xref: /openbmc/qemu/fpu/softfloat.c (revision f1020c2c)
1 /*
2  * QEMU float support
3  *
4  * The code in this source file is derived from release 2a of the SoftFloat
5  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6  * some later contributions) are provided under that license, as detailed below.
7  * It has subsequently been modified by contributors to the QEMU Project,
8  * so some portions are provided under:
9  *  the SoftFloat-2a license
10  *  the BSD license
11  *  GPL-v2-or-later
12  *
13  * Any future contributions to this file after December 1st 2014 will be
14  * taken to be licensed under the Softfloat-2a license unless specifically
15  * indicated otherwise.
16  */
17 
18 /*
19 ===============================================================================
20 This C source file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22 
23 Written by John R. Hauser.  This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704.  Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980.  The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32 
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38 
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43 
44 ===============================================================================
45 */
46 
47 /* BSD licensing:
48  * Copyright (c) 2006, Fabrice Bellard
49  * All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions are met:
53  *
54  * 1. Redistributions of source code must retain the above copyright notice,
55  * this list of conditions and the following disclaimer.
56  *
57  * 2. Redistributions in binary form must reproduce the above copyright notice,
58  * this list of conditions and the following disclaimer in the documentation
59  * and/or other materials provided with the distribution.
60  *
61  * 3. Neither the name of the copyright holder nor the names of its contributors
62  * may be used to endorse or promote products derived from this software without
63  * specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75  * THE POSSIBILITY OF SUCH DAMAGE.
76  */
77 
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79  * version 2 or later. See the COPYING file in the top-level directory.
80  */
81 
82 /* softfloat (and in particular the code in softfloat-specialize.h) is
83  * target-dependent and needs the TARGET_* macros.
84  */
85 #include "qemu/osdep.h"
86 
87 #include "fpu/softfloat.h"
88 
89 /* We only need stdlib for abort() */
90 
91 /*----------------------------------------------------------------------------
92 | Primitive arithmetic functions, including multi-word arithmetic, and
93 | division and square root approximations.  (Can be specialized to target if
94 | desired.)
95 *----------------------------------------------------------------------------*/
96 #include "softfloat-macros.h"
97 
98 /*----------------------------------------------------------------------------
99 | Functions and definitions to determine:  (1) whether tininess for underflow
100 | is detected before or after rounding by default, (2) what (if anything)
101 | happens when exceptions are raised, (3) how signaling NaNs are distinguished
102 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
103 | are propagated from function inputs to output.  These details are target-
104 | specific.
105 *----------------------------------------------------------------------------*/
106 #include "softfloat-specialize.h"
107 
108 /*----------------------------------------------------------------------------
109 | Returns the fraction bits of the half-precision floating-point value `a'.
110 *----------------------------------------------------------------------------*/
111 
112 static inline uint32_t extractFloat16Frac(float16 a)
113 {
114     return float16_val(a) & 0x3ff;
115 }
116 
117 /*----------------------------------------------------------------------------
118 | Returns the exponent bits of the half-precision floating-point value `a'.
119 *----------------------------------------------------------------------------*/
120 
121 static inline int extractFloat16Exp(float16 a)
122 {
123     return (float16_val(a) >> 10) & 0x1f;
124 }
125 
126 /*----------------------------------------------------------------------------
127 | Returns the sign bit of the single-precision floating-point value `a'.
128 *----------------------------------------------------------------------------*/
129 
130 static inline flag extractFloat16Sign(float16 a)
131 {
132     return float16_val(a)>>15;
133 }
134 
135 /*----------------------------------------------------------------------------
136 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
137 | and 7, and returns the properly rounded 32-bit integer corresponding to the
138 | input.  If `zSign' is 1, the input is negated before being converted to an
139 | integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
140 | is simply rounded to an integer, with the inexact exception raised if the
141 | input cannot be represented exactly as an integer.  However, if the fixed-
142 | point input is too large, the invalid exception is raised and the largest
143 | positive or negative integer is returned.
144 *----------------------------------------------------------------------------*/
145 
146 static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
147 {
148     int8_t roundingMode;
149     flag roundNearestEven;
150     int8_t roundIncrement, roundBits;
151     int32_t z;
152 
153     roundingMode = status->float_rounding_mode;
154     roundNearestEven = ( roundingMode == float_round_nearest_even );
155     switch (roundingMode) {
156     case float_round_nearest_even:
157     case float_round_ties_away:
158         roundIncrement = 0x40;
159         break;
160     case float_round_to_zero:
161         roundIncrement = 0;
162         break;
163     case float_round_up:
164         roundIncrement = zSign ? 0 : 0x7f;
165         break;
166     case float_round_down:
167         roundIncrement = zSign ? 0x7f : 0;
168         break;
169     default:
170         abort();
171     }
172     roundBits = absZ & 0x7F;
173     absZ = ( absZ + roundIncrement )>>7;
174     absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
175     z = absZ;
176     if ( zSign ) z = - z;
177     if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
178         float_raise(float_flag_invalid, status);
179         return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
180     }
181     if (roundBits) {
182         status->float_exception_flags |= float_flag_inexact;
183     }
184     return z;
185 
186 }
187 
188 /*----------------------------------------------------------------------------
189 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
190 | `absZ1', with binary point between bits 63 and 64 (between the input words),
191 | and returns the properly rounded 64-bit integer corresponding to the input.
192 | If `zSign' is 1, the input is negated before being converted to an integer.
193 | Ordinarily, the fixed-point input is simply rounded to an integer, with
194 | the inexact exception raised if the input cannot be represented exactly as
195 | an integer.  However, if the fixed-point input is too large, the invalid
196 | exception is raised and the largest positive or negative integer is
197 | returned.
198 *----------------------------------------------------------------------------*/
199 
200 static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
201                                float_status *status)
202 {
203     int8_t roundingMode;
204     flag roundNearestEven, increment;
205     int64_t z;
206 
207     roundingMode = status->float_rounding_mode;
208     roundNearestEven = ( roundingMode == float_round_nearest_even );
209     switch (roundingMode) {
210     case float_round_nearest_even:
211     case float_round_ties_away:
212         increment = ((int64_t) absZ1 < 0);
213         break;
214     case float_round_to_zero:
215         increment = 0;
216         break;
217     case float_round_up:
218         increment = !zSign && absZ1;
219         break;
220     case float_round_down:
221         increment = zSign && absZ1;
222         break;
223     default:
224         abort();
225     }
226     if ( increment ) {
227         ++absZ0;
228         if ( absZ0 == 0 ) goto overflow;
229         absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
230     }
231     z = absZ0;
232     if ( zSign ) z = - z;
233     if ( z && ( ( z < 0 ) ^ zSign ) ) {
234  overflow:
235         float_raise(float_flag_invalid, status);
236         return
237               zSign ? (int64_t) LIT64( 0x8000000000000000 )
238             : LIT64( 0x7FFFFFFFFFFFFFFF );
239     }
240     if (absZ1) {
241         status->float_exception_flags |= float_flag_inexact;
242     }
243     return z;
244 
245 }
246 
247 /*----------------------------------------------------------------------------
248 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
249 | `absZ1', with binary point between bits 63 and 64 (between the input words),
250 | and returns the properly rounded 64-bit unsigned integer corresponding to the
251 | input.  Ordinarily, the fixed-point input is simply rounded to an integer,
252 | with the inexact exception raised if the input cannot be represented exactly
253 | as an integer.  However, if the fixed-point input is too large, the invalid
254 | exception is raised and the largest unsigned integer is returned.
255 *----------------------------------------------------------------------------*/
256 
257 static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
258                                 uint64_t absZ1, float_status *status)
259 {
260     int8_t roundingMode;
261     flag roundNearestEven, increment;
262 
263     roundingMode = status->float_rounding_mode;
264     roundNearestEven = (roundingMode == float_round_nearest_even);
265     switch (roundingMode) {
266     case float_round_nearest_even:
267     case float_round_ties_away:
268         increment = ((int64_t)absZ1 < 0);
269         break;
270     case float_round_to_zero:
271         increment = 0;
272         break;
273     case float_round_up:
274         increment = !zSign && absZ1;
275         break;
276     case float_round_down:
277         increment = zSign && absZ1;
278         break;
279     default:
280         abort();
281     }
282     if (increment) {
283         ++absZ0;
284         if (absZ0 == 0) {
285             float_raise(float_flag_invalid, status);
286             return LIT64(0xFFFFFFFFFFFFFFFF);
287         }
288         absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
289     }
290 
291     if (zSign && absZ0) {
292         float_raise(float_flag_invalid, status);
293         return 0;
294     }
295 
296     if (absZ1) {
297         status->float_exception_flags |= float_flag_inexact;
298     }
299     return absZ0;
300 }
301 
302 /*----------------------------------------------------------------------------
303 | Returns the fraction bits of the single-precision floating-point value `a'.
304 *----------------------------------------------------------------------------*/
305 
306 static inline uint32_t extractFloat32Frac( float32 a )
307 {
308 
309     return float32_val(a) & 0x007FFFFF;
310 
311 }
312 
313 /*----------------------------------------------------------------------------
314 | Returns the exponent bits of the single-precision floating-point value `a'.
315 *----------------------------------------------------------------------------*/
316 
317 static inline int extractFloat32Exp(float32 a)
318 {
319 
320     return ( float32_val(a)>>23 ) & 0xFF;
321 
322 }
323 
324 /*----------------------------------------------------------------------------
325 | Returns the sign bit of the single-precision floating-point value `a'.
326 *----------------------------------------------------------------------------*/
327 
328 static inline flag extractFloat32Sign( float32 a )
329 {
330 
331     return float32_val(a)>>31;
332 
333 }
334 
335 /*----------------------------------------------------------------------------
336 | If `a' is denormal and we are in flush-to-zero mode then set the
337 | input-denormal exception and return zero. Otherwise just return the value.
338 *----------------------------------------------------------------------------*/
339 float32 float32_squash_input_denormal(float32 a, float_status *status)
340 {
341     if (status->flush_inputs_to_zero) {
342         if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
343             float_raise(float_flag_input_denormal, status);
344             return make_float32(float32_val(a) & 0x80000000);
345         }
346     }
347     return a;
348 }
349 
350 /*----------------------------------------------------------------------------
351 | Normalizes the subnormal single-precision floating-point value represented
352 | by the denormalized significand `aSig'.  The normalized exponent and
353 | significand are stored at the locations pointed to by `zExpPtr' and
354 | `zSigPtr', respectively.
355 *----------------------------------------------------------------------------*/
356 
357 static void
358  normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
359 {
360     int8_t shiftCount;
361 
362     shiftCount = countLeadingZeros32( aSig ) - 8;
363     *zSigPtr = aSig<<shiftCount;
364     *zExpPtr = 1 - shiftCount;
365 
366 }
367 
368 /*----------------------------------------------------------------------------
369 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
370 | single-precision floating-point value, returning the result.  After being
371 | shifted into the proper positions, the three fields are simply added
372 | together to form the result.  This means that any integer portion of `zSig'
373 | will be added into the exponent.  Since a properly normalized significand
374 | will have an integer portion equal to 1, the `zExp' input should be 1 less
375 | than the desired result exponent whenever `zSig' is a complete, normalized
376 | significand.
377 *----------------------------------------------------------------------------*/
378 
379 static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig)
380 {
381 
382     return make_float32(
383           ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
384 
385 }
386 
387 /*----------------------------------------------------------------------------
388 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
389 | and significand `zSig', and returns the proper single-precision floating-
390 | point value corresponding to the abstract input.  Ordinarily, the abstract
391 | value is simply rounded and packed into the single-precision format, with
392 | the inexact exception raised if the abstract input cannot be represented
393 | exactly.  However, if the abstract value is too large, the overflow and
394 | inexact exceptions are raised and an infinity or maximal finite value is
395 | returned.  If the abstract value is too small, the input value is rounded to
396 | a subnormal number, and the underflow and inexact exceptions are raised if
397 | the abstract input cannot be represented exactly as a subnormal single-
398 | precision floating-point number.
399 |     The input significand `zSig' has its binary point between bits 30
400 | and 29, which is 7 bits to the left of the usual location.  This shifted
401 | significand must be normalized or smaller.  If `zSig' is not normalized,
402 | `zExp' must be 0; in that case, the result returned is a subnormal number,
403 | and it must not require rounding.  In the usual case that `zSig' is
404 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
405 | The handling of underflow and overflow follows the IEC/IEEE Standard for
406 | Binary Floating-Point Arithmetic.
407 *----------------------------------------------------------------------------*/
408 
409 static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
410                                    float_status *status)
411 {
412     int8_t roundingMode;
413     flag roundNearestEven;
414     int8_t roundIncrement, roundBits;
415     flag isTiny;
416 
417     roundingMode = status->float_rounding_mode;
418     roundNearestEven = ( roundingMode == float_round_nearest_even );
419     switch (roundingMode) {
420     case float_round_nearest_even:
421     case float_round_ties_away:
422         roundIncrement = 0x40;
423         break;
424     case float_round_to_zero:
425         roundIncrement = 0;
426         break;
427     case float_round_up:
428         roundIncrement = zSign ? 0 : 0x7f;
429         break;
430     case float_round_down:
431         roundIncrement = zSign ? 0x7f : 0;
432         break;
433     default:
434         abort();
435         break;
436     }
437     roundBits = zSig & 0x7F;
438     if ( 0xFD <= (uint16_t) zExp ) {
439         if (    ( 0xFD < zExp )
440              || (    ( zExp == 0xFD )
441                   && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
442            ) {
443             float_raise(float_flag_overflow | float_flag_inexact, status);
444             return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
445         }
446         if ( zExp < 0 ) {
447             if (status->flush_to_zero) {
448                 float_raise(float_flag_output_denormal, status);
449                 return packFloat32(zSign, 0, 0);
450             }
451             isTiny =
452                 (status->float_detect_tininess
453                  == float_tininess_before_rounding)
454                 || ( zExp < -1 )
455                 || ( zSig + roundIncrement < 0x80000000 );
456             shift32RightJamming( zSig, - zExp, &zSig );
457             zExp = 0;
458             roundBits = zSig & 0x7F;
459             if (isTiny && roundBits) {
460                 float_raise(float_flag_underflow, status);
461             }
462         }
463     }
464     if (roundBits) {
465         status->float_exception_flags |= float_flag_inexact;
466     }
467     zSig = ( zSig + roundIncrement )>>7;
468     zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
469     if ( zSig == 0 ) zExp = 0;
470     return packFloat32( zSign, zExp, zSig );
471 
472 }
473 
474 /*----------------------------------------------------------------------------
475 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
476 | and significand `zSig', and returns the proper single-precision floating-
477 | point value corresponding to the abstract input.  This routine is just like
478 | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
479 | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
480 | floating-point exponent.
481 *----------------------------------------------------------------------------*/
482 
483 static float32
484  normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
485                               float_status *status)
486 {
487     int8_t shiftCount;
488 
489     shiftCount = countLeadingZeros32( zSig ) - 1;
490     return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
491                                status);
492 
493 }
494 
495 /*----------------------------------------------------------------------------
496 | Returns the fraction bits of the double-precision floating-point value `a'.
497 *----------------------------------------------------------------------------*/
498 
499 static inline uint64_t extractFloat64Frac( float64 a )
500 {
501 
502     return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
503 
504 }
505 
506 /*----------------------------------------------------------------------------
507 | Returns the exponent bits of the double-precision floating-point value `a'.
508 *----------------------------------------------------------------------------*/
509 
510 static inline int extractFloat64Exp(float64 a)
511 {
512 
513     return ( float64_val(a)>>52 ) & 0x7FF;
514 
515 }
516 
517 /*----------------------------------------------------------------------------
518 | Returns the sign bit of the double-precision floating-point value `a'.
519 *----------------------------------------------------------------------------*/
520 
521 static inline flag extractFloat64Sign( float64 a )
522 {
523 
524     return float64_val(a)>>63;
525 
526 }
527 
528 /*----------------------------------------------------------------------------
529 | If `a' is denormal and we are in flush-to-zero mode then set the
530 | input-denormal exception and return zero. Otherwise just return the value.
531 *----------------------------------------------------------------------------*/
532 float64 float64_squash_input_denormal(float64 a, float_status *status)
533 {
534     if (status->flush_inputs_to_zero) {
535         if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
536             float_raise(float_flag_input_denormal, status);
537             return make_float64(float64_val(a) & (1ULL << 63));
538         }
539     }
540     return a;
541 }
542 
543 /*----------------------------------------------------------------------------
544 | Normalizes the subnormal double-precision floating-point value represented
545 | by the denormalized significand `aSig'.  The normalized exponent and
546 | significand are stored at the locations pointed to by `zExpPtr' and
547 | `zSigPtr', respectively.
548 *----------------------------------------------------------------------------*/
549 
550 static void
551  normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
552 {
553     int8_t shiftCount;
554 
555     shiftCount = countLeadingZeros64( aSig ) - 11;
556     *zSigPtr = aSig<<shiftCount;
557     *zExpPtr = 1 - shiftCount;
558 
559 }
560 
561 /*----------------------------------------------------------------------------
562 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
563 | double-precision floating-point value, returning the result.  After being
564 | shifted into the proper positions, the three fields are simply added
565 | together to form the result.  This means that any integer portion of `zSig'
566 | will be added into the exponent.  Since a properly normalized significand
567 | will have an integer portion equal to 1, the `zExp' input should be 1 less
568 | than the desired result exponent whenever `zSig' is a complete, normalized
569 | significand.
570 *----------------------------------------------------------------------------*/
571 
572 static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
573 {
574 
575     return make_float64(
576         ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
577 
578 }
579 
580 /*----------------------------------------------------------------------------
581 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
582 | and significand `zSig', and returns the proper double-precision floating-
583 | point value corresponding to the abstract input.  Ordinarily, the abstract
584 | value is simply rounded and packed into the double-precision format, with
585 | the inexact exception raised if the abstract input cannot be represented
586 | exactly.  However, if the abstract value is too large, the overflow and
587 | inexact exceptions are raised and an infinity or maximal finite value is
588 | returned.  If the abstract value is too small, the input value is rounded to
589 | a subnormal number, and the underflow and inexact exceptions are raised if
590 | the abstract input cannot be represented exactly as a subnormal double-
591 | precision floating-point number.
592 |     The input significand `zSig' has its binary point between bits 62
593 | and 61, which is 10 bits to the left of the usual location.  This shifted
594 | significand must be normalized or smaller.  If `zSig' is not normalized,
595 | `zExp' must be 0; in that case, the result returned is a subnormal number,
596 | and it must not require rounding.  In the usual case that `zSig' is
597 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
598 | The handling of underflow and overflow follows the IEC/IEEE Standard for
599 | Binary Floating-Point Arithmetic.
600 *----------------------------------------------------------------------------*/
601 
602 static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
603                                    float_status *status)
604 {
605     int8_t roundingMode;
606     flag roundNearestEven;
607     int roundIncrement, roundBits;
608     flag isTiny;
609 
610     roundingMode = status->float_rounding_mode;
611     roundNearestEven = ( roundingMode == float_round_nearest_even );
612     switch (roundingMode) {
613     case float_round_nearest_even:
614     case float_round_ties_away:
615         roundIncrement = 0x200;
616         break;
617     case float_round_to_zero:
618         roundIncrement = 0;
619         break;
620     case float_round_up:
621         roundIncrement = zSign ? 0 : 0x3ff;
622         break;
623     case float_round_down:
624         roundIncrement = zSign ? 0x3ff : 0;
625         break;
626     default:
627         abort();
628     }
629     roundBits = zSig & 0x3FF;
630     if ( 0x7FD <= (uint16_t) zExp ) {
631         if (    ( 0x7FD < zExp )
632              || (    ( zExp == 0x7FD )
633                   && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
634            ) {
635             float_raise(float_flag_overflow | float_flag_inexact, status);
636             return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
637         }
638         if ( zExp < 0 ) {
639             if (status->flush_to_zero) {
640                 float_raise(float_flag_output_denormal, status);
641                 return packFloat64(zSign, 0, 0);
642             }
643             isTiny =
644                    (status->float_detect_tininess
645                     == float_tininess_before_rounding)
646                 || ( zExp < -1 )
647                 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
648             shift64RightJamming( zSig, - zExp, &zSig );
649             zExp = 0;
650             roundBits = zSig & 0x3FF;
651             if (isTiny && roundBits) {
652                 float_raise(float_flag_underflow, status);
653             }
654         }
655     }
656     if (roundBits) {
657         status->float_exception_flags |= float_flag_inexact;
658     }
659     zSig = ( zSig + roundIncrement )>>10;
660     zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
661     if ( zSig == 0 ) zExp = 0;
662     return packFloat64( zSign, zExp, zSig );
663 
664 }
665 
666 /*----------------------------------------------------------------------------
667 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
668 | and significand `zSig', and returns the proper double-precision floating-
669 | point value corresponding to the abstract input.  This routine is just like
670 | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
671 | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
672 | floating-point exponent.
673 *----------------------------------------------------------------------------*/
674 
675 static float64
676  normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
677                               float_status *status)
678 {
679     int8_t shiftCount;
680 
681     shiftCount = countLeadingZeros64( zSig ) - 1;
682     return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
683                                status);
684 
685 }
686 
687 /*----------------------------------------------------------------------------
688 | Returns the fraction bits of the extended double-precision floating-point
689 | value `a'.
690 *----------------------------------------------------------------------------*/
691 
692 static inline uint64_t extractFloatx80Frac( floatx80 a )
693 {
694 
695     return a.low;
696 
697 }
698 
699 /*----------------------------------------------------------------------------
700 | Returns the exponent bits of the extended double-precision floating-point
701 | value `a'.
702 *----------------------------------------------------------------------------*/
703 
704 static inline int32_t extractFloatx80Exp( floatx80 a )
705 {
706 
707     return a.high & 0x7FFF;
708 
709 }
710 
711 /*----------------------------------------------------------------------------
712 | Returns the sign bit of the extended double-precision floating-point value
713 | `a'.
714 *----------------------------------------------------------------------------*/
715 
716 static inline flag extractFloatx80Sign( floatx80 a )
717 {
718 
719     return a.high>>15;
720 
721 }
722 
723 /*----------------------------------------------------------------------------
724 | Normalizes the subnormal extended double-precision floating-point value
725 | represented by the denormalized significand `aSig'.  The normalized exponent
726 | and significand are stored at the locations pointed to by `zExpPtr' and
727 | `zSigPtr', respectively.
728 *----------------------------------------------------------------------------*/
729 
730 static void
731  normalizeFloatx80Subnormal( uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr )
732 {
733     int8_t shiftCount;
734 
735     shiftCount = countLeadingZeros64( aSig );
736     *zSigPtr = aSig<<shiftCount;
737     *zExpPtr = 1 - shiftCount;
738 
739 }
740 
741 /*----------------------------------------------------------------------------
742 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
743 | extended double-precision floating-point value, returning the result.
744 *----------------------------------------------------------------------------*/
745 
746 static inline floatx80 packFloatx80( flag zSign, int32_t zExp, uint64_t zSig )
747 {
748     floatx80 z;
749 
750     z.low = zSig;
751     z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
752     return z;
753 
754 }
755 
756 /*----------------------------------------------------------------------------
757 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
758 | and extended significand formed by the concatenation of `zSig0' and `zSig1',
759 | and returns the proper extended double-precision floating-point value
760 | corresponding to the abstract input.  Ordinarily, the abstract value is
761 | rounded and packed into the extended double-precision format, with the
762 | inexact exception raised if the abstract input cannot be represented
763 | exactly.  However, if the abstract value is too large, the overflow and
764 | inexact exceptions are raised and an infinity or maximal finite value is
765 | returned.  If the abstract value is too small, the input value is rounded to
766 | a subnormal number, and the underflow and inexact exceptions are raised if
767 | the abstract input cannot be represented exactly as a subnormal extended
768 | double-precision floating-point number.
769 |     If `roundingPrecision' is 32 or 64, the result is rounded to the same
770 | number of bits as single or double precision, respectively.  Otherwise, the
771 | result is rounded to the full precision of the extended double-precision
772 | format.
773 |     The input significand must be normalized or smaller.  If the input
774 | significand is not normalized, `zExp' must be 0; in that case, the result
775 | returned is a subnormal number, and it must not require rounding.  The
776 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
777 | Floating-Point Arithmetic.
778 *----------------------------------------------------------------------------*/
779 
780 static floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
781                                      int32_t zExp, uint64_t zSig0, uint64_t zSig1,
782                                      float_status *status)
783 {
784     int8_t roundingMode;
785     flag roundNearestEven, increment, isTiny;
786     int64_t roundIncrement, roundMask, roundBits;
787 
788     roundingMode = status->float_rounding_mode;
789     roundNearestEven = ( roundingMode == float_round_nearest_even );
790     if ( roundingPrecision == 80 ) goto precision80;
791     if ( roundingPrecision == 64 ) {
792         roundIncrement = LIT64( 0x0000000000000400 );
793         roundMask = LIT64( 0x00000000000007FF );
794     }
795     else if ( roundingPrecision == 32 ) {
796         roundIncrement = LIT64( 0x0000008000000000 );
797         roundMask = LIT64( 0x000000FFFFFFFFFF );
798     }
799     else {
800         goto precision80;
801     }
802     zSig0 |= ( zSig1 != 0 );
803     switch (roundingMode) {
804     case float_round_nearest_even:
805     case float_round_ties_away:
806         break;
807     case float_round_to_zero:
808         roundIncrement = 0;
809         break;
810     case float_round_up:
811         roundIncrement = zSign ? 0 : roundMask;
812         break;
813     case float_round_down:
814         roundIncrement = zSign ? roundMask : 0;
815         break;
816     default:
817         abort();
818     }
819     roundBits = zSig0 & roundMask;
820     if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
821         if (    ( 0x7FFE < zExp )
822              || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
823            ) {
824             goto overflow;
825         }
826         if ( zExp <= 0 ) {
827             if (status->flush_to_zero) {
828                 float_raise(float_flag_output_denormal, status);
829                 return packFloatx80(zSign, 0, 0);
830             }
831             isTiny =
832                    (status->float_detect_tininess
833                     == float_tininess_before_rounding)
834                 || ( zExp < 0 )
835                 || ( zSig0 <= zSig0 + roundIncrement );
836             shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
837             zExp = 0;
838             roundBits = zSig0 & roundMask;
839             if (isTiny && roundBits) {
840                 float_raise(float_flag_underflow, status);
841             }
842             if (roundBits) {
843                 status->float_exception_flags |= float_flag_inexact;
844             }
845             zSig0 += roundIncrement;
846             if ( (int64_t) zSig0 < 0 ) zExp = 1;
847             roundIncrement = roundMask + 1;
848             if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
849                 roundMask |= roundIncrement;
850             }
851             zSig0 &= ~ roundMask;
852             return packFloatx80( zSign, zExp, zSig0 );
853         }
854     }
855     if (roundBits) {
856         status->float_exception_flags |= float_flag_inexact;
857     }
858     zSig0 += roundIncrement;
859     if ( zSig0 < roundIncrement ) {
860         ++zExp;
861         zSig0 = LIT64( 0x8000000000000000 );
862     }
863     roundIncrement = roundMask + 1;
864     if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
865         roundMask |= roundIncrement;
866     }
867     zSig0 &= ~ roundMask;
868     if ( zSig0 == 0 ) zExp = 0;
869     return packFloatx80( zSign, zExp, zSig0 );
870  precision80:
871     switch (roundingMode) {
872     case float_round_nearest_even:
873     case float_round_ties_away:
874         increment = ((int64_t)zSig1 < 0);
875         break;
876     case float_round_to_zero:
877         increment = 0;
878         break;
879     case float_round_up:
880         increment = !zSign && zSig1;
881         break;
882     case float_round_down:
883         increment = zSign && zSig1;
884         break;
885     default:
886         abort();
887     }
888     if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
889         if (    ( 0x7FFE < zExp )
890              || (    ( zExp == 0x7FFE )
891                   && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
892                   && increment
893                 )
894            ) {
895             roundMask = 0;
896  overflow:
897             float_raise(float_flag_overflow | float_flag_inexact, status);
898             if (    ( roundingMode == float_round_to_zero )
899                  || ( zSign && ( roundingMode == float_round_up ) )
900                  || ( ! zSign && ( roundingMode == float_round_down ) )
901                ) {
902                 return packFloatx80( zSign, 0x7FFE, ~ roundMask );
903             }
904             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
905         }
906         if ( zExp <= 0 ) {
907             isTiny =
908                    (status->float_detect_tininess
909                     == float_tininess_before_rounding)
910                 || ( zExp < 0 )
911                 || ! increment
912                 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
913             shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
914             zExp = 0;
915             if (isTiny && zSig1) {
916                 float_raise(float_flag_underflow, status);
917             }
918             if (zSig1) {
919                 status->float_exception_flags |= float_flag_inexact;
920             }
921             switch (roundingMode) {
922             case float_round_nearest_even:
923             case float_round_ties_away:
924                 increment = ((int64_t)zSig1 < 0);
925                 break;
926             case float_round_to_zero:
927                 increment = 0;
928                 break;
929             case float_round_up:
930                 increment = !zSign && zSig1;
931                 break;
932             case float_round_down:
933                 increment = zSign && zSig1;
934                 break;
935             default:
936                 abort();
937             }
938             if ( increment ) {
939                 ++zSig0;
940                 zSig0 &=
941                     ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
942                 if ( (int64_t) zSig0 < 0 ) zExp = 1;
943             }
944             return packFloatx80( zSign, zExp, zSig0 );
945         }
946     }
947     if (zSig1) {
948         status->float_exception_flags |= float_flag_inexact;
949     }
950     if ( increment ) {
951         ++zSig0;
952         if ( zSig0 == 0 ) {
953             ++zExp;
954             zSig0 = LIT64( 0x8000000000000000 );
955         }
956         else {
957             zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
958         }
959     }
960     else {
961         if ( zSig0 == 0 ) zExp = 0;
962     }
963     return packFloatx80( zSign, zExp, zSig0 );
964 
965 }
966 
967 /*----------------------------------------------------------------------------
968 | Takes an abstract floating-point value having sign `zSign', exponent
969 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
970 | and returns the proper extended double-precision floating-point value
971 | corresponding to the abstract input.  This routine is just like
972 | `roundAndPackFloatx80' except that the input significand does not have to be
973 | normalized.
974 *----------------------------------------------------------------------------*/
975 
976 static floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
977                                               flag zSign, int32_t zExp,
978                                               uint64_t zSig0, uint64_t zSig1,
979                                               float_status *status)
980 {
981     int8_t shiftCount;
982 
983     if ( zSig0 == 0 ) {
984         zSig0 = zSig1;
985         zSig1 = 0;
986         zExp -= 64;
987     }
988     shiftCount = countLeadingZeros64( zSig0 );
989     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
990     zExp -= shiftCount;
991     return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
992                                 zSig0, zSig1, status);
993 
994 }
995 
996 /*----------------------------------------------------------------------------
997 | Returns the least-significant 64 fraction bits of the quadruple-precision
998 | floating-point value `a'.
999 *----------------------------------------------------------------------------*/
1000 
1001 static inline uint64_t extractFloat128Frac1( float128 a )
1002 {
1003 
1004     return a.low;
1005 
1006 }
1007 
1008 /*----------------------------------------------------------------------------
1009 | Returns the most-significant 48 fraction bits of the quadruple-precision
1010 | floating-point value `a'.
1011 *----------------------------------------------------------------------------*/
1012 
1013 static inline uint64_t extractFloat128Frac0( float128 a )
1014 {
1015 
1016     return a.high & LIT64( 0x0000FFFFFFFFFFFF );
1017 
1018 }
1019 
1020 /*----------------------------------------------------------------------------
1021 | Returns the exponent bits of the quadruple-precision floating-point value
1022 | `a'.
1023 *----------------------------------------------------------------------------*/
1024 
1025 static inline int32_t extractFloat128Exp( float128 a )
1026 {
1027 
1028     return ( a.high>>48 ) & 0x7FFF;
1029 
1030 }
1031 
1032 /*----------------------------------------------------------------------------
1033 | Returns the sign bit of the quadruple-precision floating-point value `a'.
1034 *----------------------------------------------------------------------------*/
1035 
1036 static inline flag extractFloat128Sign( float128 a )
1037 {
1038 
1039     return a.high>>63;
1040 
1041 }
1042 
1043 /*----------------------------------------------------------------------------
1044 | Normalizes the subnormal quadruple-precision floating-point value
1045 | represented by the denormalized significand formed by the concatenation of
1046 | `aSig0' and `aSig1'.  The normalized exponent is stored at the location
1047 | pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
1048 | significand are stored at the location pointed to by `zSig0Ptr', and the
1049 | least significant 64 bits of the normalized significand are stored at the
1050 | location pointed to by `zSig1Ptr'.
1051 *----------------------------------------------------------------------------*/
1052 
1053 static void
1054  normalizeFloat128Subnormal(
1055      uint64_t aSig0,
1056      uint64_t aSig1,
1057      int32_t *zExpPtr,
1058      uint64_t *zSig0Ptr,
1059      uint64_t *zSig1Ptr
1060  )
1061 {
1062     int8_t shiftCount;
1063 
1064     if ( aSig0 == 0 ) {
1065         shiftCount = countLeadingZeros64( aSig1 ) - 15;
1066         if ( shiftCount < 0 ) {
1067             *zSig0Ptr = aSig1>>( - shiftCount );
1068             *zSig1Ptr = aSig1<<( shiftCount & 63 );
1069         }
1070         else {
1071             *zSig0Ptr = aSig1<<shiftCount;
1072             *zSig1Ptr = 0;
1073         }
1074         *zExpPtr = - shiftCount - 63;
1075     }
1076     else {
1077         shiftCount = countLeadingZeros64( aSig0 ) - 15;
1078         shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
1079         *zExpPtr = 1 - shiftCount;
1080     }
1081 
1082 }
1083 
1084 /*----------------------------------------------------------------------------
1085 | Packs the sign `zSign', the exponent `zExp', and the significand formed
1086 | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
1087 | floating-point value, returning the result.  After being shifted into the
1088 | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
1089 | added together to form the most significant 32 bits of the result.  This
1090 | means that any integer portion of `zSig0' will be added into the exponent.
1091 | Since a properly normalized significand will have an integer portion equal
1092 | to 1, the `zExp' input should be 1 less than the desired result exponent
1093 | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
1094 | significand.
1095 *----------------------------------------------------------------------------*/
1096 
1097 static inline float128
1098  packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
1099 {
1100     float128 z;
1101 
1102     z.low = zSig1;
1103     z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
1104     return z;
1105 
1106 }
1107 
1108 /*----------------------------------------------------------------------------
1109 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1110 | and extended significand formed by the concatenation of `zSig0', `zSig1',
1111 | and `zSig2', and returns the proper quadruple-precision floating-point value
1112 | corresponding to the abstract input.  Ordinarily, the abstract value is
1113 | simply rounded and packed into the quadruple-precision format, with the
1114 | inexact exception raised if the abstract input cannot be represented
1115 | exactly.  However, if the abstract value is too large, the overflow and
1116 | inexact exceptions are raised and an infinity or maximal finite value is
1117 | returned.  If the abstract value is too small, the input value is rounded to
1118 | a subnormal number, and the underflow and inexact exceptions are raised if
1119 | the abstract input cannot be represented exactly as a subnormal quadruple-
1120 | precision floating-point number.
1121 |     The input significand must be normalized or smaller.  If the input
1122 | significand is not normalized, `zExp' must be 0; in that case, the result
1123 | returned is a subnormal number, and it must not require rounding.  In the
1124 | usual case that the input significand is normalized, `zExp' must be 1 less
1125 | than the ``true'' floating-point exponent.  The handling of underflow and
1126 | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1127 *----------------------------------------------------------------------------*/
1128 
1129 static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
1130                                      uint64_t zSig0, uint64_t zSig1,
1131                                      uint64_t zSig2, float_status *status)
1132 {
1133     int8_t roundingMode;
1134     flag roundNearestEven, increment, isTiny;
1135 
1136     roundingMode = status->float_rounding_mode;
1137     roundNearestEven = ( roundingMode == float_round_nearest_even );
1138     switch (roundingMode) {
1139     case float_round_nearest_even:
1140     case float_round_ties_away:
1141         increment = ((int64_t)zSig2 < 0);
1142         break;
1143     case float_round_to_zero:
1144         increment = 0;
1145         break;
1146     case float_round_up:
1147         increment = !zSign && zSig2;
1148         break;
1149     case float_round_down:
1150         increment = zSign && zSig2;
1151         break;
1152     default:
1153         abort();
1154     }
1155     if ( 0x7FFD <= (uint32_t) zExp ) {
1156         if (    ( 0x7FFD < zExp )
1157              || (    ( zExp == 0x7FFD )
1158                   && eq128(
1159                          LIT64( 0x0001FFFFFFFFFFFF ),
1160                          LIT64( 0xFFFFFFFFFFFFFFFF ),
1161                          zSig0,
1162                          zSig1
1163                      )
1164                   && increment
1165                 )
1166            ) {
1167             float_raise(float_flag_overflow | float_flag_inexact, status);
1168             if (    ( roundingMode == float_round_to_zero )
1169                  || ( zSign && ( roundingMode == float_round_up ) )
1170                  || ( ! zSign && ( roundingMode == float_round_down ) )
1171                ) {
1172                 return
1173                     packFloat128(
1174                         zSign,
1175                         0x7FFE,
1176                         LIT64( 0x0000FFFFFFFFFFFF ),
1177                         LIT64( 0xFFFFFFFFFFFFFFFF )
1178                     );
1179             }
1180             return packFloat128( zSign, 0x7FFF, 0, 0 );
1181         }
1182         if ( zExp < 0 ) {
1183             if (status->flush_to_zero) {
1184                 float_raise(float_flag_output_denormal, status);
1185                 return packFloat128(zSign, 0, 0, 0);
1186             }
1187             isTiny =
1188                    (status->float_detect_tininess
1189                     == float_tininess_before_rounding)
1190                 || ( zExp < -1 )
1191                 || ! increment
1192                 || lt128(
1193                        zSig0,
1194                        zSig1,
1195                        LIT64( 0x0001FFFFFFFFFFFF ),
1196                        LIT64( 0xFFFFFFFFFFFFFFFF )
1197                    );
1198             shift128ExtraRightJamming(
1199                 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
1200             zExp = 0;
1201             if (isTiny && zSig2) {
1202                 float_raise(float_flag_underflow, status);
1203             }
1204             switch (roundingMode) {
1205             case float_round_nearest_even:
1206             case float_round_ties_away:
1207                 increment = ((int64_t)zSig2 < 0);
1208                 break;
1209             case float_round_to_zero:
1210                 increment = 0;
1211                 break;
1212             case float_round_up:
1213                 increment = !zSign && zSig2;
1214                 break;
1215             case float_round_down:
1216                 increment = zSign && zSig2;
1217                 break;
1218             default:
1219                 abort();
1220             }
1221         }
1222     }
1223     if (zSig2) {
1224         status->float_exception_flags |= float_flag_inexact;
1225     }
1226     if ( increment ) {
1227         add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
1228         zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
1229     }
1230     else {
1231         if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
1232     }
1233     return packFloat128( zSign, zExp, zSig0, zSig1 );
1234 
1235 }
1236 
1237 /*----------------------------------------------------------------------------
1238 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1239 | and significand formed by the concatenation of `zSig0' and `zSig1', and
1240 | returns the proper quadruple-precision floating-point value corresponding
1241 | to the abstract input.  This routine is just like `roundAndPackFloat128'
1242 | except that the input significand has fewer bits and does not have to be
1243 | normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
1244 | point exponent.
1245 *----------------------------------------------------------------------------*/
1246 
1247 static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
1248                                               uint64_t zSig0, uint64_t zSig1,
1249                                               float_status *status)
1250 {
1251     int8_t shiftCount;
1252     uint64_t zSig2;
1253 
1254     if ( zSig0 == 0 ) {
1255         zSig0 = zSig1;
1256         zSig1 = 0;
1257         zExp -= 64;
1258     }
1259     shiftCount = countLeadingZeros64( zSig0 ) - 15;
1260     if ( 0 <= shiftCount ) {
1261         zSig2 = 0;
1262         shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
1263     }
1264     else {
1265         shift128ExtraRightJamming(
1266             zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
1267     }
1268     zExp -= shiftCount;
1269     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
1270 
1271 }
1272 
1273 /*----------------------------------------------------------------------------
1274 | Returns the result of converting the 32-bit two's complement integer `a'
1275 | to the single-precision floating-point format.  The conversion is performed
1276 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1277 *----------------------------------------------------------------------------*/
1278 
1279 float32 int32_to_float32(int32_t a, float_status *status)
1280 {
1281     flag zSign;
1282 
1283     if ( a == 0 ) return float32_zero;
1284     if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
1285     zSign = ( a < 0 );
1286     return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status);
1287 }
1288 
1289 /*----------------------------------------------------------------------------
1290 | Returns the result of converting the 32-bit two's complement integer `a'
1291 | to the double-precision floating-point format.  The conversion is performed
1292 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1293 *----------------------------------------------------------------------------*/
1294 
1295 float64 int32_to_float64(int32_t a, float_status *status)
1296 {
1297     flag zSign;
1298     uint32_t absA;
1299     int8_t shiftCount;
1300     uint64_t zSig;
1301 
1302     if ( a == 0 ) return float64_zero;
1303     zSign = ( a < 0 );
1304     absA = zSign ? - a : a;
1305     shiftCount = countLeadingZeros32( absA ) + 21;
1306     zSig = absA;
1307     return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
1308 
1309 }
1310 
1311 /*----------------------------------------------------------------------------
1312 | Returns the result of converting the 32-bit two's complement integer `a'
1313 | to the extended double-precision floating-point format.  The conversion
1314 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1315 | Arithmetic.
1316 *----------------------------------------------------------------------------*/
1317 
1318 floatx80 int32_to_floatx80(int32_t a, float_status *status)
1319 {
1320     flag zSign;
1321     uint32_t absA;
1322     int8_t shiftCount;
1323     uint64_t zSig;
1324 
1325     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
1326     zSign = ( a < 0 );
1327     absA = zSign ? - a : a;
1328     shiftCount = countLeadingZeros32( absA ) + 32;
1329     zSig = absA;
1330     return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
1331 
1332 }
1333 
1334 /*----------------------------------------------------------------------------
1335 | Returns the result of converting the 32-bit two's complement integer `a' to
1336 | the quadruple-precision floating-point format.  The conversion is performed
1337 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1338 *----------------------------------------------------------------------------*/
1339 
1340 float128 int32_to_float128(int32_t a, float_status *status)
1341 {
1342     flag zSign;
1343     uint32_t absA;
1344     int8_t shiftCount;
1345     uint64_t zSig0;
1346 
1347     if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
1348     zSign = ( a < 0 );
1349     absA = zSign ? - a : a;
1350     shiftCount = countLeadingZeros32( absA ) + 17;
1351     zSig0 = absA;
1352     return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
1353 
1354 }
1355 
1356 /*----------------------------------------------------------------------------
1357 | Returns the result of converting the 64-bit two's complement integer `a'
1358 | to the single-precision floating-point format.  The conversion is performed
1359 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1360 *----------------------------------------------------------------------------*/
1361 
1362 float32 int64_to_float32(int64_t a, float_status *status)
1363 {
1364     flag zSign;
1365     uint64_t absA;
1366     int8_t shiftCount;
1367 
1368     if ( a == 0 ) return float32_zero;
1369     zSign = ( a < 0 );
1370     absA = zSign ? - a : a;
1371     shiftCount = countLeadingZeros64( absA ) - 40;
1372     if ( 0 <= shiftCount ) {
1373         return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
1374     }
1375     else {
1376         shiftCount += 7;
1377         if ( shiftCount < 0 ) {
1378             shift64RightJamming( absA, - shiftCount, &absA );
1379         }
1380         else {
1381             absA <<= shiftCount;
1382         }
1383         return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status);
1384     }
1385 
1386 }
1387 
1388 /*----------------------------------------------------------------------------
1389 | Returns the result of converting the 64-bit two's complement integer `a'
1390 | to the double-precision floating-point format.  The conversion is performed
1391 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1392 *----------------------------------------------------------------------------*/
1393 
1394 float64 int64_to_float64(int64_t a, float_status *status)
1395 {
1396     flag zSign;
1397 
1398     if ( a == 0 ) return float64_zero;
1399     if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
1400         return packFloat64( 1, 0x43E, 0 );
1401     }
1402     zSign = ( a < 0 );
1403     return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status);
1404 }
1405 
1406 /*----------------------------------------------------------------------------
1407 | Returns the result of converting the 64-bit two's complement integer `a'
1408 | to the extended double-precision floating-point format.  The conversion
1409 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1410 | Arithmetic.
1411 *----------------------------------------------------------------------------*/
1412 
1413 floatx80 int64_to_floatx80(int64_t a, float_status *status)
1414 {
1415     flag zSign;
1416     uint64_t absA;
1417     int8_t shiftCount;
1418 
1419     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
1420     zSign = ( a < 0 );
1421     absA = zSign ? - a : a;
1422     shiftCount = countLeadingZeros64( absA );
1423     return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
1424 
1425 }
1426 
1427 /*----------------------------------------------------------------------------
1428 | Returns the result of converting the 64-bit two's complement integer `a' to
1429 | the quadruple-precision floating-point format.  The conversion is performed
1430 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1431 *----------------------------------------------------------------------------*/
1432 
1433 float128 int64_to_float128(int64_t a, float_status *status)
1434 {
1435     flag zSign;
1436     uint64_t absA;
1437     int8_t shiftCount;
1438     int32_t zExp;
1439     uint64_t zSig0, zSig1;
1440 
1441     if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
1442     zSign = ( a < 0 );
1443     absA = zSign ? - a : a;
1444     shiftCount = countLeadingZeros64( absA ) + 49;
1445     zExp = 0x406E - shiftCount;
1446     if ( 64 <= shiftCount ) {
1447         zSig1 = 0;
1448         zSig0 = absA;
1449         shiftCount -= 64;
1450     }
1451     else {
1452         zSig1 = absA;
1453         zSig0 = 0;
1454     }
1455     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
1456     return packFloat128( zSign, zExp, zSig0, zSig1 );
1457 
1458 }
1459 
1460 /*----------------------------------------------------------------------------
1461 | Returns the result of converting the 64-bit unsigned integer `a'
1462 | to the single-precision floating-point format.  The conversion is performed
1463 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1464 *----------------------------------------------------------------------------*/
1465 
1466 float32 uint64_to_float32(uint64_t a, float_status *status)
1467 {
1468     int shiftcount;
1469 
1470     if (a == 0) {
1471         return float32_zero;
1472     }
1473 
1474     /* Determine (left) shift needed to put first set bit into bit posn 23
1475      * (since packFloat32() expects the binary point between bits 23 and 22);
1476      * this is the fast case for smallish numbers.
1477      */
1478     shiftcount = countLeadingZeros64(a) - 40;
1479     if (shiftcount >= 0) {
1480         return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
1481     }
1482     /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
1483      * expects the binary point between bits 30 and 29, hence the + 7.
1484      */
1485     shiftcount += 7;
1486     if (shiftcount < 0) {
1487         shift64RightJamming(a, -shiftcount, &a);
1488     } else {
1489         a <<= shiftcount;
1490     }
1491 
1492     return roundAndPackFloat32(0, 0x9c - shiftcount, a, status);
1493 }
1494 
1495 /*----------------------------------------------------------------------------
1496 | Returns the result of converting the 64-bit unsigned integer `a'
1497 | to the double-precision floating-point format.  The conversion is performed
1498 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1499 *----------------------------------------------------------------------------*/
1500 
1501 float64 uint64_to_float64(uint64_t a, float_status *status)
1502 {
1503     int exp = 0x43C;
1504     int shiftcount;
1505 
1506     if (a == 0) {
1507         return float64_zero;
1508     }
1509 
1510     shiftcount = countLeadingZeros64(a) - 1;
1511     if (shiftcount < 0) {
1512         shift64RightJamming(a, -shiftcount, &a);
1513     } else {
1514         a <<= shiftcount;
1515     }
1516     return roundAndPackFloat64(0, exp - shiftcount, a, status);
1517 }
1518 
1519 /*----------------------------------------------------------------------------
1520 | Returns the result of converting the 64-bit unsigned integer `a'
1521 | to the quadruple-precision floating-point format.  The conversion is performed
1522 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1523 *----------------------------------------------------------------------------*/
1524 
1525 float128 uint64_to_float128(uint64_t a, float_status *status)
1526 {
1527     if (a == 0) {
1528         return float128_zero;
1529     }
1530     return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
1531 }
1532 
1533 /*----------------------------------------------------------------------------
1534 | Returns the result of converting the single-precision floating-point value
1535 | `a' to the 32-bit two's complement integer format.  The conversion is
1536 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1537 | Arithmetic---which means in particular that the conversion is rounded
1538 | according to the current rounding mode.  If `a' is a NaN, the largest
1539 | positive integer is returned.  Otherwise, if the conversion overflows, the
1540 | largest integer with the same sign as `a' is returned.
1541 *----------------------------------------------------------------------------*/
1542 
1543 int32_t float32_to_int32(float32 a, float_status *status)
1544 {
1545     flag aSign;
1546     int aExp;
1547     int shiftCount;
1548     uint32_t aSig;
1549     uint64_t aSig64;
1550 
1551     a = float32_squash_input_denormal(a, status);
1552     aSig = extractFloat32Frac( a );
1553     aExp = extractFloat32Exp( a );
1554     aSign = extractFloat32Sign( a );
1555     if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
1556     if ( aExp ) aSig |= 0x00800000;
1557     shiftCount = 0xAF - aExp;
1558     aSig64 = aSig;
1559     aSig64 <<= 32;
1560     if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
1561     return roundAndPackInt32(aSign, aSig64, status);
1562 
1563 }
1564 
1565 /*----------------------------------------------------------------------------
1566 | Returns the result of converting the single-precision floating-point value
1567 | `a' to the 32-bit two's complement integer format.  The conversion is
1568 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1569 | Arithmetic, except that the conversion is always rounded toward zero.
1570 | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
1571 | the conversion overflows, the largest integer with the same sign as `a' is
1572 | returned.
1573 *----------------------------------------------------------------------------*/
1574 
1575 int32_t float32_to_int32_round_to_zero(float32 a, float_status *status)
1576 {
1577     flag aSign;
1578     int aExp;
1579     int shiftCount;
1580     uint32_t aSig;
1581     int32_t z;
1582     a = float32_squash_input_denormal(a, status);
1583 
1584     aSig = extractFloat32Frac( a );
1585     aExp = extractFloat32Exp( a );
1586     aSign = extractFloat32Sign( a );
1587     shiftCount = aExp - 0x9E;
1588     if ( 0 <= shiftCount ) {
1589         if ( float32_val(a) != 0xCF000000 ) {
1590             float_raise(float_flag_invalid, status);
1591             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
1592         }
1593         return (int32_t) 0x80000000;
1594     }
1595     else if ( aExp <= 0x7E ) {
1596         if (aExp | aSig) {
1597             status->float_exception_flags |= float_flag_inexact;
1598         }
1599         return 0;
1600     }
1601     aSig = ( aSig | 0x00800000 )<<8;
1602     z = aSig>>( - shiftCount );
1603     if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
1604         status->float_exception_flags |= float_flag_inexact;
1605     }
1606     if ( aSign ) z = - z;
1607     return z;
1608 
1609 }
1610 
1611 /*----------------------------------------------------------------------------
1612 | Returns the result of converting the single-precision floating-point value
1613 | `a' to the 16-bit two's complement integer format.  The conversion is
1614 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1615 | Arithmetic, except that the conversion is always rounded toward zero.
1616 | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
1617 | the conversion overflows, the largest integer with the same sign as `a' is
1618 | returned.
1619 *----------------------------------------------------------------------------*/
1620 
1621 int16_t float32_to_int16_round_to_zero(float32 a, float_status *status)
1622 {
1623     flag aSign;
1624     int aExp;
1625     int shiftCount;
1626     uint32_t aSig;
1627     int32_t z;
1628 
1629     aSig = extractFloat32Frac( a );
1630     aExp = extractFloat32Exp( a );
1631     aSign = extractFloat32Sign( a );
1632     shiftCount = aExp - 0x8E;
1633     if ( 0 <= shiftCount ) {
1634         if ( float32_val(a) != 0xC7000000 ) {
1635             float_raise(float_flag_invalid, status);
1636             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
1637                 return 0x7FFF;
1638             }
1639         }
1640         return (int32_t) 0xffff8000;
1641     }
1642     else if ( aExp <= 0x7E ) {
1643         if ( aExp | aSig ) {
1644             status->float_exception_flags |= float_flag_inexact;
1645         }
1646         return 0;
1647     }
1648     shiftCount -= 0x10;
1649     aSig = ( aSig | 0x00800000 )<<8;
1650     z = aSig>>( - shiftCount );
1651     if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
1652         status->float_exception_flags |= float_flag_inexact;
1653     }
1654     if ( aSign ) {
1655         z = - z;
1656     }
1657     return z;
1658 
1659 }
1660 
1661 /*----------------------------------------------------------------------------
1662 | Returns the result of converting the single-precision floating-point value
1663 | `a' to the 64-bit two's complement integer format.  The conversion is
1664 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1665 | Arithmetic---which means in particular that the conversion is rounded
1666 | according to the current rounding mode.  If `a' is a NaN, the largest
1667 | positive integer is returned.  Otherwise, if the conversion overflows, the
1668 | largest integer with the same sign as `a' is returned.
1669 *----------------------------------------------------------------------------*/
1670 
1671 int64_t float32_to_int64(float32 a, float_status *status)
1672 {
1673     flag aSign;
1674     int aExp;
1675     int shiftCount;
1676     uint32_t aSig;
1677     uint64_t aSig64, aSigExtra;
1678     a = float32_squash_input_denormal(a, status);
1679 
1680     aSig = extractFloat32Frac( a );
1681     aExp = extractFloat32Exp( a );
1682     aSign = extractFloat32Sign( a );
1683     shiftCount = 0xBE - aExp;
1684     if ( shiftCount < 0 ) {
1685         float_raise(float_flag_invalid, status);
1686         if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
1687             return LIT64( 0x7FFFFFFFFFFFFFFF );
1688         }
1689         return (int64_t) LIT64( 0x8000000000000000 );
1690     }
1691     if ( aExp ) aSig |= 0x00800000;
1692     aSig64 = aSig;
1693     aSig64 <<= 40;
1694     shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
1695     return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
1696 
1697 }
1698 
1699 /*----------------------------------------------------------------------------
1700 | Returns the result of converting the single-precision floating-point value
1701 | `a' to the 64-bit unsigned integer format.  The conversion is
1702 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1703 | Arithmetic---which means in particular that the conversion is rounded
1704 | according to the current rounding mode.  If `a' is a NaN, the largest
1705 | unsigned integer is returned.  Otherwise, if the conversion overflows, the
1706 | largest unsigned integer is returned.  If the 'a' is negative, the result
1707 | is rounded and zero is returned; values that do not round to zero will
1708 | raise the inexact exception flag.
1709 *----------------------------------------------------------------------------*/
1710 
1711 uint64_t float32_to_uint64(float32 a, float_status *status)
1712 {
1713     flag aSign;
1714     int aExp;
1715     int shiftCount;
1716     uint32_t aSig;
1717     uint64_t aSig64, aSigExtra;
1718     a = float32_squash_input_denormal(a, status);
1719 
1720     aSig = extractFloat32Frac(a);
1721     aExp = extractFloat32Exp(a);
1722     aSign = extractFloat32Sign(a);
1723     if ((aSign) && (aExp > 126)) {
1724         float_raise(float_flag_invalid, status);
1725         if (float32_is_any_nan(a)) {
1726             return LIT64(0xFFFFFFFFFFFFFFFF);
1727         } else {
1728             return 0;
1729         }
1730     }
1731     shiftCount = 0xBE - aExp;
1732     if (aExp) {
1733         aSig |= 0x00800000;
1734     }
1735     if (shiftCount < 0) {
1736         float_raise(float_flag_invalid, status);
1737         return LIT64(0xFFFFFFFFFFFFFFFF);
1738     }
1739 
1740     aSig64 = aSig;
1741     aSig64 <<= 40;
1742     shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
1743     return roundAndPackUint64(aSign, aSig64, aSigExtra, status);
1744 }
1745 
1746 /*----------------------------------------------------------------------------
1747 | Returns the result of converting the single-precision floating-point value
1748 | `a' to the 64-bit unsigned integer format.  The conversion is
1749 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1750 | Arithmetic, except that the conversion is always rounded toward zero.  If
1751 | `a' is a NaN, the largest unsigned integer is returned.  Otherwise, if the
1752 | conversion overflows, the largest unsigned integer is returned.  If the
1753 | 'a' is negative, the result is rounded and zero is returned; values that do
1754 | not round to zero will raise the inexact flag.
1755 *----------------------------------------------------------------------------*/
1756 
1757 uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status)
1758 {
1759     signed char current_rounding_mode = status->float_rounding_mode;
1760     set_float_rounding_mode(float_round_to_zero, status);
1761     int64_t v = float32_to_uint64(a, status);
1762     set_float_rounding_mode(current_rounding_mode, status);
1763     return v;
1764 }
1765 
1766 /*----------------------------------------------------------------------------
1767 | Returns the result of converting the single-precision floating-point value
1768 | `a' to the 64-bit two's complement integer format.  The conversion is
1769 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1770 | Arithmetic, except that the conversion is always rounded toward zero.  If
1771 | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
1772 | conversion overflows, the largest integer with the same sign as `a' is
1773 | returned.
1774 *----------------------------------------------------------------------------*/
1775 
1776 int64_t float32_to_int64_round_to_zero(float32 a, float_status *status)
1777 {
1778     flag aSign;
1779     int aExp;
1780     int shiftCount;
1781     uint32_t aSig;
1782     uint64_t aSig64;
1783     int64_t z;
1784     a = float32_squash_input_denormal(a, status);
1785 
1786     aSig = extractFloat32Frac( a );
1787     aExp = extractFloat32Exp( a );
1788     aSign = extractFloat32Sign( a );
1789     shiftCount = aExp - 0xBE;
1790     if ( 0 <= shiftCount ) {
1791         if ( float32_val(a) != 0xDF000000 ) {
1792             float_raise(float_flag_invalid, status);
1793             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
1794                 return LIT64( 0x7FFFFFFFFFFFFFFF );
1795             }
1796         }
1797         return (int64_t) LIT64( 0x8000000000000000 );
1798     }
1799     else if ( aExp <= 0x7E ) {
1800         if (aExp | aSig) {
1801             status->float_exception_flags |= float_flag_inexact;
1802         }
1803         return 0;
1804     }
1805     aSig64 = aSig | 0x00800000;
1806     aSig64 <<= 40;
1807     z = aSig64>>( - shiftCount );
1808     if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
1809         status->float_exception_flags |= float_flag_inexact;
1810     }
1811     if ( aSign ) z = - z;
1812     return z;
1813 
1814 }
1815 
1816 /*----------------------------------------------------------------------------
1817 | Returns the result of converting the single-precision floating-point value
1818 | `a' to the double-precision floating-point format.  The conversion is
1819 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1820 | Arithmetic.
1821 *----------------------------------------------------------------------------*/
1822 
1823 float64 float32_to_float64(float32 a, float_status *status)
1824 {
1825     flag aSign;
1826     int aExp;
1827     uint32_t aSig;
1828     a = float32_squash_input_denormal(a, status);
1829 
1830     aSig = extractFloat32Frac( a );
1831     aExp = extractFloat32Exp( a );
1832     aSign = extractFloat32Sign( a );
1833     if ( aExp == 0xFF ) {
1834         if (aSig) {
1835             return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
1836         }
1837         return packFloat64( aSign, 0x7FF, 0 );
1838     }
1839     if ( aExp == 0 ) {
1840         if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
1841         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
1842         --aExp;
1843     }
1844     return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
1845 
1846 }
1847 
1848 /*----------------------------------------------------------------------------
1849 | Returns the result of converting the single-precision floating-point value
1850 | `a' to the extended double-precision floating-point format.  The conversion
1851 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1852 | Arithmetic.
1853 *----------------------------------------------------------------------------*/
1854 
1855 floatx80 float32_to_floatx80(float32 a, float_status *status)
1856 {
1857     flag aSign;
1858     int aExp;
1859     uint32_t aSig;
1860 
1861     a = float32_squash_input_denormal(a, status);
1862     aSig = extractFloat32Frac( a );
1863     aExp = extractFloat32Exp( a );
1864     aSign = extractFloat32Sign( a );
1865     if ( aExp == 0xFF ) {
1866         if (aSig) {
1867             return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
1868         }
1869         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
1870     }
1871     if ( aExp == 0 ) {
1872         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
1873         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
1874     }
1875     aSig |= 0x00800000;
1876     return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
1877 
1878 }
1879 
1880 /*----------------------------------------------------------------------------
1881 | Returns the result of converting the single-precision floating-point value
1882 | `a' to the double-precision floating-point format.  The conversion is
1883 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1884 | Arithmetic.
1885 *----------------------------------------------------------------------------*/
1886 
1887 float128 float32_to_float128(float32 a, float_status *status)
1888 {
1889     flag aSign;
1890     int aExp;
1891     uint32_t aSig;
1892 
1893     a = float32_squash_input_denormal(a, status);
1894     aSig = extractFloat32Frac( a );
1895     aExp = extractFloat32Exp( a );
1896     aSign = extractFloat32Sign( a );
1897     if ( aExp == 0xFF ) {
1898         if (aSig) {
1899             return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
1900         }
1901         return packFloat128( aSign, 0x7FFF, 0, 0 );
1902     }
1903     if ( aExp == 0 ) {
1904         if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
1905         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
1906         --aExp;
1907     }
1908     return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
1909 
1910 }
1911 
1912 /*----------------------------------------------------------------------------
1913 | Rounds the single-precision floating-point value `a' to an integer, and
1914 | returns the result as a single-precision floating-point value.  The
1915 | operation is performed according to the IEC/IEEE Standard for Binary
1916 | Floating-Point Arithmetic.
1917 *----------------------------------------------------------------------------*/
1918 
1919 float32 float32_round_to_int(float32 a, float_status *status)
1920 {
1921     flag aSign;
1922     int aExp;
1923     uint32_t lastBitMask, roundBitsMask;
1924     uint32_t z;
1925     a = float32_squash_input_denormal(a, status);
1926 
1927     aExp = extractFloat32Exp( a );
1928     if ( 0x96 <= aExp ) {
1929         if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
1930             return propagateFloat32NaN(a, a, status);
1931         }
1932         return a;
1933     }
1934     if ( aExp <= 0x7E ) {
1935         if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
1936         status->float_exception_flags |= float_flag_inexact;
1937         aSign = extractFloat32Sign( a );
1938         switch (status->float_rounding_mode) {
1939          case float_round_nearest_even:
1940             if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
1941                 return packFloat32( aSign, 0x7F, 0 );
1942             }
1943             break;
1944         case float_round_ties_away:
1945             if (aExp == 0x7E) {
1946                 return packFloat32(aSign, 0x7F, 0);
1947             }
1948             break;
1949          case float_round_down:
1950             return make_float32(aSign ? 0xBF800000 : 0);
1951          case float_round_up:
1952             return make_float32(aSign ? 0x80000000 : 0x3F800000);
1953         }
1954         return packFloat32( aSign, 0, 0 );
1955     }
1956     lastBitMask = 1;
1957     lastBitMask <<= 0x96 - aExp;
1958     roundBitsMask = lastBitMask - 1;
1959     z = float32_val(a);
1960     switch (status->float_rounding_mode) {
1961     case float_round_nearest_even:
1962         z += lastBitMask>>1;
1963         if ((z & roundBitsMask) == 0) {
1964             z &= ~lastBitMask;
1965         }
1966         break;
1967     case float_round_ties_away:
1968         z += lastBitMask >> 1;
1969         break;
1970     case float_round_to_zero:
1971         break;
1972     case float_round_up:
1973         if (!extractFloat32Sign(make_float32(z))) {
1974             z += roundBitsMask;
1975         }
1976         break;
1977     case float_round_down:
1978         if (extractFloat32Sign(make_float32(z))) {
1979             z += roundBitsMask;
1980         }
1981         break;
1982     default:
1983         abort();
1984     }
1985     z &= ~ roundBitsMask;
1986     if (z != float32_val(a)) {
1987         status->float_exception_flags |= float_flag_inexact;
1988     }
1989     return make_float32(z);
1990 
1991 }
1992 
1993 /*----------------------------------------------------------------------------
1994 | Returns the result of adding the absolute values of the single-precision
1995 | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
1996 | before being returned.  `zSign' is ignored if the result is a NaN.
1997 | The addition is performed according to the IEC/IEEE Standard for Binary
1998 | Floating-Point Arithmetic.
1999 *----------------------------------------------------------------------------*/
2000 
2001 static float32 addFloat32Sigs(float32 a, float32 b, flag zSign,
2002                               float_status *status)
2003 {
2004     int aExp, bExp, zExp;
2005     uint32_t aSig, bSig, zSig;
2006     int expDiff;
2007 
2008     aSig = extractFloat32Frac( a );
2009     aExp = extractFloat32Exp( a );
2010     bSig = extractFloat32Frac( b );
2011     bExp = extractFloat32Exp( b );
2012     expDiff = aExp - bExp;
2013     aSig <<= 6;
2014     bSig <<= 6;
2015     if ( 0 < expDiff ) {
2016         if ( aExp == 0xFF ) {
2017             if (aSig) {
2018                 return propagateFloat32NaN(a, b, status);
2019             }
2020             return a;
2021         }
2022         if ( bExp == 0 ) {
2023             --expDiff;
2024         }
2025         else {
2026             bSig |= 0x20000000;
2027         }
2028         shift32RightJamming( bSig, expDiff, &bSig );
2029         zExp = aExp;
2030     }
2031     else if ( expDiff < 0 ) {
2032         if ( bExp == 0xFF ) {
2033             if (bSig) {
2034                 return propagateFloat32NaN(a, b, status);
2035             }
2036             return packFloat32( zSign, 0xFF, 0 );
2037         }
2038         if ( aExp == 0 ) {
2039             ++expDiff;
2040         }
2041         else {
2042             aSig |= 0x20000000;
2043         }
2044         shift32RightJamming( aSig, - expDiff, &aSig );
2045         zExp = bExp;
2046     }
2047     else {
2048         if ( aExp == 0xFF ) {
2049             if (aSig | bSig) {
2050                 return propagateFloat32NaN(a, b, status);
2051             }
2052             return a;
2053         }
2054         if ( aExp == 0 ) {
2055             if (status->flush_to_zero) {
2056                 if (aSig | bSig) {
2057                     float_raise(float_flag_output_denormal, status);
2058                 }
2059                 return packFloat32(zSign, 0, 0);
2060             }
2061             return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
2062         }
2063         zSig = 0x40000000 + aSig + bSig;
2064         zExp = aExp;
2065         goto roundAndPack;
2066     }
2067     aSig |= 0x20000000;
2068     zSig = ( aSig + bSig )<<1;
2069     --zExp;
2070     if ( (int32_t) zSig < 0 ) {
2071         zSig = aSig + bSig;
2072         ++zExp;
2073     }
2074  roundAndPack:
2075     return roundAndPackFloat32(zSign, zExp, zSig, status);
2076 
2077 }
2078 
2079 /*----------------------------------------------------------------------------
2080 | Returns the result of subtracting the absolute values of the single-
2081 | precision floating-point values `a' and `b'.  If `zSign' is 1, the
2082 | difference is negated before being returned.  `zSign' is ignored if the
2083 | result is a NaN.  The subtraction is performed according to the IEC/IEEE
2084 | Standard for Binary Floating-Point Arithmetic.
2085 *----------------------------------------------------------------------------*/
2086 
2087 static float32 subFloat32Sigs(float32 a, float32 b, flag zSign,
2088                               float_status *status)
2089 {
2090     int aExp, bExp, zExp;
2091     uint32_t aSig, bSig, zSig;
2092     int expDiff;
2093 
2094     aSig = extractFloat32Frac( a );
2095     aExp = extractFloat32Exp( a );
2096     bSig = extractFloat32Frac( b );
2097     bExp = extractFloat32Exp( b );
2098     expDiff = aExp - bExp;
2099     aSig <<= 7;
2100     bSig <<= 7;
2101     if ( 0 < expDiff ) goto aExpBigger;
2102     if ( expDiff < 0 ) goto bExpBigger;
2103     if ( aExp == 0xFF ) {
2104         if (aSig | bSig) {
2105             return propagateFloat32NaN(a, b, status);
2106         }
2107         float_raise(float_flag_invalid, status);
2108         return float32_default_nan;
2109     }
2110     if ( aExp == 0 ) {
2111         aExp = 1;
2112         bExp = 1;
2113     }
2114     if ( bSig < aSig ) goto aBigger;
2115     if ( aSig < bSig ) goto bBigger;
2116     return packFloat32(status->float_rounding_mode == float_round_down, 0, 0);
2117  bExpBigger:
2118     if ( bExp == 0xFF ) {
2119         if (bSig) {
2120             return propagateFloat32NaN(a, b, status);
2121         }
2122         return packFloat32( zSign ^ 1, 0xFF, 0 );
2123     }
2124     if ( aExp == 0 ) {
2125         ++expDiff;
2126     }
2127     else {
2128         aSig |= 0x40000000;
2129     }
2130     shift32RightJamming( aSig, - expDiff, &aSig );
2131     bSig |= 0x40000000;
2132  bBigger:
2133     zSig = bSig - aSig;
2134     zExp = bExp;
2135     zSign ^= 1;
2136     goto normalizeRoundAndPack;
2137  aExpBigger:
2138     if ( aExp == 0xFF ) {
2139         if (aSig) {
2140             return propagateFloat32NaN(a, b, status);
2141         }
2142         return a;
2143     }
2144     if ( bExp == 0 ) {
2145         --expDiff;
2146     }
2147     else {
2148         bSig |= 0x40000000;
2149     }
2150     shift32RightJamming( bSig, expDiff, &bSig );
2151     aSig |= 0x40000000;
2152  aBigger:
2153     zSig = aSig - bSig;
2154     zExp = aExp;
2155  normalizeRoundAndPack:
2156     --zExp;
2157     return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status);
2158 
2159 }
2160 
2161 /*----------------------------------------------------------------------------
2162 | Returns the result of adding the single-precision floating-point values `a'
2163 | and `b'.  The operation is performed according to the IEC/IEEE Standard for
2164 | Binary Floating-Point Arithmetic.
2165 *----------------------------------------------------------------------------*/
2166 
2167 float32 float32_add(float32 a, float32 b, float_status *status)
2168 {
2169     flag aSign, bSign;
2170     a = float32_squash_input_denormal(a, status);
2171     b = float32_squash_input_denormal(b, status);
2172 
2173     aSign = extractFloat32Sign( a );
2174     bSign = extractFloat32Sign( b );
2175     if ( aSign == bSign ) {
2176         return addFloat32Sigs(a, b, aSign, status);
2177     }
2178     else {
2179         return subFloat32Sigs(a, b, aSign, status);
2180     }
2181 
2182 }
2183 
2184 /*----------------------------------------------------------------------------
2185 | Returns the result of subtracting the single-precision floating-point values
2186 | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
2187 | for Binary Floating-Point Arithmetic.
2188 *----------------------------------------------------------------------------*/
2189 
2190 float32 float32_sub(float32 a, float32 b, float_status *status)
2191 {
2192     flag aSign, bSign;
2193     a = float32_squash_input_denormal(a, status);
2194     b = float32_squash_input_denormal(b, status);
2195 
2196     aSign = extractFloat32Sign( a );
2197     bSign = extractFloat32Sign( b );
2198     if ( aSign == bSign ) {
2199         return subFloat32Sigs(a, b, aSign, status);
2200     }
2201     else {
2202         return addFloat32Sigs(a, b, aSign, status);
2203     }
2204 
2205 }
2206 
2207 /*----------------------------------------------------------------------------
2208 | Returns the result of multiplying the single-precision floating-point values
2209 | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
2210 | for Binary Floating-Point Arithmetic.
2211 *----------------------------------------------------------------------------*/
2212 
2213 float32 float32_mul(float32 a, float32 b, float_status *status)
2214 {
2215     flag aSign, bSign, zSign;
2216     int aExp, bExp, zExp;
2217     uint32_t aSig, bSig;
2218     uint64_t zSig64;
2219     uint32_t zSig;
2220 
2221     a = float32_squash_input_denormal(a, status);
2222     b = float32_squash_input_denormal(b, status);
2223 
2224     aSig = extractFloat32Frac( a );
2225     aExp = extractFloat32Exp( a );
2226     aSign = extractFloat32Sign( a );
2227     bSig = extractFloat32Frac( b );
2228     bExp = extractFloat32Exp( b );
2229     bSign = extractFloat32Sign( b );
2230     zSign = aSign ^ bSign;
2231     if ( aExp == 0xFF ) {
2232         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
2233             return propagateFloat32NaN(a, b, status);
2234         }
2235         if ( ( bExp | bSig ) == 0 ) {
2236             float_raise(float_flag_invalid, status);
2237             return float32_default_nan;
2238         }
2239         return packFloat32( zSign, 0xFF, 0 );
2240     }
2241     if ( bExp == 0xFF ) {
2242         if (bSig) {
2243             return propagateFloat32NaN(a, b, status);
2244         }
2245         if ( ( aExp | aSig ) == 0 ) {
2246             float_raise(float_flag_invalid, status);
2247             return float32_default_nan;
2248         }
2249         return packFloat32( zSign, 0xFF, 0 );
2250     }
2251     if ( aExp == 0 ) {
2252         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
2253         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
2254     }
2255     if ( bExp == 0 ) {
2256         if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
2257         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
2258     }
2259     zExp = aExp + bExp - 0x7F;
2260     aSig = ( aSig | 0x00800000 )<<7;
2261     bSig = ( bSig | 0x00800000 )<<8;
2262     shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
2263     zSig = zSig64;
2264     if ( 0 <= (int32_t) ( zSig<<1 ) ) {
2265         zSig <<= 1;
2266         --zExp;
2267     }
2268     return roundAndPackFloat32(zSign, zExp, zSig, status);
2269 
2270 }
2271 
2272 /*----------------------------------------------------------------------------
2273 | Returns the result of dividing the single-precision floating-point value `a'
2274 | by the corresponding value `b'.  The operation is performed according to the
2275 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2276 *----------------------------------------------------------------------------*/
2277 
2278 float32 float32_div(float32 a, float32 b, float_status *status)
2279 {
2280     flag aSign, bSign, zSign;
2281     int aExp, bExp, zExp;
2282     uint32_t aSig, bSig, zSig;
2283     a = float32_squash_input_denormal(a, status);
2284     b = float32_squash_input_denormal(b, status);
2285 
2286     aSig = extractFloat32Frac( a );
2287     aExp = extractFloat32Exp( a );
2288     aSign = extractFloat32Sign( a );
2289     bSig = extractFloat32Frac( b );
2290     bExp = extractFloat32Exp( b );
2291     bSign = extractFloat32Sign( b );
2292     zSign = aSign ^ bSign;
2293     if ( aExp == 0xFF ) {
2294         if (aSig) {
2295             return propagateFloat32NaN(a, b, status);
2296         }
2297         if ( bExp == 0xFF ) {
2298             if (bSig) {
2299                 return propagateFloat32NaN(a, b, status);
2300             }
2301             float_raise(float_flag_invalid, status);
2302             return float32_default_nan;
2303         }
2304         return packFloat32( zSign, 0xFF, 0 );
2305     }
2306     if ( bExp == 0xFF ) {
2307         if (bSig) {
2308             return propagateFloat32NaN(a, b, status);
2309         }
2310         return packFloat32( zSign, 0, 0 );
2311     }
2312     if ( bExp == 0 ) {
2313         if ( bSig == 0 ) {
2314             if ( ( aExp | aSig ) == 0 ) {
2315                 float_raise(float_flag_invalid, status);
2316                 return float32_default_nan;
2317             }
2318             float_raise(float_flag_divbyzero, status);
2319             return packFloat32( zSign, 0xFF, 0 );
2320         }
2321         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
2322     }
2323     if ( aExp == 0 ) {
2324         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
2325         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
2326     }
2327     zExp = aExp - bExp + 0x7D;
2328     aSig = ( aSig | 0x00800000 )<<7;
2329     bSig = ( bSig | 0x00800000 )<<8;
2330     if ( bSig <= ( aSig + aSig ) ) {
2331         aSig >>= 1;
2332         ++zExp;
2333     }
2334     zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
2335     if ( ( zSig & 0x3F ) == 0 ) {
2336         zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
2337     }
2338     return roundAndPackFloat32(zSign, zExp, zSig, status);
2339 
2340 }
2341 
2342 /*----------------------------------------------------------------------------
2343 | Returns the remainder of the single-precision floating-point value `a'
2344 | with respect to the corresponding value `b'.  The operation is performed
2345 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2346 *----------------------------------------------------------------------------*/
2347 
2348 float32 float32_rem(float32 a, float32 b, float_status *status)
2349 {
2350     flag aSign, zSign;
2351     int aExp, bExp, expDiff;
2352     uint32_t aSig, bSig;
2353     uint32_t q;
2354     uint64_t aSig64, bSig64, q64;
2355     uint32_t alternateASig;
2356     int32_t sigMean;
2357     a = float32_squash_input_denormal(a, status);
2358     b = float32_squash_input_denormal(b, status);
2359 
2360     aSig = extractFloat32Frac( a );
2361     aExp = extractFloat32Exp( a );
2362     aSign = extractFloat32Sign( a );
2363     bSig = extractFloat32Frac( b );
2364     bExp = extractFloat32Exp( b );
2365     if ( aExp == 0xFF ) {
2366         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
2367             return propagateFloat32NaN(a, b, status);
2368         }
2369         float_raise(float_flag_invalid, status);
2370         return float32_default_nan;
2371     }
2372     if ( bExp == 0xFF ) {
2373         if (bSig) {
2374             return propagateFloat32NaN(a, b, status);
2375         }
2376         return a;
2377     }
2378     if ( bExp == 0 ) {
2379         if ( bSig == 0 ) {
2380             float_raise(float_flag_invalid, status);
2381             return float32_default_nan;
2382         }
2383         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
2384     }
2385     if ( aExp == 0 ) {
2386         if ( aSig == 0 ) return a;
2387         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
2388     }
2389     expDiff = aExp - bExp;
2390     aSig |= 0x00800000;
2391     bSig |= 0x00800000;
2392     if ( expDiff < 32 ) {
2393         aSig <<= 8;
2394         bSig <<= 8;
2395         if ( expDiff < 0 ) {
2396             if ( expDiff < -1 ) return a;
2397             aSig >>= 1;
2398         }
2399         q = ( bSig <= aSig );
2400         if ( q ) aSig -= bSig;
2401         if ( 0 < expDiff ) {
2402             q = ( ( (uint64_t) aSig )<<32 ) / bSig;
2403             q >>= 32 - expDiff;
2404             bSig >>= 2;
2405             aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
2406         }
2407         else {
2408             aSig >>= 2;
2409             bSig >>= 2;
2410         }
2411     }
2412     else {
2413         if ( bSig <= aSig ) aSig -= bSig;
2414         aSig64 = ( (uint64_t) aSig )<<40;
2415         bSig64 = ( (uint64_t) bSig )<<40;
2416         expDiff -= 64;
2417         while ( 0 < expDiff ) {
2418             q64 = estimateDiv128To64( aSig64, 0, bSig64 );
2419             q64 = ( 2 < q64 ) ? q64 - 2 : 0;
2420             aSig64 = - ( ( bSig * q64 )<<38 );
2421             expDiff -= 62;
2422         }
2423         expDiff += 64;
2424         q64 = estimateDiv128To64( aSig64, 0, bSig64 );
2425         q64 = ( 2 < q64 ) ? q64 - 2 : 0;
2426         q = q64>>( 64 - expDiff );
2427         bSig <<= 6;
2428         aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
2429     }
2430     do {
2431         alternateASig = aSig;
2432         ++q;
2433         aSig -= bSig;
2434     } while ( 0 <= (int32_t) aSig );
2435     sigMean = aSig + alternateASig;
2436     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
2437         aSig = alternateASig;
2438     }
2439     zSign = ( (int32_t) aSig < 0 );
2440     if ( zSign ) aSig = - aSig;
2441     return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
2442 }
2443 
2444 /*----------------------------------------------------------------------------
2445 | Returns the result of multiplying the single-precision floating-point values
2446 | `a' and `b' then adding 'c', with no intermediate rounding step after the
2447 | multiplication.  The operation is performed according to the IEC/IEEE
2448 | Standard for Binary Floating-Point Arithmetic 754-2008.
2449 | The flags argument allows the caller to select negation of the
2450 | addend, the intermediate product, or the final result. (The difference
2451 | between this and having the caller do a separate negation is that negating
2452 | externally will flip the sign bit on NaNs.)
2453 *----------------------------------------------------------------------------*/
2454 
2455 float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
2456                        float_status *status)
2457 {
2458     flag aSign, bSign, cSign, zSign;
2459     int aExp, bExp, cExp, pExp, zExp, expDiff;
2460     uint32_t aSig, bSig, cSig;
2461     flag pInf, pZero, pSign;
2462     uint64_t pSig64, cSig64, zSig64;
2463     uint32_t pSig;
2464     int shiftcount;
2465     flag signflip, infzero;
2466 
2467     a = float32_squash_input_denormal(a, status);
2468     b = float32_squash_input_denormal(b, status);
2469     c = float32_squash_input_denormal(c, status);
2470     aSig = extractFloat32Frac(a);
2471     aExp = extractFloat32Exp(a);
2472     aSign = extractFloat32Sign(a);
2473     bSig = extractFloat32Frac(b);
2474     bExp = extractFloat32Exp(b);
2475     bSign = extractFloat32Sign(b);
2476     cSig = extractFloat32Frac(c);
2477     cExp = extractFloat32Exp(c);
2478     cSign = extractFloat32Sign(c);
2479 
2480     infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
2481                (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
2482 
2483     /* It is implementation-defined whether the cases of (0,inf,qnan)
2484      * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
2485      * they return if they do), so we have to hand this information
2486      * off to the target-specific pick-a-NaN routine.
2487      */
2488     if (((aExp == 0xff) && aSig) ||
2489         ((bExp == 0xff) && bSig) ||
2490         ((cExp == 0xff) && cSig)) {
2491         return propagateFloat32MulAddNaN(a, b, c, infzero, status);
2492     }
2493 
2494     if (infzero) {
2495         float_raise(float_flag_invalid, status);
2496         return float32_default_nan;
2497     }
2498 
2499     if (flags & float_muladd_negate_c) {
2500         cSign ^= 1;
2501     }
2502 
2503     signflip = (flags & float_muladd_negate_result) ? 1 : 0;
2504 
2505     /* Work out the sign and type of the product */
2506     pSign = aSign ^ bSign;
2507     if (flags & float_muladd_negate_product) {
2508         pSign ^= 1;
2509     }
2510     pInf = (aExp == 0xff) || (bExp == 0xff);
2511     pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
2512 
2513     if (cExp == 0xff) {
2514         if (pInf && (pSign ^ cSign)) {
2515             /* addition of opposite-signed infinities => InvalidOperation */
2516             float_raise(float_flag_invalid, status);
2517             return float32_default_nan;
2518         }
2519         /* Otherwise generate an infinity of the same sign */
2520         return packFloat32(cSign ^ signflip, 0xff, 0);
2521     }
2522 
2523     if (pInf) {
2524         return packFloat32(pSign ^ signflip, 0xff, 0);
2525     }
2526 
2527     if (pZero) {
2528         if (cExp == 0) {
2529             if (cSig == 0) {
2530                 /* Adding two exact zeroes */
2531                 if (pSign == cSign) {
2532                     zSign = pSign;
2533                 } else if (status->float_rounding_mode == float_round_down) {
2534                     zSign = 1;
2535                 } else {
2536                     zSign = 0;
2537                 }
2538                 return packFloat32(zSign ^ signflip, 0, 0);
2539             }
2540             /* Exact zero plus a denorm */
2541             if (status->flush_to_zero) {
2542                 float_raise(float_flag_output_denormal, status);
2543                 return packFloat32(cSign ^ signflip, 0, 0);
2544             }
2545         }
2546         /* Zero plus something non-zero : just return the something */
2547         if (flags & float_muladd_halve_result) {
2548             if (cExp == 0) {
2549                 normalizeFloat32Subnormal(cSig, &cExp, &cSig);
2550             }
2551             /* Subtract one to halve, and one again because roundAndPackFloat32
2552              * wants one less than the true exponent.
2553              */
2554             cExp -= 2;
2555             cSig = (cSig | 0x00800000) << 7;
2556             return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status);
2557         }
2558         return packFloat32(cSign ^ signflip, cExp, cSig);
2559     }
2560 
2561     if (aExp == 0) {
2562         normalizeFloat32Subnormal(aSig, &aExp, &aSig);
2563     }
2564     if (bExp == 0) {
2565         normalizeFloat32Subnormal(bSig, &bExp, &bSig);
2566     }
2567 
2568     /* Calculate the actual result a * b + c */
2569 
2570     /* Multiply first; this is easy. */
2571     /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
2572      * because we want the true exponent, not the "one-less-than"
2573      * flavour that roundAndPackFloat32() takes.
2574      */
2575     pExp = aExp + bExp - 0x7e;
2576     aSig = (aSig | 0x00800000) << 7;
2577     bSig = (bSig | 0x00800000) << 8;
2578     pSig64 = (uint64_t)aSig * bSig;
2579     if ((int64_t)(pSig64 << 1) >= 0) {
2580         pSig64 <<= 1;
2581         pExp--;
2582     }
2583 
2584     zSign = pSign ^ signflip;
2585 
2586     /* Now pSig64 is the significand of the multiply, with the explicit bit in
2587      * position 62.
2588      */
2589     if (cExp == 0) {
2590         if (!cSig) {
2591             /* Throw out the special case of c being an exact zero now */
2592             shift64RightJamming(pSig64, 32, &pSig64);
2593             pSig = pSig64;
2594             if (flags & float_muladd_halve_result) {
2595                 pExp--;
2596             }
2597             return roundAndPackFloat32(zSign, pExp - 1,
2598                                        pSig, status);
2599         }
2600         normalizeFloat32Subnormal(cSig, &cExp, &cSig);
2601     }
2602 
2603     cSig64 = (uint64_t)cSig << (62 - 23);
2604     cSig64 |= LIT64(0x4000000000000000);
2605     expDiff = pExp - cExp;
2606 
2607     if (pSign == cSign) {
2608         /* Addition */
2609         if (expDiff > 0) {
2610             /* scale c to match p */
2611             shift64RightJamming(cSig64, expDiff, &cSig64);
2612             zExp = pExp;
2613         } else if (expDiff < 0) {
2614             /* scale p to match c */
2615             shift64RightJamming(pSig64, -expDiff, &pSig64);
2616             zExp = cExp;
2617         } else {
2618             /* no scaling needed */
2619             zExp = cExp;
2620         }
2621         /* Add significands and make sure explicit bit ends up in posn 62 */
2622         zSig64 = pSig64 + cSig64;
2623         if ((int64_t)zSig64 < 0) {
2624             shift64RightJamming(zSig64, 1, &zSig64);
2625         } else {
2626             zExp--;
2627         }
2628     } else {
2629         /* Subtraction */
2630         if (expDiff > 0) {
2631             shift64RightJamming(cSig64, expDiff, &cSig64);
2632             zSig64 = pSig64 - cSig64;
2633             zExp = pExp;
2634         } else if (expDiff < 0) {
2635             shift64RightJamming(pSig64, -expDiff, &pSig64);
2636             zSig64 = cSig64 - pSig64;
2637             zExp = cExp;
2638             zSign ^= 1;
2639         } else {
2640             zExp = pExp;
2641             if (cSig64 < pSig64) {
2642                 zSig64 = pSig64 - cSig64;
2643             } else if (pSig64 < cSig64) {
2644                 zSig64 = cSig64 - pSig64;
2645                 zSign ^= 1;
2646             } else {
2647                 /* Exact zero */
2648                 zSign = signflip;
2649                 if (status->float_rounding_mode == float_round_down) {
2650                     zSign ^= 1;
2651                 }
2652                 return packFloat32(zSign, 0, 0);
2653             }
2654         }
2655         --zExp;
2656         /* Normalize to put the explicit bit back into bit 62. */
2657         shiftcount = countLeadingZeros64(zSig64) - 1;
2658         zSig64 <<= shiftcount;
2659         zExp -= shiftcount;
2660     }
2661     if (flags & float_muladd_halve_result) {
2662         zExp--;
2663     }
2664 
2665     shift64RightJamming(zSig64, 32, &zSig64);
2666     return roundAndPackFloat32(zSign, zExp, zSig64, status);
2667 }
2668 
2669 
2670 /*----------------------------------------------------------------------------
2671 | Returns the square root of the single-precision floating-point value `a'.
2672 | The operation is performed according to the IEC/IEEE Standard for Binary
2673 | Floating-Point Arithmetic.
2674 *----------------------------------------------------------------------------*/
2675 
2676 float32 float32_sqrt(float32 a, float_status *status)
2677 {
2678     flag aSign;
2679     int aExp, zExp;
2680     uint32_t aSig, zSig;
2681     uint64_t rem, term;
2682     a = float32_squash_input_denormal(a, status);
2683 
2684     aSig = extractFloat32Frac( a );
2685     aExp = extractFloat32Exp( a );
2686     aSign = extractFloat32Sign( a );
2687     if ( aExp == 0xFF ) {
2688         if (aSig) {
2689             return propagateFloat32NaN(a, float32_zero, status);
2690         }
2691         if ( ! aSign ) return a;
2692         float_raise(float_flag_invalid, status);
2693         return float32_default_nan;
2694     }
2695     if ( aSign ) {
2696         if ( ( aExp | aSig ) == 0 ) return a;
2697         float_raise(float_flag_invalid, status);
2698         return float32_default_nan;
2699     }
2700     if ( aExp == 0 ) {
2701         if ( aSig == 0 ) return float32_zero;
2702         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
2703     }
2704     zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
2705     aSig = ( aSig | 0x00800000 )<<8;
2706     zSig = estimateSqrt32( aExp, aSig ) + 2;
2707     if ( ( zSig & 0x7F ) <= 5 ) {
2708         if ( zSig < 2 ) {
2709             zSig = 0x7FFFFFFF;
2710             goto roundAndPack;
2711         }
2712         aSig >>= aExp & 1;
2713         term = ( (uint64_t) zSig ) * zSig;
2714         rem = ( ( (uint64_t) aSig )<<32 ) - term;
2715         while ( (int64_t) rem < 0 ) {
2716             --zSig;
2717             rem += ( ( (uint64_t) zSig )<<1 ) | 1;
2718         }
2719         zSig |= ( rem != 0 );
2720     }
2721     shift32RightJamming( zSig, 1, &zSig );
2722  roundAndPack:
2723     return roundAndPackFloat32(0, zExp, zSig, status);
2724 
2725 }
2726 
2727 /*----------------------------------------------------------------------------
2728 | Returns the binary exponential of the single-precision floating-point value
2729 | `a'. The operation is performed according to the IEC/IEEE Standard for
2730 | Binary Floating-Point Arithmetic.
2731 |
2732 | Uses the following identities:
2733 |
2734 | 1. -------------------------------------------------------------------------
2735 |      x    x*ln(2)
2736 |     2  = e
2737 |
2738 | 2. -------------------------------------------------------------------------
2739 |                      2     3     4     5           n
2740 |      x        x     x     x     x     x           x
2741 |     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
2742 |               1!    2!    3!    4!    5!          n!
2743 *----------------------------------------------------------------------------*/
2744 
2745 static const float64 float32_exp2_coefficients[15] =
2746 {
2747     const_float64( 0x3ff0000000000000ll ), /*  1 */
2748     const_float64( 0x3fe0000000000000ll ), /*  2 */
2749     const_float64( 0x3fc5555555555555ll ), /*  3 */
2750     const_float64( 0x3fa5555555555555ll ), /*  4 */
2751     const_float64( 0x3f81111111111111ll ), /*  5 */
2752     const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
2753     const_float64( 0x3f2a01a01a01a01all ), /*  7 */
2754     const_float64( 0x3efa01a01a01a01all ), /*  8 */
2755     const_float64( 0x3ec71de3a556c734ll ), /*  9 */
2756     const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
2757     const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
2758     const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
2759     const_float64( 0x3de6124613a86d09ll ), /* 13 */
2760     const_float64( 0x3da93974a8c07c9dll ), /* 14 */
2761     const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
2762 };
2763 
2764 float32 float32_exp2(float32 a, float_status *status)
2765 {
2766     flag aSign;
2767     int aExp;
2768     uint32_t aSig;
2769     float64 r, x, xn;
2770     int i;
2771     a = float32_squash_input_denormal(a, status);
2772 
2773     aSig = extractFloat32Frac( a );
2774     aExp = extractFloat32Exp( a );
2775     aSign = extractFloat32Sign( a );
2776 
2777     if ( aExp == 0xFF) {
2778         if (aSig) {
2779             return propagateFloat32NaN(a, float32_zero, status);
2780         }
2781         return (aSign) ? float32_zero : a;
2782     }
2783     if (aExp == 0) {
2784         if (aSig == 0) return float32_one;
2785     }
2786 
2787     float_raise(float_flag_inexact, status);
2788 
2789     /* ******************************* */
2790     /* using float64 for approximation */
2791     /* ******************************* */
2792     x = float32_to_float64(a, status);
2793     x = float64_mul(x, float64_ln2, status);
2794 
2795     xn = x;
2796     r = float64_one;
2797     for (i = 0 ; i < 15 ; i++) {
2798         float64 f;
2799 
2800         f = float64_mul(xn, float32_exp2_coefficients[i], status);
2801         r = float64_add(r, f, status);
2802 
2803         xn = float64_mul(xn, x, status);
2804     }
2805 
2806     return float64_to_float32(r, status);
2807 }
2808 
2809 /*----------------------------------------------------------------------------
2810 | Returns the binary log of the single-precision floating-point value `a'.
2811 | The operation is performed according to the IEC/IEEE Standard for Binary
2812 | Floating-Point Arithmetic.
2813 *----------------------------------------------------------------------------*/
2814 float32 float32_log2(float32 a, float_status *status)
2815 {
2816     flag aSign, zSign;
2817     int aExp;
2818     uint32_t aSig, zSig, i;
2819 
2820     a = float32_squash_input_denormal(a, status);
2821     aSig = extractFloat32Frac( a );
2822     aExp = extractFloat32Exp( a );
2823     aSign = extractFloat32Sign( a );
2824 
2825     if ( aExp == 0 ) {
2826         if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
2827         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
2828     }
2829     if ( aSign ) {
2830         float_raise(float_flag_invalid, status);
2831         return float32_default_nan;
2832     }
2833     if ( aExp == 0xFF ) {
2834         if (aSig) {
2835             return propagateFloat32NaN(a, float32_zero, status);
2836         }
2837         return a;
2838     }
2839 
2840     aExp -= 0x7F;
2841     aSig |= 0x00800000;
2842     zSign = aExp < 0;
2843     zSig = aExp << 23;
2844 
2845     for (i = 1 << 22; i > 0; i >>= 1) {
2846         aSig = ( (uint64_t)aSig * aSig ) >> 23;
2847         if ( aSig & 0x01000000 ) {
2848             aSig >>= 1;
2849             zSig |= i;
2850         }
2851     }
2852 
2853     if ( zSign )
2854         zSig = -zSig;
2855 
2856     return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
2857 }
2858 
2859 /*----------------------------------------------------------------------------
2860 | Returns 1 if the single-precision floating-point value `a' is equal to
2861 | the corresponding value `b', and 0 otherwise.  The invalid exception is
2862 | raised if either operand is a NaN.  Otherwise, the comparison is performed
2863 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2864 *----------------------------------------------------------------------------*/
2865 
2866 int float32_eq(float32 a, float32 b, float_status *status)
2867 {
2868     uint32_t av, bv;
2869     a = float32_squash_input_denormal(a, status);
2870     b = float32_squash_input_denormal(b, status);
2871 
2872     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
2873          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
2874        ) {
2875         float_raise(float_flag_invalid, status);
2876         return 0;
2877     }
2878     av = float32_val(a);
2879     bv = float32_val(b);
2880     return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
2881 }
2882 
2883 /*----------------------------------------------------------------------------
2884 | Returns 1 if the single-precision floating-point value `a' is less than
2885 | or equal to the corresponding value `b', and 0 otherwise.  The invalid
2886 | exception is raised if either operand is a NaN.  The comparison is performed
2887 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2888 *----------------------------------------------------------------------------*/
2889 
2890 int float32_le(float32 a, float32 b, float_status *status)
2891 {
2892     flag aSign, bSign;
2893     uint32_t av, bv;
2894     a = float32_squash_input_denormal(a, status);
2895     b = float32_squash_input_denormal(b, status);
2896 
2897     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
2898          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
2899        ) {
2900         float_raise(float_flag_invalid, status);
2901         return 0;
2902     }
2903     aSign = extractFloat32Sign( a );
2904     bSign = extractFloat32Sign( b );
2905     av = float32_val(a);
2906     bv = float32_val(b);
2907     if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
2908     return ( av == bv ) || ( aSign ^ ( av < bv ) );
2909 
2910 }
2911 
2912 /*----------------------------------------------------------------------------
2913 | Returns 1 if the single-precision floating-point value `a' is less than
2914 | the corresponding value `b', and 0 otherwise.  The invalid exception is
2915 | raised if either operand is a NaN.  The comparison is performed according
2916 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2917 *----------------------------------------------------------------------------*/
2918 
2919 int float32_lt(float32 a, float32 b, float_status *status)
2920 {
2921     flag aSign, bSign;
2922     uint32_t av, bv;
2923     a = float32_squash_input_denormal(a, status);
2924     b = float32_squash_input_denormal(b, status);
2925 
2926     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
2927          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
2928        ) {
2929         float_raise(float_flag_invalid, status);
2930         return 0;
2931     }
2932     aSign = extractFloat32Sign( a );
2933     bSign = extractFloat32Sign( b );
2934     av = float32_val(a);
2935     bv = float32_val(b);
2936     if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
2937     return ( av != bv ) && ( aSign ^ ( av < bv ) );
2938 
2939 }
2940 
2941 /*----------------------------------------------------------------------------
2942 | Returns 1 if the single-precision floating-point values `a' and `b' cannot
2943 | be compared, and 0 otherwise.  The invalid exception is raised if either
2944 | operand is a NaN.  The comparison is performed according to the IEC/IEEE
2945 | Standard for Binary Floating-Point Arithmetic.
2946 *----------------------------------------------------------------------------*/
2947 
2948 int float32_unordered(float32 a, float32 b, float_status *status)
2949 {
2950     a = float32_squash_input_denormal(a, status);
2951     b = float32_squash_input_denormal(b, status);
2952 
2953     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
2954          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
2955        ) {
2956         float_raise(float_flag_invalid, status);
2957         return 1;
2958     }
2959     return 0;
2960 }
2961 
2962 /*----------------------------------------------------------------------------
2963 | Returns 1 if the single-precision floating-point value `a' is equal to
2964 | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
2965 | exception.  The comparison is performed according to the IEC/IEEE Standard
2966 | for Binary Floating-Point Arithmetic.
2967 *----------------------------------------------------------------------------*/
2968 
2969 int float32_eq_quiet(float32 a, float32 b, float_status *status)
2970 {
2971     a = float32_squash_input_denormal(a, status);
2972     b = float32_squash_input_denormal(b, status);
2973 
2974     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
2975          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
2976        ) {
2977         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
2978             float_raise(float_flag_invalid, status);
2979         }
2980         return 0;
2981     }
2982     return ( float32_val(a) == float32_val(b) ) ||
2983             ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
2984 }
2985 
2986 /*----------------------------------------------------------------------------
2987 | Returns 1 if the single-precision floating-point value `a' is less than or
2988 | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
2989 | cause an exception.  Otherwise, the comparison is performed according to the
2990 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2991 *----------------------------------------------------------------------------*/
2992 
2993 int float32_le_quiet(float32 a, float32 b, float_status *status)
2994 {
2995     flag aSign, bSign;
2996     uint32_t av, bv;
2997     a = float32_squash_input_denormal(a, status);
2998     b = float32_squash_input_denormal(b, status);
2999 
3000     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
3001          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
3002        ) {
3003         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
3004             float_raise(float_flag_invalid, status);
3005         }
3006         return 0;
3007     }
3008     aSign = extractFloat32Sign( a );
3009     bSign = extractFloat32Sign( b );
3010     av = float32_val(a);
3011     bv = float32_val(b);
3012     if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
3013     return ( av == bv ) || ( aSign ^ ( av < bv ) );
3014 
3015 }
3016 
3017 /*----------------------------------------------------------------------------
3018 | Returns 1 if the single-precision floating-point value `a' is less than
3019 | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
3020 | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
3021 | Standard for Binary Floating-Point Arithmetic.
3022 *----------------------------------------------------------------------------*/
3023 
3024 int float32_lt_quiet(float32 a, float32 b, float_status *status)
3025 {
3026     flag aSign, bSign;
3027     uint32_t av, bv;
3028     a = float32_squash_input_denormal(a, status);
3029     b = float32_squash_input_denormal(b, status);
3030 
3031     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
3032          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
3033        ) {
3034         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
3035             float_raise(float_flag_invalid, status);
3036         }
3037         return 0;
3038     }
3039     aSign = extractFloat32Sign( a );
3040     bSign = extractFloat32Sign( b );
3041     av = float32_val(a);
3042     bv = float32_val(b);
3043     if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
3044     return ( av != bv ) && ( aSign ^ ( av < bv ) );
3045 
3046 }
3047 
3048 /*----------------------------------------------------------------------------
3049 | Returns 1 if the single-precision floating-point values `a' and `b' cannot
3050 | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
3051 | comparison is performed according to the IEC/IEEE Standard for Binary
3052 | Floating-Point Arithmetic.
3053 *----------------------------------------------------------------------------*/
3054 
3055 int float32_unordered_quiet(float32 a, float32 b, float_status *status)
3056 {
3057     a = float32_squash_input_denormal(a, status);
3058     b = float32_squash_input_denormal(b, status);
3059 
3060     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
3061          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
3062        ) {
3063         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
3064             float_raise(float_flag_invalid, status);
3065         }
3066         return 1;
3067     }
3068     return 0;
3069 }
3070 
3071 /*----------------------------------------------------------------------------
3072 | Returns the result of converting the double-precision floating-point value
3073 | `a' to the 32-bit two's complement integer format.  The conversion is
3074 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3075 | Arithmetic---which means in particular that the conversion is rounded
3076 | according to the current rounding mode.  If `a' is a NaN, the largest
3077 | positive integer is returned.  Otherwise, if the conversion overflows, the
3078 | largest integer with the same sign as `a' is returned.
3079 *----------------------------------------------------------------------------*/
3080 
3081 int32_t float64_to_int32(float64 a, float_status *status)
3082 {
3083     flag aSign;
3084     int aExp;
3085     int shiftCount;
3086     uint64_t aSig;
3087     a = float64_squash_input_denormal(a, status);
3088 
3089     aSig = extractFloat64Frac( a );
3090     aExp = extractFloat64Exp( a );
3091     aSign = extractFloat64Sign( a );
3092     if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
3093     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
3094     shiftCount = 0x42C - aExp;
3095     if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
3096     return roundAndPackInt32(aSign, aSig, status);
3097 
3098 }
3099 
3100 /*----------------------------------------------------------------------------
3101 | Returns the result of converting the double-precision floating-point value
3102 | `a' to the 32-bit two's complement integer format.  The conversion is
3103 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3104 | Arithmetic, except that the conversion is always rounded toward zero.
3105 | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
3106 | the conversion overflows, the largest integer with the same sign as `a' is
3107 | returned.
3108 *----------------------------------------------------------------------------*/
3109 
3110 int32_t float64_to_int32_round_to_zero(float64 a, float_status *status)
3111 {
3112     flag aSign;
3113     int aExp;
3114     int shiftCount;
3115     uint64_t aSig, savedASig;
3116     int32_t z;
3117     a = float64_squash_input_denormal(a, status);
3118 
3119     aSig = extractFloat64Frac( a );
3120     aExp = extractFloat64Exp( a );
3121     aSign = extractFloat64Sign( a );
3122     if ( 0x41E < aExp ) {
3123         if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
3124         goto invalid;
3125     }
3126     else if ( aExp < 0x3FF ) {
3127         if (aExp || aSig) {
3128             status->float_exception_flags |= float_flag_inexact;
3129         }
3130         return 0;
3131     }
3132     aSig |= LIT64( 0x0010000000000000 );
3133     shiftCount = 0x433 - aExp;
3134     savedASig = aSig;
3135     aSig >>= shiftCount;
3136     z = aSig;
3137     if ( aSign ) z = - z;
3138     if ( ( z < 0 ) ^ aSign ) {
3139  invalid:
3140         float_raise(float_flag_invalid, status);
3141         return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
3142     }
3143     if ( ( aSig<<shiftCount ) != savedASig ) {
3144         status->float_exception_flags |= float_flag_inexact;
3145     }
3146     return z;
3147 
3148 }
3149 
3150 /*----------------------------------------------------------------------------
3151 | Returns the result of converting the double-precision floating-point value
3152 | `a' to the 16-bit two's complement integer format.  The conversion is
3153 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3154 | Arithmetic, except that the conversion is always rounded toward zero.
3155 | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
3156 | the conversion overflows, the largest integer with the same sign as `a' is
3157 | returned.
3158 *----------------------------------------------------------------------------*/
3159 
3160 int16_t float64_to_int16_round_to_zero(float64 a, float_status *status)
3161 {
3162     flag aSign;
3163     int aExp;
3164     int shiftCount;
3165     uint64_t aSig, savedASig;
3166     int32_t z;
3167 
3168     aSig = extractFloat64Frac( a );
3169     aExp = extractFloat64Exp( a );
3170     aSign = extractFloat64Sign( a );
3171     if ( 0x40E < aExp ) {
3172         if ( ( aExp == 0x7FF ) && aSig ) {
3173             aSign = 0;
3174         }
3175         goto invalid;
3176     }
3177     else if ( aExp < 0x3FF ) {
3178         if ( aExp || aSig ) {
3179             status->float_exception_flags |= float_flag_inexact;
3180         }
3181         return 0;
3182     }
3183     aSig |= LIT64( 0x0010000000000000 );
3184     shiftCount = 0x433 - aExp;
3185     savedASig = aSig;
3186     aSig >>= shiftCount;
3187     z = aSig;
3188     if ( aSign ) {
3189         z = - z;
3190     }
3191     if ( ( (int16_t)z < 0 ) ^ aSign ) {
3192  invalid:
3193         float_raise(float_flag_invalid, status);
3194         return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
3195     }
3196     if ( ( aSig<<shiftCount ) != savedASig ) {
3197         status->float_exception_flags |= float_flag_inexact;
3198     }
3199     return z;
3200 }
3201 
3202 /*----------------------------------------------------------------------------
3203 | Returns the result of converting the double-precision floating-point value
3204 | `a' to the 64-bit two's complement integer format.  The conversion is
3205 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3206 | Arithmetic---which means in particular that the conversion is rounded
3207 | according to the current rounding mode.  If `a' is a NaN, the largest
3208 | positive integer is returned.  Otherwise, if the conversion overflows, the
3209 | largest integer with the same sign as `a' is returned.
3210 *----------------------------------------------------------------------------*/
3211 
3212 int64_t float64_to_int64(float64 a, float_status *status)
3213 {
3214     flag aSign;
3215     int aExp;
3216     int shiftCount;
3217     uint64_t aSig, aSigExtra;
3218     a = float64_squash_input_denormal(a, status);
3219 
3220     aSig = extractFloat64Frac( a );
3221     aExp = extractFloat64Exp( a );
3222     aSign = extractFloat64Sign( a );
3223     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
3224     shiftCount = 0x433 - aExp;
3225     if ( shiftCount <= 0 ) {
3226         if ( 0x43E < aExp ) {
3227             float_raise(float_flag_invalid, status);
3228             if (    ! aSign
3229                  || (    ( aExp == 0x7FF )
3230                       && ( aSig != LIT64( 0x0010000000000000 ) ) )
3231                ) {
3232                 return LIT64( 0x7FFFFFFFFFFFFFFF );
3233             }
3234             return (int64_t) LIT64( 0x8000000000000000 );
3235         }
3236         aSigExtra = 0;
3237         aSig <<= - shiftCount;
3238     }
3239     else {
3240         shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
3241     }
3242     return roundAndPackInt64(aSign, aSig, aSigExtra, status);
3243 
3244 }
3245 
3246 /*----------------------------------------------------------------------------
3247 | Returns the result of converting the double-precision floating-point value
3248 | `a' to the 64-bit two's complement integer format.  The conversion is
3249 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3250 | Arithmetic, except that the conversion is always rounded toward zero.
3251 | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
3252 | the conversion overflows, the largest integer with the same sign as `a' is
3253 | returned.
3254 *----------------------------------------------------------------------------*/
3255 
3256 int64_t float64_to_int64_round_to_zero(float64 a, float_status *status)
3257 {
3258     flag aSign;
3259     int aExp;
3260     int shiftCount;
3261     uint64_t aSig;
3262     int64_t z;
3263     a = float64_squash_input_denormal(a, status);
3264 
3265     aSig = extractFloat64Frac( a );
3266     aExp = extractFloat64Exp( a );
3267     aSign = extractFloat64Sign( a );
3268     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
3269     shiftCount = aExp - 0x433;
3270     if ( 0 <= shiftCount ) {
3271         if ( 0x43E <= aExp ) {
3272             if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
3273                 float_raise(float_flag_invalid, status);
3274                 if (    ! aSign
3275                      || (    ( aExp == 0x7FF )
3276                           && ( aSig != LIT64( 0x0010000000000000 ) ) )
3277                    ) {
3278                     return LIT64( 0x7FFFFFFFFFFFFFFF );
3279                 }
3280             }
3281             return (int64_t) LIT64( 0x8000000000000000 );
3282         }
3283         z = aSig<<shiftCount;
3284     }
3285     else {
3286         if ( aExp < 0x3FE ) {
3287             if (aExp | aSig) {
3288                 status->float_exception_flags |= float_flag_inexact;
3289             }
3290             return 0;
3291         }
3292         z = aSig>>( - shiftCount );
3293         if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
3294             status->float_exception_flags |= float_flag_inexact;
3295         }
3296     }
3297     if ( aSign ) z = - z;
3298     return z;
3299 
3300 }
3301 
3302 /*----------------------------------------------------------------------------
3303 | Returns the result of converting the double-precision floating-point value
3304 | `a' to the single-precision floating-point format.  The conversion is
3305 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3306 | Arithmetic.
3307 *----------------------------------------------------------------------------*/
3308 
3309 float32 float64_to_float32(float64 a, float_status *status)
3310 {
3311     flag aSign;
3312     int aExp;
3313     uint64_t aSig;
3314     uint32_t zSig;
3315     a = float64_squash_input_denormal(a, status);
3316 
3317     aSig = extractFloat64Frac( a );
3318     aExp = extractFloat64Exp( a );
3319     aSign = extractFloat64Sign( a );
3320     if ( aExp == 0x7FF ) {
3321         if (aSig) {
3322             return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
3323         }
3324         return packFloat32( aSign, 0xFF, 0 );
3325     }
3326     shift64RightJamming( aSig, 22, &aSig );
3327     zSig = aSig;
3328     if ( aExp || zSig ) {
3329         zSig |= 0x40000000;
3330         aExp -= 0x381;
3331     }
3332     return roundAndPackFloat32(aSign, aExp, zSig, status);
3333 
3334 }
3335 
3336 
3337 /*----------------------------------------------------------------------------
3338 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
3339 | half-precision floating-point value, returning the result.  After being
3340 | shifted into the proper positions, the three fields are simply added
3341 | together to form the result.  This means that any integer portion of `zSig'
3342 | will be added into the exponent.  Since a properly normalized significand
3343 | will have an integer portion equal to 1, the `zExp' input should be 1 less
3344 | than the desired result exponent whenever `zSig' is a complete, normalized
3345 | significand.
3346 *----------------------------------------------------------------------------*/
3347 static float16 packFloat16(flag zSign, int zExp, uint16_t zSig)
3348 {
3349     return make_float16(
3350         (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
3351 }
3352 
3353 /*----------------------------------------------------------------------------
3354 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
3355 | and significand `zSig', and returns the proper half-precision floating-
3356 | point value corresponding to the abstract input.  Ordinarily, the abstract
3357 | value is simply rounded and packed into the half-precision format, with
3358 | the inexact exception raised if the abstract input cannot be represented
3359 | exactly.  However, if the abstract value is too large, the overflow and
3360 | inexact exceptions are raised and an infinity or maximal finite value is
3361 | returned.  If the abstract value is too small, the input value is rounded to
3362 | a subnormal number, and the underflow and inexact exceptions are raised if
3363 | the abstract input cannot be represented exactly as a subnormal half-
3364 | precision floating-point number.
3365 | The `ieee' flag indicates whether to use IEEE standard half precision, or
3366 | ARM-style "alternative representation", which omits the NaN and Inf
3367 | encodings in order to raise the maximum representable exponent by one.
3368 |     The input significand `zSig' has its binary point between bits 22
3369 | and 23, which is 13 bits to the left of the usual location.  This shifted
3370 | significand must be normalized or smaller.  If `zSig' is not normalized,
3371 | `zExp' must be 0; in that case, the result returned is a subnormal number,
3372 | and it must not require rounding.  In the usual case that `zSig' is
3373 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
3374 | Note the slightly odd position of the binary point in zSig compared with the
3375 | other roundAndPackFloat functions. This should probably be fixed if we
3376 | need to implement more float16 routines than just conversion.
3377 | The handling of underflow and overflow follows the IEC/IEEE Standard for
3378 | Binary Floating-Point Arithmetic.
3379 *----------------------------------------------------------------------------*/
3380 
3381 static float16 roundAndPackFloat16(flag zSign, int zExp,
3382                                    uint32_t zSig, flag ieee,
3383                                    float_status *status)
3384 {
3385     int maxexp = ieee ? 29 : 30;
3386     uint32_t mask;
3387     uint32_t increment;
3388     bool rounding_bumps_exp;
3389     bool is_tiny = false;
3390 
3391     /* Calculate the mask of bits of the mantissa which are not
3392      * representable in half-precision and will be lost.
3393      */
3394     if (zExp < 1) {
3395         /* Will be denormal in halfprec */
3396         mask = 0x00ffffff;
3397         if (zExp >= -11) {
3398             mask >>= 11 + zExp;
3399         }
3400     } else {
3401         /* Normal number in halfprec */
3402         mask = 0x00001fff;
3403     }
3404 
3405     switch (status->float_rounding_mode) {
3406     case float_round_nearest_even:
3407         increment = (mask + 1) >> 1;
3408         if ((zSig & mask) == increment) {
3409             increment = zSig & (increment << 1);
3410         }
3411         break;
3412     case float_round_ties_away:
3413         increment = (mask + 1) >> 1;
3414         break;
3415     case float_round_up:
3416         increment = zSign ? 0 : mask;
3417         break;
3418     case float_round_down:
3419         increment = zSign ? mask : 0;
3420         break;
3421     default: /* round_to_zero */
3422         increment = 0;
3423         break;
3424     }
3425 
3426     rounding_bumps_exp = (zSig + increment >= 0x01000000);
3427 
3428     if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
3429         if (ieee) {
3430             float_raise(float_flag_overflow | float_flag_inexact, status);
3431             return packFloat16(zSign, 0x1f, 0);
3432         } else {
3433             float_raise(float_flag_invalid, status);
3434             return packFloat16(zSign, 0x1f, 0x3ff);
3435         }
3436     }
3437 
3438     if (zExp < 0) {
3439         /* Note that flush-to-zero does not affect half-precision results */
3440         is_tiny =
3441             (status->float_detect_tininess == float_tininess_before_rounding)
3442             || (zExp < -1)
3443             || (!rounding_bumps_exp);
3444     }
3445     if (zSig & mask) {
3446         float_raise(float_flag_inexact, status);
3447         if (is_tiny) {
3448             float_raise(float_flag_underflow, status);
3449         }
3450     }
3451 
3452     zSig += increment;
3453     if (rounding_bumps_exp) {
3454         zSig >>= 1;
3455         zExp++;
3456     }
3457 
3458     if (zExp < -10) {
3459         return packFloat16(zSign, 0, 0);
3460     }
3461     if (zExp < 0) {
3462         zSig >>= -zExp;
3463         zExp = 0;
3464     }
3465     return packFloat16(zSign, zExp, zSig >> 13);
3466 }
3467 
3468 static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr,
3469                                       uint32_t *zSigPtr)
3470 {
3471     int8_t shiftCount = countLeadingZeros32(aSig) - 21;
3472     *zSigPtr = aSig << shiftCount;
3473     *zExpPtr = 1 - shiftCount;
3474 }
3475 
3476 /* Half precision floats come in two formats: standard IEEE and "ARM" format.
3477    The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
3478 
3479 float32 float16_to_float32(float16 a, flag ieee, float_status *status)
3480 {
3481     flag aSign;
3482     int aExp;
3483     uint32_t aSig;
3484 
3485     aSign = extractFloat16Sign(a);
3486     aExp = extractFloat16Exp(a);
3487     aSig = extractFloat16Frac(a);
3488 
3489     if (aExp == 0x1f && ieee) {
3490         if (aSig) {
3491             return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
3492         }
3493         return packFloat32(aSign, 0xff, 0);
3494     }
3495     if (aExp == 0) {
3496         if (aSig == 0) {
3497             return packFloat32(aSign, 0, 0);
3498         }
3499 
3500         normalizeFloat16Subnormal(aSig, &aExp, &aSig);
3501         aExp--;
3502     }
3503     return packFloat32( aSign, aExp + 0x70, aSig << 13);
3504 }
3505 
3506 float16 float32_to_float16(float32 a, flag ieee, float_status *status)
3507 {
3508     flag aSign;
3509     int aExp;
3510     uint32_t aSig;
3511 
3512     a = float32_squash_input_denormal(a, status);
3513 
3514     aSig = extractFloat32Frac( a );
3515     aExp = extractFloat32Exp( a );
3516     aSign = extractFloat32Sign( a );
3517     if ( aExp == 0xFF ) {
3518         if (aSig) {
3519             /* Input is a NaN */
3520             if (!ieee) {
3521                 float_raise(float_flag_invalid, status);
3522                 return packFloat16(aSign, 0, 0);
3523             }
3524             return commonNaNToFloat16(
3525                 float32ToCommonNaN(a, status), status);
3526         }
3527         /* Infinity */
3528         if (!ieee) {
3529             float_raise(float_flag_invalid, status);
3530             return packFloat16(aSign, 0x1f, 0x3ff);
3531         }
3532         return packFloat16(aSign, 0x1f, 0);
3533     }
3534     if (aExp == 0 && aSig == 0) {
3535         return packFloat16(aSign, 0, 0);
3536     }
3537     /* Decimal point between bits 22 and 23. Note that we add the 1 bit
3538      * even if the input is denormal; however this is harmless because
3539      * the largest possible single-precision denormal is still smaller
3540      * than the smallest representable half-precision denormal, and so we
3541      * will end up ignoring aSig and returning via the "always return zero"
3542      * codepath.
3543      */
3544     aSig |= 0x00800000;
3545     aExp -= 0x71;
3546 
3547     return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
3548 }
3549 
3550 float64 float16_to_float64(float16 a, flag ieee, float_status *status)
3551 {
3552     flag aSign;
3553     int aExp;
3554     uint32_t aSig;
3555 
3556     aSign = extractFloat16Sign(a);
3557     aExp = extractFloat16Exp(a);
3558     aSig = extractFloat16Frac(a);
3559 
3560     if (aExp == 0x1f && ieee) {
3561         if (aSig) {
3562             return commonNaNToFloat64(
3563                 float16ToCommonNaN(a, status), status);
3564         }
3565         return packFloat64(aSign, 0x7ff, 0);
3566     }
3567     if (aExp == 0) {
3568         if (aSig == 0) {
3569             return packFloat64(aSign, 0, 0);
3570         }
3571 
3572         normalizeFloat16Subnormal(aSig, &aExp, &aSig);
3573         aExp--;
3574     }
3575     return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
3576 }
3577 
3578 float16 float64_to_float16(float64 a, flag ieee, float_status *status)
3579 {
3580     flag aSign;
3581     int aExp;
3582     uint64_t aSig;
3583     uint32_t zSig;
3584 
3585     a = float64_squash_input_denormal(a, status);
3586 
3587     aSig = extractFloat64Frac(a);
3588     aExp = extractFloat64Exp(a);
3589     aSign = extractFloat64Sign(a);
3590     if (aExp == 0x7FF) {
3591         if (aSig) {
3592             /* Input is a NaN */
3593             if (!ieee) {
3594                 float_raise(float_flag_invalid, status);
3595                 return packFloat16(aSign, 0, 0);
3596             }
3597             return commonNaNToFloat16(
3598                 float64ToCommonNaN(a, status), status);
3599         }
3600         /* Infinity */
3601         if (!ieee) {
3602             float_raise(float_flag_invalid, status);
3603             return packFloat16(aSign, 0x1f, 0x3ff);
3604         }
3605         return packFloat16(aSign, 0x1f, 0);
3606     }
3607     shift64RightJamming(aSig, 29, &aSig);
3608     zSig = aSig;
3609     if (aExp == 0 && zSig == 0) {
3610         return packFloat16(aSign, 0, 0);
3611     }
3612     /* Decimal point between bits 22 and 23. Note that we add the 1 bit
3613      * even if the input is denormal; however this is harmless because
3614      * the largest possible single-precision denormal is still smaller
3615      * than the smallest representable half-precision denormal, and so we
3616      * will end up ignoring aSig and returning via the "always return zero"
3617      * codepath.
3618      */
3619     zSig |= 0x00800000;
3620     aExp -= 0x3F1;
3621 
3622     return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
3623 }
3624 
3625 /*----------------------------------------------------------------------------
3626 | Returns the result of converting the double-precision floating-point value
3627 | `a' to the extended double-precision floating-point format.  The conversion
3628 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
3629 | Arithmetic.
3630 *----------------------------------------------------------------------------*/
3631 
3632 floatx80 float64_to_floatx80(float64 a, float_status *status)
3633 {
3634     flag aSign;
3635     int aExp;
3636     uint64_t aSig;
3637 
3638     a = float64_squash_input_denormal(a, status);
3639     aSig = extractFloat64Frac( a );
3640     aExp = extractFloat64Exp( a );
3641     aSign = extractFloat64Sign( a );
3642     if ( aExp == 0x7FF ) {
3643         if (aSig) {
3644             return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
3645         }
3646         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
3647     }
3648     if ( aExp == 0 ) {
3649         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
3650         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
3651     }
3652     return
3653         packFloatx80(
3654             aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
3655 
3656 }
3657 
3658 /*----------------------------------------------------------------------------
3659 | Returns the result of converting the double-precision floating-point value
3660 | `a' to the quadruple-precision floating-point format.  The conversion is
3661 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3662 | Arithmetic.
3663 *----------------------------------------------------------------------------*/
3664 
3665 float128 float64_to_float128(float64 a, float_status *status)
3666 {
3667     flag aSign;
3668     int aExp;
3669     uint64_t aSig, zSig0, zSig1;
3670 
3671     a = float64_squash_input_denormal(a, status);
3672     aSig = extractFloat64Frac( a );
3673     aExp = extractFloat64Exp( a );
3674     aSign = extractFloat64Sign( a );
3675     if ( aExp == 0x7FF ) {
3676         if (aSig) {
3677             return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
3678         }
3679         return packFloat128( aSign, 0x7FFF, 0, 0 );
3680     }
3681     if ( aExp == 0 ) {
3682         if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
3683         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
3684         --aExp;
3685     }
3686     shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
3687     return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
3688 
3689 }
3690 
3691 /*----------------------------------------------------------------------------
3692 | Rounds the double-precision floating-point value `a' to an integer, and
3693 | returns the result as a double-precision floating-point value.  The
3694 | operation is performed according to the IEC/IEEE Standard for Binary
3695 | Floating-Point Arithmetic.
3696 *----------------------------------------------------------------------------*/
3697 
3698 float64 float64_round_to_int(float64 a, float_status *status)
3699 {
3700     flag aSign;
3701     int aExp;
3702     uint64_t lastBitMask, roundBitsMask;
3703     uint64_t z;
3704     a = float64_squash_input_denormal(a, status);
3705 
3706     aExp = extractFloat64Exp( a );
3707     if ( 0x433 <= aExp ) {
3708         if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
3709             return propagateFloat64NaN(a, a, status);
3710         }
3711         return a;
3712     }
3713     if ( aExp < 0x3FF ) {
3714         if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
3715         status->float_exception_flags |= float_flag_inexact;
3716         aSign = extractFloat64Sign( a );
3717         switch (status->float_rounding_mode) {
3718          case float_round_nearest_even:
3719             if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
3720                 return packFloat64( aSign, 0x3FF, 0 );
3721             }
3722             break;
3723         case float_round_ties_away:
3724             if (aExp == 0x3FE) {
3725                 return packFloat64(aSign, 0x3ff, 0);
3726             }
3727             break;
3728          case float_round_down:
3729             return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
3730          case float_round_up:
3731             return make_float64(
3732             aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
3733         }
3734         return packFloat64( aSign, 0, 0 );
3735     }
3736     lastBitMask = 1;
3737     lastBitMask <<= 0x433 - aExp;
3738     roundBitsMask = lastBitMask - 1;
3739     z = float64_val(a);
3740     switch (status->float_rounding_mode) {
3741     case float_round_nearest_even:
3742         z += lastBitMask >> 1;
3743         if ((z & roundBitsMask) == 0) {
3744             z &= ~lastBitMask;
3745         }
3746         break;
3747     case float_round_ties_away:
3748         z += lastBitMask >> 1;
3749         break;
3750     case float_round_to_zero:
3751         break;
3752     case float_round_up:
3753         if (!extractFloat64Sign(make_float64(z))) {
3754             z += roundBitsMask;
3755         }
3756         break;
3757     case float_round_down:
3758         if (extractFloat64Sign(make_float64(z))) {
3759             z += roundBitsMask;
3760         }
3761         break;
3762     default:
3763         abort();
3764     }
3765     z &= ~ roundBitsMask;
3766     if (z != float64_val(a)) {
3767         status->float_exception_flags |= float_flag_inexact;
3768     }
3769     return make_float64(z);
3770 
3771 }
3772 
3773 float64 float64_trunc_to_int(float64 a, float_status *status)
3774 {
3775     int oldmode;
3776     float64 res;
3777     oldmode = status->float_rounding_mode;
3778     status->float_rounding_mode = float_round_to_zero;
3779     res = float64_round_to_int(a, status);
3780     status->float_rounding_mode = oldmode;
3781     return res;
3782 }
3783 
3784 /*----------------------------------------------------------------------------
3785 | Returns the result of adding the absolute values of the double-precision
3786 | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
3787 | before being returned.  `zSign' is ignored if the result is a NaN.
3788 | The addition is performed according to the IEC/IEEE Standard for Binary
3789 | Floating-Point Arithmetic.
3790 *----------------------------------------------------------------------------*/
3791 
3792 static float64 addFloat64Sigs(float64 a, float64 b, flag zSign,
3793                               float_status *status)
3794 {
3795     int aExp, bExp, zExp;
3796     uint64_t aSig, bSig, zSig;
3797     int expDiff;
3798 
3799     aSig = extractFloat64Frac( a );
3800     aExp = extractFloat64Exp( a );
3801     bSig = extractFloat64Frac( b );
3802     bExp = extractFloat64Exp( b );
3803     expDiff = aExp - bExp;
3804     aSig <<= 9;
3805     bSig <<= 9;
3806     if ( 0 < expDiff ) {
3807         if ( aExp == 0x7FF ) {
3808             if (aSig) {
3809                 return propagateFloat64NaN(a, b, status);
3810             }
3811             return a;
3812         }
3813         if ( bExp == 0 ) {
3814             --expDiff;
3815         }
3816         else {
3817             bSig |= LIT64( 0x2000000000000000 );
3818         }
3819         shift64RightJamming( bSig, expDiff, &bSig );
3820         zExp = aExp;
3821     }
3822     else if ( expDiff < 0 ) {
3823         if ( bExp == 0x7FF ) {
3824             if (bSig) {
3825                 return propagateFloat64NaN(a, b, status);
3826             }
3827             return packFloat64( zSign, 0x7FF, 0 );
3828         }
3829         if ( aExp == 0 ) {
3830             ++expDiff;
3831         }
3832         else {
3833             aSig |= LIT64( 0x2000000000000000 );
3834         }
3835         shift64RightJamming( aSig, - expDiff, &aSig );
3836         zExp = bExp;
3837     }
3838     else {
3839         if ( aExp == 0x7FF ) {
3840             if (aSig | bSig) {
3841                 return propagateFloat64NaN(a, b, status);
3842             }
3843             return a;
3844         }
3845         if ( aExp == 0 ) {
3846             if (status->flush_to_zero) {
3847                 if (aSig | bSig) {
3848                     float_raise(float_flag_output_denormal, status);
3849                 }
3850                 return packFloat64(zSign, 0, 0);
3851             }
3852             return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
3853         }
3854         zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
3855         zExp = aExp;
3856         goto roundAndPack;
3857     }
3858     aSig |= LIT64( 0x2000000000000000 );
3859     zSig = ( aSig + bSig )<<1;
3860     --zExp;
3861     if ( (int64_t) zSig < 0 ) {
3862         zSig = aSig + bSig;
3863         ++zExp;
3864     }
3865  roundAndPack:
3866     return roundAndPackFloat64(zSign, zExp, zSig, status);
3867 
3868 }
3869 
3870 /*----------------------------------------------------------------------------
3871 | Returns the result of subtracting the absolute values of the double-
3872 | precision floating-point values `a' and `b'.  If `zSign' is 1, the
3873 | difference is negated before being returned.  `zSign' is ignored if the
3874 | result is a NaN.  The subtraction is performed according to the IEC/IEEE
3875 | Standard for Binary Floating-Point Arithmetic.
3876 *----------------------------------------------------------------------------*/
3877 
3878 static float64 subFloat64Sigs(float64 a, float64 b, flag zSign,
3879                               float_status *status)
3880 {
3881     int aExp, bExp, zExp;
3882     uint64_t aSig, bSig, zSig;
3883     int expDiff;
3884 
3885     aSig = extractFloat64Frac( a );
3886     aExp = extractFloat64Exp( a );
3887     bSig = extractFloat64Frac( b );
3888     bExp = extractFloat64Exp( b );
3889     expDiff = aExp - bExp;
3890     aSig <<= 10;
3891     bSig <<= 10;
3892     if ( 0 < expDiff ) goto aExpBigger;
3893     if ( expDiff < 0 ) goto bExpBigger;
3894     if ( aExp == 0x7FF ) {
3895         if (aSig | bSig) {
3896             return propagateFloat64NaN(a, b, status);
3897         }
3898         float_raise(float_flag_invalid, status);
3899         return float64_default_nan;
3900     }
3901     if ( aExp == 0 ) {
3902         aExp = 1;
3903         bExp = 1;
3904     }
3905     if ( bSig < aSig ) goto aBigger;
3906     if ( aSig < bSig ) goto bBigger;
3907     return packFloat64(status->float_rounding_mode == float_round_down, 0, 0);
3908  bExpBigger:
3909     if ( bExp == 0x7FF ) {
3910         if (bSig) {
3911             return propagateFloat64NaN(a, b, status);
3912         }
3913         return packFloat64( zSign ^ 1, 0x7FF, 0 );
3914     }
3915     if ( aExp == 0 ) {
3916         ++expDiff;
3917     }
3918     else {
3919         aSig |= LIT64( 0x4000000000000000 );
3920     }
3921     shift64RightJamming( aSig, - expDiff, &aSig );
3922     bSig |= LIT64( 0x4000000000000000 );
3923  bBigger:
3924     zSig = bSig - aSig;
3925     zExp = bExp;
3926     zSign ^= 1;
3927     goto normalizeRoundAndPack;
3928  aExpBigger:
3929     if ( aExp == 0x7FF ) {
3930         if (aSig) {
3931             return propagateFloat64NaN(a, b, status);
3932         }
3933         return a;
3934     }
3935     if ( bExp == 0 ) {
3936         --expDiff;
3937     }
3938     else {
3939         bSig |= LIT64( 0x4000000000000000 );
3940     }
3941     shift64RightJamming( bSig, expDiff, &bSig );
3942     aSig |= LIT64( 0x4000000000000000 );
3943  aBigger:
3944     zSig = aSig - bSig;
3945     zExp = aExp;
3946  normalizeRoundAndPack:
3947     --zExp;
3948     return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status);
3949 
3950 }
3951 
3952 /*----------------------------------------------------------------------------
3953 | Returns the result of adding the double-precision floating-point values `a'
3954 | and `b'.  The operation is performed according to the IEC/IEEE Standard for
3955 | Binary Floating-Point Arithmetic.
3956 *----------------------------------------------------------------------------*/
3957 
3958 float64 float64_add(float64 a, float64 b, float_status *status)
3959 {
3960     flag aSign, bSign;
3961     a = float64_squash_input_denormal(a, status);
3962     b = float64_squash_input_denormal(b, status);
3963 
3964     aSign = extractFloat64Sign( a );
3965     bSign = extractFloat64Sign( b );
3966     if ( aSign == bSign ) {
3967         return addFloat64Sigs(a, b, aSign, status);
3968     }
3969     else {
3970         return subFloat64Sigs(a, b, aSign, status);
3971     }
3972 
3973 }
3974 
3975 /*----------------------------------------------------------------------------
3976 | Returns the result of subtracting the double-precision floating-point values
3977 | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
3978 | for Binary Floating-Point Arithmetic.
3979 *----------------------------------------------------------------------------*/
3980 
3981 float64 float64_sub(float64 a, float64 b, float_status *status)
3982 {
3983     flag aSign, bSign;
3984     a = float64_squash_input_denormal(a, status);
3985     b = float64_squash_input_denormal(b, status);
3986 
3987     aSign = extractFloat64Sign( a );
3988     bSign = extractFloat64Sign( b );
3989     if ( aSign == bSign ) {
3990         return subFloat64Sigs(a, b, aSign, status);
3991     }
3992     else {
3993         return addFloat64Sigs(a, b, aSign, status);
3994     }
3995 
3996 }
3997 
3998 /*----------------------------------------------------------------------------
3999 | Returns the result of multiplying the double-precision floating-point values
4000 | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
4001 | for Binary Floating-Point Arithmetic.
4002 *----------------------------------------------------------------------------*/
4003 
4004 float64 float64_mul(float64 a, float64 b, float_status *status)
4005 {
4006     flag aSign, bSign, zSign;
4007     int aExp, bExp, zExp;
4008     uint64_t aSig, bSig, zSig0, zSig1;
4009 
4010     a = float64_squash_input_denormal(a, status);
4011     b = float64_squash_input_denormal(b, status);
4012 
4013     aSig = extractFloat64Frac( a );
4014     aExp = extractFloat64Exp( a );
4015     aSign = extractFloat64Sign( a );
4016     bSig = extractFloat64Frac( b );
4017     bExp = extractFloat64Exp( b );
4018     bSign = extractFloat64Sign( b );
4019     zSign = aSign ^ bSign;
4020     if ( aExp == 0x7FF ) {
4021         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
4022             return propagateFloat64NaN(a, b, status);
4023         }
4024         if ( ( bExp | bSig ) == 0 ) {
4025             float_raise(float_flag_invalid, status);
4026             return float64_default_nan;
4027         }
4028         return packFloat64( zSign, 0x7FF, 0 );
4029     }
4030     if ( bExp == 0x7FF ) {
4031         if (bSig) {
4032             return propagateFloat64NaN(a, b, status);
4033         }
4034         if ( ( aExp | aSig ) == 0 ) {
4035             float_raise(float_flag_invalid, status);
4036             return float64_default_nan;
4037         }
4038         return packFloat64( zSign, 0x7FF, 0 );
4039     }
4040     if ( aExp == 0 ) {
4041         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
4042         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
4043     }
4044     if ( bExp == 0 ) {
4045         if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
4046         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
4047     }
4048     zExp = aExp + bExp - 0x3FF;
4049     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
4050     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
4051     mul64To128( aSig, bSig, &zSig0, &zSig1 );
4052     zSig0 |= ( zSig1 != 0 );
4053     if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
4054         zSig0 <<= 1;
4055         --zExp;
4056     }
4057     return roundAndPackFloat64(zSign, zExp, zSig0, status);
4058 
4059 }
4060 
4061 /*----------------------------------------------------------------------------
4062 | Returns the result of dividing the double-precision floating-point value `a'
4063 | by the corresponding value `b'.  The operation is performed according to
4064 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4065 *----------------------------------------------------------------------------*/
4066 
4067 float64 float64_div(float64 a, float64 b, float_status *status)
4068 {
4069     flag aSign, bSign, zSign;
4070     int aExp, bExp, zExp;
4071     uint64_t aSig, bSig, zSig;
4072     uint64_t rem0, rem1;
4073     uint64_t term0, term1;
4074     a = float64_squash_input_denormal(a, status);
4075     b = float64_squash_input_denormal(b, status);
4076 
4077     aSig = extractFloat64Frac( a );
4078     aExp = extractFloat64Exp( a );
4079     aSign = extractFloat64Sign( a );
4080     bSig = extractFloat64Frac( b );
4081     bExp = extractFloat64Exp( b );
4082     bSign = extractFloat64Sign( b );
4083     zSign = aSign ^ bSign;
4084     if ( aExp == 0x7FF ) {
4085         if (aSig) {
4086             return propagateFloat64NaN(a, b, status);
4087         }
4088         if ( bExp == 0x7FF ) {
4089             if (bSig) {
4090                 return propagateFloat64NaN(a, b, status);
4091             }
4092             float_raise(float_flag_invalid, status);
4093             return float64_default_nan;
4094         }
4095         return packFloat64( zSign, 0x7FF, 0 );
4096     }
4097     if ( bExp == 0x7FF ) {
4098         if (bSig) {
4099             return propagateFloat64NaN(a, b, status);
4100         }
4101         return packFloat64( zSign, 0, 0 );
4102     }
4103     if ( bExp == 0 ) {
4104         if ( bSig == 0 ) {
4105             if ( ( aExp | aSig ) == 0 ) {
4106                 float_raise(float_flag_invalid, status);
4107                 return float64_default_nan;
4108             }
4109             float_raise(float_flag_divbyzero, status);
4110             return packFloat64( zSign, 0x7FF, 0 );
4111         }
4112         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
4113     }
4114     if ( aExp == 0 ) {
4115         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
4116         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
4117     }
4118     zExp = aExp - bExp + 0x3FD;
4119     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
4120     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
4121     if ( bSig <= ( aSig + aSig ) ) {
4122         aSig >>= 1;
4123         ++zExp;
4124     }
4125     zSig = estimateDiv128To64( aSig, 0, bSig );
4126     if ( ( zSig & 0x1FF ) <= 2 ) {
4127         mul64To128( bSig, zSig, &term0, &term1 );
4128         sub128( aSig, 0, term0, term1, &rem0, &rem1 );
4129         while ( (int64_t) rem0 < 0 ) {
4130             --zSig;
4131             add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
4132         }
4133         zSig |= ( rem1 != 0 );
4134     }
4135     return roundAndPackFloat64(zSign, zExp, zSig, status);
4136 
4137 }
4138 
4139 /*----------------------------------------------------------------------------
4140 | Returns the remainder of the double-precision floating-point value `a'
4141 | with respect to the corresponding value `b'.  The operation is performed
4142 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4143 *----------------------------------------------------------------------------*/
4144 
4145 float64 float64_rem(float64 a, float64 b, float_status *status)
4146 {
4147     flag aSign, zSign;
4148     int aExp, bExp, expDiff;
4149     uint64_t aSig, bSig;
4150     uint64_t q, alternateASig;
4151     int64_t sigMean;
4152 
4153     a = float64_squash_input_denormal(a, status);
4154     b = float64_squash_input_denormal(b, status);
4155     aSig = extractFloat64Frac( a );
4156     aExp = extractFloat64Exp( a );
4157     aSign = extractFloat64Sign( a );
4158     bSig = extractFloat64Frac( b );
4159     bExp = extractFloat64Exp( b );
4160     if ( aExp == 0x7FF ) {
4161         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
4162             return propagateFloat64NaN(a, b, status);
4163         }
4164         float_raise(float_flag_invalid, status);
4165         return float64_default_nan;
4166     }
4167     if ( bExp == 0x7FF ) {
4168         if (bSig) {
4169             return propagateFloat64NaN(a, b, status);
4170         }
4171         return a;
4172     }
4173     if ( bExp == 0 ) {
4174         if ( bSig == 0 ) {
4175             float_raise(float_flag_invalid, status);
4176             return float64_default_nan;
4177         }
4178         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
4179     }
4180     if ( aExp == 0 ) {
4181         if ( aSig == 0 ) return a;
4182         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
4183     }
4184     expDiff = aExp - bExp;
4185     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
4186     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
4187     if ( expDiff < 0 ) {
4188         if ( expDiff < -1 ) return a;
4189         aSig >>= 1;
4190     }
4191     q = ( bSig <= aSig );
4192     if ( q ) aSig -= bSig;
4193     expDiff -= 64;
4194     while ( 0 < expDiff ) {
4195         q = estimateDiv128To64( aSig, 0, bSig );
4196         q = ( 2 < q ) ? q - 2 : 0;
4197         aSig = - ( ( bSig>>2 ) * q );
4198         expDiff -= 62;
4199     }
4200     expDiff += 64;
4201     if ( 0 < expDiff ) {
4202         q = estimateDiv128To64( aSig, 0, bSig );
4203         q = ( 2 < q ) ? q - 2 : 0;
4204         q >>= 64 - expDiff;
4205         bSig >>= 2;
4206         aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
4207     }
4208     else {
4209         aSig >>= 2;
4210         bSig >>= 2;
4211     }
4212     do {
4213         alternateASig = aSig;
4214         ++q;
4215         aSig -= bSig;
4216     } while ( 0 <= (int64_t) aSig );
4217     sigMean = aSig + alternateASig;
4218     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
4219         aSig = alternateASig;
4220     }
4221     zSign = ( (int64_t) aSig < 0 );
4222     if ( zSign ) aSig = - aSig;
4223     return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
4224 
4225 }
4226 
4227 /*----------------------------------------------------------------------------
4228 | Returns the result of multiplying the double-precision floating-point values
4229 | `a' and `b' then adding 'c', with no intermediate rounding step after the
4230 | multiplication.  The operation is performed according to the IEC/IEEE
4231 | Standard for Binary Floating-Point Arithmetic 754-2008.
4232 | The flags argument allows the caller to select negation of the
4233 | addend, the intermediate product, or the final result. (The difference
4234 | between this and having the caller do a separate negation is that negating
4235 | externally will flip the sign bit on NaNs.)
4236 *----------------------------------------------------------------------------*/
4237 
4238 float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
4239                        float_status *status)
4240 {
4241     flag aSign, bSign, cSign, zSign;
4242     int aExp, bExp, cExp, pExp, zExp, expDiff;
4243     uint64_t aSig, bSig, cSig;
4244     flag pInf, pZero, pSign;
4245     uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
4246     int shiftcount;
4247     flag signflip, infzero;
4248 
4249     a = float64_squash_input_denormal(a, status);
4250     b = float64_squash_input_denormal(b, status);
4251     c = float64_squash_input_denormal(c, status);
4252     aSig = extractFloat64Frac(a);
4253     aExp = extractFloat64Exp(a);
4254     aSign = extractFloat64Sign(a);
4255     bSig = extractFloat64Frac(b);
4256     bExp = extractFloat64Exp(b);
4257     bSign = extractFloat64Sign(b);
4258     cSig = extractFloat64Frac(c);
4259     cExp = extractFloat64Exp(c);
4260     cSign = extractFloat64Sign(c);
4261 
4262     infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
4263                (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
4264 
4265     /* It is implementation-defined whether the cases of (0,inf,qnan)
4266      * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
4267      * they return if they do), so we have to hand this information
4268      * off to the target-specific pick-a-NaN routine.
4269      */
4270     if (((aExp == 0x7ff) && aSig) ||
4271         ((bExp == 0x7ff) && bSig) ||
4272         ((cExp == 0x7ff) && cSig)) {
4273         return propagateFloat64MulAddNaN(a, b, c, infzero, status);
4274     }
4275 
4276     if (infzero) {
4277         float_raise(float_flag_invalid, status);
4278         return float64_default_nan;
4279     }
4280 
4281     if (flags & float_muladd_negate_c) {
4282         cSign ^= 1;
4283     }
4284 
4285     signflip = (flags & float_muladd_negate_result) ? 1 : 0;
4286 
4287     /* Work out the sign and type of the product */
4288     pSign = aSign ^ bSign;
4289     if (flags & float_muladd_negate_product) {
4290         pSign ^= 1;
4291     }
4292     pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
4293     pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
4294 
4295     if (cExp == 0x7ff) {
4296         if (pInf && (pSign ^ cSign)) {
4297             /* addition of opposite-signed infinities => InvalidOperation */
4298             float_raise(float_flag_invalid, status);
4299             return float64_default_nan;
4300         }
4301         /* Otherwise generate an infinity of the same sign */
4302         return packFloat64(cSign ^ signflip, 0x7ff, 0);
4303     }
4304 
4305     if (pInf) {
4306         return packFloat64(pSign ^ signflip, 0x7ff, 0);
4307     }
4308 
4309     if (pZero) {
4310         if (cExp == 0) {
4311             if (cSig == 0) {
4312                 /* Adding two exact zeroes */
4313                 if (pSign == cSign) {
4314                     zSign = pSign;
4315                 } else if (status->float_rounding_mode == float_round_down) {
4316                     zSign = 1;
4317                 } else {
4318                     zSign = 0;
4319                 }
4320                 return packFloat64(zSign ^ signflip, 0, 0);
4321             }
4322             /* Exact zero plus a denorm */
4323             if (status->flush_to_zero) {
4324                 float_raise(float_flag_output_denormal, status);
4325                 return packFloat64(cSign ^ signflip, 0, 0);
4326             }
4327         }
4328         /* Zero plus something non-zero : just return the something */
4329         if (flags & float_muladd_halve_result) {
4330             if (cExp == 0) {
4331                 normalizeFloat64Subnormal(cSig, &cExp, &cSig);
4332             }
4333             /* Subtract one to halve, and one again because roundAndPackFloat64
4334              * wants one less than the true exponent.
4335              */
4336             cExp -= 2;
4337             cSig = (cSig | 0x0010000000000000ULL) << 10;
4338             return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status);
4339         }
4340         return packFloat64(cSign ^ signflip, cExp, cSig);
4341     }
4342 
4343     if (aExp == 0) {
4344         normalizeFloat64Subnormal(aSig, &aExp, &aSig);
4345     }
4346     if (bExp == 0) {
4347         normalizeFloat64Subnormal(bSig, &bExp, &bSig);
4348     }
4349 
4350     /* Calculate the actual result a * b + c */
4351 
4352     /* Multiply first; this is easy. */
4353     /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
4354      * because we want the true exponent, not the "one-less-than"
4355      * flavour that roundAndPackFloat64() takes.
4356      */
4357     pExp = aExp + bExp - 0x3fe;
4358     aSig = (aSig | LIT64(0x0010000000000000))<<10;
4359     bSig = (bSig | LIT64(0x0010000000000000))<<11;
4360     mul64To128(aSig, bSig, &pSig0, &pSig1);
4361     if ((int64_t)(pSig0 << 1) >= 0) {
4362         shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
4363         pExp--;
4364     }
4365 
4366     zSign = pSign ^ signflip;
4367 
4368     /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
4369      * bit in position 126.
4370      */
4371     if (cExp == 0) {
4372         if (!cSig) {
4373             /* Throw out the special case of c being an exact zero now */
4374             shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
4375             if (flags & float_muladd_halve_result) {
4376                 pExp--;
4377             }
4378             return roundAndPackFloat64(zSign, pExp - 1,
4379                                        pSig1, status);
4380         }
4381         normalizeFloat64Subnormal(cSig, &cExp, &cSig);
4382     }
4383 
4384     /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
4385      * significand of the addend, with the explicit bit in position 126.
4386      */
4387     cSig0 = cSig << (126 - 64 - 52);
4388     cSig1 = 0;
4389     cSig0 |= LIT64(0x4000000000000000);
4390     expDiff = pExp - cExp;
4391 
4392     if (pSign == cSign) {
4393         /* Addition */
4394         if (expDiff > 0) {
4395             /* scale c to match p */
4396             shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
4397             zExp = pExp;
4398         } else if (expDiff < 0) {
4399             /* scale p to match c */
4400             shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
4401             zExp = cExp;
4402         } else {
4403             /* no scaling needed */
4404             zExp = cExp;
4405         }
4406         /* Add significands and make sure explicit bit ends up in posn 126 */
4407         add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
4408         if ((int64_t)zSig0 < 0) {
4409             shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
4410         } else {
4411             zExp--;
4412         }
4413         shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
4414         if (flags & float_muladd_halve_result) {
4415             zExp--;
4416         }
4417         return roundAndPackFloat64(zSign, zExp, zSig1, status);
4418     } else {
4419         /* Subtraction */
4420         if (expDiff > 0) {
4421             shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
4422             sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
4423             zExp = pExp;
4424         } else if (expDiff < 0) {
4425             shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
4426             sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
4427             zExp = cExp;
4428             zSign ^= 1;
4429         } else {
4430             zExp = pExp;
4431             if (lt128(cSig0, cSig1, pSig0, pSig1)) {
4432                 sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
4433             } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
4434                 sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
4435                 zSign ^= 1;
4436             } else {
4437                 /* Exact zero */
4438                 zSign = signflip;
4439                 if (status->float_rounding_mode == float_round_down) {
4440                     zSign ^= 1;
4441                 }
4442                 return packFloat64(zSign, 0, 0);
4443             }
4444         }
4445         --zExp;
4446         /* Do the equivalent of normalizeRoundAndPackFloat64() but
4447          * starting with the significand in a pair of uint64_t.
4448          */
4449         if (zSig0) {
4450             shiftcount = countLeadingZeros64(zSig0) - 1;
4451             shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
4452             if (zSig1) {
4453                 zSig0 |= 1;
4454             }
4455             zExp -= shiftcount;
4456         } else {
4457             shiftcount = countLeadingZeros64(zSig1);
4458             if (shiftcount == 0) {
4459                 zSig0 = (zSig1 >> 1) | (zSig1 & 1);
4460                 zExp -= 63;
4461             } else {
4462                 shiftcount--;
4463                 zSig0 = zSig1 << shiftcount;
4464                 zExp -= (shiftcount + 64);
4465             }
4466         }
4467         if (flags & float_muladd_halve_result) {
4468             zExp--;
4469         }
4470         return roundAndPackFloat64(zSign, zExp, zSig0, status);
4471     }
4472 }
4473 
4474 /*----------------------------------------------------------------------------
4475 | Returns the square root of the double-precision floating-point value `a'.
4476 | The operation is performed according to the IEC/IEEE Standard for Binary
4477 | Floating-Point Arithmetic.
4478 *----------------------------------------------------------------------------*/
4479 
4480 float64 float64_sqrt(float64 a, float_status *status)
4481 {
4482     flag aSign;
4483     int aExp, zExp;
4484     uint64_t aSig, zSig, doubleZSig;
4485     uint64_t rem0, rem1, term0, term1;
4486     a = float64_squash_input_denormal(a, status);
4487 
4488     aSig = extractFloat64Frac( a );
4489     aExp = extractFloat64Exp( a );
4490     aSign = extractFloat64Sign( a );
4491     if ( aExp == 0x7FF ) {
4492         if (aSig) {
4493             return propagateFloat64NaN(a, a, status);
4494         }
4495         if ( ! aSign ) return a;
4496         float_raise(float_flag_invalid, status);
4497         return float64_default_nan;
4498     }
4499     if ( aSign ) {
4500         if ( ( aExp | aSig ) == 0 ) return a;
4501         float_raise(float_flag_invalid, status);
4502         return float64_default_nan;
4503     }
4504     if ( aExp == 0 ) {
4505         if ( aSig == 0 ) return float64_zero;
4506         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
4507     }
4508     zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
4509     aSig |= LIT64( 0x0010000000000000 );
4510     zSig = estimateSqrt32( aExp, aSig>>21 );
4511     aSig <<= 9 - ( aExp & 1 );
4512     zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
4513     if ( ( zSig & 0x1FF ) <= 5 ) {
4514         doubleZSig = zSig<<1;
4515         mul64To128( zSig, zSig, &term0, &term1 );
4516         sub128( aSig, 0, term0, term1, &rem0, &rem1 );
4517         while ( (int64_t) rem0 < 0 ) {
4518             --zSig;
4519             doubleZSig -= 2;
4520             add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
4521         }
4522         zSig |= ( ( rem0 | rem1 ) != 0 );
4523     }
4524     return roundAndPackFloat64(0, zExp, zSig, status);
4525 
4526 }
4527 
4528 /*----------------------------------------------------------------------------
4529 | Returns the binary log of the double-precision floating-point value `a'.
4530 | The operation is performed according to the IEC/IEEE Standard for Binary
4531 | Floating-Point Arithmetic.
4532 *----------------------------------------------------------------------------*/
4533 float64 float64_log2(float64 a, float_status *status)
4534 {
4535     flag aSign, zSign;
4536     int aExp;
4537     uint64_t aSig, aSig0, aSig1, zSig, i;
4538     a = float64_squash_input_denormal(a, status);
4539 
4540     aSig = extractFloat64Frac( a );
4541     aExp = extractFloat64Exp( a );
4542     aSign = extractFloat64Sign( a );
4543 
4544     if ( aExp == 0 ) {
4545         if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
4546         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
4547     }
4548     if ( aSign ) {
4549         float_raise(float_flag_invalid, status);
4550         return float64_default_nan;
4551     }
4552     if ( aExp == 0x7FF ) {
4553         if (aSig) {
4554             return propagateFloat64NaN(a, float64_zero, status);
4555         }
4556         return a;
4557     }
4558 
4559     aExp -= 0x3FF;
4560     aSig |= LIT64( 0x0010000000000000 );
4561     zSign = aExp < 0;
4562     zSig = (uint64_t)aExp << 52;
4563     for (i = 1LL << 51; i > 0; i >>= 1) {
4564         mul64To128( aSig, aSig, &aSig0, &aSig1 );
4565         aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
4566         if ( aSig & LIT64( 0x0020000000000000 ) ) {
4567             aSig >>= 1;
4568             zSig |= i;
4569         }
4570     }
4571 
4572     if ( zSign )
4573         zSig = -zSig;
4574     return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
4575 }
4576 
4577 /*----------------------------------------------------------------------------
4578 | Returns 1 if the double-precision floating-point value `a' is equal to the
4579 | corresponding value `b', and 0 otherwise.  The invalid exception is raised
4580 | if either operand is a NaN.  Otherwise, the comparison is performed
4581 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4582 *----------------------------------------------------------------------------*/
4583 
4584 int float64_eq(float64 a, float64 b, float_status *status)
4585 {
4586     uint64_t av, bv;
4587     a = float64_squash_input_denormal(a, status);
4588     b = float64_squash_input_denormal(b, status);
4589 
4590     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
4591          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
4592        ) {
4593         float_raise(float_flag_invalid, status);
4594         return 0;
4595     }
4596     av = float64_val(a);
4597     bv = float64_val(b);
4598     return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
4599 
4600 }
4601 
4602 /*----------------------------------------------------------------------------
4603 | Returns 1 if the double-precision floating-point value `a' is less than or
4604 | equal to the corresponding value `b', and 0 otherwise.  The invalid
4605 | exception is raised if either operand is a NaN.  The comparison is performed
4606 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4607 *----------------------------------------------------------------------------*/
4608 
4609 int float64_le(float64 a, float64 b, float_status *status)
4610 {
4611     flag aSign, bSign;
4612     uint64_t av, bv;
4613     a = float64_squash_input_denormal(a, status);
4614     b = float64_squash_input_denormal(b, status);
4615 
4616     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
4617          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
4618        ) {
4619         float_raise(float_flag_invalid, status);
4620         return 0;
4621     }
4622     aSign = extractFloat64Sign( a );
4623     bSign = extractFloat64Sign( b );
4624     av = float64_val(a);
4625     bv = float64_val(b);
4626     if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
4627     return ( av == bv ) || ( aSign ^ ( av < bv ) );
4628 
4629 }
4630 
4631 /*----------------------------------------------------------------------------
4632 | Returns 1 if the double-precision floating-point value `a' is less than
4633 | the corresponding value `b', and 0 otherwise.  The invalid exception is
4634 | raised if either operand is a NaN.  The comparison is performed according
4635 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4636 *----------------------------------------------------------------------------*/
4637 
4638 int float64_lt(float64 a, float64 b, float_status *status)
4639 {
4640     flag aSign, bSign;
4641     uint64_t av, bv;
4642 
4643     a = float64_squash_input_denormal(a, status);
4644     b = float64_squash_input_denormal(b, status);
4645     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
4646          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
4647        ) {
4648         float_raise(float_flag_invalid, status);
4649         return 0;
4650     }
4651     aSign = extractFloat64Sign( a );
4652     bSign = extractFloat64Sign( b );
4653     av = float64_val(a);
4654     bv = float64_val(b);
4655     if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
4656     return ( av != bv ) && ( aSign ^ ( av < bv ) );
4657 
4658 }
4659 
4660 /*----------------------------------------------------------------------------
4661 | Returns 1 if the double-precision floating-point values `a' and `b' cannot
4662 | be compared, and 0 otherwise.  The invalid exception is raised if either
4663 | operand is a NaN.  The comparison is performed according to the IEC/IEEE
4664 | Standard for Binary Floating-Point Arithmetic.
4665 *----------------------------------------------------------------------------*/
4666 
4667 int float64_unordered(float64 a, float64 b, float_status *status)
4668 {
4669     a = float64_squash_input_denormal(a, status);
4670     b = float64_squash_input_denormal(b, status);
4671 
4672     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
4673          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
4674        ) {
4675         float_raise(float_flag_invalid, status);
4676         return 1;
4677     }
4678     return 0;
4679 }
4680 
4681 /*----------------------------------------------------------------------------
4682 | Returns 1 if the double-precision floating-point value `a' is equal to the
4683 | corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
4684 | exception.The comparison is performed according to the IEC/IEEE Standard
4685 | for Binary Floating-Point Arithmetic.
4686 *----------------------------------------------------------------------------*/
4687 
4688 int float64_eq_quiet(float64 a, float64 b, float_status *status)
4689 {
4690     uint64_t av, bv;
4691     a = float64_squash_input_denormal(a, status);
4692     b = float64_squash_input_denormal(b, status);
4693 
4694     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
4695          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
4696        ) {
4697         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
4698             float_raise(float_flag_invalid, status);
4699         }
4700         return 0;
4701     }
4702     av = float64_val(a);
4703     bv = float64_val(b);
4704     return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
4705 
4706 }
4707 
4708 /*----------------------------------------------------------------------------
4709 | Returns 1 if the double-precision floating-point value `a' is less than or
4710 | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
4711 | cause an exception.  Otherwise, the comparison is performed according to the
4712 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4713 *----------------------------------------------------------------------------*/
4714 
4715 int float64_le_quiet(float64 a, float64 b, float_status *status)
4716 {
4717     flag aSign, bSign;
4718     uint64_t av, bv;
4719     a = float64_squash_input_denormal(a, status);
4720     b = float64_squash_input_denormal(b, status);
4721 
4722     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
4723          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
4724        ) {
4725         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
4726             float_raise(float_flag_invalid, status);
4727         }
4728         return 0;
4729     }
4730     aSign = extractFloat64Sign( a );
4731     bSign = extractFloat64Sign( b );
4732     av = float64_val(a);
4733     bv = float64_val(b);
4734     if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
4735     return ( av == bv ) || ( aSign ^ ( av < bv ) );
4736 
4737 }
4738 
4739 /*----------------------------------------------------------------------------
4740 | Returns 1 if the double-precision floating-point value `a' is less than
4741 | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
4742 | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
4743 | Standard for Binary Floating-Point Arithmetic.
4744 *----------------------------------------------------------------------------*/
4745 
4746 int float64_lt_quiet(float64 a, float64 b, float_status *status)
4747 {
4748     flag aSign, bSign;
4749     uint64_t av, bv;
4750     a = float64_squash_input_denormal(a, status);
4751     b = float64_squash_input_denormal(b, status);
4752 
4753     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
4754          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
4755        ) {
4756         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
4757             float_raise(float_flag_invalid, status);
4758         }
4759         return 0;
4760     }
4761     aSign = extractFloat64Sign( a );
4762     bSign = extractFloat64Sign( b );
4763     av = float64_val(a);
4764     bv = float64_val(b);
4765     if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
4766     return ( av != bv ) && ( aSign ^ ( av < bv ) );
4767 
4768 }
4769 
4770 /*----------------------------------------------------------------------------
4771 | Returns 1 if the double-precision floating-point values `a' and `b' cannot
4772 | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
4773 | comparison is performed according to the IEC/IEEE Standard for Binary
4774 | Floating-Point Arithmetic.
4775 *----------------------------------------------------------------------------*/
4776 
4777 int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4778 {
4779     a = float64_squash_input_denormal(a, status);
4780     b = float64_squash_input_denormal(b, status);
4781 
4782     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
4783          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
4784        ) {
4785         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
4786             float_raise(float_flag_invalid, status);
4787         }
4788         return 1;
4789     }
4790     return 0;
4791 }
4792 
4793 /*----------------------------------------------------------------------------
4794 | Returns the result of converting the extended double-precision floating-
4795 | point value `a' to the 32-bit two's complement integer format.  The
4796 | conversion is performed according to the IEC/IEEE Standard for Binary
4797 | Floating-Point Arithmetic---which means in particular that the conversion
4798 | is rounded according to the current rounding mode.  If `a' is a NaN, the
4799 | largest positive integer is returned.  Otherwise, if the conversion
4800 | overflows, the largest integer with the same sign as `a' is returned.
4801 *----------------------------------------------------------------------------*/
4802 
4803 int32_t floatx80_to_int32(floatx80 a, float_status *status)
4804 {
4805     flag aSign;
4806     int32_t aExp, shiftCount;
4807     uint64_t aSig;
4808 
4809     aSig = extractFloatx80Frac( a );
4810     aExp = extractFloatx80Exp( a );
4811     aSign = extractFloatx80Sign( a );
4812     if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
4813     shiftCount = 0x4037 - aExp;
4814     if ( shiftCount <= 0 ) shiftCount = 1;
4815     shift64RightJamming( aSig, shiftCount, &aSig );
4816     return roundAndPackInt32(aSign, aSig, status);
4817 
4818 }
4819 
4820 /*----------------------------------------------------------------------------
4821 | Returns the result of converting the extended double-precision floating-
4822 | point value `a' to the 32-bit two's complement integer format.  The
4823 | conversion is performed according to the IEC/IEEE Standard for Binary
4824 | Floating-Point Arithmetic, except that the conversion is always rounded
4825 | toward zero.  If `a' is a NaN, the largest positive integer is returned.
4826 | Otherwise, if the conversion overflows, the largest integer with the same
4827 | sign as `a' is returned.
4828 *----------------------------------------------------------------------------*/
4829 
4830 int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
4831 {
4832     flag aSign;
4833     int32_t aExp, shiftCount;
4834     uint64_t aSig, savedASig;
4835     int32_t z;
4836 
4837     aSig = extractFloatx80Frac( a );
4838     aExp = extractFloatx80Exp( a );
4839     aSign = extractFloatx80Sign( a );
4840     if ( 0x401E < aExp ) {
4841         if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
4842         goto invalid;
4843     }
4844     else if ( aExp < 0x3FFF ) {
4845         if (aExp || aSig) {
4846             status->float_exception_flags |= float_flag_inexact;
4847         }
4848         return 0;
4849     }
4850     shiftCount = 0x403E - aExp;
4851     savedASig = aSig;
4852     aSig >>= shiftCount;
4853     z = aSig;
4854     if ( aSign ) z = - z;
4855     if ( ( z < 0 ) ^ aSign ) {
4856  invalid:
4857         float_raise(float_flag_invalid, status);
4858         return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
4859     }
4860     if ( ( aSig<<shiftCount ) != savedASig ) {
4861         status->float_exception_flags |= float_flag_inexact;
4862     }
4863     return z;
4864 
4865 }
4866 
4867 /*----------------------------------------------------------------------------
4868 | Returns the result of converting the extended double-precision floating-
4869 | point value `a' to the 64-bit two's complement integer format.  The
4870 | conversion is performed according to the IEC/IEEE Standard for Binary
4871 | Floating-Point Arithmetic---which means in particular that the conversion
4872 | is rounded according to the current rounding mode.  If `a' is a NaN,
4873 | the largest positive integer is returned.  Otherwise, if the conversion
4874 | overflows, the largest integer with the same sign as `a' is returned.
4875 *----------------------------------------------------------------------------*/
4876 
4877 int64_t floatx80_to_int64(floatx80 a, float_status *status)
4878 {
4879     flag aSign;
4880     int32_t aExp, shiftCount;
4881     uint64_t aSig, aSigExtra;
4882 
4883     aSig = extractFloatx80Frac( a );
4884     aExp = extractFloatx80Exp( a );
4885     aSign = extractFloatx80Sign( a );
4886     shiftCount = 0x403E - aExp;
4887     if ( shiftCount <= 0 ) {
4888         if ( shiftCount ) {
4889             float_raise(float_flag_invalid, status);
4890             if (    ! aSign
4891                  || (    ( aExp == 0x7FFF )
4892                       && ( aSig != LIT64( 0x8000000000000000 ) ) )
4893                ) {
4894                 return LIT64( 0x7FFFFFFFFFFFFFFF );
4895             }
4896             return (int64_t) LIT64( 0x8000000000000000 );
4897         }
4898         aSigExtra = 0;
4899     }
4900     else {
4901         shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
4902     }
4903     return roundAndPackInt64(aSign, aSig, aSigExtra, status);
4904 
4905 }
4906 
4907 /*----------------------------------------------------------------------------
4908 | Returns the result of converting the extended double-precision floating-
4909 | point value `a' to the 64-bit two's complement integer format.  The
4910 | conversion is performed according to the IEC/IEEE Standard for Binary
4911 | Floating-Point Arithmetic, except that the conversion is always rounded
4912 | toward zero.  If `a' is a NaN, the largest positive integer is returned.
4913 | Otherwise, if the conversion overflows, the largest integer with the same
4914 | sign as `a' is returned.
4915 *----------------------------------------------------------------------------*/
4916 
4917 int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
4918 {
4919     flag aSign;
4920     int32_t aExp, shiftCount;
4921     uint64_t aSig;
4922     int64_t z;
4923 
4924     aSig = extractFloatx80Frac( a );
4925     aExp = extractFloatx80Exp( a );
4926     aSign = extractFloatx80Sign( a );
4927     shiftCount = aExp - 0x403E;
4928     if ( 0 <= shiftCount ) {
4929         aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
4930         if ( ( a.high != 0xC03E ) || aSig ) {
4931             float_raise(float_flag_invalid, status);
4932             if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
4933                 return LIT64( 0x7FFFFFFFFFFFFFFF );
4934             }
4935         }
4936         return (int64_t) LIT64( 0x8000000000000000 );
4937     }
4938     else if ( aExp < 0x3FFF ) {
4939         if (aExp | aSig) {
4940             status->float_exception_flags |= float_flag_inexact;
4941         }
4942         return 0;
4943     }
4944     z = aSig>>( - shiftCount );
4945     if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
4946         status->float_exception_flags |= float_flag_inexact;
4947     }
4948     if ( aSign ) z = - z;
4949     return z;
4950 
4951 }
4952 
4953 /*----------------------------------------------------------------------------
4954 | Returns the result of converting the extended double-precision floating-
4955 | point value `a' to the single-precision floating-point format.  The
4956 | conversion is performed according to the IEC/IEEE Standard for Binary
4957 | Floating-Point Arithmetic.
4958 *----------------------------------------------------------------------------*/
4959 
4960 float32 floatx80_to_float32(floatx80 a, float_status *status)
4961 {
4962     flag aSign;
4963     int32_t aExp;
4964     uint64_t aSig;
4965 
4966     aSig = extractFloatx80Frac( a );
4967     aExp = extractFloatx80Exp( a );
4968     aSign = extractFloatx80Sign( a );
4969     if ( aExp == 0x7FFF ) {
4970         if ( (uint64_t) ( aSig<<1 ) ) {
4971             return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
4972         }
4973         return packFloat32( aSign, 0xFF, 0 );
4974     }
4975     shift64RightJamming( aSig, 33, &aSig );
4976     if ( aExp || aSig ) aExp -= 0x3F81;
4977     return roundAndPackFloat32(aSign, aExp, aSig, status);
4978 
4979 }
4980 
4981 /*----------------------------------------------------------------------------
4982 | Returns the result of converting the extended double-precision floating-
4983 | point value `a' to the double-precision floating-point format.  The
4984 | conversion is performed according to the IEC/IEEE Standard for Binary
4985 | Floating-Point Arithmetic.
4986 *----------------------------------------------------------------------------*/
4987 
4988 float64 floatx80_to_float64(floatx80 a, float_status *status)
4989 {
4990     flag aSign;
4991     int32_t aExp;
4992     uint64_t aSig, zSig;
4993 
4994     aSig = extractFloatx80Frac( a );
4995     aExp = extractFloatx80Exp( a );
4996     aSign = extractFloatx80Sign( a );
4997     if ( aExp == 0x7FFF ) {
4998         if ( (uint64_t) ( aSig<<1 ) ) {
4999             return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
5000         }
5001         return packFloat64( aSign, 0x7FF, 0 );
5002     }
5003     shift64RightJamming( aSig, 1, &zSig );
5004     if ( aExp || aSig ) aExp -= 0x3C01;
5005     return roundAndPackFloat64(aSign, aExp, zSig, status);
5006 
5007 }
5008 
5009 /*----------------------------------------------------------------------------
5010 | Returns the result of converting the extended double-precision floating-
5011 | point value `a' to the quadruple-precision floating-point format.  The
5012 | conversion is performed according to the IEC/IEEE Standard for Binary
5013 | Floating-Point Arithmetic.
5014 *----------------------------------------------------------------------------*/
5015 
5016 float128 floatx80_to_float128(floatx80 a, float_status *status)
5017 {
5018     flag aSign;
5019     int aExp;
5020     uint64_t aSig, zSig0, zSig1;
5021 
5022     aSig = extractFloatx80Frac( a );
5023     aExp = extractFloatx80Exp( a );
5024     aSign = extractFloatx80Sign( a );
5025     if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
5026         return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
5027     }
5028     shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
5029     return packFloat128( aSign, aExp, zSig0, zSig1 );
5030 
5031 }
5032 
5033 /*----------------------------------------------------------------------------
5034 | Rounds the extended double-precision floating-point value `a' to an integer,
5035 | and returns the result as an extended quadruple-precision floating-point
5036 | value.  The operation is performed according to the IEC/IEEE Standard for
5037 | Binary Floating-Point Arithmetic.
5038 *----------------------------------------------------------------------------*/
5039 
5040 floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
5041 {
5042     flag aSign;
5043     int32_t aExp;
5044     uint64_t lastBitMask, roundBitsMask;
5045     floatx80 z;
5046 
5047     aExp = extractFloatx80Exp( a );
5048     if ( 0x403E <= aExp ) {
5049         if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
5050             return propagateFloatx80NaN(a, a, status);
5051         }
5052         return a;
5053     }
5054     if ( aExp < 0x3FFF ) {
5055         if (    ( aExp == 0 )
5056              && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
5057             return a;
5058         }
5059         status->float_exception_flags |= float_flag_inexact;
5060         aSign = extractFloatx80Sign( a );
5061         switch (status->float_rounding_mode) {
5062          case float_round_nearest_even:
5063             if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
5064                ) {
5065                 return
5066                     packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
5067             }
5068             break;
5069         case float_round_ties_away:
5070             if (aExp == 0x3FFE) {
5071                 return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
5072             }
5073             break;
5074          case float_round_down:
5075             return
5076                   aSign ?
5077                       packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
5078                 : packFloatx80( 0, 0, 0 );
5079          case float_round_up:
5080             return
5081                   aSign ? packFloatx80( 1, 0, 0 )
5082                 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
5083         }
5084         return packFloatx80( aSign, 0, 0 );
5085     }
5086     lastBitMask = 1;
5087     lastBitMask <<= 0x403E - aExp;
5088     roundBitsMask = lastBitMask - 1;
5089     z = a;
5090     switch (status->float_rounding_mode) {
5091     case float_round_nearest_even:
5092         z.low += lastBitMask>>1;
5093         if ((z.low & roundBitsMask) == 0) {
5094             z.low &= ~lastBitMask;
5095         }
5096         break;
5097     case float_round_ties_away:
5098         z.low += lastBitMask >> 1;
5099         break;
5100     case float_round_to_zero:
5101         break;
5102     case float_round_up:
5103         if (!extractFloatx80Sign(z)) {
5104             z.low += roundBitsMask;
5105         }
5106         break;
5107     case float_round_down:
5108         if (extractFloatx80Sign(z)) {
5109             z.low += roundBitsMask;
5110         }
5111         break;
5112     default:
5113         abort();
5114     }
5115     z.low &= ~ roundBitsMask;
5116     if ( z.low == 0 ) {
5117         ++z.high;
5118         z.low = LIT64( 0x8000000000000000 );
5119     }
5120     if (z.low != a.low) {
5121         status->float_exception_flags |= float_flag_inexact;
5122     }
5123     return z;
5124 
5125 }
5126 
5127 /*----------------------------------------------------------------------------
5128 | Returns the result of adding the absolute values of the extended double-
5129 | precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
5130 | negated before being returned.  `zSign' is ignored if the result is a NaN.
5131 | The addition is performed according to the IEC/IEEE Standard for Binary
5132 | Floating-Point Arithmetic.
5133 *----------------------------------------------------------------------------*/
5134 
5135 static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
5136                                 float_status *status)
5137 {
5138     int32_t aExp, bExp, zExp;
5139     uint64_t aSig, bSig, zSig0, zSig1;
5140     int32_t expDiff;
5141 
5142     aSig = extractFloatx80Frac( a );
5143     aExp = extractFloatx80Exp( a );
5144     bSig = extractFloatx80Frac( b );
5145     bExp = extractFloatx80Exp( b );
5146     expDiff = aExp - bExp;
5147     if ( 0 < expDiff ) {
5148         if ( aExp == 0x7FFF ) {
5149             if ((uint64_t)(aSig << 1)) {
5150                 return propagateFloatx80NaN(a, b, status);
5151             }
5152             return a;
5153         }
5154         if ( bExp == 0 ) --expDiff;
5155         shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
5156         zExp = aExp;
5157     }
5158     else if ( expDiff < 0 ) {
5159         if ( bExp == 0x7FFF ) {
5160             if ((uint64_t)(bSig << 1)) {
5161                 return propagateFloatx80NaN(a, b, status);
5162             }
5163             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
5164         }
5165         if ( aExp == 0 ) ++expDiff;
5166         shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
5167         zExp = bExp;
5168     }
5169     else {
5170         if ( aExp == 0x7FFF ) {
5171             if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
5172                 return propagateFloatx80NaN(a, b, status);
5173             }
5174             return a;
5175         }
5176         zSig1 = 0;
5177         zSig0 = aSig + bSig;
5178         if ( aExp == 0 ) {
5179             normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
5180             goto roundAndPack;
5181         }
5182         zExp = aExp;
5183         goto shiftRight1;
5184     }
5185     zSig0 = aSig + bSig;
5186     if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
5187  shiftRight1:
5188     shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
5189     zSig0 |= LIT64( 0x8000000000000000 );
5190     ++zExp;
5191  roundAndPack:
5192     return roundAndPackFloatx80(status->floatx80_rounding_precision,
5193                                 zSign, zExp, zSig0, zSig1, status);
5194 }
5195 
5196 /*----------------------------------------------------------------------------
5197 | Returns the result of subtracting the absolute values of the extended
5198 | double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
5199 | difference is negated before being returned.  `zSign' is ignored if the
5200 | result is a NaN.  The subtraction is performed according to the IEC/IEEE
5201 | Standard for Binary Floating-Point Arithmetic.
5202 *----------------------------------------------------------------------------*/
5203 
5204 static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
5205                                 float_status *status)
5206 {
5207     int32_t aExp, bExp, zExp;
5208     uint64_t aSig, bSig, zSig0, zSig1;
5209     int32_t expDiff;
5210     floatx80 z;
5211 
5212     aSig = extractFloatx80Frac( a );
5213     aExp = extractFloatx80Exp( a );
5214     bSig = extractFloatx80Frac( b );
5215     bExp = extractFloatx80Exp( b );
5216     expDiff = aExp - bExp;
5217     if ( 0 < expDiff ) goto aExpBigger;
5218     if ( expDiff < 0 ) goto bExpBigger;
5219     if ( aExp == 0x7FFF ) {
5220         if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
5221             return propagateFloatx80NaN(a, b, status);
5222         }
5223         float_raise(float_flag_invalid, status);
5224         z.low = floatx80_default_nan_low;
5225         z.high = floatx80_default_nan_high;
5226         return z;
5227     }
5228     if ( aExp == 0 ) {
5229         aExp = 1;
5230         bExp = 1;
5231     }
5232     zSig1 = 0;
5233     if ( bSig < aSig ) goto aBigger;
5234     if ( aSig < bSig ) goto bBigger;
5235     return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
5236  bExpBigger:
5237     if ( bExp == 0x7FFF ) {
5238         if ((uint64_t)(bSig << 1)) {
5239             return propagateFloatx80NaN(a, b, status);
5240         }
5241         return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
5242     }
5243     if ( aExp == 0 ) ++expDiff;
5244     shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
5245  bBigger:
5246     sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
5247     zExp = bExp;
5248     zSign ^= 1;
5249     goto normalizeRoundAndPack;
5250  aExpBigger:
5251     if ( aExp == 0x7FFF ) {
5252         if ((uint64_t)(aSig << 1)) {
5253             return propagateFloatx80NaN(a, b, status);
5254         }
5255         return a;
5256     }
5257     if ( bExp == 0 ) --expDiff;
5258     shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
5259  aBigger:
5260     sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
5261     zExp = aExp;
5262  normalizeRoundAndPack:
5263     return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
5264                                          zSign, zExp, zSig0, zSig1, status);
5265 }
5266 
5267 /*----------------------------------------------------------------------------
5268 | Returns the result of adding the extended double-precision floating-point
5269 | values `a' and `b'.  The operation is performed according to the IEC/IEEE
5270 | Standard for Binary Floating-Point Arithmetic.
5271 *----------------------------------------------------------------------------*/
5272 
5273 floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
5274 {
5275     flag aSign, bSign;
5276 
5277     aSign = extractFloatx80Sign( a );
5278     bSign = extractFloatx80Sign( b );
5279     if ( aSign == bSign ) {
5280         return addFloatx80Sigs(a, b, aSign, status);
5281     }
5282     else {
5283         return subFloatx80Sigs(a, b, aSign, status);
5284     }
5285 
5286 }
5287 
5288 /*----------------------------------------------------------------------------
5289 | Returns the result of subtracting the extended double-precision floating-
5290 | point values `a' and `b'.  The operation is performed according to the
5291 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5292 *----------------------------------------------------------------------------*/
5293 
5294 floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
5295 {
5296     flag aSign, bSign;
5297 
5298     aSign = extractFloatx80Sign( a );
5299     bSign = extractFloatx80Sign( b );
5300     if ( aSign == bSign ) {
5301         return subFloatx80Sigs(a, b, aSign, status);
5302     }
5303     else {
5304         return addFloatx80Sigs(a, b, aSign, status);
5305     }
5306 
5307 }
5308 
5309 /*----------------------------------------------------------------------------
5310 | Returns the result of multiplying the extended double-precision floating-
5311 | point values `a' and `b'.  The operation is performed according to the
5312 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5313 *----------------------------------------------------------------------------*/
5314 
5315 floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
5316 {
5317     flag aSign, bSign, zSign;
5318     int32_t aExp, bExp, zExp;
5319     uint64_t aSig, bSig, zSig0, zSig1;
5320     floatx80 z;
5321 
5322     aSig = extractFloatx80Frac( a );
5323     aExp = extractFloatx80Exp( a );
5324     aSign = extractFloatx80Sign( a );
5325     bSig = extractFloatx80Frac( b );
5326     bExp = extractFloatx80Exp( b );
5327     bSign = extractFloatx80Sign( b );
5328     zSign = aSign ^ bSign;
5329     if ( aExp == 0x7FFF ) {
5330         if (    (uint64_t) ( aSig<<1 )
5331              || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
5332             return propagateFloatx80NaN(a, b, status);
5333         }
5334         if ( ( bExp | bSig ) == 0 ) goto invalid;
5335         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
5336     }
5337     if ( bExp == 0x7FFF ) {
5338         if ((uint64_t)(bSig << 1)) {
5339             return propagateFloatx80NaN(a, b, status);
5340         }
5341         if ( ( aExp | aSig ) == 0 ) {
5342  invalid:
5343             float_raise(float_flag_invalid, status);
5344             z.low = floatx80_default_nan_low;
5345             z.high = floatx80_default_nan_high;
5346             return z;
5347         }
5348         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
5349     }
5350     if ( aExp == 0 ) {
5351         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
5352         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
5353     }
5354     if ( bExp == 0 ) {
5355         if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
5356         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
5357     }
5358     zExp = aExp + bExp - 0x3FFE;
5359     mul64To128( aSig, bSig, &zSig0, &zSig1 );
5360     if ( 0 < (int64_t) zSig0 ) {
5361         shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
5362         --zExp;
5363     }
5364     return roundAndPackFloatx80(status->floatx80_rounding_precision,
5365                                 zSign, zExp, zSig0, zSig1, status);
5366 }
5367 
5368 /*----------------------------------------------------------------------------
5369 | Returns the result of dividing the extended double-precision floating-point
5370 | value `a' by the corresponding value `b'.  The operation is performed
5371 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5372 *----------------------------------------------------------------------------*/
5373 
5374 floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
5375 {
5376     flag aSign, bSign, zSign;
5377     int32_t aExp, bExp, zExp;
5378     uint64_t aSig, bSig, zSig0, zSig1;
5379     uint64_t rem0, rem1, rem2, term0, term1, term2;
5380     floatx80 z;
5381 
5382     aSig = extractFloatx80Frac( a );
5383     aExp = extractFloatx80Exp( a );
5384     aSign = extractFloatx80Sign( a );
5385     bSig = extractFloatx80Frac( b );
5386     bExp = extractFloatx80Exp( b );
5387     bSign = extractFloatx80Sign( b );
5388     zSign = aSign ^ bSign;
5389     if ( aExp == 0x7FFF ) {
5390         if ((uint64_t)(aSig << 1)) {
5391             return propagateFloatx80NaN(a, b, status);
5392         }
5393         if ( bExp == 0x7FFF ) {
5394             if ((uint64_t)(bSig << 1)) {
5395                 return propagateFloatx80NaN(a, b, status);
5396             }
5397             goto invalid;
5398         }
5399         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
5400     }
5401     if ( bExp == 0x7FFF ) {
5402         if ((uint64_t)(bSig << 1)) {
5403             return propagateFloatx80NaN(a, b, status);
5404         }
5405         return packFloatx80( zSign, 0, 0 );
5406     }
5407     if ( bExp == 0 ) {
5408         if ( bSig == 0 ) {
5409             if ( ( aExp | aSig ) == 0 ) {
5410  invalid:
5411                 float_raise(float_flag_invalid, status);
5412                 z.low = floatx80_default_nan_low;
5413                 z.high = floatx80_default_nan_high;
5414                 return z;
5415             }
5416             float_raise(float_flag_divbyzero, status);
5417             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
5418         }
5419         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
5420     }
5421     if ( aExp == 0 ) {
5422         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
5423         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
5424     }
5425     zExp = aExp - bExp + 0x3FFE;
5426     rem1 = 0;
5427     if ( bSig <= aSig ) {
5428         shift128Right( aSig, 0, 1, &aSig, &rem1 );
5429         ++zExp;
5430     }
5431     zSig0 = estimateDiv128To64( aSig, rem1, bSig );
5432     mul64To128( bSig, zSig0, &term0, &term1 );
5433     sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5434     while ( (int64_t) rem0 < 0 ) {
5435         --zSig0;
5436         add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
5437     }
5438     zSig1 = estimateDiv128To64( rem1, 0, bSig );
5439     if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
5440         mul64To128( bSig, zSig1, &term1, &term2 );
5441         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5442         while ( (int64_t) rem1 < 0 ) {
5443             --zSig1;
5444             add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
5445         }
5446         zSig1 |= ( ( rem1 | rem2 ) != 0 );
5447     }
5448     return roundAndPackFloatx80(status->floatx80_rounding_precision,
5449                                 zSign, zExp, zSig0, zSig1, status);
5450 }
5451 
5452 /*----------------------------------------------------------------------------
5453 | Returns the remainder of the extended double-precision floating-point value
5454 | `a' with respect to the corresponding value `b'.  The operation is performed
5455 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5456 *----------------------------------------------------------------------------*/
5457 
5458 floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
5459 {
5460     flag aSign, zSign;
5461     int32_t aExp, bExp, expDiff;
5462     uint64_t aSig0, aSig1, bSig;
5463     uint64_t q, term0, term1, alternateASig0, alternateASig1;
5464     floatx80 z;
5465 
5466     aSig0 = extractFloatx80Frac( a );
5467     aExp = extractFloatx80Exp( a );
5468     aSign = extractFloatx80Sign( a );
5469     bSig = extractFloatx80Frac( b );
5470     bExp = extractFloatx80Exp( b );
5471     if ( aExp == 0x7FFF ) {
5472         if (    (uint64_t) ( aSig0<<1 )
5473              || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
5474             return propagateFloatx80NaN(a, b, status);
5475         }
5476         goto invalid;
5477     }
5478     if ( bExp == 0x7FFF ) {
5479         if ((uint64_t)(bSig << 1)) {
5480             return propagateFloatx80NaN(a, b, status);
5481         }
5482         return a;
5483     }
5484     if ( bExp == 0 ) {
5485         if ( bSig == 0 ) {
5486  invalid:
5487             float_raise(float_flag_invalid, status);
5488             z.low = floatx80_default_nan_low;
5489             z.high = floatx80_default_nan_high;
5490             return z;
5491         }
5492         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
5493     }
5494     if ( aExp == 0 ) {
5495         if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
5496         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
5497     }
5498     bSig |= LIT64( 0x8000000000000000 );
5499     zSign = aSign;
5500     expDiff = aExp - bExp;
5501     aSig1 = 0;
5502     if ( expDiff < 0 ) {
5503         if ( expDiff < -1 ) return a;
5504         shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
5505         expDiff = 0;
5506     }
5507     q = ( bSig <= aSig0 );
5508     if ( q ) aSig0 -= bSig;
5509     expDiff -= 64;
5510     while ( 0 < expDiff ) {
5511         q = estimateDiv128To64( aSig0, aSig1, bSig );
5512         q = ( 2 < q ) ? q - 2 : 0;
5513         mul64To128( bSig, q, &term0, &term1 );
5514         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
5515         shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
5516         expDiff -= 62;
5517     }
5518     expDiff += 64;
5519     if ( 0 < expDiff ) {
5520         q = estimateDiv128To64( aSig0, aSig1, bSig );
5521         q = ( 2 < q ) ? q - 2 : 0;
5522         q >>= 64 - expDiff;
5523         mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
5524         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
5525         shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
5526         while ( le128( term0, term1, aSig0, aSig1 ) ) {
5527             ++q;
5528             sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
5529         }
5530     }
5531     else {
5532         term1 = 0;
5533         term0 = bSig;
5534     }
5535     sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
5536     if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
5537          || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
5538               && ( q & 1 ) )
5539        ) {
5540         aSig0 = alternateASig0;
5541         aSig1 = alternateASig1;
5542         zSign = ! zSign;
5543     }
5544     return
5545         normalizeRoundAndPackFloatx80(
5546             80, zSign, bExp + expDiff, aSig0, aSig1, status);
5547 
5548 }
5549 
5550 /*----------------------------------------------------------------------------
5551 | Returns the square root of the extended double-precision floating-point
5552 | value `a'.  The operation is performed according to the IEC/IEEE Standard
5553 | for Binary Floating-Point Arithmetic.
5554 *----------------------------------------------------------------------------*/
5555 
5556 floatx80 floatx80_sqrt(floatx80 a, float_status *status)
5557 {
5558     flag aSign;
5559     int32_t aExp, zExp;
5560     uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
5561     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
5562     floatx80 z;
5563 
5564     aSig0 = extractFloatx80Frac( a );
5565     aExp = extractFloatx80Exp( a );
5566     aSign = extractFloatx80Sign( a );
5567     if ( aExp == 0x7FFF ) {
5568         if ((uint64_t)(aSig0 << 1)) {
5569             return propagateFloatx80NaN(a, a, status);
5570         }
5571         if ( ! aSign ) return a;
5572         goto invalid;
5573     }
5574     if ( aSign ) {
5575         if ( ( aExp | aSig0 ) == 0 ) return a;
5576  invalid:
5577         float_raise(float_flag_invalid, status);
5578         z.low = floatx80_default_nan_low;
5579         z.high = floatx80_default_nan_high;
5580         return z;
5581     }
5582     if ( aExp == 0 ) {
5583         if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
5584         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
5585     }
5586     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
5587     zSig0 = estimateSqrt32( aExp, aSig0>>32 );
5588     shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
5589     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
5590     doubleZSig0 = zSig0<<1;
5591     mul64To128( zSig0, zSig0, &term0, &term1 );
5592     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5593     while ( (int64_t) rem0 < 0 ) {
5594         --zSig0;
5595         doubleZSig0 -= 2;
5596         add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
5597     }
5598     zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
5599     if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
5600         if ( zSig1 == 0 ) zSig1 = 1;
5601         mul64To128( doubleZSig0, zSig1, &term1, &term2 );
5602         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5603         mul64To128( zSig1, zSig1, &term2, &term3 );
5604         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5605         while ( (int64_t) rem1 < 0 ) {
5606             --zSig1;
5607             shortShift128Left( 0, zSig1, 1, &term2, &term3 );
5608             term3 |= 1;
5609             term2 |= doubleZSig0;
5610             add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
5611         }
5612         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
5613     }
5614     shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
5615     zSig0 |= doubleZSig0;
5616     return roundAndPackFloatx80(status->floatx80_rounding_precision,
5617                                 0, zExp, zSig0, zSig1, status);
5618 }
5619 
5620 /*----------------------------------------------------------------------------
5621 | Returns 1 if the extended double-precision floating-point value `a' is equal
5622 | to the corresponding value `b', and 0 otherwise.  The invalid exception is
5623 | raised if either operand is a NaN.  Otherwise, the comparison is performed
5624 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5625 *----------------------------------------------------------------------------*/
5626 
5627 int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
5628 {
5629 
5630     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5631               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
5632          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5633               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
5634        ) {
5635         float_raise(float_flag_invalid, status);
5636         return 0;
5637     }
5638     return
5639            ( a.low == b.low )
5640         && (    ( a.high == b.high )
5641              || (    ( a.low == 0 )
5642                   && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
5643            );
5644 
5645 }
5646 
5647 /*----------------------------------------------------------------------------
5648 | Returns 1 if the extended double-precision floating-point value `a' is
5649 | less than or equal to the corresponding value `b', and 0 otherwise.  The
5650 | invalid exception is raised if either operand is a NaN.  The comparison is
5651 | performed according to the IEC/IEEE Standard for Binary Floating-Point
5652 | Arithmetic.
5653 *----------------------------------------------------------------------------*/
5654 
5655 int floatx80_le(floatx80 a, floatx80 b, float_status *status)
5656 {
5657     flag aSign, bSign;
5658 
5659     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5660               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
5661          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5662               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
5663        ) {
5664         float_raise(float_flag_invalid, status);
5665         return 0;
5666     }
5667     aSign = extractFloatx80Sign( a );
5668     bSign = extractFloatx80Sign( b );
5669     if ( aSign != bSign ) {
5670         return
5671                aSign
5672             || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
5673                  == 0 );
5674     }
5675     return
5676           aSign ? le128( b.high, b.low, a.high, a.low )
5677         : le128( a.high, a.low, b.high, b.low );
5678 
5679 }
5680 
5681 /*----------------------------------------------------------------------------
5682 | Returns 1 if the extended double-precision floating-point value `a' is
5683 | less than the corresponding value `b', and 0 otherwise.  The invalid
5684 | exception is raised if either operand is a NaN.  The comparison is performed
5685 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5686 *----------------------------------------------------------------------------*/
5687 
5688 int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
5689 {
5690     flag aSign, bSign;
5691 
5692     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5693               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
5694          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5695               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
5696        ) {
5697         float_raise(float_flag_invalid, status);
5698         return 0;
5699     }
5700     aSign = extractFloatx80Sign( a );
5701     bSign = extractFloatx80Sign( b );
5702     if ( aSign != bSign ) {
5703         return
5704                aSign
5705             && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
5706                  != 0 );
5707     }
5708     return
5709           aSign ? lt128( b.high, b.low, a.high, a.low )
5710         : lt128( a.high, a.low, b.high, b.low );
5711 
5712 }
5713 
5714 /*----------------------------------------------------------------------------
5715 | Returns 1 if the extended double-precision floating-point values `a' and `b'
5716 | cannot be compared, and 0 otherwise.  The invalid exception is raised if
5717 | either operand is a NaN.   The comparison is performed according to the
5718 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5719 *----------------------------------------------------------------------------*/
5720 int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5721 {
5722     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5723               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
5724          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5725               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
5726        ) {
5727         float_raise(float_flag_invalid, status);
5728         return 1;
5729     }
5730     return 0;
5731 }
5732 
5733 /*----------------------------------------------------------------------------
5734 | Returns 1 if the extended double-precision floating-point value `a' is
5735 | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
5736 | cause an exception.  The comparison is performed according to the IEC/IEEE
5737 | Standard for Binary Floating-Point Arithmetic.
5738 *----------------------------------------------------------------------------*/
5739 
5740 int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
5741 {
5742 
5743     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5744               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
5745          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5746               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
5747        ) {
5748         if (    floatx80_is_signaling_nan( a )
5749              || floatx80_is_signaling_nan( b ) ) {
5750             float_raise(float_flag_invalid, status);
5751         }
5752         return 0;
5753     }
5754     return
5755            ( a.low == b.low )
5756         && (    ( a.high == b.high )
5757              || (    ( a.low == 0 )
5758                   && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
5759            );
5760 
5761 }
5762 
5763 /*----------------------------------------------------------------------------
5764 | Returns 1 if the extended double-precision floating-point value `a' is less
5765 | than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
5766 | do not cause an exception.  Otherwise, the comparison is performed according
5767 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5768 *----------------------------------------------------------------------------*/
5769 
5770 int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
5771 {
5772     flag aSign, bSign;
5773 
5774     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5775               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
5776          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5777               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
5778        ) {
5779         if (    floatx80_is_signaling_nan( a )
5780              || floatx80_is_signaling_nan( b ) ) {
5781             float_raise(float_flag_invalid, status);
5782         }
5783         return 0;
5784     }
5785     aSign = extractFloatx80Sign( a );
5786     bSign = extractFloatx80Sign( b );
5787     if ( aSign != bSign ) {
5788         return
5789                aSign
5790             || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
5791                  == 0 );
5792     }
5793     return
5794           aSign ? le128( b.high, b.low, a.high, a.low )
5795         : le128( a.high, a.low, b.high, b.low );
5796 
5797 }
5798 
5799 /*----------------------------------------------------------------------------
5800 | Returns 1 if the extended double-precision floating-point value `a' is less
5801 | than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
5802 | an exception.  Otherwise, the comparison is performed according to the
5803 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5804 *----------------------------------------------------------------------------*/
5805 
5806 int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
5807 {
5808     flag aSign, bSign;
5809 
5810     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5811               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
5812          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5813               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
5814        ) {
5815         if (    floatx80_is_signaling_nan( a )
5816              || floatx80_is_signaling_nan( b ) ) {
5817             float_raise(float_flag_invalid, status);
5818         }
5819         return 0;
5820     }
5821     aSign = extractFloatx80Sign( a );
5822     bSign = extractFloatx80Sign( b );
5823     if ( aSign != bSign ) {
5824         return
5825                aSign
5826             && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
5827                  != 0 );
5828     }
5829     return
5830           aSign ? lt128( b.high, b.low, a.high, a.low )
5831         : lt128( a.high, a.low, b.high, b.low );
5832 
5833 }
5834 
5835 /*----------------------------------------------------------------------------
5836 | Returns 1 if the extended double-precision floating-point values `a' and `b'
5837 | cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
5838 | The comparison is performed according to the IEC/IEEE Standard for Binary
5839 | Floating-Point Arithmetic.
5840 *----------------------------------------------------------------------------*/
5841 int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
5842 {
5843     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5844               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
5845          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5846               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
5847        ) {
5848         if (    floatx80_is_signaling_nan( a )
5849              || floatx80_is_signaling_nan( b ) ) {
5850             float_raise(float_flag_invalid, status);
5851         }
5852         return 1;
5853     }
5854     return 0;
5855 }
5856 
5857 /*----------------------------------------------------------------------------
5858 | Returns the result of converting the quadruple-precision floating-point
5859 | value `a' to the 32-bit two's complement integer format.  The conversion
5860 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5861 | Arithmetic---which means in particular that the conversion is rounded
5862 | according to the current rounding mode.  If `a' is a NaN, the largest
5863 | positive integer is returned.  Otherwise, if the conversion overflows, the
5864 | largest integer with the same sign as `a' is returned.
5865 *----------------------------------------------------------------------------*/
5866 
5867 int32_t float128_to_int32(float128 a, float_status *status)
5868 {
5869     flag aSign;
5870     int32_t aExp, shiftCount;
5871     uint64_t aSig0, aSig1;
5872 
5873     aSig1 = extractFloat128Frac1( a );
5874     aSig0 = extractFloat128Frac0( a );
5875     aExp = extractFloat128Exp( a );
5876     aSign = extractFloat128Sign( a );
5877     if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
5878     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
5879     aSig0 |= ( aSig1 != 0 );
5880     shiftCount = 0x4028 - aExp;
5881     if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
5882     return roundAndPackInt32(aSign, aSig0, status);
5883 
5884 }
5885 
5886 /*----------------------------------------------------------------------------
5887 | Returns the result of converting the quadruple-precision floating-point
5888 | value `a' to the 32-bit two's complement integer format.  The conversion
5889 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5890 | Arithmetic, except that the conversion is always rounded toward zero.  If
5891 | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
5892 | conversion overflows, the largest integer with the same sign as `a' is
5893 | returned.
5894 *----------------------------------------------------------------------------*/
5895 
5896 int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
5897 {
5898     flag aSign;
5899     int32_t aExp, shiftCount;
5900     uint64_t aSig0, aSig1, savedASig;
5901     int32_t z;
5902 
5903     aSig1 = extractFloat128Frac1( a );
5904     aSig0 = extractFloat128Frac0( a );
5905     aExp = extractFloat128Exp( a );
5906     aSign = extractFloat128Sign( a );
5907     aSig0 |= ( aSig1 != 0 );
5908     if ( 0x401E < aExp ) {
5909         if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
5910         goto invalid;
5911     }
5912     else if ( aExp < 0x3FFF ) {
5913         if (aExp || aSig0) {
5914             status->float_exception_flags |= float_flag_inexact;
5915         }
5916         return 0;
5917     }
5918     aSig0 |= LIT64( 0x0001000000000000 );
5919     shiftCount = 0x402F - aExp;
5920     savedASig = aSig0;
5921     aSig0 >>= shiftCount;
5922     z = aSig0;
5923     if ( aSign ) z = - z;
5924     if ( ( z < 0 ) ^ aSign ) {
5925  invalid:
5926         float_raise(float_flag_invalid, status);
5927         return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
5928     }
5929     if ( ( aSig0<<shiftCount ) != savedASig ) {
5930         status->float_exception_flags |= float_flag_inexact;
5931     }
5932     return z;
5933 
5934 }
5935 
5936 /*----------------------------------------------------------------------------
5937 | Returns the result of converting the quadruple-precision floating-point
5938 | value `a' to the 64-bit two's complement integer format.  The conversion
5939 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5940 | Arithmetic---which means in particular that the conversion is rounded
5941 | according to the current rounding mode.  If `a' is a NaN, the largest
5942 | positive integer is returned.  Otherwise, if the conversion overflows, the
5943 | largest integer with the same sign as `a' is returned.
5944 *----------------------------------------------------------------------------*/
5945 
5946 int64_t float128_to_int64(float128 a, float_status *status)
5947 {
5948     flag aSign;
5949     int32_t aExp, shiftCount;
5950     uint64_t aSig0, aSig1;
5951 
5952     aSig1 = extractFloat128Frac1( a );
5953     aSig0 = extractFloat128Frac0( a );
5954     aExp = extractFloat128Exp( a );
5955     aSign = extractFloat128Sign( a );
5956     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
5957     shiftCount = 0x402F - aExp;
5958     if ( shiftCount <= 0 ) {
5959         if ( 0x403E < aExp ) {
5960             float_raise(float_flag_invalid, status);
5961             if (    ! aSign
5962                  || (    ( aExp == 0x7FFF )
5963                       && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
5964                     )
5965                ) {
5966                 return LIT64( 0x7FFFFFFFFFFFFFFF );
5967             }
5968             return (int64_t) LIT64( 0x8000000000000000 );
5969         }
5970         shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
5971     }
5972     else {
5973         shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
5974     }
5975     return roundAndPackInt64(aSign, aSig0, aSig1, status);
5976 
5977 }
5978 
5979 /*----------------------------------------------------------------------------
5980 | Returns the result of converting the quadruple-precision floating-point
5981 | value `a' to the 64-bit two's complement integer format.  The conversion
5982 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5983 | Arithmetic, except that the conversion is always rounded toward zero.
5984 | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
5985 | the conversion overflows, the largest integer with the same sign as `a' is
5986 | returned.
5987 *----------------------------------------------------------------------------*/
5988 
5989 int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
5990 {
5991     flag aSign;
5992     int32_t aExp, shiftCount;
5993     uint64_t aSig0, aSig1;
5994     int64_t z;
5995 
5996     aSig1 = extractFloat128Frac1( a );
5997     aSig0 = extractFloat128Frac0( a );
5998     aExp = extractFloat128Exp( a );
5999     aSign = extractFloat128Sign( a );
6000     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
6001     shiftCount = aExp - 0x402F;
6002     if ( 0 < shiftCount ) {
6003         if ( 0x403E <= aExp ) {
6004             aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
6005             if (    ( a.high == LIT64( 0xC03E000000000000 ) )
6006                  && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
6007                 if (aSig1) {
6008                     status->float_exception_flags |= float_flag_inexact;
6009                 }
6010             }
6011             else {
6012                 float_raise(float_flag_invalid, status);
6013                 if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
6014                     return LIT64( 0x7FFFFFFFFFFFFFFF );
6015                 }
6016             }
6017             return (int64_t) LIT64( 0x8000000000000000 );
6018         }
6019         z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
6020         if ( (uint64_t) ( aSig1<<shiftCount ) ) {
6021             status->float_exception_flags |= float_flag_inexact;
6022         }
6023     }
6024     else {
6025         if ( aExp < 0x3FFF ) {
6026             if ( aExp | aSig0 | aSig1 ) {
6027                 status->float_exception_flags |= float_flag_inexact;
6028             }
6029             return 0;
6030         }
6031         z = aSig0>>( - shiftCount );
6032         if (    aSig1
6033              || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
6034             status->float_exception_flags |= float_flag_inexact;
6035         }
6036     }
6037     if ( aSign ) z = - z;
6038     return z;
6039 
6040 }
6041 
6042 /*----------------------------------------------------------------------------
6043 | Returns the result of converting the quadruple-precision floating-point
6044 | value `a' to the single-precision floating-point format.  The conversion
6045 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
6046 | Arithmetic.
6047 *----------------------------------------------------------------------------*/
6048 
6049 float32 float128_to_float32(float128 a, float_status *status)
6050 {
6051     flag aSign;
6052     int32_t aExp;
6053     uint64_t aSig0, aSig1;
6054     uint32_t zSig;
6055 
6056     aSig1 = extractFloat128Frac1( a );
6057     aSig0 = extractFloat128Frac0( a );
6058     aExp = extractFloat128Exp( a );
6059     aSign = extractFloat128Sign( a );
6060     if ( aExp == 0x7FFF ) {
6061         if ( aSig0 | aSig1 ) {
6062             return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
6063         }
6064         return packFloat32( aSign, 0xFF, 0 );
6065     }
6066     aSig0 |= ( aSig1 != 0 );
6067     shift64RightJamming( aSig0, 18, &aSig0 );
6068     zSig = aSig0;
6069     if ( aExp || zSig ) {
6070         zSig |= 0x40000000;
6071         aExp -= 0x3F81;
6072     }
6073     return roundAndPackFloat32(aSign, aExp, zSig, status);
6074 
6075 }
6076 
6077 /*----------------------------------------------------------------------------
6078 | Returns the result of converting the quadruple-precision floating-point
6079 | value `a' to the double-precision floating-point format.  The conversion
6080 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
6081 | Arithmetic.
6082 *----------------------------------------------------------------------------*/
6083 
6084 float64 float128_to_float64(float128 a, float_status *status)
6085 {
6086     flag aSign;
6087     int32_t aExp;
6088     uint64_t aSig0, aSig1;
6089 
6090     aSig1 = extractFloat128Frac1( a );
6091     aSig0 = extractFloat128Frac0( a );
6092     aExp = extractFloat128Exp( a );
6093     aSign = extractFloat128Sign( a );
6094     if ( aExp == 0x7FFF ) {
6095         if ( aSig0 | aSig1 ) {
6096             return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
6097         }
6098         return packFloat64( aSign, 0x7FF, 0 );
6099     }
6100     shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
6101     aSig0 |= ( aSig1 != 0 );
6102     if ( aExp || aSig0 ) {
6103         aSig0 |= LIT64( 0x4000000000000000 );
6104         aExp -= 0x3C01;
6105     }
6106     return roundAndPackFloat64(aSign, aExp, aSig0, status);
6107 
6108 }
6109 
6110 /*----------------------------------------------------------------------------
6111 | Returns the result of converting the quadruple-precision floating-point
6112 | value `a' to the extended double-precision floating-point format.  The
6113 | conversion is performed according to the IEC/IEEE Standard for Binary
6114 | Floating-Point Arithmetic.
6115 *----------------------------------------------------------------------------*/
6116 
6117 floatx80 float128_to_floatx80(float128 a, float_status *status)
6118 {
6119     flag aSign;
6120     int32_t aExp;
6121     uint64_t aSig0, aSig1;
6122 
6123     aSig1 = extractFloat128Frac1( a );
6124     aSig0 = extractFloat128Frac0( a );
6125     aExp = extractFloat128Exp( a );
6126     aSign = extractFloat128Sign( a );
6127     if ( aExp == 0x7FFF ) {
6128         if ( aSig0 | aSig1 ) {
6129             return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
6130         }
6131         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
6132     }
6133     if ( aExp == 0 ) {
6134         if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
6135         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
6136     }
6137     else {
6138         aSig0 |= LIT64( 0x0001000000000000 );
6139     }
6140     shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
6141     return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
6142 
6143 }
6144 
6145 /*----------------------------------------------------------------------------
6146 | Rounds the quadruple-precision floating-point value `a' to an integer, and
6147 | returns the result as a quadruple-precision floating-point value.  The
6148 | operation is performed according to the IEC/IEEE Standard for Binary
6149 | Floating-Point Arithmetic.
6150 *----------------------------------------------------------------------------*/
6151 
6152 float128 float128_round_to_int(float128 a, float_status *status)
6153 {
6154     flag aSign;
6155     int32_t aExp;
6156     uint64_t lastBitMask, roundBitsMask;
6157     float128 z;
6158 
6159     aExp = extractFloat128Exp( a );
6160     if ( 0x402F <= aExp ) {
6161         if ( 0x406F <= aExp ) {
6162             if (    ( aExp == 0x7FFF )
6163                  && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
6164                ) {
6165                 return propagateFloat128NaN(a, a, status);
6166             }
6167             return a;
6168         }
6169         lastBitMask = 1;
6170         lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
6171         roundBitsMask = lastBitMask - 1;
6172         z = a;
6173         switch (status->float_rounding_mode) {
6174         case float_round_nearest_even:
6175             if ( lastBitMask ) {
6176                 add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
6177                 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
6178             }
6179             else {
6180                 if ( (int64_t) z.low < 0 ) {
6181                     ++z.high;
6182                     if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
6183                 }
6184             }
6185             break;
6186         case float_round_ties_away:
6187             if (lastBitMask) {
6188                 add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
6189             } else {
6190                 if ((int64_t) z.low < 0) {
6191                     ++z.high;
6192                 }
6193             }
6194             break;
6195         case float_round_to_zero:
6196             break;
6197         case float_round_up:
6198             if (!extractFloat128Sign(z)) {
6199                 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
6200             }
6201             break;
6202         case float_round_down:
6203             if (extractFloat128Sign(z)) {
6204                 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
6205             }
6206             break;
6207         default:
6208             abort();
6209         }
6210         z.low &= ~ roundBitsMask;
6211     }
6212     else {
6213         if ( aExp < 0x3FFF ) {
6214             if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
6215             status->float_exception_flags |= float_flag_inexact;
6216             aSign = extractFloat128Sign( a );
6217             switch (status->float_rounding_mode) {
6218              case float_round_nearest_even:
6219                 if (    ( aExp == 0x3FFE )
6220                      && (   extractFloat128Frac0( a )
6221                           | extractFloat128Frac1( a ) )
6222                    ) {
6223                     return packFloat128( aSign, 0x3FFF, 0, 0 );
6224                 }
6225                 break;
6226             case float_round_ties_away:
6227                 if (aExp == 0x3FFE) {
6228                     return packFloat128(aSign, 0x3FFF, 0, 0);
6229                 }
6230                 break;
6231              case float_round_down:
6232                 return
6233                       aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
6234                     : packFloat128( 0, 0, 0, 0 );
6235              case float_round_up:
6236                 return
6237                       aSign ? packFloat128( 1, 0, 0, 0 )
6238                     : packFloat128( 0, 0x3FFF, 0, 0 );
6239             }
6240             return packFloat128( aSign, 0, 0, 0 );
6241         }
6242         lastBitMask = 1;
6243         lastBitMask <<= 0x402F - aExp;
6244         roundBitsMask = lastBitMask - 1;
6245         z.low = 0;
6246         z.high = a.high;
6247         switch (status->float_rounding_mode) {
6248         case float_round_nearest_even:
6249             z.high += lastBitMask>>1;
6250             if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
6251                 z.high &= ~ lastBitMask;
6252             }
6253             break;
6254         case float_round_ties_away:
6255             z.high += lastBitMask>>1;
6256             break;
6257         case float_round_to_zero:
6258             break;
6259         case float_round_up:
6260             if (!extractFloat128Sign(z)) {
6261                 z.high |= ( a.low != 0 );
6262                 z.high += roundBitsMask;
6263             }
6264             break;
6265         case float_round_down:
6266             if (extractFloat128Sign(z)) {
6267                 z.high |= (a.low != 0);
6268                 z.high += roundBitsMask;
6269             }
6270             break;
6271         default:
6272             abort();
6273         }
6274         z.high &= ~ roundBitsMask;
6275     }
6276     if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
6277         status->float_exception_flags |= float_flag_inexact;
6278     }
6279     return z;
6280 
6281 }
6282 
6283 /*----------------------------------------------------------------------------
6284 | Returns the result of adding the absolute values of the quadruple-precision
6285 | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
6286 | before being returned.  `zSign' is ignored if the result is a NaN.
6287 | The addition is performed according to the IEC/IEEE Standard for Binary
6288 | Floating-Point Arithmetic.
6289 *----------------------------------------------------------------------------*/
6290 
6291 static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
6292                                 float_status *status)
6293 {
6294     int32_t aExp, bExp, zExp;
6295     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6296     int32_t expDiff;
6297 
6298     aSig1 = extractFloat128Frac1( a );
6299     aSig0 = extractFloat128Frac0( a );
6300     aExp = extractFloat128Exp( a );
6301     bSig1 = extractFloat128Frac1( b );
6302     bSig0 = extractFloat128Frac0( b );
6303     bExp = extractFloat128Exp( b );
6304     expDiff = aExp - bExp;
6305     if ( 0 < expDiff ) {
6306         if ( aExp == 0x7FFF ) {
6307             if (aSig0 | aSig1) {
6308                 return propagateFloat128NaN(a, b, status);
6309             }
6310             return a;
6311         }
6312         if ( bExp == 0 ) {
6313             --expDiff;
6314         }
6315         else {
6316             bSig0 |= LIT64( 0x0001000000000000 );
6317         }
6318         shift128ExtraRightJamming(
6319             bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
6320         zExp = aExp;
6321     }
6322     else if ( expDiff < 0 ) {
6323         if ( bExp == 0x7FFF ) {
6324             if (bSig0 | bSig1) {
6325                 return propagateFloat128NaN(a, b, status);
6326             }
6327             return packFloat128( zSign, 0x7FFF, 0, 0 );
6328         }
6329         if ( aExp == 0 ) {
6330             ++expDiff;
6331         }
6332         else {
6333             aSig0 |= LIT64( 0x0001000000000000 );
6334         }
6335         shift128ExtraRightJamming(
6336             aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
6337         zExp = bExp;
6338     }
6339     else {
6340         if ( aExp == 0x7FFF ) {
6341             if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
6342                 return propagateFloat128NaN(a, b, status);
6343             }
6344             return a;
6345         }
6346         add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6347         if ( aExp == 0 ) {
6348             if (status->flush_to_zero) {
6349                 if (zSig0 | zSig1) {
6350                     float_raise(float_flag_output_denormal, status);
6351                 }
6352                 return packFloat128(zSign, 0, 0, 0);
6353             }
6354             return packFloat128( zSign, 0, zSig0, zSig1 );
6355         }
6356         zSig2 = 0;
6357         zSig0 |= LIT64( 0x0002000000000000 );
6358         zExp = aExp;
6359         goto shiftRight1;
6360     }
6361     aSig0 |= LIT64( 0x0001000000000000 );
6362     add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6363     --zExp;
6364     if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
6365     ++zExp;
6366  shiftRight1:
6367     shift128ExtraRightJamming(
6368         zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
6369  roundAndPack:
6370     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
6371 
6372 }
6373 
6374 /*----------------------------------------------------------------------------
6375 | Returns the result of subtracting the absolute values of the quadruple-
6376 | precision floating-point values `a' and `b'.  If `zSign' is 1, the
6377 | difference is negated before being returned.  `zSign' is ignored if the
6378 | result is a NaN.  The subtraction is performed according to the IEC/IEEE
6379 | Standard for Binary Floating-Point Arithmetic.
6380 *----------------------------------------------------------------------------*/
6381 
6382 static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
6383                                 float_status *status)
6384 {
6385     int32_t aExp, bExp, zExp;
6386     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
6387     int32_t expDiff;
6388     float128 z;
6389 
6390     aSig1 = extractFloat128Frac1( a );
6391     aSig0 = extractFloat128Frac0( a );
6392     aExp = extractFloat128Exp( a );
6393     bSig1 = extractFloat128Frac1( b );
6394     bSig0 = extractFloat128Frac0( b );
6395     bExp = extractFloat128Exp( b );
6396     expDiff = aExp - bExp;
6397     shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
6398     shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
6399     if ( 0 < expDiff ) goto aExpBigger;
6400     if ( expDiff < 0 ) goto bExpBigger;
6401     if ( aExp == 0x7FFF ) {
6402         if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
6403             return propagateFloat128NaN(a, b, status);
6404         }
6405         float_raise(float_flag_invalid, status);
6406         z.low = float128_default_nan_low;
6407         z.high = float128_default_nan_high;
6408         return z;
6409     }
6410     if ( aExp == 0 ) {
6411         aExp = 1;
6412         bExp = 1;
6413     }
6414     if ( bSig0 < aSig0 ) goto aBigger;
6415     if ( aSig0 < bSig0 ) goto bBigger;
6416     if ( bSig1 < aSig1 ) goto aBigger;
6417     if ( aSig1 < bSig1 ) goto bBigger;
6418     return packFloat128(status->float_rounding_mode == float_round_down,
6419                         0, 0, 0);
6420  bExpBigger:
6421     if ( bExp == 0x7FFF ) {
6422         if (bSig0 | bSig1) {
6423             return propagateFloat128NaN(a, b, status);
6424         }
6425         return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
6426     }
6427     if ( aExp == 0 ) {
6428         ++expDiff;
6429     }
6430     else {
6431         aSig0 |= LIT64( 0x4000000000000000 );
6432     }
6433     shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
6434     bSig0 |= LIT64( 0x4000000000000000 );
6435  bBigger:
6436     sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
6437     zExp = bExp;
6438     zSign ^= 1;
6439     goto normalizeRoundAndPack;
6440  aExpBigger:
6441     if ( aExp == 0x7FFF ) {
6442         if (aSig0 | aSig1) {
6443             return propagateFloat128NaN(a, b, status);
6444         }
6445         return a;
6446     }
6447     if ( bExp == 0 ) {
6448         --expDiff;
6449     }
6450     else {
6451         bSig0 |= LIT64( 0x4000000000000000 );
6452     }
6453     shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
6454     aSig0 |= LIT64( 0x4000000000000000 );
6455  aBigger:
6456     sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6457     zExp = aExp;
6458  normalizeRoundAndPack:
6459     --zExp;
6460     return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
6461                                          status);
6462 
6463 }
6464 
6465 /*----------------------------------------------------------------------------
6466 | Returns the result of adding the quadruple-precision floating-point values
6467 | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
6468 | for Binary Floating-Point Arithmetic.
6469 *----------------------------------------------------------------------------*/
6470 
6471 float128 float128_add(float128 a, float128 b, float_status *status)
6472 {
6473     flag aSign, bSign;
6474 
6475     aSign = extractFloat128Sign( a );
6476     bSign = extractFloat128Sign( b );
6477     if ( aSign == bSign ) {
6478         return addFloat128Sigs(a, b, aSign, status);
6479     }
6480     else {
6481         return subFloat128Sigs(a, b, aSign, status);
6482     }
6483 
6484 }
6485 
6486 /*----------------------------------------------------------------------------
6487 | Returns the result of subtracting the quadruple-precision floating-point
6488 | values `a' and `b'.  The operation is performed according to the IEC/IEEE
6489 | Standard for Binary Floating-Point Arithmetic.
6490 *----------------------------------------------------------------------------*/
6491 
6492 float128 float128_sub(float128 a, float128 b, float_status *status)
6493 {
6494     flag aSign, bSign;
6495 
6496     aSign = extractFloat128Sign( a );
6497     bSign = extractFloat128Sign( b );
6498     if ( aSign == bSign ) {
6499         return subFloat128Sigs(a, b, aSign, status);
6500     }
6501     else {
6502         return addFloat128Sigs(a, b, aSign, status);
6503     }
6504 
6505 }
6506 
6507 /*----------------------------------------------------------------------------
6508 | Returns the result of multiplying the quadruple-precision floating-point
6509 | values `a' and `b'.  The operation is performed according to the IEC/IEEE
6510 | Standard for Binary Floating-Point Arithmetic.
6511 *----------------------------------------------------------------------------*/
6512 
6513 float128 float128_mul(float128 a, float128 b, float_status *status)
6514 {
6515     flag aSign, bSign, zSign;
6516     int32_t aExp, bExp, zExp;
6517     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
6518     float128 z;
6519 
6520     aSig1 = extractFloat128Frac1( a );
6521     aSig0 = extractFloat128Frac0( a );
6522     aExp = extractFloat128Exp( a );
6523     aSign = extractFloat128Sign( a );
6524     bSig1 = extractFloat128Frac1( b );
6525     bSig0 = extractFloat128Frac0( b );
6526     bExp = extractFloat128Exp( b );
6527     bSign = extractFloat128Sign( b );
6528     zSign = aSign ^ bSign;
6529     if ( aExp == 0x7FFF ) {
6530         if (    ( aSig0 | aSig1 )
6531              || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
6532             return propagateFloat128NaN(a, b, status);
6533         }
6534         if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
6535         return packFloat128( zSign, 0x7FFF, 0, 0 );
6536     }
6537     if ( bExp == 0x7FFF ) {
6538         if (bSig0 | bSig1) {
6539             return propagateFloat128NaN(a, b, status);
6540         }
6541         if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
6542  invalid:
6543             float_raise(float_flag_invalid, status);
6544             z.low = float128_default_nan_low;
6545             z.high = float128_default_nan_high;
6546             return z;
6547         }
6548         return packFloat128( zSign, 0x7FFF, 0, 0 );
6549     }
6550     if ( aExp == 0 ) {
6551         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
6552         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
6553     }
6554     if ( bExp == 0 ) {
6555         if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
6556         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
6557     }
6558     zExp = aExp + bExp - 0x4000;
6559     aSig0 |= LIT64( 0x0001000000000000 );
6560     shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
6561     mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
6562     add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
6563     zSig2 |= ( zSig3 != 0 );
6564     if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
6565         shift128ExtraRightJamming(
6566             zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
6567         ++zExp;
6568     }
6569     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
6570 
6571 }
6572 
6573 /*----------------------------------------------------------------------------
6574 | Returns the result of dividing the quadruple-precision floating-point value
6575 | `a' by the corresponding value `b'.  The operation is performed according to
6576 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6577 *----------------------------------------------------------------------------*/
6578 
6579 float128 float128_div(float128 a, float128 b, float_status *status)
6580 {
6581     flag aSign, bSign, zSign;
6582     int32_t aExp, bExp, zExp;
6583     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6584     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
6585     float128 z;
6586 
6587     aSig1 = extractFloat128Frac1( a );
6588     aSig0 = extractFloat128Frac0( a );
6589     aExp = extractFloat128Exp( a );
6590     aSign = extractFloat128Sign( a );
6591     bSig1 = extractFloat128Frac1( b );
6592     bSig0 = extractFloat128Frac0( b );
6593     bExp = extractFloat128Exp( b );
6594     bSign = extractFloat128Sign( b );
6595     zSign = aSign ^ bSign;
6596     if ( aExp == 0x7FFF ) {
6597         if (aSig0 | aSig1) {
6598             return propagateFloat128NaN(a, b, status);
6599         }
6600         if ( bExp == 0x7FFF ) {
6601             if (bSig0 | bSig1) {
6602                 return propagateFloat128NaN(a, b, status);
6603             }
6604             goto invalid;
6605         }
6606         return packFloat128( zSign, 0x7FFF, 0, 0 );
6607     }
6608     if ( bExp == 0x7FFF ) {
6609         if (bSig0 | bSig1) {
6610             return propagateFloat128NaN(a, b, status);
6611         }
6612         return packFloat128( zSign, 0, 0, 0 );
6613     }
6614     if ( bExp == 0 ) {
6615         if ( ( bSig0 | bSig1 ) == 0 ) {
6616             if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
6617  invalid:
6618                 float_raise(float_flag_invalid, status);
6619                 z.low = float128_default_nan_low;
6620                 z.high = float128_default_nan_high;
6621                 return z;
6622             }
6623             float_raise(float_flag_divbyzero, status);
6624             return packFloat128( zSign, 0x7FFF, 0, 0 );
6625         }
6626         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
6627     }
6628     if ( aExp == 0 ) {
6629         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
6630         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
6631     }
6632     zExp = aExp - bExp + 0x3FFD;
6633     shortShift128Left(
6634         aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
6635     shortShift128Left(
6636         bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
6637     if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
6638         shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
6639         ++zExp;
6640     }
6641     zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
6642     mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
6643     sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6644     while ( (int64_t) rem0 < 0 ) {
6645         --zSig0;
6646         add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
6647     }
6648     zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
6649     if ( ( zSig1 & 0x3FFF ) <= 4 ) {
6650         mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
6651         sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6652         while ( (int64_t) rem1 < 0 ) {
6653             --zSig1;
6654             add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
6655         }
6656         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
6657     }
6658     shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
6659     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
6660 
6661 }
6662 
6663 /*----------------------------------------------------------------------------
6664 | Returns the remainder of the quadruple-precision floating-point value `a'
6665 | with respect to the corresponding value `b'.  The operation is performed
6666 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6667 *----------------------------------------------------------------------------*/
6668 
6669 float128 float128_rem(float128 a, float128 b, float_status *status)
6670 {
6671     flag aSign, zSign;
6672     int32_t aExp, bExp, expDiff;
6673     uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
6674     uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
6675     int64_t sigMean0;
6676     float128 z;
6677 
6678     aSig1 = extractFloat128Frac1( a );
6679     aSig0 = extractFloat128Frac0( a );
6680     aExp = extractFloat128Exp( a );
6681     aSign = extractFloat128Sign( a );
6682     bSig1 = extractFloat128Frac1( b );
6683     bSig0 = extractFloat128Frac0( b );
6684     bExp = extractFloat128Exp( b );
6685     if ( aExp == 0x7FFF ) {
6686         if (    ( aSig0 | aSig1 )
6687              || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
6688             return propagateFloat128NaN(a, b, status);
6689         }
6690         goto invalid;
6691     }
6692     if ( bExp == 0x7FFF ) {
6693         if (bSig0 | bSig1) {
6694             return propagateFloat128NaN(a, b, status);
6695         }
6696         return a;
6697     }
6698     if ( bExp == 0 ) {
6699         if ( ( bSig0 | bSig1 ) == 0 ) {
6700  invalid:
6701             float_raise(float_flag_invalid, status);
6702             z.low = float128_default_nan_low;
6703             z.high = float128_default_nan_high;
6704             return z;
6705         }
6706         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
6707     }
6708     if ( aExp == 0 ) {
6709         if ( ( aSig0 | aSig1 ) == 0 ) return a;
6710         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
6711     }
6712     expDiff = aExp - bExp;
6713     if ( expDiff < -1 ) return a;
6714     shortShift128Left(
6715         aSig0 | LIT64( 0x0001000000000000 ),
6716         aSig1,
6717         15 - ( expDiff < 0 ),
6718         &aSig0,
6719         &aSig1
6720     );
6721     shortShift128Left(
6722         bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
6723     q = le128( bSig0, bSig1, aSig0, aSig1 );
6724     if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6725     expDiff -= 64;
6726     while ( 0 < expDiff ) {
6727         q = estimateDiv128To64( aSig0, aSig1, bSig0 );
6728         q = ( 4 < q ) ? q - 4 : 0;
6729         mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
6730         shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
6731         shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
6732         sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
6733         expDiff -= 61;
6734     }
6735     if ( -64 < expDiff ) {
6736         q = estimateDiv128To64( aSig0, aSig1, bSig0 );
6737         q = ( 4 < q ) ? q - 4 : 0;
6738         q >>= - expDiff;
6739         shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
6740         expDiff += 52;
6741         if ( expDiff < 0 ) {
6742             shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
6743         }
6744         else {
6745             shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
6746         }
6747         mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
6748         sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
6749     }
6750     else {
6751         shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
6752         shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
6753     }
6754     do {
6755         alternateASig0 = aSig0;
6756         alternateASig1 = aSig1;
6757         ++q;
6758         sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6759     } while ( 0 <= (int64_t) aSig0 );
6760     add128(
6761         aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
6762     if (    ( sigMean0 < 0 )
6763          || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
6764         aSig0 = alternateASig0;
6765         aSig1 = alternateASig1;
6766     }
6767     zSign = ( (int64_t) aSig0 < 0 );
6768     if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
6769     return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
6770                                          status);
6771 }
6772 
6773 /*----------------------------------------------------------------------------
6774 | Returns the square root of the quadruple-precision floating-point value `a'.
6775 | The operation is performed according to the IEC/IEEE Standard for Binary
6776 | Floating-Point Arithmetic.
6777 *----------------------------------------------------------------------------*/
6778 
6779 float128 float128_sqrt(float128 a, float_status *status)
6780 {
6781     flag aSign;
6782     int32_t aExp, zExp;
6783     uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
6784     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
6785     float128 z;
6786 
6787     aSig1 = extractFloat128Frac1( a );
6788     aSig0 = extractFloat128Frac0( a );
6789     aExp = extractFloat128Exp( a );
6790     aSign = extractFloat128Sign( a );
6791     if ( aExp == 0x7FFF ) {
6792         if (aSig0 | aSig1) {
6793             return propagateFloat128NaN(a, a, status);
6794         }
6795         if ( ! aSign ) return a;
6796         goto invalid;
6797     }
6798     if ( aSign ) {
6799         if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
6800  invalid:
6801         float_raise(float_flag_invalid, status);
6802         z.low = float128_default_nan_low;
6803         z.high = float128_default_nan_high;
6804         return z;
6805     }
6806     if ( aExp == 0 ) {
6807         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
6808         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
6809     }
6810     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
6811     aSig0 |= LIT64( 0x0001000000000000 );
6812     zSig0 = estimateSqrt32( aExp, aSig0>>17 );
6813     shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
6814     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
6815     doubleZSig0 = zSig0<<1;
6816     mul64To128( zSig0, zSig0, &term0, &term1 );
6817     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6818     while ( (int64_t) rem0 < 0 ) {
6819         --zSig0;
6820         doubleZSig0 -= 2;
6821         add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
6822     }
6823     zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
6824     if ( ( zSig1 & 0x1FFF ) <= 5 ) {
6825         if ( zSig1 == 0 ) zSig1 = 1;
6826         mul64To128( doubleZSig0, zSig1, &term1, &term2 );
6827         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
6828         mul64To128( zSig1, zSig1, &term2, &term3 );
6829         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6830         while ( (int64_t) rem1 < 0 ) {
6831             --zSig1;
6832             shortShift128Left( 0, zSig1, 1, &term2, &term3 );
6833             term3 |= 1;
6834             term2 |= doubleZSig0;
6835             add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
6836         }
6837         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
6838     }
6839     shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
6840     return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
6841 
6842 }
6843 
6844 /*----------------------------------------------------------------------------
6845 | Returns 1 if the quadruple-precision floating-point value `a' is equal to
6846 | the corresponding value `b', and 0 otherwise.  The invalid exception is
6847 | raised if either operand is a NaN.  Otherwise, the comparison is performed
6848 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6849 *----------------------------------------------------------------------------*/
6850 
6851 int float128_eq(float128 a, float128 b, float_status *status)
6852 {
6853 
6854     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
6855               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
6856          || (    ( extractFloat128Exp( b ) == 0x7FFF )
6857               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
6858        ) {
6859         float_raise(float_flag_invalid, status);
6860         return 0;
6861     }
6862     return
6863            ( a.low == b.low )
6864         && (    ( a.high == b.high )
6865              || (    ( a.low == 0 )
6866                   && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
6867            );
6868 
6869 }
6870 
6871 /*----------------------------------------------------------------------------
6872 | Returns 1 if the quadruple-precision floating-point value `a' is less than
6873 | or equal to the corresponding value `b', and 0 otherwise.  The invalid
6874 | exception is raised if either operand is a NaN.  The comparison is performed
6875 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6876 *----------------------------------------------------------------------------*/
6877 
6878 int float128_le(float128 a, float128 b, float_status *status)
6879 {
6880     flag aSign, bSign;
6881 
6882     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
6883               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
6884          || (    ( extractFloat128Exp( b ) == 0x7FFF )
6885               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
6886        ) {
6887         float_raise(float_flag_invalid, status);
6888         return 0;
6889     }
6890     aSign = extractFloat128Sign( a );
6891     bSign = extractFloat128Sign( b );
6892     if ( aSign != bSign ) {
6893         return
6894                aSign
6895             || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
6896                  == 0 );
6897     }
6898     return
6899           aSign ? le128( b.high, b.low, a.high, a.low )
6900         : le128( a.high, a.low, b.high, b.low );
6901 
6902 }
6903 
6904 /*----------------------------------------------------------------------------
6905 | Returns 1 if the quadruple-precision floating-point value `a' is less than
6906 | the corresponding value `b', and 0 otherwise.  The invalid exception is
6907 | raised if either operand is a NaN.  The comparison is performed according
6908 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6909 *----------------------------------------------------------------------------*/
6910 
6911 int float128_lt(float128 a, float128 b, float_status *status)
6912 {
6913     flag aSign, bSign;
6914 
6915     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
6916               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
6917          || (    ( extractFloat128Exp( b ) == 0x7FFF )
6918               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
6919        ) {
6920         float_raise(float_flag_invalid, status);
6921         return 0;
6922     }
6923     aSign = extractFloat128Sign( a );
6924     bSign = extractFloat128Sign( b );
6925     if ( aSign != bSign ) {
6926         return
6927                aSign
6928             && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
6929                  != 0 );
6930     }
6931     return
6932           aSign ? lt128( b.high, b.low, a.high, a.low )
6933         : lt128( a.high, a.low, b.high, b.low );
6934 
6935 }
6936 
6937 /*----------------------------------------------------------------------------
6938 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6939 | be compared, and 0 otherwise.  The invalid exception is raised if either
6940 | operand is a NaN. The comparison is performed according to the IEC/IEEE
6941 | Standard for Binary Floating-Point Arithmetic.
6942 *----------------------------------------------------------------------------*/
6943 
6944 int float128_unordered(float128 a, float128 b, float_status *status)
6945 {
6946     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
6947               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
6948          || (    ( extractFloat128Exp( b ) == 0x7FFF )
6949               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
6950        ) {
6951         float_raise(float_flag_invalid, status);
6952         return 1;
6953     }
6954     return 0;
6955 }
6956 
6957 /*----------------------------------------------------------------------------
6958 | Returns 1 if the quadruple-precision floating-point value `a' is equal to
6959 | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
6960 | exception.  The comparison is performed according to the IEC/IEEE Standard
6961 | for Binary Floating-Point Arithmetic.
6962 *----------------------------------------------------------------------------*/
6963 
6964 int float128_eq_quiet(float128 a, float128 b, float_status *status)
6965 {
6966 
6967     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
6968               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
6969          || (    ( extractFloat128Exp( b ) == 0x7FFF )
6970               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
6971        ) {
6972         if (    float128_is_signaling_nan( a )
6973              || float128_is_signaling_nan( b ) ) {
6974             float_raise(float_flag_invalid, status);
6975         }
6976         return 0;
6977     }
6978     return
6979            ( a.low == b.low )
6980         && (    ( a.high == b.high )
6981              || (    ( a.low == 0 )
6982                   && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
6983            );
6984 
6985 }
6986 
6987 /*----------------------------------------------------------------------------
6988 | Returns 1 if the quadruple-precision floating-point value `a' is less than
6989 | or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
6990 | cause an exception.  Otherwise, the comparison is performed according to the
6991 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6992 *----------------------------------------------------------------------------*/
6993 
6994 int float128_le_quiet(float128 a, float128 b, float_status *status)
6995 {
6996     flag aSign, bSign;
6997 
6998     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
6999               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7000          || (    ( extractFloat128Exp( b ) == 0x7FFF )
7001               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7002        ) {
7003         if (    float128_is_signaling_nan( a )
7004              || float128_is_signaling_nan( b ) ) {
7005             float_raise(float_flag_invalid, status);
7006         }
7007         return 0;
7008     }
7009     aSign = extractFloat128Sign( a );
7010     bSign = extractFloat128Sign( b );
7011     if ( aSign != bSign ) {
7012         return
7013                aSign
7014             || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
7015                  == 0 );
7016     }
7017     return
7018           aSign ? le128( b.high, b.low, a.high, a.low )
7019         : le128( a.high, a.low, b.high, b.low );
7020 
7021 }
7022 
7023 /*----------------------------------------------------------------------------
7024 | Returns 1 if the quadruple-precision floating-point value `a' is less than
7025 | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
7026 | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
7027 | Standard for Binary Floating-Point Arithmetic.
7028 *----------------------------------------------------------------------------*/
7029 
7030 int float128_lt_quiet(float128 a, float128 b, float_status *status)
7031 {
7032     flag aSign, bSign;
7033 
7034     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
7035               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7036          || (    ( extractFloat128Exp( b ) == 0x7FFF )
7037               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7038        ) {
7039         if (    float128_is_signaling_nan( a )
7040              || float128_is_signaling_nan( b ) ) {
7041             float_raise(float_flag_invalid, status);
7042         }
7043         return 0;
7044     }
7045     aSign = extractFloat128Sign( a );
7046     bSign = extractFloat128Sign( b );
7047     if ( aSign != bSign ) {
7048         return
7049                aSign
7050             && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
7051                  != 0 );
7052     }
7053     return
7054           aSign ? lt128( b.high, b.low, a.high, a.low )
7055         : lt128( a.high, a.low, b.high, b.low );
7056 
7057 }
7058 
7059 /*----------------------------------------------------------------------------
7060 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
7061 | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
7062 | comparison is performed according to the IEC/IEEE Standard for Binary
7063 | Floating-Point Arithmetic.
7064 *----------------------------------------------------------------------------*/
7065 
7066 int float128_unordered_quiet(float128 a, float128 b, float_status *status)
7067 {
7068     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
7069               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
7070          || (    ( extractFloat128Exp( b ) == 0x7FFF )
7071               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
7072        ) {
7073         if (    float128_is_signaling_nan( a )
7074              || float128_is_signaling_nan( b ) ) {
7075             float_raise(float_flag_invalid, status);
7076         }
7077         return 1;
7078     }
7079     return 0;
7080 }
7081 
7082 /* misc functions */
7083 float32 uint32_to_float32(uint32_t a, float_status *status)
7084 {
7085     return int64_to_float32(a, status);
7086 }
7087 
7088 float64 uint32_to_float64(uint32_t a, float_status *status)
7089 {
7090     return int64_to_float64(a, status);
7091 }
7092 
7093 uint32_t float32_to_uint32(float32 a, float_status *status)
7094 {
7095     int64_t v;
7096     uint32_t res;
7097     int old_exc_flags = get_float_exception_flags(status);
7098 
7099     v = float32_to_int64(a, status);
7100     if (v < 0) {
7101         res = 0;
7102     } else if (v > 0xffffffff) {
7103         res = 0xffffffff;
7104     } else {
7105         return v;
7106     }
7107     set_float_exception_flags(old_exc_flags, status);
7108     float_raise(float_flag_invalid, status);
7109     return res;
7110 }
7111 
7112 uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status)
7113 {
7114     int64_t v;
7115     uint32_t res;
7116     int old_exc_flags = get_float_exception_flags(status);
7117 
7118     v = float32_to_int64_round_to_zero(a, status);
7119     if (v < 0) {
7120         res = 0;
7121     } else if (v > 0xffffffff) {
7122         res = 0xffffffff;
7123     } else {
7124         return v;
7125     }
7126     set_float_exception_flags(old_exc_flags, status);
7127     float_raise(float_flag_invalid, status);
7128     return res;
7129 }
7130 
7131 int16_t float32_to_int16(float32 a, float_status *status)
7132 {
7133     int32_t v;
7134     int16_t res;
7135     int old_exc_flags = get_float_exception_flags(status);
7136 
7137     v = float32_to_int32(a, status);
7138     if (v < -0x8000) {
7139         res = -0x8000;
7140     } else if (v > 0x7fff) {
7141         res = 0x7fff;
7142     } else {
7143         return v;
7144     }
7145 
7146     set_float_exception_flags(old_exc_flags, status);
7147     float_raise(float_flag_invalid, status);
7148     return res;
7149 }
7150 
7151 uint16_t float32_to_uint16(float32 a, float_status *status)
7152 {
7153     int32_t v;
7154     uint16_t res;
7155     int old_exc_flags = get_float_exception_flags(status);
7156 
7157     v = float32_to_int32(a, status);
7158     if (v < 0) {
7159         res = 0;
7160     } else if (v > 0xffff) {
7161         res = 0xffff;
7162     } else {
7163         return v;
7164     }
7165 
7166     set_float_exception_flags(old_exc_flags, status);
7167     float_raise(float_flag_invalid, status);
7168     return res;
7169 }
7170 
7171 uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status)
7172 {
7173     int64_t v;
7174     uint16_t res;
7175     int old_exc_flags = get_float_exception_flags(status);
7176 
7177     v = float32_to_int64_round_to_zero(a, status);
7178     if (v < 0) {
7179         res = 0;
7180     } else if (v > 0xffff) {
7181         res = 0xffff;
7182     } else {
7183         return v;
7184     }
7185     set_float_exception_flags(old_exc_flags, status);
7186     float_raise(float_flag_invalid, status);
7187     return res;
7188 }
7189 
7190 uint32_t float64_to_uint32(float64 a, float_status *status)
7191 {
7192     uint64_t v;
7193     uint32_t res;
7194     int old_exc_flags = get_float_exception_flags(status);
7195 
7196     v = float64_to_uint64(a, status);
7197     if (v > 0xffffffff) {
7198         res = 0xffffffff;
7199     } else {
7200         return v;
7201     }
7202     set_float_exception_flags(old_exc_flags, status);
7203     float_raise(float_flag_invalid, status);
7204     return res;
7205 }
7206 
7207 uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status)
7208 {
7209     uint64_t v;
7210     uint32_t res;
7211     int old_exc_flags = get_float_exception_flags(status);
7212 
7213     v = float64_to_uint64_round_to_zero(a, status);
7214     if (v > 0xffffffff) {
7215         res = 0xffffffff;
7216     } else {
7217         return v;
7218     }
7219     set_float_exception_flags(old_exc_flags, status);
7220     float_raise(float_flag_invalid, status);
7221     return res;
7222 }
7223 
7224 int16_t float64_to_int16(float64 a, float_status *status)
7225 {
7226     int64_t v;
7227     int16_t res;
7228     int old_exc_flags = get_float_exception_flags(status);
7229 
7230     v = float64_to_int32(a, status);
7231     if (v < -0x8000) {
7232         res = -0x8000;
7233     } else if (v > 0x7fff) {
7234         res = 0x7fff;
7235     } else {
7236         return v;
7237     }
7238 
7239     set_float_exception_flags(old_exc_flags, status);
7240     float_raise(float_flag_invalid, status);
7241     return res;
7242 }
7243 
7244 uint16_t float64_to_uint16(float64 a, float_status *status)
7245 {
7246     int64_t v;
7247     uint16_t res;
7248     int old_exc_flags = get_float_exception_flags(status);
7249 
7250     v = float64_to_int32(a, status);
7251     if (v < 0) {
7252         res = 0;
7253     } else if (v > 0xffff) {
7254         res = 0xffff;
7255     } else {
7256         return v;
7257     }
7258 
7259     set_float_exception_flags(old_exc_flags, status);
7260     float_raise(float_flag_invalid, status);
7261     return res;
7262 }
7263 
7264 uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status)
7265 {
7266     int64_t v;
7267     uint16_t res;
7268     int old_exc_flags = get_float_exception_flags(status);
7269 
7270     v = float64_to_int64_round_to_zero(a, status);
7271     if (v < 0) {
7272         res = 0;
7273     } else if (v > 0xffff) {
7274         res = 0xffff;
7275     } else {
7276         return v;
7277     }
7278     set_float_exception_flags(old_exc_flags, status);
7279     float_raise(float_flag_invalid, status);
7280     return res;
7281 }
7282 
7283 /*----------------------------------------------------------------------------
7284 | Returns the result of converting the double-precision floating-point value
7285 | `a' to the 64-bit unsigned integer format.  The conversion is
7286 | performed according to the IEC/IEEE Standard for Binary Floating-Point
7287 | Arithmetic---which means in particular that the conversion is rounded
7288 | according to the current rounding mode.  If `a' is a NaN, the largest
7289 | positive integer is returned.  If the conversion overflows, the
7290 | largest unsigned integer is returned.  If 'a' is negative, the value is
7291 | rounded and zero is returned; negative values that do not round to zero
7292 | will raise the inexact exception.
7293 *----------------------------------------------------------------------------*/
7294 
7295 uint64_t float64_to_uint64(float64 a, float_status *status)
7296 {
7297     flag aSign;
7298     int aExp;
7299     int shiftCount;
7300     uint64_t aSig, aSigExtra;
7301     a = float64_squash_input_denormal(a, status);
7302 
7303     aSig = extractFloat64Frac(a);
7304     aExp = extractFloat64Exp(a);
7305     aSign = extractFloat64Sign(a);
7306     if (aSign && (aExp > 1022)) {
7307         float_raise(float_flag_invalid, status);
7308         if (float64_is_any_nan(a)) {
7309             return LIT64(0xFFFFFFFFFFFFFFFF);
7310         } else {
7311             return 0;
7312         }
7313     }
7314     if (aExp) {
7315         aSig |= LIT64(0x0010000000000000);
7316     }
7317     shiftCount = 0x433 - aExp;
7318     if (shiftCount <= 0) {
7319         if (0x43E < aExp) {
7320             float_raise(float_flag_invalid, status);
7321             return LIT64(0xFFFFFFFFFFFFFFFF);
7322         }
7323         aSigExtra = 0;
7324         aSig <<= -shiftCount;
7325     } else {
7326         shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
7327     }
7328     return roundAndPackUint64(aSign, aSig, aSigExtra, status);
7329 }
7330 
7331 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status)
7332 {
7333     signed char current_rounding_mode = status->float_rounding_mode;
7334     set_float_rounding_mode(float_round_to_zero, status);
7335     int64_t v = float64_to_uint64(a, status);
7336     set_float_rounding_mode(current_rounding_mode, status);
7337     return v;
7338 }
7339 
7340 #define COMPARE(s, nan_exp)                                                  \
7341 static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
7342                                       int is_quiet, float_status *status)    \
7343 {                                                                            \
7344     flag aSign, bSign;                                                       \
7345     uint ## s ## _t av, bv;                                                  \
7346     a = float ## s ## _squash_input_denormal(a, status);                     \
7347     b = float ## s ## _squash_input_denormal(b, status);                     \
7348                                                                              \
7349     if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) &&                    \
7350          extractFloat ## s ## Frac( a ) ) ||                                 \
7351         ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \
7352           extractFloat ## s ## Frac( b ) )) {                                \
7353         if (!is_quiet ||                                                     \
7354             float ## s ## _is_signaling_nan( a ) ||                          \
7355             float ## s ## _is_signaling_nan( b ) ) {                         \
7356             float_raise(float_flag_invalid, status);                         \
7357         }                                                                    \
7358         return float_relation_unordered;                                     \
7359     }                                                                        \
7360     aSign = extractFloat ## s ## Sign( a );                                  \
7361     bSign = extractFloat ## s ## Sign( b );                                  \
7362     av = float ## s ## _val(a);                                              \
7363     bv = float ## s ## _val(b);                                              \
7364     if ( aSign != bSign ) {                                                  \
7365         if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) {                   \
7366             /* zero case */                                                  \
7367             return float_relation_equal;                                     \
7368         } else {                                                             \
7369             return 1 - (2 * aSign);                                          \
7370         }                                                                    \
7371     } else {                                                                 \
7372         if (av == bv) {                                                      \
7373             return float_relation_equal;                                     \
7374         } else {                                                             \
7375             return 1 - 2 * (aSign ^ ( av < bv ));                            \
7376         }                                                                    \
7377     }                                                                        \
7378 }                                                                            \
7379                                                                              \
7380 int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \
7381 {                                                                            \
7382     return float ## s ## _compare_internal(a, b, 0, status);                 \
7383 }                                                                            \
7384                                                                              \
7385 int float ## s ## _compare_quiet(float ## s a, float ## s b,                 \
7386                                  float_status *status)                       \
7387 {                                                                            \
7388     return float ## s ## _compare_internal(a, b, 1, status);                 \
7389 }
7390 
7391 COMPARE(32, 0xff)
7392 COMPARE(64, 0x7ff)
7393 
7394 static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
7395                                             int is_quiet, float_status *status)
7396 {
7397     flag aSign, bSign;
7398 
7399     if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
7400           ( extractFloatx80Frac( a )<<1 ) ) ||
7401         ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
7402           ( extractFloatx80Frac( b )<<1 ) )) {
7403         if (!is_quiet ||
7404             floatx80_is_signaling_nan( a ) ||
7405             floatx80_is_signaling_nan( b ) ) {
7406             float_raise(float_flag_invalid, status);
7407         }
7408         return float_relation_unordered;
7409     }
7410     aSign = extractFloatx80Sign( a );
7411     bSign = extractFloatx80Sign( b );
7412     if ( aSign != bSign ) {
7413 
7414         if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
7415              ( ( a.low | b.low ) == 0 ) ) {
7416             /* zero case */
7417             return float_relation_equal;
7418         } else {
7419             return 1 - (2 * aSign);
7420         }
7421     } else {
7422         if (a.low == b.low && a.high == b.high) {
7423             return float_relation_equal;
7424         } else {
7425             return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
7426         }
7427     }
7428 }
7429 
7430 int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
7431 {
7432     return floatx80_compare_internal(a, b, 0, status);
7433 }
7434 
7435 int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
7436 {
7437     return floatx80_compare_internal(a, b, 1, status);
7438 }
7439 
7440 static inline int float128_compare_internal(float128 a, float128 b,
7441                                             int is_quiet, float_status *status)
7442 {
7443     flag aSign, bSign;
7444 
7445     if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
7446           ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
7447         ( ( extractFloat128Exp( b ) == 0x7fff ) &&
7448           ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
7449         if (!is_quiet ||
7450             float128_is_signaling_nan( a ) ||
7451             float128_is_signaling_nan( b ) ) {
7452             float_raise(float_flag_invalid, status);
7453         }
7454         return float_relation_unordered;
7455     }
7456     aSign = extractFloat128Sign( a );
7457     bSign = extractFloat128Sign( b );
7458     if ( aSign != bSign ) {
7459         if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
7460             /* zero case */
7461             return float_relation_equal;
7462         } else {
7463             return 1 - (2 * aSign);
7464         }
7465     } else {
7466         if (a.low == b.low && a.high == b.high) {
7467             return float_relation_equal;
7468         } else {
7469             return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
7470         }
7471     }
7472 }
7473 
7474 int float128_compare(float128 a, float128 b, float_status *status)
7475 {
7476     return float128_compare_internal(a, b, 0, status);
7477 }
7478 
7479 int float128_compare_quiet(float128 a, float128 b, float_status *status)
7480 {
7481     return float128_compare_internal(a, b, 1, status);
7482 }
7483 
7484 /* min() and max() functions. These can't be implemented as
7485  * 'compare and pick one input' because that would mishandle
7486  * NaNs and +0 vs -0.
7487  *
7488  * minnum() and maxnum() functions. These are similar to the min()
7489  * and max() functions but if one of the arguments is a QNaN and
7490  * the other is numerical then the numerical argument is returned.
7491  * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
7492  * and maxNum() operations. min() and max() are the typical min/max
7493  * semantics provided by many CPUs which predate that specification.
7494  *
7495  * minnummag() and maxnummag() functions correspond to minNumMag()
7496  * and minNumMag() from the IEEE-754 2008.
7497  */
7498 #define MINMAX(s)                                                       \
7499 static inline float ## s float ## s ## _minmax(float ## s a, float ## s b,     \
7500                                                int ismin, int isieee,   \
7501                                                int ismag,               \
7502                                                float_status *status)    \
7503 {                                                                       \
7504     flag aSign, bSign;                                                  \
7505     uint ## s ## _t av, bv, aav, abv;                                   \
7506     a = float ## s ## _squash_input_denormal(a, status);                \
7507     b = float ## s ## _squash_input_denormal(b, status);                \
7508     if (float ## s ## _is_any_nan(a) ||                                 \
7509         float ## s ## _is_any_nan(b)) {                                 \
7510         if (isieee) {                                                   \
7511             if (float ## s ## _is_quiet_nan(a) &&                       \
7512                 !float ## s ##_is_any_nan(b)) {                         \
7513                 return b;                                               \
7514             } else if (float ## s ## _is_quiet_nan(b) &&                \
7515                        !float ## s ## _is_any_nan(a)) {                 \
7516                 return a;                                               \
7517             }                                                           \
7518         }                                                               \
7519         return propagateFloat ## s ## NaN(a, b, status);                \
7520     }                                                                   \
7521     aSign = extractFloat ## s ## Sign(a);                               \
7522     bSign = extractFloat ## s ## Sign(b);                               \
7523     av = float ## s ## _val(a);                                         \
7524     bv = float ## s ## _val(b);                                         \
7525     if (ismag) {                                                        \
7526         aav = float ## s ## _abs(av);                                   \
7527         abv = float ## s ## _abs(bv);                                   \
7528         if (aav != abv) {                                               \
7529             if (ismin) {                                                \
7530                 return (aav < abv) ? a : b;                             \
7531             } else {                                                    \
7532                 return (aav < abv) ? b : a;                             \
7533             }                                                           \
7534         }                                                               \
7535     }                                                                   \
7536     if (aSign != bSign) {                                               \
7537         if (ismin) {                                                    \
7538             return aSign ? a : b;                                       \
7539         } else {                                                        \
7540             return aSign ? b : a;                                       \
7541         }                                                               \
7542     } else {                                                            \
7543         if (ismin) {                                                    \
7544             return (aSign ^ (av < bv)) ? a : b;                         \
7545         } else {                                                        \
7546             return (aSign ^ (av < bv)) ? b : a;                         \
7547         }                                                               \
7548     }                                                                   \
7549 }                                                                       \
7550                                                                         \
7551 float ## s float ## s ## _min(float ## s a, float ## s b,               \
7552                               float_status *status)                     \
7553 {                                                                       \
7554     return float ## s ## _minmax(a, b, 1, 0, 0, status);                \
7555 }                                                                       \
7556                                                                         \
7557 float ## s float ## s ## _max(float ## s a, float ## s b,               \
7558                               float_status *status)                     \
7559 {                                                                       \
7560     return float ## s ## _minmax(a, b, 0, 0, 0, status);                \
7561 }                                                                       \
7562                                                                         \
7563 float ## s float ## s ## _minnum(float ## s a, float ## s b,            \
7564                                  float_status *status)                  \
7565 {                                                                       \
7566     return float ## s ## _minmax(a, b, 1, 1, 0, status);                \
7567 }                                                                       \
7568                                                                         \
7569 float ## s float ## s ## _maxnum(float ## s a, float ## s b,            \
7570                                  float_status *status)                  \
7571 {                                                                       \
7572     return float ## s ## _minmax(a, b, 0, 1, 0, status);                \
7573 }                                                                       \
7574                                                                         \
7575 float ## s float ## s ## _minnummag(float ## s a, float ## s b,         \
7576                                     float_status *status)               \
7577 {                                                                       \
7578     return float ## s ## _minmax(a, b, 1, 1, 1, status);                \
7579 }                                                                       \
7580                                                                         \
7581 float ## s float ## s ## _maxnummag(float ## s a, float ## s b,         \
7582                                     float_status *status)               \
7583 {                                                                       \
7584     return float ## s ## _minmax(a, b, 0, 1, 1, status);                \
7585 }
7586 
7587 MINMAX(32)
7588 MINMAX(64)
7589 
7590 
7591 /* Multiply A by 2 raised to the power N.  */
7592 float32 float32_scalbn(float32 a, int n, float_status *status)
7593 {
7594     flag aSign;
7595     int16_t aExp;
7596     uint32_t aSig;
7597 
7598     a = float32_squash_input_denormal(a, status);
7599     aSig = extractFloat32Frac( a );
7600     aExp = extractFloat32Exp( a );
7601     aSign = extractFloat32Sign( a );
7602 
7603     if ( aExp == 0xFF ) {
7604         if ( aSig ) {
7605             return propagateFloat32NaN(a, a, status);
7606         }
7607         return a;
7608     }
7609     if (aExp != 0) {
7610         aSig |= 0x00800000;
7611     } else if (aSig == 0) {
7612         return a;
7613     } else {
7614         aExp++;
7615     }
7616 
7617     if (n > 0x200) {
7618         n = 0x200;
7619     } else if (n < -0x200) {
7620         n = -0x200;
7621     }
7622 
7623     aExp += n - 1;
7624     aSig <<= 7;
7625     return normalizeRoundAndPackFloat32(aSign, aExp, aSig, status);
7626 }
7627 
7628 float64 float64_scalbn(float64 a, int n, float_status *status)
7629 {
7630     flag aSign;
7631     int16_t aExp;
7632     uint64_t aSig;
7633 
7634     a = float64_squash_input_denormal(a, status);
7635     aSig = extractFloat64Frac( a );
7636     aExp = extractFloat64Exp( a );
7637     aSign = extractFloat64Sign( a );
7638 
7639     if ( aExp == 0x7FF ) {
7640         if ( aSig ) {
7641             return propagateFloat64NaN(a, a, status);
7642         }
7643         return a;
7644     }
7645     if (aExp != 0) {
7646         aSig |= LIT64( 0x0010000000000000 );
7647     } else if (aSig == 0) {
7648         return a;
7649     } else {
7650         aExp++;
7651     }
7652 
7653     if (n > 0x1000) {
7654         n = 0x1000;
7655     } else if (n < -0x1000) {
7656         n = -0x1000;
7657     }
7658 
7659     aExp += n - 1;
7660     aSig <<= 10;
7661     return normalizeRoundAndPackFloat64(aSign, aExp, aSig, status);
7662 }
7663 
7664 floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
7665 {
7666     flag aSign;
7667     int32_t aExp;
7668     uint64_t aSig;
7669 
7670     aSig = extractFloatx80Frac( a );
7671     aExp = extractFloatx80Exp( a );
7672     aSign = extractFloatx80Sign( a );
7673 
7674     if ( aExp == 0x7FFF ) {
7675         if ( aSig<<1 ) {
7676             return propagateFloatx80NaN(a, a, status);
7677         }
7678         return a;
7679     }
7680 
7681     if (aExp == 0) {
7682         if (aSig == 0) {
7683             return a;
7684         }
7685         aExp++;
7686     }
7687 
7688     if (n > 0x10000) {
7689         n = 0x10000;
7690     } else if (n < -0x10000) {
7691         n = -0x10000;
7692     }
7693 
7694     aExp += n;
7695     return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
7696                                          aSign, aExp, aSig, 0, status);
7697 }
7698 
7699 float128 float128_scalbn(float128 a, int n, float_status *status)
7700 {
7701     flag aSign;
7702     int32_t aExp;
7703     uint64_t aSig0, aSig1;
7704 
7705     aSig1 = extractFloat128Frac1( a );
7706     aSig0 = extractFloat128Frac0( a );
7707     aExp = extractFloat128Exp( a );
7708     aSign = extractFloat128Sign( a );
7709     if ( aExp == 0x7FFF ) {
7710         if ( aSig0 | aSig1 ) {
7711             return propagateFloat128NaN(a, a, status);
7712         }
7713         return a;
7714     }
7715     if (aExp != 0) {
7716         aSig0 |= LIT64( 0x0001000000000000 );
7717     } else if (aSig0 == 0 && aSig1 == 0) {
7718         return a;
7719     } else {
7720         aExp++;
7721     }
7722 
7723     if (n > 0x10000) {
7724         n = 0x10000;
7725     } else if (n < -0x10000) {
7726         n = -0x10000;
7727     }
7728 
7729     aExp += n - 1;
7730     return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
7731                                          , status);
7732 
7733 }
7734