -1 ) return a; 2397 aSig >>= 1; 2398 } 2399 q = ( bSig <= aSig ); 2400 if ( q ) aSig -= bSig; 2401 if ( 0 < expDiff ) { 2402 q = ( ( (uint64_t) aSig )<<32 ) / bSig; 2403 q >>= 32 - expDiff; 2404 bSig >>= 2; 2405 aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; 2406 } 2407 else { 2408 aSig >>= 2; 2409 bSig >>= 2; 2410 } 2411 } 2412 else { 2413 if ( bSig <= aSig ) aSig -= bSig; 2414 aSig64 = ( (uint64_t) aSig )<<40; 2415 bSig64 = ( (uint64_t) bSig )<<40; 2416 expDiff -= 64; 2417 while ( 0 < expDiff ) { 2418 q64 = estimateDiv128To64( aSig64, 0, bSig64 ); 2419 q64 = ( 2 < q64 ) ? q64 - 2 : 0; 2420 aSig64 = - ( ( bSig * q64 )<<38 ); 2421 expDiff -= 62; 2422 } 2423 expDiff += 64; 2424 q64 = estimateDiv128To64( aSig64, 0, bSig64 ); 2425 q64 = ( 2 < q64 ) ? q64 - 2 : 0; 2426 q = q64>>( 64 - expDiff ); 2427 bSig <<= 6; 2428 aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; 2429 } 2430 do { 2431 alternateASig = aSig; 2432 ++q; 2433 aSig -= bSig; 2434 } while ( 0 <= (int32_t) aSig ); 2435 sigMean = aSig + alternateASig; 2436 if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { 2437 aSig = alternateASig; 2438 } 2439 zSign = ( (int32_t) aSig < 0 ); 2440 if ( zSign ) aSig = - aSig; 2441 return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); 2442 } 2443 2444 /*---------------------------------------------------------------------------- 2445 | Returns the result of multiplying the single-precision floating-point values 2446 | `a' and `b' then adding 'c', with no intermediate rounding step after the 2447 | multiplication. The operation is performed according to the IEC/IEEE 2448 | Standard for Binary Floating-Point Arithmetic 754-2008. 2449 | The flags argument allows the caller to select negation of the 2450 | addend, the intermediate product, or the final result. (The difference 2451 | between this and having the caller do a separate negation is that negating 2452 | externally will flip the sign bit on NaNs.) 2453 *----------------------------------------------------------------------------*/ 2454 2455 float32 float32_muladd(float32 a, float32 b, float32 c, int flags, 2456 float_status *status) 2457 { 2458 flag aSign, bSign, cSign, zSign; 2459 int aExp, bExp, cExp, pExp, zExp, expDiff; 2460 uint32_t aSig, bSig, cSig; 2461 flag pInf, pZero, pSign; 2462 uint64_t pSig64, cSig64, zSig64; 2463 uint32_t pSig; 2464 int shiftcount; 2465 flag signflip, infzero; 2466 2467 a = float32_squash_input_denormal(a, status); 2468 b = float32_squash_input_denormal(b, status); 2469 c = float32_squash_input_denormal(c, status); 2470 aSig = extractFloat32Frac(a); 2471 aExp = extractFloat32Exp(a); 2472 aSign = extractFloat32Sign(a); 2473 bSig = extractFloat32Frac(b); 2474 bExp = extractFloat32Exp(b); 2475 bSign = extractFloat32Sign(b); 2476 cSig = extractFloat32Frac(c); 2477 cExp = extractFloat32Exp(c); 2478 cSign = extractFloat32Sign(c); 2479 2480 infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || 2481 (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); 2482 2483 /* It is implementation-defined whether the cases of (0,inf,qnan) 2484 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN 2485 * they return if they do), so we have to hand this information 2486 * off to the target-specific pick-a-NaN routine. 2487 */ 2488 if (((aExp == 0xff) && aSig) || 2489 ((bExp == 0xff) && bSig) || 2490 ((cExp == 0xff) && cSig)) { 2491 return propagateFloat32MulAddNaN(a, b, c, infzero, status); 2492 } 2493 2494 if (infzero) { 2495 float_raise(float_flag_invalid, status); 2496 return float32_default_nan; 2497 } 2498 2499 if (flags & float_muladd_negate_c) { 2500 cSign ^= 1; 2501 } 2502 2503 signflip = (flags & float_muladd_negate_result) ? 1 : 0; 2504 2505 /* Work out the sign and type of the product */ 2506 pSign = aSign ^ bSign; 2507 if (flags & float_muladd_negate_product) { 2508 pSign ^= 1; 2509 } 2510 pInf = (aExp == 0xff) || (bExp == 0xff); 2511 pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); 2512 2513 if (cExp == 0xff) { 2514 if (pInf && (pSign ^ cSign)) { 2515 /* addition of opposite-signed infinities => InvalidOperation */ 2516 float_raise(float_flag_invalid, status); 2517 return float32_default_nan; 2518 } 2519 /* Otherwise generate an infinity of the same sign */ 2520 return packFloat32(cSign ^ signflip, 0xff, 0); 2521 } 2522 2523 if (pInf) { 2524 return packFloat32(pSign ^ signflip, 0xff, 0); 2525 } 2526 2527 if (pZero) { 2528 if (cExp == 0) { 2529 if (cSig == 0) { 2530 /* Adding two exact zeroes */ 2531 if (pSign == cSign) { 2532 zSign = pSign; 2533 } else if (status->float_rounding_mode == float_round_down) { 2534 zSign = 1; 2535 } else { 2536 zSign = 0; 2537 } 2538 return packFloat32(zSign ^ signflip, 0, 0); 2539 } 2540 /* Exact zero plus a denorm */ 2541 if (status->flush_to_zero) { 2542 float_raise(float_flag_output_denormal, status); 2543 return packFloat32(cSign ^ signflip, 0, 0); 2544 } 2545 } 2546 /* Zero plus something non-zero : just return the something */ 2547 if (flags & float_muladd_halve_result) { 2548 if (cExp == 0) { 2549 normalizeFloat32Subnormal(cSig, &cExp, &cSig); 2550 } 2551 /* Subtract one to halve, and one again because roundAndPackFloat32 2552 * wants one less than the true exponent. 2553 */ 2554 cExp -= 2; 2555 cSig = (cSig | 0x00800000) << 7; 2556 return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status); 2557 } 2558 return packFloat32(cSign ^ signflip, cExp, cSig); 2559 } 2560 2561 if (aExp == 0) { 2562 normalizeFloat32Subnormal(aSig, &aExp, &aSig); 2563 } 2564 if (bExp == 0) { 2565 normalizeFloat32Subnormal(bSig, &bExp, &bSig); 2566 } 2567 2568 /* Calculate the actual result a * b + c */ 2569 2570 /* Multiply first; this is easy. */ 2571 /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f 2572 * because we want the true exponent, not the "one-less-than" 2573 * flavour that roundAndPackFloat32() takes. 2574 */ 2575 pExp = aExp + bExp - 0x7e; 2576 aSig = (aSig | 0x00800000) << 7; 2577 bSig = (bSig | 0x00800000) << 8; 2578 pSig64 = (uint64_t)aSig * bSig; 2579 if ((int64_t)(pSig64 << 1) >= 0) { 2580 pSig64 <<= 1; 2581 pExp--; 2582 } 2583 2584 zSign = pSign ^ signflip; 2585 2586 /* Now pSig64 is the significand of the multiply, with the explicit bit in 2587 * position 62. 2588 */ 2589 if (cExp == 0) { 2590 if (!cSig) { 2591 /* Throw out the special case of c being an exact zero now */ 2592 shift64RightJamming(pSig64, 32, &pSig64); 2593 pSig = pSig64; 2594 if (flags & float_muladd_halve_result) { 2595 pExp--; 2596 } 2597 return roundAndPackFloat32(zSign, pExp - 1, 2598 pSig, status); 2599 } 2600 normalizeFloat32Subnormal(cSig, &cExp, &cSig); 2601 } 2602 2603 cSig64 = (uint64_t)cSig << (62 - 23); 2604 cSig64 |= LIT64(0x4000000000000000); 2605 expDiff = pExp - cExp; 2606 2607 if (pSign == cSign) { 2608 /* Addition */ 2609 if (expDiff > 0) { 2610 /* scale c to match p */ 2611 shift64RightJamming(cSig64, expDiff, &cSig64); 2612 zExp = pExp; 2613 } else if (expDiff < 0) { 2614 /* scale p to match c */ 2615 shift64RightJamming(pSig64, -expDiff, &pSig64); 2616 zExp = cExp; 2617 } else { 2618 /* no scaling needed */ 2619 zExp = cExp; 2620 } 2621 /* Add significands and make sure explicit bit ends up in posn 62 */ 2622 zSig64 = pSig64 + cSig64; 2623 if ((int64_t)zSig64 < 0) { 2624 shift64RightJamming(zSig64, 1, &zSig64); 2625 } else { 2626 zExp--; 2627 } 2628 } else { 2629 /* Subtraction */ 2630 if (expDiff > 0) { 2631 shift64RightJamming(cSig64, expDiff, &cSig64); 2632 zSig64 = pSig64 - cSig64; 2633 zExp = pExp; 2634 } else if (expDiff < 0) { 2635 shift64RightJamming(pSig64, -expDiff, &pSig64); 2636 zSig64 = cSig64 - pSig64; 2637 zExp = cExp; 2638 zSign ^= 1; 2639 } else { 2640 zExp = pExp; 2641 if (cSig64 < pSig64) { 2642 zSig64 = pSig64 - cSig64; 2643 } else if (pSig64 < cSig64) { 2644 zSig64 = cSig64 - pSig64; 2645 zSign ^= 1; 2646 } else { 2647 /* Exact zero */ 2648 zSign = signflip; 2649 if (status->float_rounding_mode == float_round_down) { 2650 zSign ^= 1; 2651 } 2652 return packFloat32(zSign, 0, 0); 2653 } 2654 } 2655 --zExp; 2656 /* Normalize to put the explicit bit back into bit 62. */ 2657 shiftcount = countLeadingZeros64(zSig64) - 1; 2658 zSig64 <<= shiftcount; 2659 zExp -= shiftcount; 2660 } 2661 if (flags & float_muladd_halve_result) { 2662 zExp--; 2663 } 2664 2665 shift64RightJamming(zSig64, 32, &zSig64); 2666 return roundAndPackFloat32(zSign, zExp, zSig64, status); 2667 } 2668 2669 2670 /*---------------------------------------------------------------------------- 2671 | Returns the square root of the single-precision floating-point value `a'. 2672 | The operation is performed according to the IEC/IEEE Standard for Binary 2673 | Floating-Point Arithmetic. 2674 *----------------------------------------------------------------------------*/ 2675 2676 float32 float32_sqrt(float32 a, float_status *status) 2677 { 2678 flag aSign; 2679 int aExp, zExp; 2680 uint32_t aSig, zSig; 2681 uint64_t rem, term; 2682 a = float32_squash_input_denormal(a, status); 2683 2684 aSig = extractFloat32Frac( a ); 2685 aExp = extractFloat32Exp( a ); 2686 aSign = extractFloat32Sign( a ); 2687 if ( aExp == 0xFF ) { 2688 if (aSig) { 2689 return propagateFloat32NaN(a, float32_zero, status); 2690 } 2691 if ( ! aSign ) return a; 2692 float_raise(float_flag_invalid, status); 2693 return float32_default_nan; 2694 } 2695 if ( aSign ) { 2696 if ( ( aExp | aSig ) == 0 ) return a; 2697 float_raise(float_flag_invalid, status); 2698 return float32_default_nan; 2699 } 2700 if ( aExp == 0 ) { 2701 if ( aSig == 0 ) return float32_zero; 2702 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2703 } 2704 zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; 2705 aSig = ( aSig | 0x00800000 )<<8; 2706 zSig = estimateSqrt32( aExp, aSig ) + 2; 2707 if ( ( zSig & 0x7F ) <= 5 ) { 2708 if ( zSig < 2 ) { 2709 zSig = 0x7FFFFFFF; 2710 goto roundAndPack; 2711 } 2712 aSig >>= aExp & 1; 2713 term = ( (uint64_t) zSig ) * zSig; 2714 rem = ( ( (uint64_t) aSig )<<32 ) - term; 2715 while ( (int64_t) rem < 0 ) { 2716 --zSig; 2717 rem += ( ( (uint64_t) zSig )<<1 ) | 1; 2718 } 2719 zSig |= ( rem != 0 ); 2720 } 2721 shift32RightJamming( zSig, 1, &zSig ); 2722 roundAndPack: 2723 return roundAndPackFloat32(0, zExp, zSig, status); 2724 2725 } 2726 2727 /*---------------------------------------------------------------------------- 2728 | Returns the binary exponential of the single-precision floating-point value 2729 | `a'. The operation is performed according to the IEC/IEEE Standard for 2730 | Binary Floating-Point Arithmetic. 2731 | 2732 | Uses the following identities: 2733 | 2734 | 1. ------------------------------------------------------------------------- 2735 | x x*ln(2) 2736 | 2 = e 2737 | 2738 | 2. ------------------------------------------------------------------------- 2739 | 2 3 4 5 n 2740 | x x x x x x x 2741 | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... 2742 | 1! 2! 3! 4! 5! n! 2743 *----------------------------------------------------------------------------*/ 2744 2745 static const float64 float32_exp2_coefficients[15] = 2746 { 2747 const_float64( 0x3ff0000000000000ll ), /* 1 */ 2748 const_float64( 0x3fe0000000000000ll ), /* 2 */ 2749 const_float64( 0x3fc5555555555555ll ), /* 3 */ 2750 const_float64( 0x3fa5555555555555ll ), /* 4 */ 2751 const_float64( 0x3f81111111111111ll ), /* 5 */ 2752 const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ 2753 const_float64( 0x3f2a01a01a01a01all ), /* 7 */ 2754 const_float64( 0x3efa01a01a01a01all ), /* 8 */ 2755 const_float64( 0x3ec71de3a556c734ll ), /* 9 */ 2756 const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ 2757 const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ 2758 const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ 2759 const_float64( 0x3de6124613a86d09ll ), /* 13 */ 2760 const_float64( 0x3da93974a8c07c9dll ), /* 14 */ 2761 const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ 2762 }; 2763 2764 float32 float32_exp2(float32 a, float_status *status) 2765 { 2766 flag aSign; 2767 int aExp; 2768 uint32_t aSig; 2769 float64 r, x, xn; 2770 int i; 2771 a = float32_squash_input_denormal(a, status); 2772 2773 aSig = extractFloat32Frac( a ); 2774 aExp = extractFloat32Exp( a ); 2775 aSign = extractFloat32Sign( a ); 2776 2777 if ( aExp == 0xFF) { 2778 if (aSig) { 2779 return propagateFloat32NaN(a, float32_zero, status); 2780 } 2781 return (aSign) ? float32_zero : a; 2782 } 2783 if (aExp == 0) { 2784 if (aSig == 0) return float32_one; 2785 } 2786 2787 float_raise(float_flag_inexact, status); 2788 2789 /* ******************************* */ 2790 /* using float64 for approximation */ 2791 /* ******************************* */ 2792 x = float32_to_float64(a, status); 2793 x = float64_mul(x, float64_ln2, status); 2794 2795 xn = x; 2796 r = float64_one; 2797 for (i = 0 ; i < 15 ; i++) { 2798 float64 f; 2799 2800 f = float64_mul(xn, float32_exp2_coefficients[i], status); 2801 r = float64_add(r, f, status); 2802 2803 xn = float64_mul(xn, x, status); 2804 } 2805 2806 return float64_to_float32(r, status); 2807 } 2808 2809 /*---------------------------------------------------------------------------- 2810 | Returns the binary log of the single-precision floating-point value `a'. 2811 | The operation is performed according to the IEC/IEEE Standard for Binary 2812 | Floating-Point Arithmetic. 2813 *----------------------------------------------------------------------------*/ 2814 float32 float32_log2(float32 a, float_status *status) 2815 { 2816 flag aSign, zSign; 2817 int aExp; 2818 uint32_t aSig, zSig, i; 2819 2820 a = float32_squash_input_denormal(a, status); 2821 aSig = extractFloat32Frac( a ); 2822 aExp = extractFloat32Exp( a ); 2823 aSign = extractFloat32Sign( a ); 2824 2825 if ( aExp == 0 ) { 2826 if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); 2827 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2828 } 2829 if ( aSign ) { 2830 float_raise(float_flag_invalid, status); 2831 return float32_default_nan; 2832 } 2833 if ( aExp == 0xFF ) { 2834 if (aSig) { 2835 return propagateFloat32NaN(a, float32_zero, status); 2836 } 2837 return a; 2838 } 2839 2840 aExp -= 0x7F; 2841 aSig |= 0x00800000; 2842 zSign = aExp < 0; 2843 zSig = aExp << 23; 2844 2845 for (i = 1 << 22; i > 0; i >>= 1) { 2846 aSig = ( (uint64_t)aSig * aSig ) >> 23; 2847 if ( aSig & 0x01000000 ) { 2848 aSig >>= 1; 2849 zSig |= i; 2850 } 2851 } 2852 2853 if ( zSign ) 2854 zSig = -zSig; 2855 2856 return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); 2857 } 2858 2859 /*---------------------------------------------------------------------------- 2860 | Returns 1 if the single-precision floating-point value `a' is equal to 2861 | the corresponding value `b', and 0 otherwise. The invalid exception is 2862 | raised if either operand is a NaN. Otherwise, the comparison is performed 2863 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2864 *----------------------------------------------------------------------------*/ 2865 2866 int float32_eq(float32 a, float32 b, float_status *status) 2867 { 2868 uint32_t av, bv; 2869 a = float32_squash_input_denormal(a, status); 2870 b = float32_squash_input_denormal(b, status); 2871 2872 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2873 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2874 ) { 2875 float_raise(float_flag_invalid, status); 2876 return 0; 2877 } 2878 av = float32_val(a); 2879 bv = float32_val(b); 2880 return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 2881 } 2882 2883 /*---------------------------------------------------------------------------- 2884 | Returns 1 if the single-precision floating-point value `a' is less than 2885 | or equal to the corresponding value `b', and 0 otherwise. The invalid 2886 | exception is raised if either operand is a NaN. The comparison is performed 2887 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2888 *----------------------------------------------------------------------------*/ 2889 2890 int float32_le(float32 a, float32 b, float_status *status) 2891 { 2892 flag aSign, bSign; 2893 uint32_t av, bv; 2894 a = float32_squash_input_denormal(a, status); 2895 b = float32_squash_input_denormal(b, status); 2896 2897 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2898 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2899 ) { 2900 float_raise(float_flag_invalid, status); 2901 return 0; 2902 } 2903 aSign = extractFloat32Sign( a ); 2904 bSign = extractFloat32Sign( b ); 2905 av = float32_val(a); 2906 bv = float32_val(b); 2907 if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 2908 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 2909 2910 } 2911 2912 /*---------------------------------------------------------------------------- 2913 | Returns 1 if the single-precision floating-point value `a' is less than 2914 | the corresponding value `b', and 0 otherwise. The invalid exception is 2915 | raised if either operand is a NaN. The comparison is performed according 2916 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2917 *----------------------------------------------------------------------------*/ 2918 2919 int float32_lt(float32 a, float32 b, float_status *status) 2920 { 2921 flag aSign, bSign; 2922 uint32_t av, bv; 2923 a = float32_squash_input_denormal(a, status); 2924 b = float32_squash_input_denormal(b, status); 2925 2926 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2927 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2928 ) { 2929 float_raise(float_flag_invalid, status); 2930 return 0; 2931 } 2932 aSign = extractFloat32Sign( a ); 2933 bSign = extractFloat32Sign( b ); 2934 av = float32_val(a); 2935 bv = float32_val(b); 2936 if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); 2937 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 2938 2939 } 2940 2941 /*---------------------------------------------------------------------------- 2942 | Returns 1 if the single-precision floating-point values `a' and `b' cannot 2943 | be compared, and 0 otherwise. The invalid exception is raised if either 2944 | operand is a NaN. The comparison is performed according to the IEC/IEEE 2945 | Standard for Binary Floating-Point Arithmetic. 2946 *----------------------------------------------------------------------------*/ 2947 2948 int float32_unordered(float32 a, float32 b, float_status *status) 2949 { 2950 a = float32_squash_input_denormal(a, status); 2951 b = float32_squash_input_denormal(b, status); 2952 2953 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2954 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2955 ) { 2956 float_raise(float_flag_invalid, status); 2957 return 1; 2958 } 2959 return 0; 2960 } 2961 2962 /*---------------------------------------------------------------------------- 2963 | Returns 1 if the single-precision floating-point value `a' is equal to 2964 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 2965 | exception. The comparison is performed according to the IEC/IEEE Standard 2966 | for Binary Floating-Point Arithmetic. 2967 *----------------------------------------------------------------------------*/ 2968 2969 int float32_eq_quiet(float32 a, float32 b, float_status *status) 2970 { 2971 a = float32_squash_input_denormal(a, status); 2972 b = float32_squash_input_denormal(b, status); 2973 2974 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2975 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2976 ) { 2977 if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { 2978 float_raise(float_flag_invalid, status); 2979 } 2980 return 0; 2981 } 2982 return ( float32_val(a) == float32_val(b) ) || 2983 ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); 2984 } 2985 2986 /*---------------------------------------------------------------------------- 2987 | Returns 1 if the single-precision floating-point value `a' is less than or 2988 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 2989 | cause an exception. Otherwise, the comparison is performed according to the 2990 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2991 *----------------------------------------------------------------------------*/ 2992 2993 int float32_le_quiet(float32 a, float32 b, float_status *status) 2994 { 2995 flag aSign, bSign; 2996 uint32_t av, bv; 2997 a = float32_squash_input_denormal(a, status); 2998 b = float32_squash_input_denormal(b, status); 2999 3000 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 3001 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 3002 ) { 3003 if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { 3004 float_raise(float_flag_invalid, status); 3005 } 3006 return 0; 3007 } 3008 aSign = extractFloat32Sign( a ); 3009 bSign = extractFloat32Sign( b ); 3010 av = float32_val(a); 3011 bv = float32_val(b); 3012 if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 3013 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 3014 3015 } 3016 3017 /*---------------------------------------------------------------------------- 3018 | Returns 1 if the single-precision floating-point value `a' is less than 3019 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 3020 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 3021 | Standard for Binary Floating-Point Arithmetic. 3022 *----------------------------------------------------------------------------*/ 3023 3024 int float32_lt_quiet(float32 a, float32 b, float_status *status) 3025 { 3026 flag aSign, bSign; 3027 uint32_t av, bv; 3028 a = float32_squash_input_denormal(a, status); 3029 b = float32_squash_input_denormal(b, status); 3030 3031 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 3032 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 3033 ) { 3034 if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { 3035 float_raise(float_flag_invalid, status); 3036 } 3037 return 0; 3038 } 3039 aSign = extractFloat32Sign( a ); 3040 bSign = extractFloat32Sign( b ); 3041 av = float32_val(a); 3042 bv = float32_val(b); 3043 if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); 3044 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 3045 3046 } 3047 3048 /*---------------------------------------------------------------------------- 3049 | Returns 1 if the single-precision floating-point values `a' and `b' cannot 3050 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 3051 | comparison is performed according to the IEC/IEEE Standard for Binary 3052 | Floating-Point Arithmetic. 3053 *----------------------------------------------------------------------------*/ 3054 3055 int float32_unordered_quiet(float32 a, float32 b, float_status *status) 3056 { 3057 a = float32_squash_input_denormal(a, status); 3058 b = float32_squash_input_denormal(b, status); 3059 3060 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 3061 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 3062 ) { 3063 if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { 3064 float_raise(float_flag_invalid, status); 3065 } 3066 return 1; 3067 } 3068 return 0; 3069 } 3070 3071 /*---------------------------------------------------------------------------- 3072 | Returns the result of converting the double-precision floating-point value 3073 | `a' to the 32-bit two's complement integer format. The conversion is 3074 | performed according to the IEC/IEEE Standard for Binary Floating-Point 3075 | Arithmetic---which means in particular that the conversion is rounded 3076 | according to the current rounding mode. If `a' is a NaN, the largest 3077 | positive integer is returned. Otherwise, if the conversion overflows, the 3078 | largest integer with the same sign as `a' is returned. 3079 *----------------------------------------------------------------------------*/ 3080 3081 int32_t float64_to_int32(float64 a, float_status *status) 3082 { 3083 flag aSign; 3084 int aExp; 3085 int shiftCount; 3086 uint64_t aSig; 3087 a = float64_squash_input_denormal(a, status); 3088 3089 aSig = extractFloat64Frac( a ); 3090 aExp = extractFloat64Exp( a ); 3091 aSign = extractFloat64Sign( a ); 3092 if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; 3093 if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); 3094 shiftCount = 0x42C - aExp; 3095 if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); 3096 return roundAndPackInt32(aSign, aSig, status); 3097 3098 } 3099 3100 /*---------------------------------------------------------------------------- 3101 | Returns the result of converting the double-precision floating-point value 3102 | `a' to the 32-bit two's complement integer format. The conversion is 3103 | performed according to the IEC/IEEE Standard for Binary Floating-Point 3104 | Arithmetic, except that the conversion is always rounded toward zero. 3105 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 3106 | the conversion overflows, the largest integer with the same sign as `a' is 3107 | returned. 3108 *----------------------------------------------------------------------------*/ 3109 3110 int32_t float64_to_int32_round_to_zero(float64 a, float_status *status) 3111 { 3112 flag aSign; 3113 int aExp; 3114 int shiftCount; 3115 uint64_t aSig, savedASig; 3116 int32_t z; 3117 a = float64_squash_input_denormal(a, status); 3118 3119 aSig = extractFloat64Frac( a ); 3120 aExp = extractFloat64Exp( a ); 3121 aSign = extractFloat64Sign( a ); 3122 if ( 0x41E < aExp ) { 3123 if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; 3124 goto invalid; 3125 } 3126 else if ( aExp < 0x3FF ) { 3127 if (aExp || aSig) { 3128 status->float_exception_flags |= float_flag_inexact; 3129 } 3130 return 0; 3131 } 3132 aSig |= LIT64( 0x0010000000000000 ); 3133 shiftCount = 0x433 - aExp; 3134 savedASig = aSig; 3135 aSig >>= shiftCount; 3136 z = aSig; 3137 if ( aSign ) z = - z; 3138 if ( ( z < 0 ) ^ aSign ) { 3139 invalid: 3140 float_raise(float_flag_invalid, status); 3141 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 3142 } 3143 if ( ( aSig<<shiftCount ) != savedASig ) { 3144 status->float_exception_flags |= float_flag_inexact; 3145 } 3146 return z; 3147 3148 } 3149 3150 /*---------------------------------------------------------------------------- 3151 | Returns the result of converting the double-precision floating-point value 3152 | `a' to the 16-bit two's complement integer format. The conversion is 3153 | performed according to the IEC/IEEE Standard for Binary Floating-Point 3154 | Arithmetic, except that the conversion is always rounded toward zero. 3155 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 3156 | the conversion overflows, the largest integer with the same sign as `a' is 3157 | returned. 3158 *----------------------------------------------------------------------------*/ 3159 3160 int16_t float64_to_int16_round_to_zero(float64 a, float_status *status) 3161 { 3162 flag aSign; 3163 int aExp; 3164 int shiftCount; 3165 uint64_t aSig, savedASig; 3166 int32_t z; 3167 3168 aSig = extractFloat64Frac( a ); 3169 aExp = extractFloat64Exp( a ); 3170 aSign = extractFloat64Sign( a ); 3171 if ( 0x40E < aExp ) { 3172 if ( ( aExp == 0x7FF ) && aSig ) { 3173 aSign = 0; 3174 } 3175 goto invalid; 3176 } 3177 else if ( aExp < 0x3FF ) { 3178 if ( aExp || aSig ) { 3179 status->float_exception_flags |= float_flag_inexact; 3180 } 3181 return 0; 3182 } 3183 aSig |= LIT64( 0x0010000000000000 ); 3184 shiftCount = 0x433 - aExp; 3185 savedASig = aSig; 3186 aSig >>= shiftCount; 3187 z = aSig; 3188 if ( aSign ) { 3189 z = - z; 3190 } 3191 if ( ( (int16_t)z < 0 ) ^ aSign ) { 3192 invalid: 3193 float_raise(float_flag_invalid, status); 3194 return aSign ? (int32_t) 0xffff8000 : 0x7FFF; 3195 } 3196 if ( ( aSig<<shiftCount ) != savedASig ) { 3197 status->float_exception_flags |= float_flag_inexact; 3198 } 3199 return z; 3200 } 3201 3202 /*---------------------------------------------------------------------------- 3203 | Returns the result of converting the double-precision floating-point value 3204 | `a' to the 64-bit two's complement integer format. The conversion is 3205 | performed according to the IEC/IEEE Standard for Binary Floating-Point 3206 | Arithmetic---which means in particular that the conversion is rounded 3207 | according to the current rounding mode. If `a' is a NaN, the largest 3208 | positive integer is returned. Otherwise, if the conversion overflows, the 3209 | largest integer with the same sign as `a' is returned. 3210 *----------------------------------------------------------------------------*/ 3211 3212 int64_t float64_to_int64(float64 a, float_status *status) 3213 { 3214 flag aSign; 3215 int aExp; 3216 int shiftCount; 3217 uint64_t aSig, aSigExtra; 3218 a = float64_squash_input_denormal(a, status); 3219 3220 aSig = extractFloat64Frac( a ); 3221 aExp = extractFloat64Exp( a ); 3222 aSign = extractFloat64Sign( a ); 3223 if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); 3224 shiftCount = 0x433 - aExp; 3225 if ( shiftCount <= 0 ) { 3226 if ( 0x43E < aExp ) { 3227 float_raise(float_flag_invalid, status); 3228 if ( ! aSign 3229 || ( ( aExp == 0x7FF ) 3230 && ( aSig != LIT64( 0x0010000000000000 ) ) ) 3231 ) { 3232 return LIT64( 0x7FFFFFFFFFFFFFFF ); 3233 } 3234 return (int64_t) LIT64( 0x8000000000000000 ); 3235 } 3236 aSigExtra = 0; 3237 aSig <<= - shiftCount; 3238 } 3239 else { 3240 shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); 3241 } 3242 return roundAndPackInt64(aSign, aSig, aSigExtra, status); 3243 3244 } 3245 3246 /*---------------------------------------------------------------------------- 3247 | Returns the result of converting the double-precision floating-point value 3248 | `a' to the 64-bit two's complement integer format. The conversion is 3249 | performed according to the IEC/IEEE Standard for Binary Floating-Point 3250 | Arithmetic, except that the conversion is always rounded toward zero. 3251 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 3252 | the conversion overflows, the largest integer with the same sign as `a' is 3253 | returned. 3254 *----------------------------------------------------------------------------*/ 3255 3256 int64_t float64_to_int64_round_to_zero(float64 a, float_status *status) 3257 { 3258 flag aSign; 3259 int aExp; 3260 int shiftCount; 3261 uint64_t aSig; 3262 int64_t z; 3263 a = float64_squash_input_denormal(a, status); 3264 3265 aSig = extractFloat64Frac( a ); 3266 aExp = extractFloat64Exp( a ); 3267 aSign = extractFloat64Sign( a ); 3268 if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); 3269 shiftCount = aExp - 0x433; 3270 if ( 0 <= shiftCount ) { 3271 if ( 0x43E <= aExp ) { 3272 if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { 3273 float_raise(float_flag_invalid, status); 3274 if ( ! aSign 3275 || ( ( aExp == 0x7FF ) 3276 && ( aSig != LIT64( 0x0010000000000000 ) ) ) 3277 ) { 3278 return LIT64( 0x7FFFFFFFFFFFFFFF ); 3279 } 3280 } 3281 return (int64_t) LIT64( 0x8000000000000000 ); 3282 } 3283 z = aSig<<shiftCount; 3284 } 3285 else { 3286 if ( aExp < 0x3FE ) { 3287 if (aExp | aSig) { 3288 status->float_exception_flags |= float_flag_inexact; 3289 } 3290 return 0; 3291 } 3292 z = aSig>>( - shiftCount ); 3293 if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { 3294 status->float_exception_flags |= float_flag_inexact; 3295 } 3296 } 3297 if ( aSign ) z = - z; 3298 return z; 3299 3300 } 3301 3302 /*---------------------------------------------------------------------------- 3303 | Returns the result of converting the double-precision floating-point value 3304 | `a' to the single-precision floating-point format. The conversion is 3305 | performed according to the IEC/IEEE Standard for Binary Floating-Point 3306 | Arithmetic. 3307 *----------------------------------------------------------------------------*/ 3308 3309 float32 float64_to_float32(float64 a, float_status *status) 3310 { 3311 flag aSign; 3312 int aExp; 3313 uint64_t aSig; 3314 uint32_t zSig; 3315 a = float64_squash_input_denormal(a, status); 3316 3317 aSig = extractFloat64Frac( a ); 3318 aExp = extractFloat64Exp( a ); 3319 aSign = extractFloat64Sign( a ); 3320 if ( aExp == 0x7FF ) { 3321 if (aSig) { 3322 return commonNaNToFloat32(float64ToCommonNaN(a, status), status); 3323 } 3324 return packFloat32( aSign, 0xFF, 0 ); 3325 } 3326 shift64RightJamming( aSig, 22, &aSig ); 3327 zSig = aSig; 3328 if ( aExp || zSig ) { 3329 zSig |= 0x40000000; 3330 aExp -= 0x381; 3331 } 3332 return roundAndPackFloat32(aSign, aExp, zSig, status); 3333 3334 } 3335 3336 3337 /*---------------------------------------------------------------------------- 3338 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a 3339 | half-precision floating-point value, returning the result. After being 3340 | shifted into the proper positions, the three fields are simply added 3341 | together to form the result. This means that any integer portion of `zSig' 3342 | will be added into the exponent. Since a properly normalized significand 3343 | will have an integer portion equal to 1, the `zExp' input should be 1 less 3344 | than the desired result exponent whenever `zSig' is a complete, normalized 3345 | significand. 3346 *----------------------------------------------------------------------------*/ 3347 static float16 packFloat16(flag zSign, int zExp, uint16_t zSig) 3348 { 3349 return make_float16( 3350 (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); 3351 } 3352 3353 /*---------------------------------------------------------------------------- 3354 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 3355 | and significand `zSig', and returns the proper half-precision floating- 3356 | point value corresponding to the abstract input. Ordinarily, the abstract 3357 | value is simply rounded and packed into the half-precision format, with 3358 | the inexact exception raised if the abstract input cannot be represented 3359 | exactly. However, if the abstract value is too large, the overflow and 3360 | inexact exceptions are raised and an infinity or maximal finite value is 3361 | returned. If the abstract value is too small, the input value is rounded to 3362 | a subnormal number, and the underflow and inexact exceptions are raised if 3363 | the abstract input cannot be represented exactly as a subnormal half- 3364 | precision floating-point number. 3365 | The `ieee' flag indicates whether to use IEEE standard half precision, or 3366 | ARM-style "alternative representation", which omits the NaN and Inf 3367 | encodings in order to raise the maximum representable exponent by one. 3368 | The input significand `zSig' has its binary point between bits 22 3369 | and 23, which is 13 bits to the left of the usual location. This shifted 3370 | significand must be normalized or smaller. If `zSig' is not normalized, 3371 | `zExp' must be 0; in that case, the result returned is a subnormal number, 3372 | and it must not require rounding. In the usual case that `zSig' is 3373 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. 3374 | Note the slightly odd position of the binary point in zSig compared with the 3375 | other roundAndPackFloat functions. This should probably be fixed if we 3376 | need to implement more float16 routines than just conversion. 3377 | The handling of underflow and overflow follows the IEC/IEEE Standard for 3378 | Binary Floating-Point Arithmetic. 3379 *----------------------------------------------------------------------------*/ 3380 3381 static float16 roundAndPackFloat16(flag zSign, int zExp, 3382 uint32_t zSig, flag ieee, 3383 float_status *status) 3384 { 3385 int maxexp = ieee ? 29 : 30; 3386 uint32_t mask; 3387 uint32_t increment; 3388 bool rounding_bumps_exp; 3389 bool is_tiny = false; 3390 3391 /* Calculate the mask of bits of the mantissa which are not 3392 * representable in half-precision and will be lost. 3393 */ 3394 if (zExp < 1) { 3395 /* Will be denormal in halfprec */ 3396 mask = 0x00ffffff; 3397 if (zExp >= -11) { 3398 mask >>= 11 + zExp; 3399 } 3400 } else { 3401 /* Normal number in halfprec */ 3402 mask = 0x00001fff; 3403 } 3404 3405 switch (status->float_rounding_mode) { 3406 case float_round_nearest_even: 3407 increment = (mask + 1) >> 1; 3408 if ((zSig & mask) == increment) { 3409 increment = zSig & (increment << 1); 3410 } 3411 break; 3412 case float_round_ties_away: 3413 increment = (mask + 1) >> 1; 3414 break; 3415 case float_round_up: 3416 increment = zSign ? 0 : mask; 3417 break; 3418 case float_round_down: 3419 increment = zSign ? mask : 0; 3420 break; 3421 default: /* round_to_zero */ 3422 increment = 0; 3423 break; 3424 } 3425 3426 rounding_bumps_exp = (zSig + increment >= 0x01000000); 3427 3428 if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) { 3429 if (ieee) { 3430 float_raise(float_flag_overflow | float_flag_inexact, status); 3431 return packFloat16(zSign, 0x1f, 0); 3432 } else { 3433 float_raise(float_flag_invalid, status); 3434 return packFloat16(zSign, 0x1f, 0x3ff); 3435 } 3436 } 3437 3438 if (zExp < 0) { 3439 /* Note that flush-to-zero does not affect half-precision results */ 3440 is_tiny = 3441 (status->float_detect_tininess == float_tininess_before_rounding) 3442 || (zExp < -1) 3443 || (!rounding_bumps_exp); 3444 } 3445 if (zSig & mask) { 3446 float_raise(float_flag_inexact, status); 3447 if (is_tiny) { 3448 float_raise(float_flag_underflow, status); 3449 } 3450 } 3451 3452 zSig += increment; 3453 if (rounding_bumps_exp) { 3454 zSig >>= 1; 3455 zExp++; 3456 } 3457 3458 if (zExp < -10) { 3459 return packFloat16(zSign, 0, 0); 3460 } 3461 if (zExp < 0) { 3462 zSig >>= -zExp; 3463 zExp = 0; 3464 } 3465 return packFloat16(zSign, zExp, zSig >> 13); 3466 } 3467 3468 static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr, 3469 uint32_t *zSigPtr) 3470 { 3471 int8_t shiftCount = countLeadingZeros32(aSig) - 21; 3472 *zSigPtr = aSig << shiftCount; 3473 *zExpPtr = 1 - shiftCount; 3474 } 3475 3476 /* Half precision floats come in two formats: standard IEEE and "ARM" format. 3477 The latter gains extra exponent range by omitting the NaN/Inf encodings. */ 3478 3479 float32 float16_to_float32(float16 a, flag ieee, float_status *status) 3480 { 3481 flag aSign; 3482 int aExp; 3483 uint32_t aSig; 3484 3485 aSign = extractFloat16Sign(a); 3486 aExp = extractFloat16Exp(a); 3487 aSig = extractFloat16Frac(a); 3488 3489 if (aExp == 0x1f && ieee) { 3490 if (aSig) { 3491 return commonNaNToFloat32(float16ToCommonNaN(a, status), status); 3492 } 3493 return packFloat32(aSign, 0xff, 0); 3494 } 3495 if (aExp == 0) { 3496 if (aSig == 0) { 3497 return packFloat32(aSign, 0, 0); 3498 } 3499 3500 normalizeFloat16Subnormal(aSig, &aExp, &aSig); 3501 aExp--; 3502 } 3503 return packFloat32( aSign, aExp + 0x70, aSig << 13); 3504 } 3505 3506 float16 float32_to_float16(float32 a, flag ieee, float_status *status) 3507 { 3508 flag aSign; 3509 int aExp; 3510 uint32_t aSig; 3511 3512 a = float32_squash_input_denormal(a, status); 3513 3514 aSig = extractFloat32Frac( a ); 3515 aExp = extractFloat32Exp( a ); 3516 aSign = extractFloat32Sign( a ); 3517 if ( aExp == 0xFF ) { 3518 if (aSig) { 3519 /* Input is a NaN */ 3520 if (!ieee) { 3521 float_raise(float_flag_invalid, status); 3522 return packFloat16(aSign, 0, 0); 3523 } 3524 return commonNaNToFloat16( 3525 float32ToCommonNaN(a, status), status); 3526 } 3527 /* Infinity */ 3528 if (!ieee) { 3529 float_raise(float_flag_invalid, status); 3530 return packFloat16(aSign, 0x1f, 0x3ff); 3531 } 3532 return packFloat16(aSign, 0x1f, 0); 3533 } 3534 if (aExp == 0 && aSig == 0) { 3535 return packFloat16(aSign, 0, 0); 3536 } 3537 /* Decimal point between bits 22 and 23. Note that we add the 1 bit 3538 * even if the input is denormal; however this is harmless because 3539 * the largest possible single-precision denormal is still smaller 3540 * than the smallest representable half-precision denormal, and so we 3541 * will end up ignoring aSig and returning via the "always return zero" 3542 * codepath. 3543 */ 3544 aSig |= 0x00800000; 3545 aExp -= 0x71; 3546 3547 return roundAndPackFloat16(aSign, aExp, aSig, ieee, status); 3548 } 3549 3550 float64 float16_to_float64(float16 a, flag ieee, float_status *status) 3551 { 3552 flag aSign; 3553 int aExp; 3554 uint32_t aSig; 3555 3556 aSign = extractFloat16Sign(a); 3557 aExp = extractFloat16Exp(a); 3558 aSig = extractFloat16Frac(a); 3559 3560 if (aExp == 0x1f && ieee) { 3561 if (aSig) { 3562 return commonNaNToFloat64( 3563 float16ToCommonNaN(a, status), status); 3564 } 3565 return packFloat64(aSign, 0x7ff, 0); 3566 } 3567 if (aExp == 0) { 3568 if (aSig == 0) { 3569 return packFloat64(aSign, 0, 0); 3570 } 3571 3572 normalizeFloat16Subnormal(aSig, &aExp, &aSig); 3573 aExp--; 3574 } 3575 return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42); 3576 } 3577 3578 float16 float64_to_float16(float64 a, flag ieee, float_status *status) 3579 { 3580 flag aSign; 3581 int aExp; 3582 uint64_t aSig; 3583 uint32_t zSig; 3584 3585 a = float64_squash_input_denormal(a, status); 3586 3587 aSig = extractFloat64Frac(a); 3588 aExp = extractFloat64Exp(a); 3589 aSign = extractFloat64Sign(a); 3590 if (aExp == 0x7FF) { 3591 if (aSig) { 3592 /* Input is a NaN */ 3593 if (!ieee) { 3594 float_raise(float_flag_invalid, status); 3595 return packFloat16(aSign, 0, 0); 3596 } 3597 return commonNaNToFloat16( 3598 float64ToCommonNaN(a, status), status); 3599 } 3600 /* Infinity */ 3601 if (!ieee) { 3602 float_raise(float_flag_invalid, status); 3603 return packFloat16(aSign, 0x1f, 0x3ff); 3604 } 3605 return packFloat16(aSign, 0x1f, 0); 3606 } 3607 shift64RightJamming(aSig, 29, &aSig); 3608 zSig = aSig; 3609 if (aExp == 0 && zSig == 0) { 3610 return packFloat16(aSign, 0, 0); 3611 } 3612 /* Decimal point between bits 22 and 23. Note that we add the 1 bit 3613 * even if the input is denormal; however this is harmless because 3614 * the largest possible single-precision denormal is still smaller 3615 * than the smallest representable half-precision denormal, and so we 3616 * will end up ignoring aSig and returning via the "always return zero" 3617 * codepath. 3618 */ 3619 zSig |= 0x00800000; 3620 aExp -= 0x3F1; 3621 3622 return roundAndPackFloat16(aSign, aExp, zSig, ieee, status); 3623 } 3624 3625 /*---------------------------------------------------------------------------- 3626 | Returns the result of converting the double-precision floating-point value 3627 | `a' to the extended double-precision floating-point format. The conversion 3628 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 3629 | Arithmetic. 3630 *----------------------------------------------------------------------------*/ 3631 3632 floatx80 float64_to_floatx80(float64 a, float_status *status) 3633 { 3634 flag aSign; 3635 int aExp; 3636 uint64_t aSig; 3637 3638 a = float64_squash_input_denormal(a, status); 3639 aSig = extractFloat64Frac( a ); 3640 aExp = extractFloat64Exp( a ); 3641 aSign = extractFloat64Sign( a ); 3642 if ( aExp == 0x7FF ) { 3643 if (aSig) { 3644 return commonNaNToFloatx80(float64ToCommonNaN(a, status), status); 3645 } 3646 return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 3647 } 3648 if ( aExp == 0 ) { 3649 if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); 3650 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3651 } 3652 return 3653 packFloatx80( 3654 aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); 3655 3656 } 3657 3658 /*---------------------------------------------------------------------------- 3659 | Returns the result of converting the double-precision floating-point value 3660 | `a' to the quadruple-precision floating-point format. The conversion is 3661 | performed according to the IEC/IEEE Standard for Binary Floating-Point 3662 | Arithmetic. 3663 *----------------------------------------------------------------------------*/ 3664 3665 float128 float64_to_float128(float64 a, float_status *status) 3666 { 3667 flag aSign; 3668 int aExp; 3669 uint64_t aSig, zSig0, zSig1; 3670 3671 a = float64_squash_input_denormal(a, status); 3672 aSig = extractFloat64Frac( a ); 3673 aExp = extractFloat64Exp( a ); 3674 aSign = extractFloat64Sign( a ); 3675 if ( aExp == 0x7FF ) { 3676 if (aSig) { 3677 return commonNaNToFloat128(float64ToCommonNaN(a, status), status); 3678 } 3679 return packFloat128( aSign, 0x7FFF, 0, 0 ); 3680 } 3681 if ( aExp == 0 ) { 3682 if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); 3683 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3684 --aExp; 3685 } 3686 shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); 3687 return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); 3688 3689 } 3690 3691 /*---------------------------------------------------------------------------- 3692 | Rounds the double-precision floating-point value `a' to an integer, and 3693 | returns the result as a double-precision floating-point value. The 3694 | operation is performed according to the IEC/IEEE Standard for Binary 3695 | Floating-Point Arithmetic. 3696 *----------------------------------------------------------------------------*/ 3697 3698 float64 float64_round_to_int(float64 a, float_status *status) 3699 { 3700 flag aSign; 3701 int aExp; 3702 uint64_t lastBitMask, roundBitsMask; 3703 uint64_t z; 3704 a = float64_squash_input_denormal(a, status); 3705 3706 aExp = extractFloat64Exp( a ); 3707 if ( 0x433 <= aExp ) { 3708 if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { 3709 return propagateFloat64NaN(a, a, status); 3710 } 3711 return a; 3712 } 3713 if ( aExp < 0x3FF ) { 3714 if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a; 3715 status->float_exception_flags |= float_flag_inexact; 3716 aSign = extractFloat64Sign( a ); 3717 switch (status->float_rounding_mode) { 3718 case float_round_nearest_even: 3719 if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { 3720 return packFloat64( aSign, 0x3FF, 0 ); 3721 } 3722 break; 3723 case float_round_ties_away: 3724 if (aExp == 0x3FE) { 3725 return packFloat64(aSign, 0x3ff, 0); 3726 } 3727 break; 3728 case float_round_down: 3729 return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); 3730 case float_round_up: 3731 return make_float64( 3732 aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); 3733 } 3734 return packFloat64( aSign, 0, 0 ); 3735 } 3736 lastBitMask = 1; 3737 lastBitMask <<= 0x433 - aExp; 3738 roundBitsMask = lastBitMask - 1; 3739 z = float64_val(a); 3740 switch (status->float_rounding_mode) { 3741 case float_round_nearest_even: 3742 z += lastBitMask >> 1; 3743 if ((z & roundBitsMask) == 0) { 3744 z &= ~lastBitMask; 3745 } 3746 break; 3747 case float_round_ties_away: 3748 z += lastBitMask >> 1; 3749 break; 3750 case float_round_to_zero: 3751 break; 3752 case float_round_up: 3753 if (!extractFloat64Sign(make_float64(z))) { 3754 z += roundBitsMask; 3755 } 3756 break; 3757 case float_round_down: 3758 if (extractFloat64Sign(make_float64(z))) { 3759 z += roundBitsMask; 3760 } 3761 break; 3762 default: 3763 abort(); 3764 } 3765 z &= ~ roundBitsMask; 3766 if (z != float64_val(a)) { 3767 status->float_exception_flags |= float_flag_inexact; 3768 } 3769 return make_float64(z); 3770 3771 } 3772 3773 float64 float64_trunc_to_int(float64 a, float_status *status) 3774 { 3775 int oldmode; 3776 float64 res; 3777 oldmode = status->float_rounding_mode; 3778 status->float_rounding_mode = float_round_to_zero; 3779 res = float64_round_to_int(a, status); 3780 status->float_rounding_mode = oldmode; 3781 return res; 3782 } 3783 3784 /*---------------------------------------------------------------------------- 3785 | Returns the result of adding the absolute values of the double-precision 3786 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated 3787 | before being returned. `zSign' is ignored if the result is a NaN. 3788 | The addition is performed according to the IEC/IEEE Standard for Binary 3789 | Floating-Point Arithmetic. 3790 *----------------------------------------------------------------------------*/ 3791 3792 static float64 addFloat64Sigs(float64 a, float64 b, flag zSign, 3793 float_status *status) 3794 { 3795 int aExp, bExp, zExp; 3796 uint64_t aSig, bSig, zSig; 3797 int expDiff; 3798 3799 aSig = extractFloat64Frac( a ); 3800 aExp = extractFloat64Exp( a ); 3801 bSig = extractFloat64Frac( b ); 3802 bExp = extractFloat64Exp( b ); 3803 expDiff = aExp - bExp; 3804 aSig <<= 9; 3805 bSig <<= 9; 3806 if ( 0 < expDiff ) { 3807 if ( aExp == 0x7FF ) { 3808 if (aSig) { 3809 return propagateFloat64NaN(a, b, status); 3810 } 3811 return a; 3812 } 3813 if ( bExp == 0 ) { 3814 --expDiff; 3815 } 3816 else { 3817 bSig |= LIT64( 0x2000000000000000 ); 3818 } 3819 shift64RightJamming( bSig, expDiff, &bSig ); 3820 zExp = aExp; 3821 } 3822 else if ( expDiff < 0 ) { 3823 if ( bExp == 0x7FF ) { 3824 if (bSig) { 3825 return propagateFloat64NaN(a, b, status); 3826 } 3827 return packFloat64( zSign, 0x7FF, 0 ); 3828 } 3829 if ( aExp == 0 ) { 3830 ++expDiff; 3831 } 3832 else { 3833 aSig |= LIT64( 0x2000000000000000 ); 3834 } 3835 shift64RightJamming( aSig, - expDiff, &aSig ); 3836 zExp = bExp; 3837 } 3838 else { 3839 if ( aExp == 0x7FF ) { 3840 if (aSig | bSig) { 3841 return propagateFloat64NaN(a, b, status); 3842 } 3843 return a; 3844 } 3845 if ( aExp == 0 ) { 3846 if (status->flush_to_zero) { 3847 if (aSig | bSig) { 3848 float_raise(float_flag_output_denormal, status); 3849 } 3850 return packFloat64(zSign, 0, 0); 3851 } 3852 return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); 3853 } 3854 zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; 3855 zExp = aExp; 3856 goto roundAndPack; 3857 } 3858 aSig |= LIT64( 0x2000000000000000 ); 3859 zSig = ( aSig + bSig )<<1; 3860 --zExp; 3861 if ( (int64_t) zSig < 0 ) { 3862 zSig = aSig + bSig; 3863 ++zExp; 3864 } 3865 roundAndPack: 3866 return roundAndPackFloat64(zSign, zExp, zSig, status); 3867 3868 } 3869 3870 /*---------------------------------------------------------------------------- 3871 | Returns the result of subtracting the absolute values of the double- 3872 | precision floating-point values `a' and `b'. If `zSign' is 1, the 3873 | difference is negated before being returned. `zSign' is ignored if the 3874 | result is a NaN. The subtraction is performed according to the IEC/IEEE 3875 | Standard for Binary Floating-Point Arithmetic. 3876 *----------------------------------------------------------------------------*/ 3877 3878 static float64 subFloat64Sigs(float64 a, float64 b, flag zSign, 3879 float_status *status) 3880 { 3881 int aExp, bExp, zExp; 3882 uint64_t aSig, bSig, zSig; 3883 int expDiff; 3884 3885 aSig = extractFloat64Frac( a ); 3886 aExp = extractFloat64Exp( a ); 3887 bSig = extractFloat64Frac( b ); 3888 bExp = extractFloat64Exp( b ); 3889 expDiff = aExp - bExp; 3890 aSig <<= 10; 3891 bSig <<= 10; 3892 if ( 0 < expDiff ) goto aExpBigger; 3893 if ( expDiff < 0 ) goto bExpBigger; 3894 if ( aExp == 0x7FF ) { 3895 if (aSig | bSig) { 3896 return propagateFloat64NaN(a, b, status); 3897 } 3898 float_raise(float_flag_invalid, status); 3899 return float64_default_nan; 3900 } 3901 if ( aExp == 0 ) { 3902 aExp = 1; 3903 bExp = 1; 3904 } 3905 if ( bSig < aSig ) goto aBigger; 3906 if ( aSig < bSig ) goto bBigger; 3907 return packFloat64(status->float_rounding_mode == float_round_down, 0, 0); 3908 bExpBigger: 3909 if ( bExp == 0x7FF ) { 3910 if (bSig) { 3911 return propagateFloat64NaN(a, b, status); 3912 } 3913 return packFloat64( zSign ^ 1, 0x7FF, 0 ); 3914 } 3915 if ( aExp == 0 ) { 3916 ++expDiff; 3917 } 3918 else { 3919 aSig |= LIT64( 0x4000000000000000 ); 3920 } 3921 shift64RightJamming( aSig, - expDiff, &aSig ); 3922 bSig |= LIT64( 0x4000000000000000 ); 3923 bBigger: 3924 zSig = bSig - aSig; 3925 zExp = bExp; 3926 zSign ^= 1; 3927 goto normalizeRoundAndPack; 3928 aExpBigger: 3929 if ( aExp == 0x7FF ) { 3930 if (aSig) { 3931 return propagateFloat64NaN(a, b, status); 3932 } 3933 return a; 3934 } 3935 if ( bExp == 0 ) { 3936 --expDiff; 3937 } 3938 else { 3939 bSig |= LIT64( 0x4000000000000000 ); 3940 } 3941 shift64RightJamming( bSig, expDiff, &bSig ); 3942 aSig |= LIT64( 0x4000000000000000 ); 3943 aBigger: 3944 zSig = aSig - bSig; 3945 zExp = aExp; 3946 normalizeRoundAndPack: 3947 --zExp; 3948 return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status); 3949 3950 } 3951 3952 /*---------------------------------------------------------------------------- 3953 | Returns the result of adding the double-precision floating-point values `a' 3954 | and `b'. The operation is performed according to the IEC/IEEE Standard for 3955 | Binary Floating-Point Arithmetic. 3956 *----------------------------------------------------------------------------*/ 3957 3958 float64 float64_add(float64 a, float64 b, float_status *status) 3959 { 3960 flag aSign, bSign; 3961 a = float64_squash_input_denormal(a, status); 3962 b = float64_squash_input_denormal(b, status); 3963 3964 aSign = extractFloat64Sign( a ); 3965 bSign = extractFloat64Sign( b ); 3966 if ( aSign == bSign ) { 3967 return addFloat64Sigs(a, b, aSign, status); 3968 } 3969 else { 3970 return subFloat64Sigs(a, b, aSign, status); 3971 } 3972 3973 } 3974 3975 /*---------------------------------------------------------------------------- 3976 | Returns the result of subtracting the double-precision floating-point values 3977 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 3978 | for Binary Floating-Point Arithmetic. 3979 *----------------------------------------------------------------------------*/ 3980 3981 float64 float64_sub(float64 a, float64 b, float_status *status) 3982 { 3983 flag aSign, bSign; 3984 a = float64_squash_input_denormal(a, status); 3985 b = float64_squash_input_denormal(b, status); 3986 3987 aSign = extractFloat64Sign( a ); 3988 bSign = extractFloat64Sign( b ); 3989 if ( aSign == bSign ) { 3990 return subFloat64Sigs(a, b, aSign, status); 3991 } 3992 else { 3993 return addFloat64Sigs(a, b, aSign, status); 3994 } 3995 3996 } 3997 3998 /*---------------------------------------------------------------------------- 3999 | Returns the result of multiplying the double-precision floating-point values 4000 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 4001 | for Binary Floating-Point Arithmetic. 4002 *----------------------------------------------------------------------------*/ 4003 4004 float64 float64_mul(float64 a, float64 b, float_status *status) 4005 { 4006 flag aSign, bSign, zSign; 4007 int aExp, bExp, zExp; 4008 uint64_t aSig, bSig, zSig0, zSig1; 4009 4010 a = float64_squash_input_denormal(a, status); 4011 b = float64_squash_input_denormal(b, status); 4012 4013 aSig = extractFloat64Frac( a ); 4014 aExp = extractFloat64Exp( a ); 4015 aSign = extractFloat64Sign( a ); 4016 bSig = extractFloat64Frac( b ); 4017 bExp = extractFloat64Exp( b ); 4018 bSign = extractFloat64Sign( b ); 4019 zSign = aSign ^ bSign; 4020 if ( aExp == 0x7FF ) { 4021 if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { 4022 return propagateFloat64NaN(a, b, status); 4023 } 4024 if ( ( bExp | bSig ) == 0 ) { 4025 float_raise(float_flag_invalid, status); 4026 return float64_default_nan; 4027 } 4028 return packFloat64( zSign, 0x7FF, 0 ); 4029 } 4030 if ( bExp == 0x7FF ) { 4031 if (bSig) { 4032 return propagateFloat64NaN(a, b, status); 4033 } 4034 if ( ( aExp | aSig ) == 0 ) { 4035 float_raise(float_flag_invalid, status); 4036 return float64_default_nan; 4037 } 4038 return packFloat64( zSign, 0x7FF, 0 ); 4039 } 4040 if ( aExp == 0 ) { 4041 if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); 4042 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 4043 } 4044 if ( bExp == 0 ) { 4045 if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); 4046 normalizeFloat64Subnormal( bSig, &bExp, &bSig ); 4047 } 4048 zExp = aExp + bExp - 0x3FF; 4049 aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; 4050 bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; 4051 mul64To128( aSig, bSig, &zSig0, &zSig1 ); 4052 zSig0 |= ( zSig1 != 0 ); 4053 if ( 0 <= (int64_t) ( zSig0<<1 ) ) { 4054 zSig0 <<= 1; 4055 --zExp; 4056 } 4057 return roundAndPackFloat64(zSign, zExp, zSig0, status); 4058 4059 } 4060 4061 /*---------------------------------------------------------------------------- 4062 | Returns the result of dividing the double-precision floating-point value `a' 4063 | by the corresponding value `b'. The operation is performed according to 4064 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4065 *----------------------------------------------------------------------------*/ 4066 4067 float64 float64_div(float64 a, float64 b, float_status *status) 4068 { 4069 flag aSign, bSign, zSign; 4070 int aExp, bExp, zExp; 4071 uint64_t aSig, bSig, zSig; 4072 uint64_t rem0, rem1; 4073 uint64_t term0, term1; 4074 a = float64_squash_input_denormal(a, status); 4075 b = float64_squash_input_denormal(b, status); 4076 4077 aSig = extractFloat64Frac( a ); 4078 aExp = extractFloat64Exp( a ); 4079 aSign = extractFloat64Sign( a ); 4080 bSig = extractFloat64Frac( b ); 4081 bExp = extractFloat64Exp( b ); 4082 bSign = extractFloat64Sign( b ); 4083 zSign = aSign ^ bSign; 4084 if ( aExp == 0x7FF ) { 4085 if (aSig) { 4086 return propagateFloat64NaN(a, b, status); 4087 } 4088 if ( bExp == 0x7FF ) { 4089 if (bSig) { 4090 return propagateFloat64NaN(a, b, status); 4091 } 4092 float_raise(float_flag_invalid, status); 4093 return float64_default_nan; 4094 } 4095 return packFloat64( zSign, 0x7FF, 0 ); 4096 } 4097 if ( bExp == 0x7FF ) { 4098 if (bSig) { 4099 return propagateFloat64NaN(a, b, status); 4100 } 4101 return packFloat64( zSign, 0, 0 ); 4102 } 4103 if ( bExp == 0 ) { 4104 if ( bSig == 0 ) { 4105 if ( ( aExp | aSig ) == 0 ) { 4106 float_raise(float_flag_invalid, status); 4107 return float64_default_nan; 4108 } 4109 float_raise(float_flag_divbyzero, status); 4110 return packFloat64( zSign, 0x7FF, 0 ); 4111 } 4112 normalizeFloat64Subnormal( bSig, &bExp, &bSig ); 4113 } 4114 if ( aExp == 0 ) { 4115 if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); 4116 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 4117 } 4118 zExp = aExp - bExp + 0x3FD; 4119 aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; 4120 bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; 4121 if ( bSig <= ( aSig + aSig ) ) { 4122 aSig >>= 1; 4123 ++zExp; 4124 } 4125 zSig = estimateDiv128To64( aSig, 0, bSig ); 4126 if ( ( zSig & 0x1FF ) <= 2 ) { 4127 mul64To128( bSig, zSig, &term0, &term1 ); 4128 sub128( aSig, 0, term0, term1, &rem0, &rem1 ); 4129 while ( (int64_t) rem0 < 0 ) { 4130 --zSig; 4131 add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); 4132 } 4133 zSig |= ( rem1 != 0 ); 4134 } 4135 return roundAndPackFloat64(zSign, zExp, zSig, status); 4136 4137 } 4138 4139 /*---------------------------------------------------------------------------- 4140 | Returns the remainder of the double-precision floating-point value `a' 4141 | with respect to the corresponding value `b'. The operation is performed 4142 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4143 *----------------------------------------------------------------------------*/ 4144 4145 float64 float64_rem(float64 a, float64 b, float_status *status) 4146 { 4147 flag aSign, zSign; 4148 int aExp, bExp, expDiff; 4149 uint64_t aSig, bSig; 4150 uint64_t q, alternateASig; 4151 int64_t sigMean; 4152 4153 a = float64_squash_input_denormal(a, status); 4154 b = float64_squash_input_denormal(b, status); 4155 aSig = extractFloat64Frac( a ); 4156 aExp = extractFloat64Exp( a ); 4157 aSign = extractFloat64Sign( a ); 4158 bSig = extractFloat64Frac( b ); 4159 bExp = extractFloat64Exp( b ); 4160 if ( aExp == 0x7FF ) { 4161 if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { 4162 return propagateFloat64NaN(a, b, status); 4163 } 4164 float_raise(float_flag_invalid, status); 4165 return float64_default_nan; 4166 } 4167 if ( bExp == 0x7FF ) { 4168 if (bSig) { 4169 return propagateFloat64NaN(a, b, status); 4170 } 4171 return a; 4172 } 4173 if ( bExp == 0 ) { 4174 if ( bSig == 0 ) { 4175 float_raise(float_flag_invalid, status); 4176 return float64_default_nan; 4177 } 4178 normalizeFloat64Subnormal( bSig, &bExp, &bSig ); 4179 } 4180 if ( aExp == 0 ) { 4181 if ( aSig == 0 ) return a; 4182 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 4183 } 4184 expDiff = aExp - bExp; 4185 aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; 4186 bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; 4187 if ( expDiff < 0 ) { 4188 if ( expDiff < -1 ) return a; 4189 aSig >>= 1; 4190 } 4191 q = ( bSig <= aSig ); 4192 if ( q ) aSig -= bSig; 4193 expDiff -= 64; 4194 while ( 0 < expDiff ) { 4195 q = estimateDiv128To64( aSig, 0, bSig ); 4196 q = ( 2 < q ) ? q - 2 : 0; 4197 aSig = - ( ( bSig>>2 ) * q ); 4198 expDiff -= 62; 4199 } 4200 expDiff += 64; 4201 if ( 0 < expDiff ) { 4202 q = estimateDiv128To64( aSig, 0, bSig ); 4203 q = ( 2 < q ) ? q - 2 : 0; 4204 q >>= 64 - expDiff; 4205 bSig >>= 2; 4206 aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; 4207 } 4208 else { 4209 aSig >>= 2; 4210 bSig >>= 2; 4211 } 4212 do { 4213 alternateASig = aSig; 4214 ++q; 4215 aSig -= bSig; 4216 } while ( 0 <= (int64_t) aSig ); 4217 sigMean = aSig + alternateASig; 4218 if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { 4219 aSig = alternateASig; 4220 } 4221 zSign = ( (int64_t) aSig < 0 ); 4222 if ( zSign ) aSig = - aSig; 4223 return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); 4224 4225 } 4226 4227 /*---------------------------------------------------------------------------- 4228 | Returns the result of multiplying the double-precision floating-point values 4229 | `a' and `b' then adding 'c', with no intermediate rounding step after the 4230 | multiplication. The operation is performed according to the IEC/IEEE 4231 | Standard for Binary Floating-Point Arithmetic 754-2008. 4232 | The flags argument allows the caller to select negation of the 4233 | addend, the intermediate product, or the final result. (The difference 4234 | between this and having the caller do a separate negation is that negating 4235 | externally will flip the sign bit on NaNs.) 4236 *----------------------------------------------------------------------------*/ 4237 4238 float64 float64_muladd(float64 a, float64 b, float64 c, int flags, 4239 float_status *status) 4240 { 4241 flag aSign, bSign, cSign, zSign; 4242 int aExp, bExp, cExp, pExp, zExp, expDiff; 4243 uint64_t aSig, bSig, cSig; 4244 flag pInf, pZero, pSign; 4245 uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; 4246 int shiftcount; 4247 flag signflip, infzero; 4248 4249 a = float64_squash_input_denormal(a, status); 4250 b = float64_squash_input_denormal(b, status); 4251 c = float64_squash_input_denormal(c, status); 4252 aSig = extractFloat64Frac(a); 4253 aExp = extractFloat64Exp(a); 4254 aSign = extractFloat64Sign(a); 4255 bSig = extractFloat64Frac(b); 4256 bExp = extractFloat64Exp(b); 4257 bSign = extractFloat64Sign(b); 4258 cSig = extractFloat64Frac(c); 4259 cExp = extractFloat64Exp(c); 4260 cSign = extractFloat64Sign(c); 4261 4262 infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || 4263 (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); 4264 4265 /* It is implementation-defined whether the cases of (0,inf,qnan) 4266 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN 4267 * they return if they do), so we have to hand this information 4268 * off to the target-specific pick-a-NaN routine. 4269 */ 4270 if (((aExp == 0x7ff) && aSig) || 4271 ((bExp == 0x7ff) && bSig) || 4272 ((cExp == 0x7ff) && cSig)) { 4273 return propagateFloat64MulAddNaN(a, b, c, infzero, status); 4274 } 4275 4276 if (infzero) { 4277 float_raise(float_flag_invalid, status); 4278 return float64_default_nan; 4279 } 4280 4281 if (flags & float_muladd_negate_c) { 4282 cSign ^= 1; 4283 } 4284 4285 signflip = (flags & float_muladd_negate_result) ? 1 : 0; 4286 4287 /* Work out the sign and type of the product */ 4288 pSign = aSign ^ bSign; 4289 if (flags & float_muladd_negate_product) { 4290 pSign ^= 1; 4291 } 4292 pInf = (aExp == 0x7ff) || (bExp == 0x7ff); 4293 pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); 4294 4295 if (cExp == 0x7ff) { 4296 if (pInf && (pSign ^ cSign)) { 4297 /* addition of opposite-signed infinities => InvalidOperation */ 4298 float_raise(float_flag_invalid, status); 4299 return float64_default_nan; 4300 } 4301 /* Otherwise generate an infinity of the same sign */ 4302 return packFloat64(cSign ^ signflip, 0x7ff, 0); 4303 } 4304 4305 if (pInf) { 4306 return packFloat64(pSign ^ signflip, 0x7ff, 0); 4307 } 4308 4309 if (pZero) { 4310 if (cExp == 0) { 4311 if (cSig == 0) { 4312 /* Adding two exact zeroes */ 4313 if (pSign == cSign) { 4314 zSign = pSign; 4315 } else if (status->float_rounding_mode == float_round_down) { 4316 zSign = 1; 4317 } else { 4318 zSign = 0; 4319 } 4320 return packFloat64(zSign ^ signflip, 0, 0); 4321 } 4322 /* Exact zero plus a denorm */ 4323 if (status->flush_to_zero) { 4324 float_raise(float_flag_output_denormal, status); 4325 return packFloat64(cSign ^ signflip, 0, 0); 4326 } 4327 } 4328 /* Zero plus something non-zero : just return the something */ 4329 if (flags & float_muladd_halve_result) { 4330 if (cExp == 0) { 4331 normalizeFloat64Subnormal(cSig, &cExp, &cSig); 4332 } 4333 /* Subtract one to halve, and one again because roundAndPackFloat64 4334 * wants one less than the true exponent. 4335 */ 4336 cExp -= 2; 4337 cSig = (cSig | 0x0010000000000000ULL) << 10; 4338 return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status); 4339 } 4340 return packFloat64(cSign ^ signflip, cExp, cSig); 4341 } 4342 4343 if (aExp == 0) { 4344 normalizeFloat64Subnormal(aSig, &aExp, &aSig); 4345 } 4346 if (bExp == 0) { 4347 normalizeFloat64Subnormal(bSig, &bExp, &bSig); 4348 } 4349 4350 /* Calculate the actual result a * b + c */ 4351 4352 /* Multiply first; this is easy. */ 4353 /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff 4354 * because we want the true exponent, not the "one-less-than" 4355 * flavour that roundAndPackFloat64() takes. 4356 */ 4357 pExp = aExp + bExp - 0x3fe; 4358 aSig = (aSig | LIT64(0x0010000000000000))<<10; 4359 bSig = (bSig | LIT64(0x0010000000000000))<<11; 4360 mul64To128(aSig, bSig, &pSig0, &pSig1); 4361 if ((int64_t)(pSig0 << 1) >= 0) { 4362 shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); 4363 pExp--; 4364 } 4365 4366 zSign = pSign ^ signflip; 4367 4368 /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit 4369 * bit in position 126. 4370 */ 4371 if (cExp == 0) { 4372 if (!cSig) { 4373 /* Throw out the special case of c being an exact zero now */ 4374 shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); 4375 if (flags & float_muladd_halve_result) { 4376 pExp--; 4377 } 4378 return roundAndPackFloat64(zSign, pExp - 1, 4379 pSig1, status); 4380 } 4381 normalizeFloat64Subnormal(cSig, &cExp, &cSig); 4382 } 4383 4384 /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the 4385 * significand of the addend, with the explicit bit in position 126. 4386 */ 4387 cSig0 = cSig << (126 - 64 - 52); 4388 cSig1 = 0; 4389 cSig0 |= LIT64(0x4000000000000000); 4390 expDiff = pExp - cExp; 4391 4392 if (pSign == cSign) { 4393 /* Addition */ 4394 if (expDiff > 0) { 4395 /* scale c to match p */ 4396 shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); 4397 zExp = pExp; 4398 } else if (expDiff < 0) { 4399 /* scale p to match c */ 4400 shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); 4401 zExp = cExp; 4402 } else { 4403 /* no scaling needed */ 4404 zExp = cExp; 4405 } 4406 /* Add significands and make sure explicit bit ends up in posn 126 */ 4407 add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); 4408 if ((int64_t)zSig0 < 0) { 4409 shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); 4410 } else { 4411 zExp--; 4412 } 4413 shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); 4414 if (flags & float_muladd_halve_result) { 4415 zExp--; 4416 } 4417 return roundAndPackFloat64(zSign, zExp, zSig1, status); 4418 } else { 4419 /* Subtraction */ 4420 if (expDiff > 0) { 4421 shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); 4422 sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); 4423 zExp = pExp; 4424 } else if (expDiff < 0) { 4425 shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); 4426 sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); 4427 zExp = cExp; 4428 zSign ^= 1; 4429 } else { 4430 zExp = pExp; 4431 if (lt128(cSig0, cSig1, pSig0, pSig1)) { 4432 sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); 4433 } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { 4434 sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); 4435 zSign ^= 1; 4436 } else { 4437 /* Exact zero */ 4438 zSign = signflip; 4439 if (status->float_rounding_mode == float_round_down) { 4440 zSign ^= 1; 4441 } 4442 return packFloat64(zSign, 0, 0); 4443 } 4444 } 4445 --zExp; 4446 /* Do the equivalent of normalizeRoundAndPackFloat64() but 4447 * starting with the significand in a pair of uint64_t. 4448 */ 4449 if (zSig0) { 4450 shiftcount = countLeadingZeros64(zSig0) - 1; 4451 shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); 4452 if (zSig1) { 4453 zSig0 |= 1; 4454 } 4455 zExp -= shiftcount; 4456 } else { 4457 shiftcount = countLeadingZeros64(zSig1); 4458 if (shiftcount == 0) { 4459 zSig0 = (zSig1 >> 1) | (zSig1 & 1); 4460 zExp -= 63; 4461 } else { 4462 shiftcount--; 4463 zSig0 = zSig1 << shiftcount; 4464 zExp -= (shiftcount + 64); 4465 } 4466 } 4467 if (flags & float_muladd_halve_result) { 4468 zExp--; 4469 } 4470 return roundAndPackFloat64(zSign, zExp, zSig0, status); 4471 } 4472 } 4473 4474 /*---------------------------------------------------------------------------- 4475 | Returns the square root of the double-precision floating-point value `a'. 4476 | The operation is performed according to the IEC/IEEE Standard for Binary 4477 | Floating-Point Arithmetic. 4478 *----------------------------------------------------------------------------*/ 4479 4480 float64 float64_sqrt(float64 a, float_status *status) 4481 { 4482 flag aSign; 4483 int aExp, zExp; 4484 uint64_t aSig, zSig, doubleZSig; 4485 uint64_t rem0, rem1, term0, term1; 4486 a = float64_squash_input_denormal(a, status); 4487 4488 aSig = extractFloat64Frac( a ); 4489 aExp = extractFloat64Exp( a ); 4490 aSign = extractFloat64Sign( a ); 4491 if ( aExp == 0x7FF ) { 4492 if (aSig) { 4493 return propagateFloat64NaN(a, a, status); 4494 } 4495 if ( ! aSign ) return a; 4496 float_raise(float_flag_invalid, status); 4497 return float64_default_nan; 4498 } 4499 if ( aSign ) { 4500 if ( ( aExp | aSig ) == 0 ) return a; 4501 float_raise(float_flag_invalid, status); 4502 return float64_default_nan; 4503 } 4504 if ( aExp == 0 ) { 4505 if ( aSig == 0 ) return float64_zero; 4506 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 4507 } 4508 zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; 4509 aSig |= LIT64( 0x0010000000000000 ); 4510 zSig = estimateSqrt32( aExp, aSig>>21 ); 4511 aSig <<= 9 - ( aExp & 1 ); 4512 zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); 4513 if ( ( zSig & 0x1FF ) <= 5 ) { 4514 doubleZSig = zSig<<1; 4515 mul64To128( zSig, zSig, &term0, &term1 ); 4516 sub128( aSig, 0, term0, term1, &rem0, &rem1 ); 4517 while ( (int64_t) rem0 < 0 ) { 4518 --zSig; 4519 doubleZSig -= 2; 4520 add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); 4521 } 4522 zSig |= ( ( rem0 | rem1 ) != 0 ); 4523 } 4524 return roundAndPackFloat64(0, zExp, zSig, status); 4525 4526 } 4527 4528 /*---------------------------------------------------------------------------- 4529 | Returns the binary log of the double-precision floating-point value `a'. 4530 | The operation is performed according to the IEC/IEEE Standard for Binary 4531 | Floating-Point Arithmetic. 4532 *----------------------------------------------------------------------------*/ 4533 float64 float64_log2(float64 a, float_status *status) 4534 { 4535 flag aSign, zSign; 4536 int aExp; 4537 uint64_t aSig, aSig0, aSig1, zSig, i; 4538 a = float64_squash_input_denormal(a, status); 4539 4540 aSig = extractFloat64Frac( a ); 4541 aExp = extractFloat64Exp( a ); 4542 aSign = extractFloat64Sign( a ); 4543 4544 if ( aExp == 0 ) { 4545 if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); 4546 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 4547 } 4548 if ( aSign ) { 4549 float_raise(float_flag_invalid, status); 4550 return float64_default_nan; 4551 } 4552 if ( aExp == 0x7FF ) { 4553 if (aSig) { 4554 return propagateFloat64NaN(a, float64_zero, status); 4555 } 4556 return a; 4557 } 4558 4559 aExp -= 0x3FF; 4560 aSig |= LIT64( 0x0010000000000000 ); 4561 zSign = aExp < 0; 4562 zSig = (uint64_t)aExp << 52; 4563 for (i = 1LL << 51; i > 0; i >>= 1) { 4564 mul64To128( aSig, aSig, &aSig0, &aSig1 ); 4565 aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); 4566 if ( aSig & LIT64( 0x0020000000000000 ) ) { 4567 aSig >>= 1; 4568 zSig |= i; 4569 } 4570 } 4571 4572 if ( zSign ) 4573 zSig = -zSig; 4574 return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); 4575 } 4576 4577 /*---------------------------------------------------------------------------- 4578 | Returns 1 if the double-precision floating-point value `a' is equal to the 4579 | corresponding value `b', and 0 otherwise. The invalid exception is raised 4580 | if either operand is a NaN. Otherwise, the comparison is performed 4581 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4582 *----------------------------------------------------------------------------*/ 4583 4584 int float64_eq(float64 a, float64 b, float_status *status) 4585 { 4586 uint64_t av, bv; 4587 a = float64_squash_input_denormal(a, status); 4588 b = float64_squash_input_denormal(b, status); 4589 4590 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4591 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4592 ) { 4593 float_raise(float_flag_invalid, status); 4594 return 0; 4595 } 4596 av = float64_val(a); 4597 bv = float64_val(b); 4598 return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 4599 4600 } 4601 4602 /*---------------------------------------------------------------------------- 4603 | Returns 1 if the double-precision floating-point value `a' is less than or 4604 | equal to the corresponding value `b', and 0 otherwise. The invalid 4605 | exception is raised if either operand is a NaN. The comparison is performed 4606 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4607 *----------------------------------------------------------------------------*/ 4608 4609 int float64_le(float64 a, float64 b, float_status *status) 4610 { 4611 flag aSign, bSign; 4612 uint64_t av, bv; 4613 a = float64_squash_input_denormal(a, status); 4614 b = float64_squash_input_denormal(b, status); 4615 4616 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4617 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4618 ) { 4619 float_raise(float_flag_invalid, status); 4620 return 0; 4621 } 4622 aSign = extractFloat64Sign( a ); 4623 bSign = extractFloat64Sign( b ); 4624 av = float64_val(a); 4625 bv = float64_val(b); 4626 if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 4627 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 4628 4629 } 4630 4631 /*---------------------------------------------------------------------------- 4632 | Returns 1 if the double-precision floating-point value `a' is less than 4633 | the corresponding value `b', and 0 otherwise. The invalid exception is 4634 | raised if either operand is a NaN. The comparison is performed according 4635 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4636 *----------------------------------------------------------------------------*/ 4637 4638 int float64_lt(float64 a, float64 b, float_status *status) 4639 { 4640 flag aSign, bSign; 4641 uint64_t av, bv; 4642 4643 a = float64_squash_input_denormal(a, status); 4644 b = float64_squash_input_denormal(b, status); 4645 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4646 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4647 ) { 4648 float_raise(float_flag_invalid, status); 4649 return 0; 4650 } 4651 aSign = extractFloat64Sign( a ); 4652 bSign = extractFloat64Sign( b ); 4653 av = float64_val(a); 4654 bv = float64_val(b); 4655 if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); 4656 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 4657 4658 } 4659 4660 /*---------------------------------------------------------------------------- 4661 | Returns 1 if the double-precision floating-point values `a' and `b' cannot 4662 | be compared, and 0 otherwise. The invalid exception is raised if either 4663 | operand is a NaN. The comparison is performed according to the IEC/IEEE 4664 | Standard for Binary Floating-Point Arithmetic. 4665 *----------------------------------------------------------------------------*/ 4666 4667 int float64_unordered(float64 a, float64 b, float_status *status) 4668 { 4669 a = float64_squash_input_denormal(a, status); 4670 b = float64_squash_input_denormal(b, status); 4671 4672 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4673 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4674 ) { 4675 float_raise(float_flag_invalid, status); 4676 return 1; 4677 } 4678 return 0; 4679 } 4680 4681 /*---------------------------------------------------------------------------- 4682 | Returns 1 if the double-precision floating-point value `a' is equal to the 4683 | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 4684 | exception.The comparison is performed according to the IEC/IEEE Standard 4685 | for Binary Floating-Point Arithmetic. 4686 *----------------------------------------------------------------------------*/ 4687 4688 int float64_eq_quiet(float64 a, float64 b, float_status *status) 4689 { 4690 uint64_t av, bv; 4691 a = float64_squash_input_denormal(a, status); 4692 b = float64_squash_input_denormal(b, status); 4693 4694 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4695 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4696 ) { 4697 if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { 4698 float_raise(float_flag_invalid, status); 4699 } 4700 return 0; 4701 } 4702 av = float64_val(a); 4703 bv = float64_val(b); 4704 return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 4705 4706 } 4707 4708 /*---------------------------------------------------------------------------- 4709 | Returns 1 if the double-precision floating-point value `a' is less than or 4710 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 4711 | cause an exception. Otherwise, the comparison is performed according to the 4712 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4713 *----------------------------------------------------------------------------*/ 4714 4715 int float64_le_quiet(float64 a, float64 b, float_status *status) 4716 { 4717 flag aSign, bSign; 4718 uint64_t av, bv; 4719 a = float64_squash_input_denormal(a, status); 4720 b = float64_squash_input_denormal(b, status); 4721 4722 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4723 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4724 ) { 4725 if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { 4726 float_raise(float_flag_invalid, status); 4727 } 4728 return 0; 4729 } 4730 aSign = extractFloat64Sign( a ); 4731 bSign = extractFloat64Sign( b ); 4732 av = float64_val(a); 4733 bv = float64_val(b); 4734 if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 4735 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 4736 4737 } 4738 4739 /*---------------------------------------------------------------------------- 4740 | Returns 1 if the double-precision floating-point value `a' is less than 4741 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 4742 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 4743 | Standard for Binary Floating-Point Arithmetic. 4744 *----------------------------------------------------------------------------*/ 4745 4746 int float64_lt_quiet(float64 a, float64 b, float_status *status) 4747 { 4748 flag aSign, bSign; 4749 uint64_t av, bv; 4750 a = float64_squash_input_denormal(a, status); 4751 b = float64_squash_input_denormal(b, status); 4752 4753 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4754 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4755 ) { 4756 if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { 4757 float_raise(float_flag_invalid, status); 4758 } 4759 return 0; 4760 } 4761 aSign = extractFloat64Sign( a ); 4762 bSign = extractFloat64Sign( b ); 4763 av = float64_val(a); 4764 bv = float64_val(b); 4765 if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); 4766 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 4767 4768 } 4769 4770 /*---------------------------------------------------------------------------- 4771 | Returns 1 if the double-precision floating-point values `a' and `b' cannot 4772 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 4773 | comparison is performed according to the IEC/IEEE Standard for Binary 4774 | Floating-Point Arithmetic. 4775 *----------------------------------------------------------------------------*/ 4776 4777 int float64_unordered_quiet(float64 a, float64 b, float_status *status) 4778 { 4779 a = float64_squash_input_denormal(a, status); 4780 b = float64_squash_input_denormal(b, status); 4781 4782 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4783 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4784 ) { 4785 if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { 4786 float_raise(float_flag_invalid, status); 4787 } 4788 return 1; 4789 } 4790 return 0; 4791 } 4792 4793 /*---------------------------------------------------------------------------- 4794 | Returns the result of converting the extended double-precision floating- 4795 | point value `a' to the 32-bit two's complement integer format. The 4796 | conversion is performed according to the IEC/IEEE Standard for Binary 4797 | Floating-Point Arithmetic---which means in particular that the conversion 4798 | is rounded according to the current rounding mode. If `a' is a NaN, the 4799 | largest positive integer is returned. Otherwise, if the conversion 4800 | overflows, the largest integer with the same sign as `a' is returned. 4801 *----------------------------------------------------------------------------*/ 4802 4803 int32_t floatx80_to_int32(floatx80 a, float_status *status) 4804 { 4805 flag aSign; 4806 int32_t aExp, shiftCount; 4807 uint64_t aSig; 4808 4809 aSig = extractFloatx80Frac( a ); 4810 aExp = extractFloatx80Exp( a ); 4811 aSign = extractFloatx80Sign( a ); 4812 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; 4813 shiftCount = 0x4037 - aExp; 4814 if ( shiftCount <= 0 ) shiftCount = 1; 4815 shift64RightJamming( aSig, shiftCount, &aSig ); 4816 return roundAndPackInt32(aSign, aSig, status); 4817 4818 } 4819 4820 /*---------------------------------------------------------------------------- 4821 | Returns the result of converting the extended double-precision floating- 4822 | point value `a' to the 32-bit two's complement integer format. The 4823 | conversion is performed according to the IEC/IEEE Standard for Binary 4824 | Floating-Point Arithmetic, except that the conversion is always rounded 4825 | toward zero. If `a' is a NaN, the largest positive integer is returned. 4826 | Otherwise, if the conversion overflows, the largest integer with the same 4827 | sign as `a' is returned. 4828 *----------------------------------------------------------------------------*/ 4829 4830 int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) 4831 { 4832 flag aSign; 4833 int32_t aExp, shiftCount; 4834 uint64_t aSig, savedASig; 4835 int32_t z; 4836 4837 aSig = extractFloatx80Frac( a ); 4838 aExp = extractFloatx80Exp( a ); 4839 aSign = extractFloatx80Sign( a ); 4840 if ( 0x401E < aExp ) { 4841 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; 4842 goto invalid; 4843 } 4844 else if ( aExp < 0x3FFF ) { 4845 if (aExp || aSig) { 4846 status->float_exception_flags |= float_flag_inexact; 4847 } 4848 return 0; 4849 } 4850 shiftCount = 0x403E - aExp; 4851 savedASig = aSig; 4852 aSig >>= shiftCount; 4853 z = aSig; 4854 if ( aSign ) z = - z; 4855 if ( ( z < 0 ) ^ aSign ) { 4856 invalid: 4857 float_raise(float_flag_invalid, status); 4858 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 4859 } 4860 if ( ( aSig<<shiftCount ) != savedASig ) { 4861 status->float_exception_flags |= float_flag_inexact; 4862 } 4863 return z; 4864 4865 } 4866 4867 /*---------------------------------------------------------------------------- 4868 | Returns the result of converting the extended double-precision floating- 4869 | point value `a' to the 64-bit two's complement integer format. The 4870 | conversion is performed according to the IEC/IEEE Standard for Binary 4871 | Floating-Point Arithmetic---which means in particular that the conversion 4872 | is rounded according to the current rounding mode. If `a' is a NaN, 4873 | the largest positive integer is returned. Otherwise, if the conversion 4874 | overflows, the largest integer with the same sign as `a' is returned. 4875 *----------------------------------------------------------------------------*/ 4876 4877 int64_t floatx80_to_int64(floatx80 a, float_status *status) 4878 { 4879 flag aSign; 4880 int32_t aExp, shiftCount; 4881 uint64_t aSig, aSigExtra; 4882 4883 aSig = extractFloatx80Frac( a ); 4884 aExp = extractFloatx80Exp( a ); 4885 aSign = extractFloatx80Sign( a ); 4886 shiftCount = 0x403E - aExp; 4887 if ( shiftCount <= 0 ) { 4888 if ( shiftCount ) { 4889 float_raise(float_flag_invalid, status); 4890 if ( ! aSign 4891 || ( ( aExp == 0x7FFF ) 4892 && ( aSig != LIT64( 0x8000000000000000 ) ) ) 4893 ) { 4894 return LIT64( 0x7FFFFFFFFFFFFFFF ); 4895 } 4896 return (int64_t) LIT64( 0x8000000000000000 ); 4897 } 4898 aSigExtra = 0; 4899 } 4900 else { 4901 shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); 4902 } 4903 return roundAndPackInt64(aSign, aSig, aSigExtra, status); 4904 4905 } 4906 4907 /*---------------------------------------------------------------------------- 4908 | Returns the result of converting the extended double-precision floating- 4909 | point value `a' to the 64-bit two's complement integer format. The 4910 | conversion is performed according to the IEC/IEEE Standard for Binary 4911 | Floating-Point Arithmetic, except that the conversion is always rounded 4912 | toward zero. If `a' is a NaN, the largest positive integer is returned. 4913 | Otherwise, if the conversion overflows, the largest integer with the same 4914 | sign as `a' is returned. 4915 *----------------------------------------------------------------------------*/ 4916 4917 int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) 4918 { 4919 flag aSign; 4920 int32_t aExp, shiftCount; 4921 uint64_t aSig; 4922 int64_t z; 4923 4924 aSig = extractFloatx80Frac( a ); 4925 aExp = extractFloatx80Exp( a ); 4926 aSign = extractFloatx80Sign( a ); 4927 shiftCount = aExp - 0x403E; 4928 if ( 0 <= shiftCount ) { 4929 aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); 4930 if ( ( a.high != 0xC03E ) || aSig ) { 4931 float_raise(float_flag_invalid, status); 4932 if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { 4933 return LIT64( 0x7FFFFFFFFFFFFFFF ); 4934 } 4935 } 4936 return (int64_t) LIT64( 0x8000000000000000 ); 4937 } 4938 else if ( aExp < 0x3FFF ) { 4939 if (aExp | aSig) { 4940 status->float_exception_flags |= float_flag_inexact; 4941 } 4942 return 0; 4943 } 4944 z = aSig>>( - shiftCount ); 4945 if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { 4946 status->float_exception_flags |= float_flag_inexact; 4947 } 4948 if ( aSign ) z = - z; 4949 return z; 4950 4951 } 4952 4953 /*---------------------------------------------------------------------------- 4954 | Returns the result of converting the extended double-precision floating- 4955 | point value `a' to the single-precision floating-point format. The 4956 | conversion is performed according to the IEC/IEEE Standard for Binary 4957 | Floating-Point Arithmetic. 4958 *----------------------------------------------------------------------------*/ 4959 4960 float32 floatx80_to_float32(floatx80 a, float_status *status) 4961 { 4962 flag aSign; 4963 int32_t aExp; 4964 uint64_t aSig; 4965 4966 aSig = extractFloatx80Frac( a ); 4967 aExp = extractFloatx80Exp( a ); 4968 aSign = extractFloatx80Sign( a ); 4969 if ( aExp == 0x7FFF ) { 4970 if ( (uint64_t) ( aSig<<1 ) ) { 4971 return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status); 4972 } 4973 return packFloat32( aSign, 0xFF, 0 ); 4974 } 4975 shift64RightJamming( aSig, 33, &aSig ); 4976 if ( aExp || aSig ) aExp -= 0x3F81; 4977 return roundAndPackFloat32(aSign, aExp, aSig, status); 4978 4979 } 4980 4981 /*---------------------------------------------------------------------------- 4982 | Returns the result of converting the extended double-precision floating- 4983 | point value `a' to the double-precision floating-point format. The 4984 | conversion is performed according to the IEC/IEEE Standard for Binary 4985 | Floating-Point Arithmetic. 4986 *----------------------------------------------------------------------------*/ 4987 4988 float64 floatx80_to_float64(floatx80 a, float_status *status) 4989 { 4990 flag aSign; 4991 int32_t aExp; 4992 uint64_t aSig, zSig; 4993 4994 aSig = extractFloatx80Frac( a ); 4995 aExp = extractFloatx80Exp( a ); 4996 aSign = extractFloatx80Sign( a ); 4997 if ( aExp == 0x7FFF ) { 4998 if ( (uint64_t) ( aSig<<1 ) ) { 4999 return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status); 5000 } 5001 return packFloat64( aSign, 0x7FF, 0 ); 5002 } 5003 shift64RightJamming( aSig, 1, &zSig ); 5004 if ( aExp || aSig ) aExp -= 0x3C01; 5005 return roundAndPackFloat64(aSign, aExp, zSig, status); 5006 5007 } 5008 5009 /*---------------------------------------------------------------------------- 5010 | Returns the result of converting the extended double-precision floating- 5011 | point value `a' to the quadruple-precision floating-point format. The 5012 | conversion is performed according to the IEC/IEEE Standard for Binary 5013 | Floating-Point Arithmetic. 5014 *----------------------------------------------------------------------------*/ 5015 5016 float128 floatx80_to_float128(floatx80 a, float_status *status) 5017 { 5018 flag aSign; 5019 int aExp; 5020 uint64_t aSig, zSig0, zSig1; 5021 5022 aSig = extractFloatx80Frac( a ); 5023 aExp = extractFloatx80Exp( a ); 5024 aSign = extractFloatx80Sign( a ); 5025 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { 5026 return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status); 5027 } 5028 shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); 5029 return packFloat128( aSign, aExp, zSig0, zSig1 ); 5030 5031 } 5032 5033 /*---------------------------------------------------------------------------- 5034 | Rounds the extended double-precision floating-point value `a' to an integer, 5035 | and returns the result as an extended quadruple-precision floating-point 5036 | value. The operation is performed according to the IEC/IEEE Standard for 5037 | Binary Floating-Point Arithmetic. 5038 *----------------------------------------------------------------------------*/ 5039 5040 floatx80 floatx80_round_to_int(floatx80 a, float_status *status) 5041 { 5042 flag aSign; 5043 int32_t aExp; 5044 uint64_t lastBitMask, roundBitsMask; 5045 floatx80 z; 5046 5047 aExp = extractFloatx80Exp( a ); 5048 if ( 0x403E <= aExp ) { 5049 if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { 5050 return propagateFloatx80NaN(a, a, status); 5051 } 5052 return a; 5053 } 5054 if ( aExp < 0x3FFF ) { 5055 if ( ( aExp == 0 ) 5056 && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { 5057 return a; 5058 } 5059 status->float_exception_flags |= float_flag_inexact; 5060 aSign = extractFloatx80Sign( a ); 5061 switch (status->float_rounding_mode) { 5062 case float_round_nearest_even: 5063 if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) 5064 ) { 5065 return 5066 packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); 5067 } 5068 break; 5069 case float_round_ties_away: 5070 if (aExp == 0x3FFE) { 5071 return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000)); 5072 } 5073 break; 5074 case float_round_down: 5075 return 5076 aSign ? 5077 packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) 5078 : packFloatx80( 0, 0, 0 ); 5079 case float_round_up: 5080 return 5081 aSign ? packFloatx80( 1, 0, 0 ) 5082 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); 5083 } 5084 return packFloatx80( aSign, 0, 0 ); 5085 } 5086 lastBitMask = 1; 5087 lastBitMask <<= 0x403E - aExp; 5088 roundBitsMask = lastBitMask - 1; 5089 z = a; 5090 switch (status->float_rounding_mode) { 5091 case float_round_nearest_even: 5092 z.low += lastBitMask>>1; 5093 if ((z.low & roundBitsMask) == 0) { 5094 z.low &= ~lastBitMask; 5095 } 5096 break; 5097 case float_round_ties_away: 5098 z.low += lastBitMask >> 1; 5099 break; 5100 case float_round_to_zero: 5101 break; 5102 case float_round_up: 5103 if (!extractFloatx80Sign(z)) { 5104 z.low += roundBitsMask; 5105 } 5106 break; 5107 case float_round_down: 5108 if (extractFloatx80Sign(z)) { 5109 z.low += roundBitsMask; 5110 } 5111 break; 5112 default: 5113 abort(); 5114 } 5115 z.low &= ~ roundBitsMask; 5116 if ( z.low == 0 ) { 5117 ++z.high; 5118 z.low = LIT64( 0x8000000000000000 ); 5119 } 5120 if (z.low != a.low) { 5121 status->float_exception_flags |= float_flag_inexact; 5122 } 5123 return z; 5124 5125 } 5126 5127 /*---------------------------------------------------------------------------- 5128 | Returns the result of adding the absolute values of the extended double- 5129 | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is 5130 | negated before being returned. `zSign' is ignored if the result is a NaN. 5131 | The addition is performed according to the IEC/IEEE Standard for Binary 5132 | Floating-Point Arithmetic. 5133 *----------------------------------------------------------------------------*/ 5134 5135 static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, 5136 float_status *status) 5137 { 5138 int32_t aExp, bExp, zExp; 5139 uint64_t aSig, bSig, zSig0, zSig1; 5140 int32_t expDiff; 5141 5142 aSig = extractFloatx80Frac( a ); 5143 aExp = extractFloatx80Exp( a ); 5144 bSig = extractFloatx80Frac( b ); 5145 bExp = extractFloatx80Exp( b ); 5146 expDiff = aExp - bExp; 5147 if ( 0 < expDiff ) { 5148 if ( aExp == 0x7FFF ) { 5149 if ((uint64_t)(aSig << 1)) { 5150 return propagateFloatx80NaN(a, b, status); 5151 } 5152 return a; 5153 } 5154 if ( bExp == 0 ) --expDiff; 5155 shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); 5156 zExp = aExp; 5157 } 5158 else if ( expDiff < 0 ) { 5159 if ( bExp == 0x7FFF ) { 5160 if ((uint64_t)(bSig << 1)) { 5161 return propagateFloatx80NaN(a, b, status); 5162 } 5163 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 5164 } 5165 if ( aExp == 0 ) ++expDiff; 5166 shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); 5167 zExp = bExp; 5168 } 5169 else { 5170 if ( aExp == 0x7FFF ) { 5171 if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { 5172 return propagateFloatx80NaN(a, b, status); 5173 } 5174 return a; 5175 } 5176 zSig1 = 0; 5177 zSig0 = aSig + bSig; 5178 if ( aExp == 0 ) { 5179 normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); 5180 goto roundAndPack; 5181 } 5182 zExp = aExp; 5183 goto shiftRight1; 5184 } 5185 zSig0 = aSig + bSig; 5186 if ( (int64_t) zSig0 < 0 ) goto roundAndPack; 5187 shiftRight1: 5188 shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); 5189 zSig0 |= LIT64( 0x8000000000000000 ); 5190 ++zExp; 5191 roundAndPack: 5192 return roundAndPackFloatx80(status->floatx80_rounding_precision, 5193 zSign, zExp, zSig0, zSig1, status); 5194 } 5195 5196 /*---------------------------------------------------------------------------- 5197 | Returns the result of subtracting the absolute values of the extended 5198 | double-precision floating-point values `a' and `b'. If `zSign' is 1, the 5199 | difference is negated before being returned. `zSign' is ignored if the 5200 | result is a NaN. The subtraction is performed according to the IEC/IEEE 5201 | Standard for Binary Floating-Point Arithmetic. 5202 *----------------------------------------------------------------------------*/ 5203 5204 static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, 5205 float_status *status) 5206 { 5207 int32_t aExp, bExp, zExp; 5208 uint64_t aSig, bSig, zSig0, zSig1; 5209 int32_t expDiff; 5210 floatx80 z; 5211 5212 aSig = extractFloatx80Frac( a ); 5213 aExp = extractFloatx80Exp( a ); 5214 bSig = extractFloatx80Frac( b ); 5215 bExp = extractFloatx80Exp( b ); 5216 expDiff = aExp - bExp; 5217 if ( 0 < expDiff ) goto aExpBigger; 5218 if ( expDiff < 0 ) goto bExpBigger; 5219 if ( aExp == 0x7FFF ) { 5220 if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { 5221 return propagateFloatx80NaN(a, b, status); 5222 } 5223 float_raise(float_flag_invalid, status); 5224 z.low = floatx80_default_nan_low; 5225 z.high = floatx80_default_nan_high; 5226 return z; 5227 } 5228 if ( aExp == 0 ) { 5229 aExp = 1; 5230 bExp = 1; 5231 } 5232 zSig1 = 0; 5233 if ( bSig < aSig ) goto aBigger; 5234 if ( aSig < bSig ) goto bBigger; 5235 return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); 5236 bExpBigger: 5237 if ( bExp == 0x7FFF ) { 5238 if ((uint64_t)(bSig << 1)) { 5239 return propagateFloatx80NaN(a, b, status); 5240 } 5241 return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); 5242 } 5243 if ( aExp == 0 ) ++expDiff; 5244 shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); 5245 bBigger: 5246 sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); 5247 zExp = bExp; 5248 zSign ^= 1; 5249 goto normalizeRoundAndPack; 5250 aExpBigger: 5251 if ( aExp == 0x7FFF ) { 5252 if ((uint64_t)(aSig << 1)) { 5253 return propagateFloatx80NaN(a, b, status); 5254 } 5255 return a; 5256 } 5257 if ( bExp == 0 ) --expDiff; 5258 shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); 5259 aBigger: 5260 sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); 5261 zExp = aExp; 5262 normalizeRoundAndPack: 5263 return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, 5264 zSign, zExp, zSig0, zSig1, status); 5265 } 5266 5267 /*---------------------------------------------------------------------------- 5268 | Returns the result of adding the extended double-precision floating-point 5269 | values `a' and `b'. The operation is performed according to the IEC/IEEE 5270 | Standard for Binary Floating-Point Arithmetic. 5271 *----------------------------------------------------------------------------*/ 5272 5273 floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) 5274 { 5275 flag aSign, bSign; 5276 5277 aSign = extractFloatx80Sign( a ); 5278 bSign = extractFloatx80Sign( b ); 5279 if ( aSign == bSign ) { 5280 return addFloatx80Sigs(a, b, aSign, status); 5281 } 5282 else { 5283 return subFloatx80Sigs(a, b, aSign, status); 5284 } 5285 5286 } 5287 5288 /*---------------------------------------------------------------------------- 5289 | Returns the result of subtracting the extended double-precision floating- 5290 | point values `a' and `b'. The operation is performed according to the 5291 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5292 *----------------------------------------------------------------------------*/ 5293 5294 floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) 5295 { 5296 flag aSign, bSign; 5297 5298 aSign = extractFloatx80Sign( a ); 5299 bSign = extractFloatx80Sign( b ); 5300 if ( aSign == bSign ) { 5301 return subFloatx80Sigs(a, b, aSign, status); 5302 } 5303 else { 5304 return addFloatx80Sigs(a, b, aSign, status); 5305 } 5306 5307 } 5308 5309 /*---------------------------------------------------------------------------- 5310 | Returns the result of multiplying the extended double-precision floating- 5311 | point values `a' and `b'. The operation is performed according to the 5312 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5313 *----------------------------------------------------------------------------*/ 5314 5315 floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) 5316 { 5317 flag aSign, bSign, zSign; 5318 int32_t aExp, bExp, zExp; 5319 uint64_t aSig, bSig, zSig0, zSig1; 5320 floatx80 z; 5321 5322 aSig = extractFloatx80Frac( a ); 5323 aExp = extractFloatx80Exp( a ); 5324 aSign = extractFloatx80Sign( a ); 5325 bSig = extractFloatx80Frac( b ); 5326 bExp = extractFloatx80Exp( b ); 5327 bSign = extractFloatx80Sign( b ); 5328 zSign = aSign ^ bSign; 5329 if ( aExp == 0x7FFF ) { 5330 if ( (uint64_t) ( aSig<<1 ) 5331 || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { 5332 return propagateFloatx80NaN(a, b, status); 5333 } 5334 if ( ( bExp | bSig ) == 0 ) goto invalid; 5335 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 5336 } 5337 if ( bExp == 0x7FFF ) { 5338 if ((uint64_t)(bSig << 1)) { 5339 return propagateFloatx80NaN(a, b, status); 5340 } 5341 if ( ( aExp | aSig ) == 0 ) { 5342 invalid: 5343 float_raise(float_flag_invalid, status); 5344 z.low = floatx80_default_nan_low; 5345 z.high = floatx80_default_nan_high; 5346 return z; 5347 } 5348 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 5349 } 5350 if ( aExp == 0 ) { 5351 if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); 5352 normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); 5353 } 5354 if ( bExp == 0 ) { 5355 if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); 5356 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 5357 } 5358 zExp = aExp + bExp - 0x3FFE; 5359 mul64To128( aSig, bSig, &zSig0, &zSig1 ); 5360 if ( 0 < (int64_t) zSig0 ) { 5361 shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); 5362 --zExp; 5363 } 5364 return roundAndPackFloatx80(status->floatx80_rounding_precision, 5365 zSign, zExp, zSig0, zSig1, status); 5366 } 5367 5368 /*---------------------------------------------------------------------------- 5369 | Returns the result of dividing the extended double-precision floating-point 5370 | value `a' by the corresponding value `b'. The operation is performed 5371 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5372 *----------------------------------------------------------------------------*/ 5373 5374 floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) 5375 { 5376 flag aSign, bSign, zSign; 5377 int32_t aExp, bExp, zExp; 5378 uint64_t aSig, bSig, zSig0, zSig1; 5379 uint64_t rem0, rem1, rem2, term0, term1, term2; 5380 floatx80 z; 5381 5382 aSig = extractFloatx80Frac( a ); 5383 aExp = extractFloatx80Exp( a ); 5384 aSign = extractFloatx80Sign( a ); 5385 bSig = extractFloatx80Frac( b ); 5386 bExp = extractFloatx80Exp( b ); 5387 bSign = extractFloatx80Sign( b ); 5388 zSign = aSign ^ bSign; 5389 if ( aExp == 0x7FFF ) { 5390 if ((uint64_t)(aSig << 1)) { 5391 return propagateFloatx80NaN(a, b, status); 5392 } 5393 if ( bExp == 0x7FFF ) { 5394 if ((uint64_t)(bSig << 1)) { 5395 return propagateFloatx80NaN(a, b, status); 5396 } 5397 goto invalid; 5398 } 5399 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 5400 } 5401 if ( bExp == 0x7FFF ) { 5402 if ((uint64_t)(bSig << 1)) { 5403 return propagateFloatx80NaN(a, b, status); 5404 } 5405 return packFloatx80( zSign, 0, 0 ); 5406 } 5407 if ( bExp == 0 ) { 5408 if ( bSig == 0 ) { 5409 if ( ( aExp | aSig ) == 0 ) { 5410 invalid: 5411 float_raise(float_flag_invalid, status); 5412 z.low = floatx80_default_nan_low; 5413 z.high = floatx80_default_nan_high; 5414 return z; 5415 } 5416 float_raise(float_flag_divbyzero, status); 5417 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 5418 } 5419 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 5420 } 5421 if ( aExp == 0 ) { 5422 if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); 5423 normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); 5424 } 5425 zExp = aExp - bExp + 0x3FFE; 5426 rem1 = 0; 5427 if ( bSig <= aSig ) { 5428 shift128Right( aSig, 0, 1, &aSig, &rem1 ); 5429 ++zExp; 5430 } 5431 zSig0 = estimateDiv128To64( aSig, rem1, bSig ); 5432 mul64To128( bSig, zSig0, &term0, &term1 ); 5433 sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); 5434 while ( (int64_t) rem0 < 0 ) { 5435 --zSig0; 5436 add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); 5437 } 5438 zSig1 = estimateDiv128To64( rem1, 0, bSig ); 5439 if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { 5440 mul64To128( bSig, zSig1, &term1, &term2 ); 5441 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 5442 while ( (int64_t) rem1 < 0 ) { 5443 --zSig1; 5444 add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); 5445 } 5446 zSig1 |= ( ( rem1 | rem2 ) != 0 ); 5447 } 5448 return roundAndPackFloatx80(status->floatx80_rounding_precision, 5449 zSign, zExp, zSig0, zSig1, status); 5450 } 5451 5452 /*---------------------------------------------------------------------------- 5453 | Returns the remainder of the extended double-precision floating-point value 5454 | `a' with respect to the corresponding value `b'. The operation is performed 5455 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5456 *----------------------------------------------------------------------------*/ 5457 5458 floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) 5459 { 5460 flag aSign, zSign; 5461 int32_t aExp, bExp, expDiff; 5462 uint64_t aSig0, aSig1, bSig; 5463 uint64_t q, term0, term1, alternateASig0, alternateASig1; 5464 floatx80 z; 5465 5466 aSig0 = extractFloatx80Frac( a ); 5467 aExp = extractFloatx80Exp( a ); 5468 aSign = extractFloatx80Sign( a ); 5469 bSig = extractFloatx80Frac( b ); 5470 bExp = extractFloatx80Exp( b ); 5471 if ( aExp == 0x7FFF ) { 5472 if ( (uint64_t) ( aSig0<<1 ) 5473 || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { 5474 return propagateFloatx80NaN(a, b, status); 5475 } 5476 goto invalid; 5477 } 5478 if ( bExp == 0x7FFF ) { 5479 if ((uint64_t)(bSig << 1)) { 5480 return propagateFloatx80NaN(a, b, status); 5481 } 5482 return a; 5483 } 5484 if ( bExp == 0 ) { 5485 if ( bSig == 0 ) { 5486 invalid: 5487 float_raise(float_flag_invalid, status); 5488 z.low = floatx80_default_nan_low; 5489 z.high = floatx80_default_nan_high; 5490 return z; 5491 } 5492 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 5493 } 5494 if ( aExp == 0 ) { 5495 if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; 5496 normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); 5497 } 5498 bSig |= LIT64( 0x8000000000000000 ); 5499 zSign = aSign; 5500 expDiff = aExp - bExp; 5501 aSig1 = 0; 5502 if ( expDiff < 0 ) { 5503 if ( expDiff < -1 ) return a; 5504 shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); 5505 expDiff = 0; 5506 } 5507 q = ( bSig <= aSig0 ); 5508 if ( q ) aSig0 -= bSig; 5509 expDiff -= 64; 5510 while ( 0 < expDiff ) { 5511 q = estimateDiv128To64( aSig0, aSig1, bSig ); 5512 q = ( 2 < q ) ? q - 2 : 0; 5513 mul64To128( bSig, q, &term0, &term1 ); 5514 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 5515 shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); 5516 expDiff -= 62; 5517 } 5518 expDiff += 64; 5519 if ( 0 < expDiff ) { 5520 q = estimateDiv128To64( aSig0, aSig1, bSig ); 5521 q = ( 2 < q ) ? q - 2 : 0; 5522 q >>= 64 - expDiff; 5523 mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); 5524 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 5525 shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); 5526 while ( le128( term0, term1, aSig0, aSig1 ) ) { 5527 ++q; 5528 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 5529 } 5530 } 5531 else { 5532 term1 = 0; 5533 term0 = bSig; 5534 } 5535 sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); 5536 if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) 5537 || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) 5538 && ( q & 1 ) ) 5539 ) { 5540 aSig0 = alternateASig0; 5541 aSig1 = alternateASig1; 5542 zSign = ! zSign; 5543 } 5544 return 5545 normalizeRoundAndPackFloatx80( 5546 80, zSign, bExp + expDiff, aSig0, aSig1, status); 5547 5548 } 5549 5550 /*---------------------------------------------------------------------------- 5551 | Returns the square root of the extended double-precision floating-point 5552 | value `a'. The operation is performed according to the IEC/IEEE Standard 5553 | for Binary Floating-Point Arithmetic. 5554 *----------------------------------------------------------------------------*/ 5555 5556 floatx80 floatx80_sqrt(floatx80 a, float_status *status) 5557 { 5558 flag aSign; 5559 int32_t aExp, zExp; 5560 uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; 5561 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 5562 floatx80 z; 5563 5564 aSig0 = extractFloatx80Frac( a ); 5565 aExp = extractFloatx80Exp( a ); 5566 aSign = extractFloatx80Sign( a ); 5567 if ( aExp == 0x7FFF ) { 5568 if ((uint64_t)(aSig0 << 1)) { 5569 return propagateFloatx80NaN(a, a, status); 5570 } 5571 if ( ! aSign ) return a; 5572 goto invalid; 5573 } 5574 if ( aSign ) { 5575 if ( ( aExp | aSig0 ) == 0 ) return a; 5576 invalid: 5577 float_raise(float_flag_invalid, status); 5578 z.low = floatx80_default_nan_low; 5579 z.high = floatx80_default_nan_high; 5580 return z; 5581 } 5582 if ( aExp == 0 ) { 5583 if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); 5584 normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); 5585 } 5586 zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; 5587 zSig0 = estimateSqrt32( aExp, aSig0>>32 ); 5588 shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); 5589 zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); 5590 doubleZSig0 = zSig0<<1; 5591 mul64To128( zSig0, zSig0, &term0, &term1 ); 5592 sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); 5593 while ( (int64_t) rem0 < 0 ) { 5594 --zSig0; 5595 doubleZSig0 -= 2; 5596 add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); 5597 } 5598 zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); 5599 if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { 5600 if ( zSig1 == 0 ) zSig1 = 1; 5601 mul64To128( doubleZSig0, zSig1, &term1, &term2 ); 5602 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 5603 mul64To128( zSig1, zSig1, &term2, &term3 ); 5604 sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); 5605 while ( (int64_t) rem1 < 0 ) { 5606 --zSig1; 5607 shortShift128Left( 0, zSig1, 1, &term2, &term3 ); 5608 term3 |= 1; 5609 term2 |= doubleZSig0; 5610 add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); 5611 } 5612 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 5613 } 5614 shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); 5615 zSig0 |= doubleZSig0; 5616 return roundAndPackFloatx80(status->floatx80_rounding_precision, 5617 0, zExp, zSig0, zSig1, status); 5618 } 5619 5620 /*---------------------------------------------------------------------------- 5621 | Returns 1 if the extended double-precision floating-point value `a' is equal 5622 | to the corresponding value `b', and 0 otherwise. The invalid exception is 5623 | raised if either operand is a NaN. Otherwise, the comparison is performed 5624 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5625 *----------------------------------------------------------------------------*/ 5626 5627 int floatx80_eq(floatx80 a, floatx80 b, float_status *status) 5628 { 5629 5630 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5631 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5632 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5633 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5634 ) { 5635 float_raise(float_flag_invalid, status); 5636 return 0; 5637 } 5638 return 5639 ( a.low == b.low ) 5640 && ( ( a.high == b.high ) 5641 || ( ( a.low == 0 ) 5642 && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 5643 ); 5644 5645 } 5646 5647 /*---------------------------------------------------------------------------- 5648 | Returns 1 if the extended double-precision floating-point value `a' is 5649 | less than or equal to the corresponding value `b', and 0 otherwise. The 5650 | invalid exception is raised if either operand is a NaN. The comparison is 5651 | performed according to the IEC/IEEE Standard for Binary Floating-Point 5652 | Arithmetic. 5653 *----------------------------------------------------------------------------*/ 5654 5655 int floatx80_le(floatx80 a, floatx80 b, float_status *status) 5656 { 5657 flag aSign, bSign; 5658 5659 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5660 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5661 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5662 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5663 ) { 5664 float_raise(float_flag_invalid, status); 5665 return 0; 5666 } 5667 aSign = extractFloatx80Sign( a ); 5668 bSign = extractFloatx80Sign( b ); 5669 if ( aSign != bSign ) { 5670 return 5671 aSign 5672 || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 5673 == 0 ); 5674 } 5675 return 5676 aSign ? le128( b.high, b.low, a.high, a.low ) 5677 : le128( a.high, a.low, b.high, b.low ); 5678 5679 } 5680 5681 /*---------------------------------------------------------------------------- 5682 | Returns 1 if the extended double-precision floating-point value `a' is 5683 | less than the corresponding value `b', and 0 otherwise. The invalid 5684 | exception is raised if either operand is a NaN. The comparison is performed 5685 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5686 *----------------------------------------------------------------------------*/ 5687 5688 int floatx80_lt(floatx80 a, floatx80 b, float_status *status) 5689 { 5690 flag aSign, bSign; 5691 5692 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5693 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5694 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5695 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5696 ) { 5697 float_raise(float_flag_invalid, status); 5698 return 0; 5699 } 5700 aSign = extractFloatx80Sign( a ); 5701 bSign = extractFloatx80Sign( b ); 5702 if ( aSign != bSign ) { 5703 return 5704 aSign 5705 && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 5706 != 0 ); 5707 } 5708 return 5709 aSign ? lt128( b.high, b.low, a.high, a.low ) 5710 : lt128( a.high, a.low, b.high, b.low ); 5711 5712 } 5713 5714 /*---------------------------------------------------------------------------- 5715 | Returns 1 if the extended double-precision floating-point values `a' and `b' 5716 | cannot be compared, and 0 otherwise. The invalid exception is raised if 5717 | either operand is a NaN. The comparison is performed according to the 5718 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5719 *----------------------------------------------------------------------------*/ 5720 int floatx80_unordered(floatx80 a, floatx80 b, float_status *status) 5721 { 5722 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5723 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5724 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5725 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5726 ) { 5727 float_raise(float_flag_invalid, status); 5728 return 1; 5729 } 5730 return 0; 5731 } 5732 5733 /*---------------------------------------------------------------------------- 5734 | Returns 1 if the extended double-precision floating-point value `a' is 5735 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 5736 | cause an exception. The comparison is performed according to the IEC/IEEE 5737 | Standard for Binary Floating-Point Arithmetic. 5738 *----------------------------------------------------------------------------*/ 5739 5740 int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status) 5741 { 5742 5743 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5744 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5745 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5746 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5747 ) { 5748 if ( floatx80_is_signaling_nan( a ) 5749 || floatx80_is_signaling_nan( b ) ) { 5750 float_raise(float_flag_invalid, status); 5751 } 5752 return 0; 5753 } 5754 return 5755 ( a.low == b.low ) 5756 && ( ( a.high == b.high ) 5757 || ( ( a.low == 0 ) 5758 && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 5759 ); 5760 5761 } 5762 5763 /*---------------------------------------------------------------------------- 5764 | Returns 1 if the extended double-precision floating-point value `a' is less 5765 | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs 5766 | do not cause an exception. Otherwise, the comparison is performed according 5767 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5768 *----------------------------------------------------------------------------*/ 5769 5770 int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status) 5771 { 5772 flag aSign, bSign; 5773 5774 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5775 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5776 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5777 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5778 ) { 5779 if ( floatx80_is_signaling_nan( a ) 5780 || floatx80_is_signaling_nan( b ) ) { 5781 float_raise(float_flag_invalid, status); 5782 } 5783 return 0; 5784 } 5785 aSign = extractFloatx80Sign( a ); 5786 bSign = extractFloatx80Sign( b ); 5787 if ( aSign != bSign ) { 5788 return 5789 aSign 5790 || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 5791 == 0 ); 5792 } 5793 return 5794 aSign ? le128( b.high, b.low, a.high, a.low ) 5795 : le128( a.high, a.low, b.high, b.low ); 5796 5797 } 5798 5799 /*---------------------------------------------------------------------------- 5800 | Returns 1 if the extended double-precision floating-point value `a' is less 5801 | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause 5802 | an exception. Otherwise, the comparison is performed according to the 5803 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5804 *----------------------------------------------------------------------------*/ 5805 5806 int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status) 5807 { 5808 flag aSign, bSign; 5809 5810 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5811 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5812 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5813 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5814 ) { 5815 if ( floatx80_is_signaling_nan( a ) 5816 || floatx80_is_signaling_nan( b ) ) { 5817 float_raise(float_flag_invalid, status); 5818 } 5819 return 0; 5820 } 5821 aSign = extractFloatx80Sign( a ); 5822 bSign = extractFloatx80Sign( b ); 5823 if ( aSign != bSign ) { 5824 return 5825 aSign 5826 && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 5827 != 0 ); 5828 } 5829 return 5830 aSign ? lt128( b.high, b.low, a.high, a.low ) 5831 : lt128( a.high, a.low, b.high, b.low ); 5832 5833 } 5834 5835 /*---------------------------------------------------------------------------- 5836 | Returns 1 if the extended double-precision floating-point values `a' and `b' 5837 | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. 5838 | The comparison is performed according to the IEC/IEEE Standard for Binary 5839 | Floating-Point Arithmetic. 5840 *----------------------------------------------------------------------------*/ 5841 int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status) 5842 { 5843 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5844 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5845 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5846 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5847 ) { 5848 if ( floatx80_is_signaling_nan( a ) 5849 || floatx80_is_signaling_nan( b ) ) { 5850 float_raise(float_flag_invalid, status); 5851 } 5852 return 1; 5853 } 5854 return 0; 5855 } 5856 5857 /*---------------------------------------------------------------------------- 5858 | Returns the result of converting the quadruple-precision floating-point 5859 | value `a' to the 32-bit two's complement integer format. The conversion 5860 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5861 | Arithmetic---which means in particular that the conversion is rounded 5862 | according to the current rounding mode. If `a' is a NaN, the largest 5863 | positive integer is returned. Otherwise, if the conversion overflows, the 5864 | largest integer with the same sign as `a' is returned. 5865 *----------------------------------------------------------------------------*/ 5866 5867 int32_t float128_to_int32(float128 a, float_status *status) 5868 { 5869 flag aSign; 5870 int32_t aExp, shiftCount; 5871 uint64_t aSig0, aSig1; 5872 5873 aSig1 = extractFloat128Frac1( a ); 5874 aSig0 = extractFloat128Frac0( a ); 5875 aExp = extractFloat128Exp( a ); 5876 aSign = extractFloat128Sign( a ); 5877 if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; 5878 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); 5879 aSig0 |= ( aSig1 != 0 ); 5880 shiftCount = 0x4028 - aExp; 5881 if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); 5882 return roundAndPackInt32(aSign, aSig0, status); 5883 5884 } 5885 5886 /*---------------------------------------------------------------------------- 5887 | Returns the result of converting the quadruple-precision floating-point 5888 | value `a' to the 32-bit two's complement integer format. The conversion 5889 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5890 | Arithmetic, except that the conversion is always rounded toward zero. If 5891 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the 5892 | conversion overflows, the largest integer with the same sign as `a' is 5893 | returned. 5894 *----------------------------------------------------------------------------*/ 5895 5896 int32_t float128_to_int32_round_to_zero(float128 a, float_status *status) 5897 { 5898 flag aSign; 5899 int32_t aExp, shiftCount; 5900 uint64_t aSig0, aSig1, savedASig; 5901 int32_t z; 5902 5903 aSig1 = extractFloat128Frac1( a ); 5904 aSig0 = extractFloat128Frac0( a ); 5905 aExp = extractFloat128Exp( a ); 5906 aSign = extractFloat128Sign( a ); 5907 aSig0 |= ( aSig1 != 0 ); 5908 if ( 0x401E < aExp ) { 5909 if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; 5910 goto invalid; 5911 } 5912 else if ( aExp < 0x3FFF ) { 5913 if (aExp || aSig0) { 5914 status->float_exception_flags |= float_flag_inexact; 5915 } 5916 return 0; 5917 } 5918 aSig0 |= LIT64( 0x0001000000000000 ); 5919 shiftCount = 0x402F - aExp; 5920 savedASig = aSig0; 5921 aSig0 >>= shiftCount; 5922 z = aSig0; 5923 if ( aSign ) z = - z; 5924 if ( ( z < 0 ) ^ aSign ) { 5925 invalid: 5926 float_raise(float_flag_invalid, status); 5927 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 5928 } 5929 if ( ( aSig0<<shiftCount ) != savedASig ) { 5930 status->float_exception_flags |= float_flag_inexact; 5931 } 5932 return z; 5933 5934 } 5935 5936 /*---------------------------------------------------------------------------- 5937 | Returns the result of converting the quadruple-precision floating-point 5938 | value `a' to the 64-bit two's complement integer format. The conversion 5939 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5940 | Arithmetic---which means in particular that the conversion is rounded 5941 | according to the current rounding mode. If `a' is a NaN, the largest 5942 | positive integer is returned. Otherwise, if the conversion overflows, the 5943 | largest integer with the same sign as `a' is returned. 5944 *----------------------------------------------------------------------------*/ 5945 5946 int64_t float128_to_int64(float128 a, float_status *status) 5947 { 5948 flag aSign; 5949 int32_t aExp, shiftCount; 5950 uint64_t aSig0, aSig1; 5951 5952 aSig1 = extractFloat128Frac1( a ); 5953 aSig0 = extractFloat128Frac0( a ); 5954 aExp = extractFloat128Exp( a ); 5955 aSign = extractFloat128Sign( a ); 5956 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); 5957 shiftCount = 0x402F - aExp; 5958 if ( shiftCount <= 0 ) { 5959 if ( 0x403E < aExp ) { 5960 float_raise(float_flag_invalid, status); 5961 if ( ! aSign 5962 || ( ( aExp == 0x7FFF ) 5963 && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) 5964 ) 5965 ) { 5966 return LIT64( 0x7FFFFFFFFFFFFFFF ); 5967 } 5968 return (int64_t) LIT64( 0x8000000000000000 ); 5969 } 5970 shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); 5971 } 5972 else { 5973 shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); 5974 } 5975 return roundAndPackInt64(aSign, aSig0, aSig1, status); 5976 5977 } 5978 5979 /*---------------------------------------------------------------------------- 5980 | Returns the result of converting the quadruple-precision floating-point 5981 | value `a' to the 64-bit two's complement integer format. The conversion 5982 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5983 | Arithmetic, except that the conversion is always rounded toward zero. 5984 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 5985 | the conversion overflows, the largest integer with the same sign as `a' is 5986 | returned. 5987 *----------------------------------------------------------------------------*/ 5988 5989 int64_t float128_to_int64_round_to_zero(float128 a, float_status *status) 5990 { 5991 flag aSign; 5992 int32_t aExp, shiftCount; 5993 uint64_t aSig0, aSig1; 5994 int64_t z; 5995 5996 aSig1 = extractFloat128Frac1( a ); 5997 aSig0 = extractFloat128Frac0( a ); 5998 aExp = extractFloat128Exp( a ); 5999 aSign = extractFloat128Sign( a ); 6000 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); 6001 shiftCount = aExp - 0x402F; 6002 if ( 0 < shiftCount ) { 6003 if ( 0x403E <= aExp ) { 6004 aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); 6005 if ( ( a.high == LIT64( 0xC03E000000000000 ) ) 6006 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { 6007 if (aSig1) { 6008 status->float_exception_flags |= float_flag_inexact; 6009 } 6010 } 6011 else { 6012 float_raise(float_flag_invalid, status); 6013 if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { 6014 return LIT64( 0x7FFFFFFFFFFFFFFF ); 6015 } 6016 } 6017 return (int64_t) LIT64( 0x8000000000000000 ); 6018 } 6019 z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); 6020 if ( (uint64_t) ( aSig1<<shiftCount ) ) { 6021 status->float_exception_flags |= float_flag_inexact; 6022 } 6023 } 6024 else { 6025 if ( aExp < 0x3FFF ) { 6026 if ( aExp | aSig0 | aSig1 ) { 6027 status->float_exception_flags |= float_flag_inexact; 6028 } 6029 return 0; 6030 } 6031 z = aSig0>>( - shiftCount ); 6032 if ( aSig1 6033 || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { 6034 status->float_exception_flags |= float_flag_inexact; 6035 } 6036 } 6037 if ( aSign ) z = - z; 6038 return z; 6039 6040 } 6041 6042 /*---------------------------------------------------------------------------- 6043 | Returns the result of converting the quadruple-precision floating-point 6044 | value `a' to the single-precision floating-point format. The conversion 6045 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6046 | Arithmetic. 6047 *----------------------------------------------------------------------------*/ 6048 6049 float32 float128_to_float32(float128 a, float_status *status) 6050 { 6051 flag aSign; 6052 int32_t aExp; 6053 uint64_t aSig0, aSig1; 6054 uint32_t zSig; 6055 6056 aSig1 = extractFloat128Frac1( a ); 6057 aSig0 = extractFloat128Frac0( a ); 6058 aExp = extractFloat128Exp( a ); 6059 aSign = extractFloat128Sign( a ); 6060 if ( aExp == 0x7FFF ) { 6061 if ( aSig0 | aSig1 ) { 6062 return commonNaNToFloat32(float128ToCommonNaN(a, status), status); 6063 } 6064 return packFloat32( aSign, 0xFF, 0 ); 6065 } 6066 aSig0 |= ( aSig1 != 0 ); 6067 shift64RightJamming( aSig0, 18, &aSig0 ); 6068 zSig = aSig0; 6069 if ( aExp || zSig ) { 6070 zSig |= 0x40000000; 6071 aExp -= 0x3F81; 6072 } 6073 return roundAndPackFloat32(aSign, aExp, zSig, status); 6074 6075 } 6076 6077 /*---------------------------------------------------------------------------- 6078 | Returns the result of converting the quadruple-precision floating-point 6079 | value `a' to the double-precision floating-point format. The conversion 6080 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6081 | Arithmetic. 6082 *----------------------------------------------------------------------------*/ 6083 6084 float64 float128_to_float64(float128 a, float_status *status) 6085 { 6086 flag aSign; 6087 int32_t aExp; 6088 uint64_t aSig0, aSig1; 6089 6090 aSig1 = extractFloat128Frac1( a ); 6091 aSig0 = extractFloat128Frac0( a ); 6092 aExp = extractFloat128Exp( a ); 6093 aSign = extractFloat128Sign( a ); 6094 if ( aExp == 0x7FFF ) { 6095 if ( aSig0 | aSig1 ) { 6096 return commonNaNToFloat64(float128ToCommonNaN(a, status), status); 6097 } 6098 return packFloat64( aSign, 0x7FF, 0 ); 6099 } 6100 shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); 6101 aSig0 |= ( aSig1 != 0 ); 6102 if ( aExp || aSig0 ) { 6103 aSig0 |= LIT64( 0x4000000000000000 ); 6104 aExp -= 0x3C01; 6105 } 6106 return roundAndPackFloat64(aSign, aExp, aSig0, status); 6107 6108 } 6109 6110 /*---------------------------------------------------------------------------- 6111 | Returns the result of converting the quadruple-precision floating-point 6112 | value `a' to the extended double-precision floating-point format. The 6113 | conversion is performed according to the IEC/IEEE Standard for Binary 6114 | Floating-Point Arithmetic. 6115 *----------------------------------------------------------------------------*/ 6116 6117 floatx80 float128_to_floatx80(float128 a, float_status *status) 6118 { 6119 flag aSign; 6120 int32_t aExp; 6121 uint64_t aSig0, aSig1; 6122 6123 aSig1 = extractFloat128Frac1( a ); 6124 aSig0 = extractFloat128Frac0( a ); 6125 aExp = extractFloat128Exp( a ); 6126 aSign = extractFloat128Sign( a ); 6127 if ( aExp == 0x7FFF ) { 6128 if ( aSig0 | aSig1 ) { 6129 return commonNaNToFloatx80(float128ToCommonNaN(a, status), status); 6130 } 6131 return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 6132 } 6133 if ( aExp == 0 ) { 6134 if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); 6135 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 6136 } 6137 else { 6138 aSig0 |= LIT64( 0x0001000000000000 ); 6139 } 6140 shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); 6141 return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); 6142 6143 } 6144 6145 /*---------------------------------------------------------------------------- 6146 | Rounds the quadruple-precision floating-point value `a' to an integer, and 6147 | returns the result as a quadruple-precision floating-point value. The 6148 | operation is performed according to the IEC/IEEE Standard for Binary 6149 | Floating-Point Arithmetic. 6150 *----------------------------------------------------------------------------*/ 6151 6152 float128 float128_round_to_int(float128 a, float_status *status) 6153 { 6154 flag aSign; 6155 int32_t aExp; 6156 uint64_t lastBitMask, roundBitsMask; 6157 float128 z; 6158 6159 aExp = extractFloat128Exp( a ); 6160 if ( 0x402F <= aExp ) { 6161 if ( 0x406F <= aExp ) { 6162 if ( ( aExp == 0x7FFF ) 6163 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) 6164 ) { 6165 return propagateFloat128NaN(a, a, status); 6166 } 6167 return a; 6168 } 6169 lastBitMask = 1; 6170 lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; 6171 roundBitsMask = lastBitMask - 1; 6172 z = a; 6173 switch (status->float_rounding_mode) { 6174 case float_round_nearest_even: 6175 if ( lastBitMask ) { 6176 add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); 6177 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; 6178 } 6179 else { 6180 if ( (int64_t) z.low < 0 ) { 6181 ++z.high; 6182 if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; 6183 } 6184 } 6185 break; 6186 case float_round_ties_away: 6187 if (lastBitMask) { 6188 add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); 6189 } else { 6190 if ((int64_t) z.low < 0) { 6191 ++z.high; 6192 } 6193 } 6194 break; 6195 case float_round_to_zero: 6196 break; 6197 case float_round_up: 6198 if (!extractFloat128Sign(z)) { 6199 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); 6200 } 6201 break; 6202 case float_round_down: 6203 if (extractFloat128Sign(z)) { 6204 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); 6205 } 6206 break; 6207 default: 6208 abort(); 6209 } 6210 z.low &= ~ roundBitsMask; 6211 } 6212 else { 6213 if ( aExp < 0x3FFF ) { 6214 if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; 6215 status->float_exception_flags |= float_flag_inexact; 6216 aSign = extractFloat128Sign( a ); 6217 switch (status->float_rounding_mode) { 6218 case float_round_nearest_even: 6219 if ( ( aExp == 0x3FFE ) 6220 && ( extractFloat128Frac0( a ) 6221 | extractFloat128Frac1( a ) ) 6222 ) { 6223 return packFloat128( aSign, 0x3FFF, 0, 0 ); 6224 } 6225 break; 6226 case float_round_ties_away: 6227 if (aExp == 0x3FFE) { 6228 return packFloat128(aSign, 0x3FFF, 0, 0); 6229 } 6230 break; 6231 case float_round_down: 6232 return 6233 aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) 6234 : packFloat128( 0, 0, 0, 0 ); 6235 case float_round_up: 6236 return 6237 aSign ? packFloat128( 1, 0, 0, 0 ) 6238 : packFloat128( 0, 0x3FFF, 0, 0 ); 6239 } 6240 return packFloat128( aSign, 0, 0, 0 ); 6241 } 6242 lastBitMask = 1; 6243 lastBitMask <<= 0x402F - aExp; 6244 roundBitsMask = lastBitMask - 1; 6245 z.low = 0; 6246 z.high = a.high; 6247 switch (status->float_rounding_mode) { 6248 case float_round_nearest_even: 6249 z.high += lastBitMask>>1; 6250 if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { 6251 z.high &= ~ lastBitMask; 6252 } 6253 break; 6254 case float_round_ties_away: 6255 z.high += lastBitMask>>1; 6256 break; 6257 case float_round_to_zero: 6258 break; 6259 case float_round_up: 6260 if (!extractFloat128Sign(z)) { 6261 z.high |= ( a.low != 0 ); 6262 z.high += roundBitsMask; 6263 } 6264 break; 6265 case float_round_down: 6266 if (extractFloat128Sign(z)) { 6267 z.high |= (a.low != 0); 6268 z.high += roundBitsMask; 6269 } 6270 break; 6271 default: 6272 abort(); 6273 } 6274 z.high &= ~ roundBitsMask; 6275 } 6276 if ( ( z.low != a.low ) || ( z.high != a.high ) ) { 6277 status->float_exception_flags |= float_flag_inexact; 6278 } 6279 return z; 6280 6281 } 6282 6283 /*---------------------------------------------------------------------------- 6284 | Returns the result of adding the absolute values of the quadruple-precision 6285 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated 6286 | before being returned. `zSign' is ignored if the result is a NaN. 6287 | The addition is performed according to the IEC/IEEE Standard for Binary 6288 | Floating-Point Arithmetic. 6289 *----------------------------------------------------------------------------*/ 6290 6291 static float128 addFloat128Sigs(float128 a, float128 b, flag zSign, 6292 float_status *status) 6293 { 6294 int32_t aExp, bExp, zExp; 6295 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; 6296 int32_t expDiff; 6297 6298 aSig1 = extractFloat128Frac1( a ); 6299 aSig0 = extractFloat128Frac0( a ); 6300 aExp = extractFloat128Exp( a ); 6301 bSig1 = extractFloat128Frac1( b ); 6302 bSig0 = extractFloat128Frac0( b ); 6303 bExp = extractFloat128Exp( b ); 6304 expDiff = aExp - bExp; 6305 if ( 0 < expDiff ) { 6306 if ( aExp == 0x7FFF ) { 6307 if (aSig0 | aSig1) { 6308 return propagateFloat128NaN(a, b, status); 6309 } 6310 return a; 6311 } 6312 if ( bExp == 0 ) { 6313 --expDiff; 6314 } 6315 else { 6316 bSig0 |= LIT64( 0x0001000000000000 ); 6317 } 6318 shift128ExtraRightJamming( 6319 bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); 6320 zExp = aExp; 6321 } 6322 else if ( expDiff < 0 ) { 6323 if ( bExp == 0x7FFF ) { 6324 if (bSig0 | bSig1) { 6325 return propagateFloat128NaN(a, b, status); 6326 } 6327 return packFloat128( zSign, 0x7FFF, 0, 0 ); 6328 } 6329 if ( aExp == 0 ) { 6330 ++expDiff; 6331 } 6332 else { 6333 aSig0 |= LIT64( 0x0001000000000000 ); 6334 } 6335 shift128ExtraRightJamming( 6336 aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); 6337 zExp = bExp; 6338 } 6339 else { 6340 if ( aExp == 0x7FFF ) { 6341 if ( aSig0 | aSig1 | bSig0 | bSig1 ) { 6342 return propagateFloat128NaN(a, b, status); 6343 } 6344 return a; 6345 } 6346 add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 6347 if ( aExp == 0 ) { 6348 if (status->flush_to_zero) { 6349 if (zSig0 | zSig1) { 6350 float_raise(float_flag_output_denormal, status); 6351 } 6352 return packFloat128(zSign, 0, 0, 0); 6353 } 6354 return packFloat128( zSign, 0, zSig0, zSig1 ); 6355 } 6356 zSig2 = 0; 6357 zSig0 |= LIT64( 0x0002000000000000 ); 6358 zExp = aExp; 6359 goto shiftRight1; 6360 } 6361 aSig0 |= LIT64( 0x0001000000000000 ); 6362 add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 6363 --zExp; 6364 if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; 6365 ++zExp; 6366 shiftRight1: 6367 shift128ExtraRightJamming( 6368 zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); 6369 roundAndPack: 6370 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); 6371 6372 } 6373 6374 /*---------------------------------------------------------------------------- 6375 | Returns the result of subtracting the absolute values of the quadruple- 6376 | precision floating-point values `a' and `b'. If `zSign' is 1, the 6377 | difference is negated before being returned. `zSign' is ignored if the 6378 | result is a NaN. The subtraction is performed according to the IEC/IEEE 6379 | Standard for Binary Floating-Point Arithmetic. 6380 *----------------------------------------------------------------------------*/ 6381 6382 static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, 6383 float_status *status) 6384 { 6385 int32_t aExp, bExp, zExp; 6386 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; 6387 int32_t expDiff; 6388 float128 z; 6389 6390 aSig1 = extractFloat128Frac1( a ); 6391 aSig0 = extractFloat128Frac0( a ); 6392 aExp = extractFloat128Exp( a ); 6393 bSig1 = extractFloat128Frac1( b ); 6394 bSig0 = extractFloat128Frac0( b ); 6395 bExp = extractFloat128Exp( b ); 6396 expDiff = aExp - bExp; 6397 shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); 6398 shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); 6399 if ( 0 < expDiff ) goto aExpBigger; 6400 if ( expDiff < 0 ) goto bExpBigger; 6401 if ( aExp == 0x7FFF ) { 6402 if ( aSig0 | aSig1 | bSig0 | bSig1 ) { 6403 return propagateFloat128NaN(a, b, status); 6404 } 6405 float_raise(float_flag_invalid, status); 6406 z.low = float128_default_nan_low; 6407 z.high = float128_default_nan_high; 6408 return z; 6409 } 6410 if ( aExp == 0 ) { 6411 aExp = 1; 6412 bExp = 1; 6413 } 6414 if ( bSig0 < aSig0 ) goto aBigger; 6415 if ( aSig0 < bSig0 ) goto bBigger; 6416 if ( bSig1 < aSig1 ) goto aBigger; 6417 if ( aSig1 < bSig1 ) goto bBigger; 6418 return packFloat128(status->float_rounding_mode == float_round_down, 6419 0, 0, 0); 6420 bExpBigger: 6421 if ( bExp == 0x7FFF ) { 6422 if (bSig0 | bSig1) { 6423 return propagateFloat128NaN(a, b, status); 6424 } 6425 return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); 6426 } 6427 if ( aExp == 0 ) { 6428 ++expDiff; 6429 } 6430 else { 6431 aSig0 |= LIT64( 0x4000000000000000 ); 6432 } 6433 shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); 6434 bSig0 |= LIT64( 0x4000000000000000 ); 6435 bBigger: 6436 sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); 6437 zExp = bExp; 6438 zSign ^= 1; 6439 goto normalizeRoundAndPack; 6440 aExpBigger: 6441 if ( aExp == 0x7FFF ) { 6442 if (aSig0 | aSig1) { 6443 return propagateFloat128NaN(a, b, status); 6444 } 6445 return a; 6446 } 6447 if ( bExp == 0 ) { 6448 --expDiff; 6449 } 6450 else { 6451 bSig0 |= LIT64( 0x4000000000000000 ); 6452 } 6453 shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); 6454 aSig0 |= LIT64( 0x4000000000000000 ); 6455 aBigger: 6456 sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 6457 zExp = aExp; 6458 normalizeRoundAndPack: 6459 --zExp; 6460 return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, 6461 status); 6462 6463 } 6464 6465 /*---------------------------------------------------------------------------- 6466 | Returns the result of adding the quadruple-precision floating-point values 6467 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 6468 | for Binary Floating-Point Arithmetic. 6469 *----------------------------------------------------------------------------*/ 6470 6471 float128 float128_add(float128 a, float128 b, float_status *status) 6472 { 6473 flag aSign, bSign; 6474 6475 aSign = extractFloat128Sign( a ); 6476 bSign = extractFloat128Sign( b ); 6477 if ( aSign == bSign ) { 6478 return addFloat128Sigs(a, b, aSign, status); 6479 } 6480 else { 6481 return subFloat128Sigs(a, b, aSign, status); 6482 } 6483 6484 } 6485 6486 /*---------------------------------------------------------------------------- 6487 | Returns the result of subtracting the quadruple-precision floating-point 6488 | values `a' and `b'. The operation is performed according to the IEC/IEEE 6489 | Standard for Binary Floating-Point Arithmetic. 6490 *----------------------------------------------------------------------------*/ 6491 6492 float128 float128_sub(float128 a, float128 b, float_status *status) 6493 { 6494 flag aSign, bSign; 6495 6496 aSign = extractFloat128Sign( a ); 6497 bSign = extractFloat128Sign( b ); 6498 if ( aSign == bSign ) { 6499 return subFloat128Sigs(a, b, aSign, status); 6500 } 6501 else { 6502 return addFloat128Sigs(a, b, aSign, status); 6503 } 6504 6505 } 6506 6507 /*---------------------------------------------------------------------------- 6508 | Returns the result of multiplying the quadruple-precision floating-point 6509 | values `a' and `b'. The operation is performed according to the IEC/IEEE 6510 | Standard for Binary Floating-Point Arithmetic. 6511 *----------------------------------------------------------------------------*/ 6512 6513 float128 float128_mul(float128 a, float128 b, float_status *status) 6514 { 6515 flag aSign, bSign, zSign; 6516 int32_t aExp, bExp, zExp; 6517 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; 6518 float128 z; 6519 6520 aSig1 = extractFloat128Frac1( a ); 6521 aSig0 = extractFloat128Frac0( a ); 6522 aExp = extractFloat128Exp( a ); 6523 aSign = extractFloat128Sign( a ); 6524 bSig1 = extractFloat128Frac1( b ); 6525 bSig0 = extractFloat128Frac0( b ); 6526 bExp = extractFloat128Exp( b ); 6527 bSign = extractFloat128Sign( b ); 6528 zSign = aSign ^ bSign; 6529 if ( aExp == 0x7FFF ) { 6530 if ( ( aSig0 | aSig1 ) 6531 || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { 6532 return propagateFloat128NaN(a, b, status); 6533 } 6534 if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; 6535 return packFloat128( zSign, 0x7FFF, 0, 0 ); 6536 } 6537 if ( bExp == 0x7FFF ) { 6538 if (bSig0 | bSig1) { 6539 return propagateFloat128NaN(a, b, status); 6540 } 6541 if ( ( aExp | aSig0 | aSig1 ) == 0 ) { 6542 invalid: 6543 float_raise(float_flag_invalid, status); 6544 z.low = float128_default_nan_low; 6545 z.high = float128_default_nan_high; 6546 return z; 6547 } 6548 return packFloat128( zSign, 0x7FFF, 0, 0 ); 6549 } 6550 if ( aExp == 0 ) { 6551 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 6552 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 6553 } 6554 if ( bExp == 0 ) { 6555 if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 6556 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 6557 } 6558 zExp = aExp + bExp - 0x4000; 6559 aSig0 |= LIT64( 0x0001000000000000 ); 6560 shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); 6561 mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); 6562 add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); 6563 zSig2 |= ( zSig3 != 0 ); 6564 if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { 6565 shift128ExtraRightJamming( 6566 zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); 6567 ++zExp; 6568 } 6569 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); 6570 6571 } 6572 6573 /*---------------------------------------------------------------------------- 6574 | Returns the result of dividing the quadruple-precision floating-point value 6575 | `a' by the corresponding value `b'. The operation is performed according to 6576 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6577 *----------------------------------------------------------------------------*/ 6578 6579 float128 float128_div(float128 a, float128 b, float_status *status) 6580 { 6581 flag aSign, bSign, zSign; 6582 int32_t aExp, bExp, zExp; 6583 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; 6584 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 6585 float128 z; 6586 6587 aSig1 = extractFloat128Frac1( a ); 6588 aSig0 = extractFloat128Frac0( a ); 6589 aExp = extractFloat128Exp( a ); 6590 aSign = extractFloat128Sign( a ); 6591 bSig1 = extractFloat128Frac1( b ); 6592 bSig0 = extractFloat128Frac0( b ); 6593 bExp = extractFloat128Exp( b ); 6594 bSign = extractFloat128Sign( b ); 6595 zSign = aSign ^ bSign; 6596 if ( aExp == 0x7FFF ) { 6597 if (aSig0 | aSig1) { 6598 return propagateFloat128NaN(a, b, status); 6599 } 6600 if ( bExp == 0x7FFF ) { 6601 if (bSig0 | bSig1) { 6602 return propagateFloat128NaN(a, b, status); 6603 } 6604 goto invalid; 6605 } 6606 return packFloat128( zSign, 0x7FFF, 0, 0 ); 6607 } 6608 if ( bExp == 0x7FFF ) { 6609 if (bSig0 | bSig1) { 6610 return propagateFloat128NaN(a, b, status); 6611 } 6612 return packFloat128( zSign, 0, 0, 0 ); 6613 } 6614 if ( bExp == 0 ) { 6615 if ( ( bSig0 | bSig1 ) == 0 ) { 6616 if ( ( aExp | aSig0 | aSig1 ) == 0 ) { 6617 invalid: 6618 float_raise(float_flag_invalid, status); 6619 z.low = float128_default_nan_low; 6620 z.high = float128_default_nan_high; 6621 return z; 6622 } 6623 float_raise(float_flag_divbyzero, status); 6624 return packFloat128( zSign, 0x7FFF, 0, 0 ); 6625 } 6626 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 6627 } 6628 if ( aExp == 0 ) { 6629 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 6630 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 6631 } 6632 zExp = aExp - bExp + 0x3FFD; 6633 shortShift128Left( 6634 aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); 6635 shortShift128Left( 6636 bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); 6637 if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { 6638 shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); 6639 ++zExp; 6640 } 6641 zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); 6642 mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); 6643 sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); 6644 while ( (int64_t) rem0 < 0 ) { 6645 --zSig0; 6646 add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); 6647 } 6648 zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); 6649 if ( ( zSig1 & 0x3FFF ) <= 4 ) { 6650 mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); 6651 sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); 6652 while ( (int64_t) rem1 < 0 ) { 6653 --zSig1; 6654 add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); 6655 } 6656 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 6657 } 6658 shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); 6659 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); 6660 6661 } 6662 6663 /*---------------------------------------------------------------------------- 6664 | Returns the remainder of the quadruple-precision floating-point value `a' 6665 | with respect to the corresponding value `b'. The operation is performed 6666 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6667 *----------------------------------------------------------------------------*/ 6668 6669 float128 float128_rem(float128 a, float128 b, float_status *status) 6670 { 6671 flag aSign, zSign; 6672 int32_t aExp, bExp, expDiff; 6673 uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; 6674 uint64_t allZero, alternateASig0, alternateASig1, sigMean1; 6675 int64_t sigMean0; 6676 float128 z; 6677 6678 aSig1 = extractFloat128Frac1( a ); 6679 aSig0 = extractFloat128Frac0( a ); 6680 aExp = extractFloat128Exp( a ); 6681 aSign = extractFloat128Sign( a ); 6682 bSig1 = extractFloat128Frac1( b ); 6683 bSig0 = extractFloat128Frac0( b ); 6684 bExp = extractFloat128Exp( b ); 6685 if ( aExp == 0x7FFF ) { 6686 if ( ( aSig0 | aSig1 ) 6687 || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { 6688 return propagateFloat128NaN(a, b, status); 6689 } 6690 goto invalid; 6691 } 6692 if ( bExp == 0x7FFF ) { 6693 if (bSig0 | bSig1) { 6694 return propagateFloat128NaN(a, b, status); 6695 } 6696 return a; 6697 } 6698 if ( bExp == 0 ) { 6699 if ( ( bSig0 | bSig1 ) == 0 ) { 6700 invalid: 6701 float_raise(float_flag_invalid, status); 6702 z.low = float128_default_nan_low; 6703 z.high = float128_default_nan_high; 6704 return z; 6705 } 6706 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 6707 } 6708 if ( aExp == 0 ) { 6709 if ( ( aSig0 | aSig1 ) == 0 ) return a; 6710 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 6711 } 6712 expDiff = aExp - bExp; 6713 if ( expDiff < -1 ) return a; 6714 shortShift128Left( 6715 aSig0 | LIT64( 0x0001000000000000 ), 6716 aSig1, 6717 15 - ( expDiff < 0 ), 6718 &aSig0, 6719 &aSig1 6720 ); 6721 shortShift128Left( 6722 bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); 6723 q = le128( bSig0, bSig1, aSig0, aSig1 ); 6724 if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); 6725 expDiff -= 64; 6726 while ( 0 < expDiff ) { 6727 q = estimateDiv128To64( aSig0, aSig1, bSig0 ); 6728 q = ( 4 < q ) ? q - 4 : 0; 6729 mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); 6730 shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); 6731 shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); 6732 sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); 6733 expDiff -= 61; 6734 } 6735 if ( -64 < expDiff ) { 6736 q = estimateDiv128To64( aSig0, aSig1, bSig0 ); 6737 q = ( 4 < q ) ? q - 4 : 0; 6738 q >>= - expDiff; 6739 shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); 6740 expDiff += 52; 6741 if ( expDiff < 0 ) { 6742 shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); 6743 } 6744 else { 6745 shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); 6746 } 6747 mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); 6748 sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); 6749 } 6750 else { 6751 shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); 6752 shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); 6753 } 6754 do { 6755 alternateASig0 = aSig0; 6756 alternateASig1 = aSig1; 6757 ++q; 6758 sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); 6759 } while ( 0 <= (int64_t) aSig0 ); 6760 add128( 6761 aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); 6762 if ( ( sigMean0 < 0 ) 6763 || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { 6764 aSig0 = alternateASig0; 6765 aSig1 = alternateASig1; 6766 } 6767 zSign = ( (int64_t) aSig0 < 0 ); 6768 if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); 6769 return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, 6770 status); 6771 } 6772 6773 /*---------------------------------------------------------------------------- 6774 | Returns the square root of the quadruple-precision floating-point value `a'. 6775 | The operation is performed according to the IEC/IEEE Standard for Binary 6776 | Floating-Point Arithmetic. 6777 *----------------------------------------------------------------------------*/ 6778 6779 float128 float128_sqrt(float128 a, float_status *status) 6780 { 6781 flag aSign; 6782 int32_t aExp, zExp; 6783 uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; 6784 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 6785 float128 z; 6786 6787 aSig1 = extractFloat128Frac1( a ); 6788 aSig0 = extractFloat128Frac0( a ); 6789 aExp = extractFloat128Exp( a ); 6790 aSign = extractFloat128Sign( a ); 6791 if ( aExp == 0x7FFF ) { 6792 if (aSig0 | aSig1) { 6793 return propagateFloat128NaN(a, a, status); 6794 } 6795 if ( ! aSign ) return a; 6796 goto invalid; 6797 } 6798 if ( aSign ) { 6799 if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; 6800 invalid: 6801 float_raise(float_flag_invalid, status); 6802 z.low = float128_default_nan_low; 6803 z.high = float128_default_nan_high; 6804 return z; 6805 } 6806 if ( aExp == 0 ) { 6807 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); 6808 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 6809 } 6810 zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; 6811 aSig0 |= LIT64( 0x0001000000000000 ); 6812 zSig0 = estimateSqrt32( aExp, aSig0>>17 ); 6813 shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); 6814 zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); 6815 doubleZSig0 = zSig0<<1; 6816 mul64To128( zSig0, zSig0, &term0, &term1 ); 6817 sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); 6818 while ( (int64_t) rem0 < 0 ) { 6819 --zSig0; 6820 doubleZSig0 -= 2; 6821 add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); 6822 } 6823 zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); 6824 if ( ( zSig1 & 0x1FFF ) <= 5 ) { 6825 if ( zSig1 == 0 ) zSig1 = 1; 6826 mul64To128( doubleZSig0, zSig1, &term1, &term2 ); 6827 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 6828 mul64To128( zSig1, zSig1, &term2, &term3 ); 6829 sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); 6830 while ( (int64_t) rem1 < 0 ) { 6831 --zSig1; 6832 shortShift128Left( 0, zSig1, 1, &term2, &term3 ); 6833 term3 |= 1; 6834 term2 |= doubleZSig0; 6835 add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); 6836 } 6837 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 6838 } 6839 shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); 6840 return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); 6841 6842 } 6843 6844 /*---------------------------------------------------------------------------- 6845 | Returns 1 if the quadruple-precision floating-point value `a' is equal to 6846 | the corresponding value `b', and 0 otherwise. The invalid exception is 6847 | raised if either operand is a NaN. Otherwise, the comparison is performed 6848 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6849 *----------------------------------------------------------------------------*/ 6850 6851 int float128_eq(float128 a, float128 b, float_status *status) 6852 { 6853 6854 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6855 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6856 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6857 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6858 ) { 6859 float_raise(float_flag_invalid, status); 6860 return 0; 6861 } 6862 return 6863 ( a.low == b.low ) 6864 && ( ( a.high == b.high ) 6865 || ( ( a.low == 0 ) 6866 && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 6867 ); 6868 6869 } 6870 6871 /*---------------------------------------------------------------------------- 6872 | Returns 1 if the quadruple-precision floating-point value `a' is less than 6873 | or equal to the corresponding value `b', and 0 otherwise. The invalid 6874 | exception is raised if either operand is a NaN. The comparison is performed 6875 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6876 *----------------------------------------------------------------------------*/ 6877 6878 int float128_le(float128 a, float128 b, float_status *status) 6879 { 6880 flag aSign, bSign; 6881 6882 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6883 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6884 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6885 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6886 ) { 6887 float_raise(float_flag_invalid, status); 6888 return 0; 6889 } 6890 aSign = extractFloat128Sign( a ); 6891 bSign = extractFloat128Sign( b ); 6892 if ( aSign != bSign ) { 6893 return 6894 aSign 6895 || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6896 == 0 ); 6897 } 6898 return 6899 aSign ? le128( b.high, b.low, a.high, a.low ) 6900 : le128( a.high, a.low, b.high, b.low ); 6901 6902 } 6903 6904 /*---------------------------------------------------------------------------- 6905 | Returns 1 if the quadruple-precision floating-point value `a' is less than 6906 | the corresponding value `b', and 0 otherwise. The invalid exception is 6907 | raised if either operand is a NaN. The comparison is performed according 6908 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6909 *----------------------------------------------------------------------------*/ 6910 6911 int float128_lt(float128 a, float128 b, float_status *status) 6912 { 6913 flag aSign, bSign; 6914 6915 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6916 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6917 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6918 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6919 ) { 6920 float_raise(float_flag_invalid, status); 6921 return 0; 6922 } 6923 aSign = extractFloat128Sign( a ); 6924 bSign = extractFloat128Sign( b ); 6925 if ( aSign != bSign ) { 6926 return 6927 aSign 6928 && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6929 != 0 ); 6930 } 6931 return 6932 aSign ? lt128( b.high, b.low, a.high, a.low ) 6933 : lt128( a.high, a.low, b.high, b.low ); 6934 6935 } 6936 6937 /*---------------------------------------------------------------------------- 6938 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot 6939 | be compared, and 0 otherwise. The invalid exception is raised if either 6940 | operand is a NaN. The comparison is performed according to the IEC/IEEE 6941 | Standard for Binary Floating-Point Arithmetic. 6942 *----------------------------------------------------------------------------*/ 6943 6944 int float128_unordered(float128 a, float128 b, float_status *status) 6945 { 6946 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6947 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6948 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6949 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6950 ) { 6951 float_raise(float_flag_invalid, status); 6952 return 1; 6953 } 6954 return 0; 6955 } 6956 6957 /*---------------------------------------------------------------------------- 6958 | Returns 1 if the quadruple-precision floating-point value `a' is equal to 6959 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 6960 | exception. The comparison is performed according to the IEC/IEEE Standard 6961 | for Binary Floating-Point Arithmetic. 6962 *----------------------------------------------------------------------------*/ 6963 6964 int float128_eq_quiet(float128 a, float128 b, float_status *status) 6965 { 6966 6967 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6968 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6969 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6970 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6971 ) { 6972 if ( float128_is_signaling_nan( a ) 6973 || float128_is_signaling_nan( b ) ) { 6974 float_raise(float_flag_invalid, status); 6975 } 6976 return 0; 6977 } 6978 return 6979 ( a.low == b.low ) 6980 && ( ( a.high == b.high ) 6981 || ( ( a.low == 0 ) 6982 && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 6983 ); 6984 6985 } 6986 6987 /*---------------------------------------------------------------------------- 6988 | Returns 1 if the quadruple-precision floating-point value `a' is less than 6989 | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 6990 | cause an exception. Otherwise, the comparison is performed according to the 6991 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6992 *----------------------------------------------------------------------------*/ 6993 6994 int float128_le_quiet(float128 a, float128 b, float_status *status) 6995 { 6996 flag aSign, bSign; 6997 6998 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6999 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7000 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7001 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7002 ) { 7003 if ( float128_is_signaling_nan( a ) 7004 || float128_is_signaling_nan( b ) ) { 7005 float_raise(float_flag_invalid, status); 7006 } 7007 return 0; 7008 } 7009 aSign = extractFloat128Sign( a ); 7010 bSign = extractFloat128Sign( b ); 7011 if ( aSign != bSign ) { 7012 return 7013 aSign 7014 || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 7015 == 0 ); 7016 } 7017 return 7018 aSign ? le128( b.high, b.low, a.high, a.low ) 7019 : le128( a.high, a.low, b.high, b.low ); 7020 7021 } 7022 7023 /*---------------------------------------------------------------------------- 7024 | Returns 1 if the quadruple-precision floating-point value `a' is less than 7025 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 7026 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 7027 | Standard for Binary Floating-Point Arithmetic. 7028 *----------------------------------------------------------------------------*/ 7029 7030 int float128_lt_quiet(float128 a, float128 b, float_status *status) 7031 { 7032 flag aSign, bSign; 7033 7034 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7035 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7036 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7037 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7038 ) { 7039 if ( float128_is_signaling_nan( a ) 7040 || float128_is_signaling_nan( b ) ) { 7041 float_raise(float_flag_invalid, status); 7042 } 7043 return 0; 7044 } 7045 aSign = extractFloat128Sign( a ); 7046 bSign = extractFloat128Sign( b ); 7047 if ( aSign != bSign ) { 7048 return 7049 aSign 7050 && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 7051 != 0 ); 7052 } 7053 return 7054 aSign ? lt128( b.high, b.low, a.high, a.low ) 7055 : lt128( a.high, a.low, b.high, b.low ); 7056 7057 } 7058 7059 /*---------------------------------------------------------------------------- 7060 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot 7061 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 7062 | comparison is performed according to the IEC/IEEE Standard for Binary 7063 | Floating-Point Arithmetic. 7064 *----------------------------------------------------------------------------*/ 7065 7066 int float128_unordered_quiet(float128 a, float128 b, float_status *status) 7067 { 7068 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7069 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7070 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7071 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7072 ) { 7073 if ( float128_is_signaling_nan( a ) 7074 || float128_is_signaling_nan( b ) ) { 7075 float_raise(float_flag_invalid, status); 7076 } 7077 return 1; 7078 } 7079 return 0; 7080 } 7081 7082 /* misc functions */ 7083 float32 uint32_to_float32(uint32_t a, float_status *status) 7084 { 7085 return int64_to_float32(a, status); 7086 } 7087 7088 float64 uint32_to_float64(uint32_t a, float_status *status) 7089 { 7090 return int64_to_float64(a, status); 7091 } 7092 7093 uint32_t float32_to_uint32(float32 a, float_status *status) 7094 { 7095 int64_t v; 7096 uint32_t res; 7097 int old_exc_flags = get_float_exception_flags(status); 7098 7099 v = float32_to_int64(a, status); 7100 if (v < 0) { 7101 res = 0; 7102 } else if (v > 0xffffffff) { 7103 res = 0xffffffff; 7104 } else { 7105 return v; 7106 } 7107 set_float_exception_flags(old_exc_flags, status); 7108 float_raise(float_flag_invalid, status); 7109 return res; 7110 } 7111 7112 uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status) 7113 { 7114 int64_t v; 7115 uint32_t res; 7116 int old_exc_flags = get_float_exception_flags(status); 7117 7118 v = float32_to_int64_round_to_zero(a, status); 7119 if (v < 0) { 7120 res = 0; 7121 } else if (v > 0xffffffff) { 7122 res = 0xffffffff; 7123 } else { 7124 return v; 7125 } 7126 set_float_exception_flags(old_exc_flags, status); 7127 float_raise(float_flag_invalid, status); 7128 return res; 7129 } 7130 7131 int16_t float32_to_int16(float32 a, float_status *status) 7132 { 7133 int32_t v; 7134 int16_t res; 7135 int old_exc_flags = get_float_exception_flags(status); 7136 7137 v = float32_to_int32(a, status); 7138 if (v < -0x8000) { 7139 res = -0x8000; 7140 } else if (v > 0x7fff) { 7141 res = 0x7fff; 7142 } else { 7143 return v; 7144 } 7145 7146 set_float_exception_flags(old_exc_flags, status); 7147 float_raise(float_flag_invalid, status); 7148 return res; 7149 } 7150 7151 uint16_t float32_to_uint16(float32 a, float_status *status) 7152 { 7153 int32_t v; 7154 uint16_t res; 7155 int old_exc_flags = get_float_exception_flags(status); 7156 7157 v = float32_to_int32(a, status); 7158 if (v < 0) { 7159 res = 0; 7160 } else if (v > 0xffff) { 7161 res = 0xffff; 7162 } else { 7163 return v; 7164 } 7165 7166 set_float_exception_flags(old_exc_flags, status); 7167 float_raise(float_flag_invalid, status); 7168 return res; 7169 } 7170 7171 uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status) 7172 { 7173 int64_t v; 7174 uint16_t res; 7175 int old_exc_flags = get_float_exception_flags(status); 7176 7177 v = float32_to_int64_round_to_zero(a, status); 7178 if (v < 0) { 7179 res = 0; 7180 } else if (v > 0xffff) { 7181 res = 0xffff; 7182 } else { 7183 return v; 7184 } 7185 set_float_exception_flags(old_exc_flags, status); 7186 float_raise(float_flag_invalid, status); 7187 return res; 7188 } 7189 7190 uint32_t float64_to_uint32(float64 a, float_status *status) 7191 { 7192 uint64_t v; 7193 uint32_t res; 7194 int old_exc_flags = get_float_exception_flags(status); 7195 7196 v = float64_to_uint64(a, status); 7197 if (v > 0xffffffff) { 7198 res = 0xffffffff; 7199 } else { 7200 return v; 7201 } 7202 set_float_exception_flags(old_exc_flags, status); 7203 float_raise(float_flag_invalid, status); 7204 return res; 7205 } 7206 7207 uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status) 7208 { 7209 uint64_t v; 7210 uint32_t res; 7211 int old_exc_flags = get_float_exception_flags(status); 7212 7213 v = float64_to_uint64_round_to_zero(a, status); 7214 if (v > 0xffffffff) { 7215 res = 0xffffffff; 7216 } else { 7217 return v; 7218 } 7219 set_float_exception_flags(old_exc_flags, status); 7220 float_raise(float_flag_invalid, status); 7221 return res; 7222 } 7223 7224 int16_t float64_to_int16(float64 a, float_status *status) 7225 { 7226 int64_t v; 7227 int16_t res; 7228 int old_exc_flags = get_float_exception_flags(status); 7229 7230 v = float64_to_int32(a, status); 7231 if (v < -0x8000) { 7232 res = -0x8000; 7233 } else if (v > 0x7fff) { 7234 res = 0x7fff; 7235 } else { 7236 return v; 7237 } 7238 7239 set_float_exception_flags(old_exc_flags, status); 7240 float_raise(float_flag_invalid, status); 7241 return res; 7242 } 7243 7244 uint16_t float64_to_uint16(float64 a, float_status *status) 7245 { 7246 int64_t v; 7247 uint16_t res; 7248 int old_exc_flags = get_float_exception_flags(status); 7249 7250 v = float64_to_int32(a, status); 7251 if (v < 0) { 7252 res = 0; 7253 } else if (v > 0xffff) { 7254 res = 0xffff; 7255 } else { 7256 return v; 7257 } 7258 7259 set_float_exception_flags(old_exc_flags, status); 7260 float_raise(float_flag_invalid, status); 7261 return res; 7262 } 7263 7264 uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status) 7265 { 7266 int64_t v; 7267 uint16_t res; 7268 int old_exc_flags = get_float_exception_flags(status); 7269 7270 v = float64_to_int64_round_to_zero(a, status); 7271 if (v < 0) { 7272 res = 0; 7273 } else if (v > 0xffff) { 7274 res = 0xffff; 7275 } else { 7276 return v; 7277 } 7278 set_float_exception_flags(old_exc_flags, status); 7279 float_raise(float_flag_invalid, status); 7280 return res; 7281 } 7282 7283 /*---------------------------------------------------------------------------- 7284 | Returns the result of converting the double-precision floating-point value 7285 | `a' to the 64-bit unsigned integer format. The conversion is 7286 | performed according to the IEC/IEEE Standard for Binary Floating-Point 7287 | Arithmetic---which means in particular that the conversion is rounded 7288 | according to the current rounding mode. If `a' is a NaN, the largest 7289 | positive integer is returned. If the conversion overflows, the 7290 | largest unsigned integer is returned. If 'a' is negative, the value is 7291 | rounded and zero is returned; negative values that do not round to zero 7292 | will raise the inexact exception. 7293 *----------------------------------------------------------------------------*/ 7294 7295 uint64_t float64_to_uint64(float64 a, float_status *status) 7296 { 7297 flag aSign; 7298 int aExp; 7299 int shiftCount; 7300 uint64_t aSig, aSigExtra; 7301 a = float64_squash_input_denormal(a, status); 7302 7303 aSig = extractFloat64Frac(a); 7304 aExp = extractFloat64Exp(a); 7305 aSign = extractFloat64Sign(a); 7306 if (aSign && (aExp > 1022)) { 7307 float_raise(float_flag_invalid, status); 7308 if (float64_is_any_nan(a)) { 7309 return LIT64(0xFFFFFFFFFFFFFFFF); 7310 } else { 7311 return 0; 7312 } 7313 } 7314 if (aExp) { 7315 aSig |= LIT64(0x0010000000000000); 7316 } 7317 shiftCount = 0x433 - aExp; 7318 if (shiftCount <= 0) { 7319 if (0x43E < aExp) { 7320 float_raise(float_flag_invalid, status); 7321 return LIT64(0xFFFFFFFFFFFFFFFF); 7322 } 7323 aSigExtra = 0; 7324 aSig <<= -shiftCount; 7325 } else { 7326 shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra); 7327 } 7328 return roundAndPackUint64(aSign, aSig, aSigExtra, status); 7329 } 7330 7331 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status) 7332 { 7333 signed char current_rounding_mode = status->float_rounding_mode; 7334 set_float_rounding_mode(float_round_to_zero, status); 7335 int64_t v = float64_to_uint64(a, status); 7336 set_float_rounding_mode(current_rounding_mode, status); 7337 return v; 7338 } 7339 7340 #define COMPARE(s, nan_exp) \ 7341 static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\ 7342 int is_quiet, float_status *status) \ 7343 { \ 7344 flag aSign, bSign; \ 7345 uint ## s ## _t av, bv; \ 7346 a = float ## s ## _squash_input_denormal(a, status); \ 7347 b = float ## s ## _squash_input_denormal(b, status); \ 7348 \ 7349 if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ 7350 extractFloat ## s ## Frac( a ) ) || \ 7351 ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ 7352 extractFloat ## s ## Frac( b ) )) { \ 7353 if (!is_quiet || \ 7354 float ## s ## _is_signaling_nan( a ) || \ 7355 float ## s ## _is_signaling_nan( b ) ) { \ 7356 float_raise(float_flag_invalid, status); \ 7357 } \ 7358 return float_relation_unordered; \ 7359 } \ 7360 aSign = extractFloat ## s ## Sign( a ); \ 7361 bSign = extractFloat ## s ## Sign( b ); \ 7362 av = float ## s ## _val(a); \ 7363 bv = float ## s ## _val(b); \ 7364 if ( aSign != bSign ) { \ 7365 if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \ 7366 /* zero case */ \ 7367 return float_relation_equal; \ 7368 } else { \ 7369 return 1 - (2 * aSign); \ 7370 } \ 7371 } else { \ 7372 if (av == bv) { \ 7373 return float_relation_equal; \ 7374 } else { \ 7375 return 1 - 2 * (aSign ^ ( av < bv )); \ 7376 } \ 7377 } \ 7378 } \ 7379 \ 7380 int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \ 7381 { \ 7382 return float ## s ## _compare_internal(a, b, 0, status); \ 7383 } \ 7384 \ 7385 int float ## s ## _compare_quiet(float ## s a, float ## s b, \ 7386 float_status *status) \ 7387 { \ 7388 return float ## s ## _compare_internal(a, b, 1, status); \ 7389 } 7390 7391 COMPARE(32, 0xff) 7392 COMPARE(64, 0x7ff) 7393 7394 static inline int floatx80_compare_internal(floatx80 a, floatx80 b, 7395 int is_quiet, float_status *status) 7396 { 7397 flag aSign, bSign; 7398 7399 if (( ( extractFloatx80Exp( a ) == 0x7fff ) && 7400 ( extractFloatx80Frac( a )<<1 ) ) || 7401 ( ( extractFloatx80Exp( b ) == 0x7fff ) && 7402 ( extractFloatx80Frac( b )<<1 ) )) { 7403 if (!is_quiet || 7404 floatx80_is_signaling_nan( a ) || 7405 floatx80_is_signaling_nan( b ) ) { 7406 float_raise(float_flag_invalid, status); 7407 } 7408 return float_relation_unordered; 7409 } 7410 aSign = extractFloatx80Sign( a ); 7411 bSign = extractFloatx80Sign( b ); 7412 if ( aSign != bSign ) { 7413 7414 if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && 7415 ( ( a.low | b.low ) == 0 ) ) { 7416 /* zero case */ 7417 return float_relation_equal; 7418 } else { 7419 return 1 - (2 * aSign); 7420 } 7421 } else { 7422 if (a.low == b.low && a.high == b.high) { 7423 return float_relation_equal; 7424 } else { 7425 return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); 7426 } 7427 } 7428 } 7429 7430 int floatx80_compare(floatx80 a, floatx80 b, float_status *status) 7431 { 7432 return floatx80_compare_internal(a, b, 0, status); 7433 } 7434 7435 int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status) 7436 { 7437 return floatx80_compare_internal(a, b, 1, status); 7438 } 7439 7440 static inline int float128_compare_internal(float128 a, float128 b, 7441 int is_quiet, float_status *status) 7442 { 7443 flag aSign, bSign; 7444 7445 if (( ( extractFloat128Exp( a ) == 0x7fff ) && 7446 ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || 7447 ( ( extractFloat128Exp( b ) == 0x7fff ) && 7448 ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { 7449 if (!is_quiet || 7450 float128_is_signaling_nan( a ) || 7451 float128_is_signaling_nan( b ) ) { 7452 float_raise(float_flag_invalid, status); 7453 } 7454 return float_relation_unordered; 7455 } 7456 aSign = extractFloat128Sign( a ); 7457 bSign = extractFloat128Sign( b ); 7458 if ( aSign != bSign ) { 7459 if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { 7460 /* zero case */ 7461 return float_relation_equal; 7462 } else { 7463 return 1 - (2 * aSign); 7464 } 7465 } else { 7466 if (a.low == b.low && a.high == b.high) { 7467 return float_relation_equal; 7468 } else { 7469 return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); 7470 } 7471 } 7472 } 7473 7474 int float128_compare(float128 a, float128 b, float_status *status) 7475 { 7476 return float128_compare_internal(a, b, 0, status); 7477 } 7478 7479 int float128_compare_quiet(float128 a, float128 b, float_status *status) 7480 { 7481 return float128_compare_internal(a, b, 1, status); 7482 } 7483 7484 /* min() and max() functions. These can't be implemented as 7485 * 'compare and pick one input' because that would mishandle 7486 * NaNs and +0 vs -0. 7487 * 7488 * minnum() and maxnum() functions. These are similar to the min() 7489 * and max() functions but if one of the arguments is a QNaN and 7490 * the other is numerical then the numerical argument is returned. 7491 * minnum() and maxnum correspond to the IEEE 754-2008 minNum() 7492 * and maxNum() operations. min() and max() are the typical min/max 7493 * semantics provided by many CPUs which predate that specification. 7494 * 7495 * minnummag() and maxnummag() functions correspond to minNumMag() 7496 * and minNumMag() from the IEEE-754 2008. 7497 */ 7498 #define MINMAX(s) \ 7499 static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \ 7500 int ismin, int isieee, \ 7501 int ismag, \ 7502 float_status *status) \ 7503 { \ 7504 flag aSign, bSign; \ 7505 uint ## s ## _t av, bv, aav, abv; \ 7506 a = float ## s ## _squash_input_denormal(a, status); \ 7507 b = float ## s ## _squash_input_denormal(b, status); \ 7508 if (float ## s ## _is_any_nan(a) || \ 7509 float ## s ## _is_any_nan(b)) { \ 7510 if (isieee) { \ 7511 if (float ## s ## _is_quiet_nan(a) && \ 7512 !float ## s ##_is_any_nan(b)) { \ 7513 return b; \ 7514 } else if (float ## s ## _is_quiet_nan(b) && \ 7515 !float ## s ## _is_any_nan(a)) { \ 7516 return a; \ 7517 } \ 7518 } \ 7519 return propagateFloat ## s ## NaN(a, b, status); \ 7520 } \ 7521 aSign = extractFloat ## s ## Sign(a); \ 7522 bSign = extractFloat ## s ## Sign(b); \ 7523 av = float ## s ## _val(a); \ 7524 bv = float ## s ## _val(b); \ 7525 if (ismag) { \ 7526 aav = float ## s ## _abs(av); \ 7527 abv = float ## s ## _abs(bv); \ 7528 if (aav != abv) { \ 7529 if (ismin) { \ 7530 return (aav < abv) ? a : b; \ 7531 } else { \ 7532 return (aav < abv) ? b : a; \ 7533 } \ 7534 } \ 7535 } \ 7536 if (aSign != bSign) { \ 7537 if (ismin) { \ 7538 return aSign ? a : b; \ 7539 } else { \ 7540 return aSign ? b : a; \ 7541 } \ 7542 } else { \ 7543 if (ismin) { \ 7544 return (aSign ^ (av < bv)) ? a : b; \ 7545 } else { \ 7546 return (aSign ^ (av < bv)) ? b : a; \ 7547 } \ 7548 } \ 7549 } \ 7550 \ 7551 float ## s float ## s ## _min(float ## s a, float ## s b, \ 7552 float_status *status) \ 7553 { \ 7554 return float ## s ## _minmax(a, b, 1, 0, 0, status); \ 7555 } \ 7556 \ 7557 float ## s float ## s ## _max(float ## s a, float ## s b, \ 7558 float_status *status) \ 7559 { \ 7560 return float ## s ## _minmax(a, b, 0, 0, 0, status); \ 7561 } \ 7562 \ 7563 float ## s float ## s ## _minnum(float ## s a, float ## s b, \ 7564 float_status *status) \ 7565 { \ 7566 return float ## s ## _minmax(a, b, 1, 1, 0, status); \ 7567 } \ 7568 \ 7569 float ## s float ## s ## _maxnum(float ## s a, float ## s b, \ 7570 float_status *status) \ 7571 { \ 7572 return float ## s ## _minmax(a, b, 0, 1, 0, status); \ 7573 } \ 7574 \ 7575 float ## s float ## s ## _minnummag(float ## s a, float ## s b, \ 7576 float_status *status) \ 7577 { \ 7578 return float ## s ## _minmax(a, b, 1, 1, 1, status); \ 7579 } \ 7580 \ 7581 float ## s float ## s ## _maxnummag(float ## s a, float ## s b, \ 7582 float_status *status) \ 7583 { \ 7584 return float ## s ## _minmax(a, b, 0, 1, 1, status); \ 7585 } 7586 7587 MINMAX(32) 7588 MINMAX(64) 7589 7590 7591 /* Multiply A by 2 raised to the power N. */ 7592 float32 float32_scalbn(float32 a, int n, float_status *status) 7593 { 7594 flag aSign; 7595 int16_t aExp; 7596 uint32_t aSig; 7597 7598 a = float32_squash_input_denormal(a, status); 7599 aSig = extractFloat32Frac( a ); 7600 aExp = extractFloat32Exp( a ); 7601 aSign = extractFloat32Sign( a ); 7602 7603 if ( aExp == 0xFF ) { 7604 if ( aSig ) { 7605 return propagateFloat32NaN(a, a, status); 7606 } 7607 return a; 7608 } 7609 if (aExp != 0) { 7610 aSig |= 0x00800000; 7611 } else if (aSig == 0) { 7612 return a; 7613 } else { 7614 aExp++; 7615 } 7616 7617 if (n > 0x200) { 7618 n = 0x200; 7619 } else if (n < -0x200) { 7620 n = -0x200; 7621 } 7622 7623 aExp += n - 1; 7624 aSig <<= 7; 7625 return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status); 7626 } 7627 7628 float64 float64_scalbn(float64 a, int n, float_status *status) 7629 { 7630 flag aSign; 7631 int16_t aExp; 7632 uint64_t aSig; 7633 7634 a = float64_squash_input_denormal(a, status); 7635 aSig = extractFloat64Frac( a ); 7636 aExp = extractFloat64Exp( a ); 7637 aSign = extractFloat64Sign( a ); 7638 7639 if ( aExp == 0x7FF ) { 7640 if ( aSig ) { 7641 return propagateFloat64NaN(a, a, status); 7642 } 7643 return a; 7644 } 7645 if (aExp != 0) { 7646 aSig |= LIT64( 0x0010000000000000 ); 7647 } else if (aSig == 0) { 7648 return a; 7649 } else { 7650 aExp++; 7651 } 7652 7653 if (n > 0x1000) { 7654 n = 0x1000; 7655 } else if (n < -0x1000) { 7656 n = -0x1000; 7657 } 7658 7659 aExp += n - 1; 7660 aSig <<= 10; 7661 return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status); 7662 } 7663 7664 floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) 7665 { 7666 flag aSign; 7667 int32_t aExp; 7668 uint64_t aSig; 7669 7670 aSig = extractFloatx80Frac( a ); 7671 aExp = extractFloatx80Exp( a ); 7672 aSign = extractFloatx80Sign( a ); 7673 7674 if ( aExp == 0x7FFF ) { 7675 if ( aSig<<1 ) { 7676 return propagateFloatx80NaN(a, a, status); 7677 } 7678 return a; 7679 } 7680 7681 if (aExp == 0) { 7682 if (aSig == 0) { 7683 return a; 7684 } 7685 aExp++; 7686 } 7687 7688 if (n > 0x10000) { 7689 n = 0x10000; 7690 } else if (n < -0x10000) { 7691 n = -0x10000; 7692 } 7693 7694 aExp += n; 7695 return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, 7696 aSign, aExp, aSig, 0, status); 7697 } 7698 7699 float128 float128_scalbn(float128 a, int n, float_status *status) 7700 { 7701 flag aSign; 7702 int32_t aExp; 7703 uint64_t aSig0, aSig1; 7704 7705 aSig1 = extractFloat128Frac1( a ); 7706 aSig0 = extractFloat128Frac0( a ); 7707 aExp = extractFloat128Exp( a ); 7708 aSign = extractFloat128Sign( a ); 7709 if ( aExp == 0x7FFF ) { 7710 if ( aSig0 | aSig1 ) { 7711 return propagateFloat128NaN(a, a, status); 7712 } 7713 return a; 7714 } 7715 if (aExp != 0) { 7716 aSig0 |= LIT64( 0x0001000000000000 ); 7717 } else if (aSig0 == 0 && aSig1 == 0) { 7718 return a; 7719 } else { 7720 aExp++; 7721 } 7722 7723 if (n > 0x10000) { 7724 n = 0x10000; 7725 } else if (n < -0x10000) { 7726 n = -0x10000; 7727 } 7728 7729 aExp += n - 1; 7730 return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 7731 , status); 7732 7733 } 7734