1 /* 2 * QEMU float support 3 * 4 * Derived from SoftFloat. 5 */ 6 7 /*============================================================================ 8 9 This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic 10 Package, Release 2b. 11 12 Written by John R. Hauser. This work was made possible in part by the 13 International Computer Science Institute, located at Suite 600, 1947 Center 14 Street, Berkeley, California 94704. Funding was partially provided by the 15 National Science Foundation under grant MIP-9311980. The original version 16 of this code was written as part of a project to build a fixed-point vector 17 processor in collaboration with the University of California at Berkeley, 18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ 20 arithmetic/SoftFloat.html'. 21 22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has 23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES 24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS 25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, 26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE 27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE 28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR 29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. 30 31 Derivative works are acceptable, even for commercial purposes, so long as 32 (1) the source code for the derivative work includes prominent notice that 33 the work is derivative, and (2) the source code includes prominent notice with 34 these four paragraphs for those parts of this code that are retained. 35 36 =============================================================================*/ 37 38 /* softfloat (and in particular the code in softfloat-specialize.h) is 39 * target-dependent and needs the TARGET_* macros. 40 */ 41 #include "config.h" 42 43 #include "softfloat.h" 44 45 /*---------------------------------------------------------------------------- 46 | Primitive arithmetic functions, including multi-word arithmetic, and 47 | division and square root approximations. (Can be specialized to target if 48 | desired.) 49 *----------------------------------------------------------------------------*/ 50 #include "softfloat-macros.h" 51 52 /*---------------------------------------------------------------------------- 53 | Functions and definitions to determine: (1) whether tininess for underflow 54 | is detected before or after rounding by default, (2) what (if anything) 55 | happens when exceptions are raised, (3) how signaling NaNs are distinguished 56 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs 57 | are propagated from function inputs to output. These details are target- 58 | specific. 59 *----------------------------------------------------------------------------*/ 60 #include "softfloat-specialize.h" 61 62 void set_float_rounding_mode(int val STATUS_PARAM) 63 { 64 STATUS(float_rounding_mode) = val; 65 } 66 67 void set_float_exception_flags(int val STATUS_PARAM) 68 { 69 STATUS(float_exception_flags) = val; 70 } 71 72 void set_floatx80_rounding_precision(int val STATUS_PARAM) 73 { 74 STATUS(floatx80_rounding_precision) = val; 75 } 76 77 /*---------------------------------------------------------------------------- 78 | Returns the fraction bits of the half-precision floating-point value `a'. 79 *----------------------------------------------------------------------------*/ 80 81 INLINE uint32_t extractFloat16Frac(float16 a) 82 { 83 return float16_val(a) & 0x3ff; 84 } 85 86 /*---------------------------------------------------------------------------- 87 | Returns the exponent bits of the half-precision floating-point value `a'. 88 *----------------------------------------------------------------------------*/ 89 90 INLINE int_fast16_t extractFloat16Exp(float16 a) 91 { 92 return (float16_val(a) >> 10) & 0x1f; 93 } 94 95 /*---------------------------------------------------------------------------- 96 | Returns the sign bit of the single-precision floating-point value `a'. 97 *----------------------------------------------------------------------------*/ 98 99 INLINE flag extractFloat16Sign(float16 a) 100 { 101 return float16_val(a)>>15; 102 } 103 104 /*---------------------------------------------------------------------------- 105 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 106 | and 7, and returns the properly rounded 32-bit integer corresponding to the 107 | input. If `zSign' is 1, the input is negated before being converted to an 108 | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input 109 | is simply rounded to an integer, with the inexact exception raised if the 110 | input cannot be represented exactly as an integer. However, if the fixed- 111 | point input is too large, the invalid exception is raised and the largest 112 | positive or negative integer is returned. 113 *----------------------------------------------------------------------------*/ 114 115 static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM) 116 { 117 int8 roundingMode; 118 flag roundNearestEven; 119 int8 roundIncrement, roundBits; 120 int32_t z; 121 122 roundingMode = STATUS(float_rounding_mode); 123 roundNearestEven = ( roundingMode == float_round_nearest_even ); 124 roundIncrement = 0x40; 125 if ( ! roundNearestEven ) { 126 if ( roundingMode == float_round_to_zero ) { 127 roundIncrement = 0; 128 } 129 else { 130 roundIncrement = 0x7F; 131 if ( zSign ) { 132 if ( roundingMode == float_round_up ) roundIncrement = 0; 133 } 134 else { 135 if ( roundingMode == float_round_down ) roundIncrement = 0; 136 } 137 } 138 } 139 roundBits = absZ & 0x7F; 140 absZ = ( absZ + roundIncrement )>>7; 141 absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); 142 z = absZ; 143 if ( zSign ) z = - z; 144 if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { 145 float_raise( float_flag_invalid STATUS_VAR); 146 return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 147 } 148 if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; 149 return z; 150 151 } 152 153 /*---------------------------------------------------------------------------- 154 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and 155 | `absZ1', with binary point between bits 63 and 64 (between the input words), 156 | and returns the properly rounded 64-bit integer corresponding to the input. 157 | If `zSign' is 1, the input is negated before being converted to an integer. 158 | Ordinarily, the fixed-point input is simply rounded to an integer, with 159 | the inexact exception raised if the input cannot be represented exactly as 160 | an integer. However, if the fixed-point input is too large, the invalid 161 | exception is raised and the largest positive or negative integer is 162 | returned. 163 *----------------------------------------------------------------------------*/ 164 165 static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM) 166 { 167 int8 roundingMode; 168 flag roundNearestEven, increment; 169 int64_t z; 170 171 roundingMode = STATUS(float_rounding_mode); 172 roundNearestEven = ( roundingMode == float_round_nearest_even ); 173 increment = ( (int64_t) absZ1 < 0 ); 174 if ( ! roundNearestEven ) { 175 if ( roundingMode == float_round_to_zero ) { 176 increment = 0; 177 } 178 else { 179 if ( zSign ) { 180 increment = ( roundingMode == float_round_down ) && absZ1; 181 } 182 else { 183 increment = ( roundingMode == float_round_up ) && absZ1; 184 } 185 } 186 } 187 if ( increment ) { 188 ++absZ0; 189 if ( absZ0 == 0 ) goto overflow; 190 absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); 191 } 192 z = absZ0; 193 if ( zSign ) z = - z; 194 if ( z && ( ( z < 0 ) ^ zSign ) ) { 195 overflow: 196 float_raise( float_flag_invalid STATUS_VAR); 197 return 198 zSign ? (int64_t) LIT64( 0x8000000000000000 ) 199 : LIT64( 0x7FFFFFFFFFFFFFFF ); 200 } 201 if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact; 202 return z; 203 204 } 205 206 /*---------------------------------------------------------------------------- 207 | Returns the fraction bits of the single-precision floating-point value `a'. 208 *----------------------------------------------------------------------------*/ 209 210 INLINE uint32_t extractFloat32Frac( float32 a ) 211 { 212 213 return float32_val(a) & 0x007FFFFF; 214 215 } 216 217 /*---------------------------------------------------------------------------- 218 | Returns the exponent bits of the single-precision floating-point value `a'. 219 *----------------------------------------------------------------------------*/ 220 221 INLINE int_fast16_t extractFloat32Exp(float32 a) 222 { 223 224 return ( float32_val(a)>>23 ) & 0xFF; 225 226 } 227 228 /*---------------------------------------------------------------------------- 229 | Returns the sign bit of the single-precision floating-point value `a'. 230 *----------------------------------------------------------------------------*/ 231 232 INLINE flag extractFloat32Sign( float32 a ) 233 { 234 235 return float32_val(a)>>31; 236 237 } 238 239 /*---------------------------------------------------------------------------- 240 | If `a' is denormal and we are in flush-to-zero mode then set the 241 | input-denormal exception and return zero. Otherwise just return the value. 242 *----------------------------------------------------------------------------*/ 243 static float32 float32_squash_input_denormal(float32 a STATUS_PARAM) 244 { 245 if (STATUS(flush_inputs_to_zero)) { 246 if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) { 247 float_raise(float_flag_input_denormal STATUS_VAR); 248 return make_float32(float32_val(a) & 0x80000000); 249 } 250 } 251 return a; 252 } 253 254 /*---------------------------------------------------------------------------- 255 | Normalizes the subnormal single-precision floating-point value represented 256 | by the denormalized significand `aSig'. The normalized exponent and 257 | significand are stored at the locations pointed to by `zExpPtr' and 258 | `zSigPtr', respectively. 259 *----------------------------------------------------------------------------*/ 260 261 static void 262 normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr) 263 { 264 int8 shiftCount; 265 266 shiftCount = countLeadingZeros32( aSig ) - 8; 267 *zSigPtr = aSig<<shiftCount; 268 *zExpPtr = 1 - shiftCount; 269 270 } 271 272 /*---------------------------------------------------------------------------- 273 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a 274 | single-precision floating-point value, returning the result. After being 275 | shifted into the proper positions, the three fields are simply added 276 | together to form the result. This means that any integer portion of `zSig' 277 | will be added into the exponent. Since a properly normalized significand 278 | will have an integer portion equal to 1, the `zExp' input should be 1 less 279 | than the desired result exponent whenever `zSig' is a complete, normalized 280 | significand. 281 *----------------------------------------------------------------------------*/ 282 283 INLINE float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig) 284 { 285 286 return make_float32( 287 ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig); 288 289 } 290 291 /*---------------------------------------------------------------------------- 292 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 293 | and significand `zSig', and returns the proper single-precision floating- 294 | point value corresponding to the abstract input. Ordinarily, the abstract 295 | value is simply rounded and packed into the single-precision format, with 296 | the inexact exception raised if the abstract input cannot be represented 297 | exactly. However, if the abstract value is too large, the overflow and 298 | inexact exceptions are raised and an infinity or maximal finite value is 299 | returned. If the abstract value is too small, the input value is rounded to 300 | a subnormal number, and the underflow and inexact exceptions are raised if 301 | the abstract input cannot be represented exactly as a subnormal single- 302 | precision floating-point number. 303 | The input significand `zSig' has its binary point between bits 30 304 | and 29, which is 7 bits to the left of the usual location. This shifted 305 | significand must be normalized or smaller. If `zSig' is not normalized, 306 | `zExp' must be 0; in that case, the result returned is a subnormal number, 307 | and it must not require rounding. In the usual case that `zSig' is 308 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. 309 | The handling of underflow and overflow follows the IEC/IEEE Standard for 310 | Binary Floating-Point Arithmetic. 311 *----------------------------------------------------------------------------*/ 312 313 static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM) 314 { 315 int8 roundingMode; 316 flag roundNearestEven; 317 int8 roundIncrement, roundBits; 318 flag isTiny; 319 320 roundingMode = STATUS(float_rounding_mode); 321 roundNearestEven = ( roundingMode == float_round_nearest_even ); 322 roundIncrement = 0x40; 323 if ( ! roundNearestEven ) { 324 if ( roundingMode == float_round_to_zero ) { 325 roundIncrement = 0; 326 } 327 else { 328 roundIncrement = 0x7F; 329 if ( zSign ) { 330 if ( roundingMode == float_round_up ) roundIncrement = 0; 331 } 332 else { 333 if ( roundingMode == float_round_down ) roundIncrement = 0; 334 } 335 } 336 } 337 roundBits = zSig & 0x7F; 338 if ( 0xFD <= (uint16_t) zExp ) { 339 if ( ( 0xFD < zExp ) 340 || ( ( zExp == 0xFD ) 341 && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) 342 ) { 343 float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); 344 return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); 345 } 346 if ( zExp < 0 ) { 347 if (STATUS(flush_to_zero)) { 348 float_raise(float_flag_output_denormal STATUS_VAR); 349 return packFloat32(zSign, 0, 0); 350 } 351 isTiny = 352 ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) 353 || ( zExp < -1 ) 354 || ( zSig + roundIncrement < 0x80000000 ); 355 shift32RightJamming( zSig, - zExp, &zSig ); 356 zExp = 0; 357 roundBits = zSig & 0x7F; 358 if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); 359 } 360 } 361 if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; 362 zSig = ( zSig + roundIncrement )>>7; 363 zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); 364 if ( zSig == 0 ) zExp = 0; 365 return packFloat32( zSign, zExp, zSig ); 366 367 } 368 369 /*---------------------------------------------------------------------------- 370 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 371 | and significand `zSig', and returns the proper single-precision floating- 372 | point value corresponding to the abstract input. This routine is just like 373 | `roundAndPackFloat32' except that `zSig' does not have to be normalized. 374 | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' 375 | floating-point exponent. 376 *----------------------------------------------------------------------------*/ 377 378 static float32 379 normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM) 380 { 381 int8 shiftCount; 382 383 shiftCount = countLeadingZeros32( zSig ) - 1; 384 return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); 385 386 } 387 388 /*---------------------------------------------------------------------------- 389 | Returns the fraction bits of the double-precision floating-point value `a'. 390 *----------------------------------------------------------------------------*/ 391 392 INLINE uint64_t extractFloat64Frac( float64 a ) 393 { 394 395 return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF ); 396 397 } 398 399 /*---------------------------------------------------------------------------- 400 | Returns the exponent bits of the double-precision floating-point value `a'. 401 *----------------------------------------------------------------------------*/ 402 403 INLINE int_fast16_t extractFloat64Exp(float64 a) 404 { 405 406 return ( float64_val(a)>>52 ) & 0x7FF; 407 408 } 409 410 /*---------------------------------------------------------------------------- 411 | Returns the sign bit of the double-precision floating-point value `a'. 412 *----------------------------------------------------------------------------*/ 413 414 INLINE flag extractFloat64Sign( float64 a ) 415 { 416 417 return float64_val(a)>>63; 418 419 } 420 421 /*---------------------------------------------------------------------------- 422 | If `a' is denormal and we are in flush-to-zero mode then set the 423 | input-denormal exception and return zero. Otherwise just return the value. 424 *----------------------------------------------------------------------------*/ 425 static float64 float64_squash_input_denormal(float64 a STATUS_PARAM) 426 { 427 if (STATUS(flush_inputs_to_zero)) { 428 if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) { 429 float_raise(float_flag_input_denormal STATUS_VAR); 430 return make_float64(float64_val(a) & (1ULL << 63)); 431 } 432 } 433 return a; 434 } 435 436 /*---------------------------------------------------------------------------- 437 | Normalizes the subnormal double-precision floating-point value represented 438 | by the denormalized significand `aSig'. The normalized exponent and 439 | significand are stored at the locations pointed to by `zExpPtr' and 440 | `zSigPtr', respectively. 441 *----------------------------------------------------------------------------*/ 442 443 static void 444 normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr) 445 { 446 int8 shiftCount; 447 448 shiftCount = countLeadingZeros64( aSig ) - 11; 449 *zSigPtr = aSig<<shiftCount; 450 *zExpPtr = 1 - shiftCount; 451 452 } 453 454 /*---------------------------------------------------------------------------- 455 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a 456 | double-precision floating-point value, returning the result. After being 457 | shifted into the proper positions, the three fields are simply added 458 | together to form the result. This means that any integer portion of `zSig' 459 | will be added into the exponent. Since a properly normalized significand 460 | will have an integer portion equal to 1, the `zExp' input should be 1 less 461 | than the desired result exponent whenever `zSig' is a complete, normalized 462 | significand. 463 *----------------------------------------------------------------------------*/ 464 465 INLINE float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig) 466 { 467 468 return make_float64( 469 ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); 470 471 } 472 473 /*---------------------------------------------------------------------------- 474 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 475 | and significand `zSig', and returns the proper double-precision floating- 476 | point value corresponding to the abstract input. Ordinarily, the abstract 477 | value is simply rounded and packed into the double-precision format, with 478 | the inexact exception raised if the abstract input cannot be represented 479 | exactly. However, if the abstract value is too large, the overflow and 480 | inexact exceptions are raised and an infinity or maximal finite value is 481 | returned. If the abstract value is too small, the input value is rounded 482 | to a subnormal number, and the underflow and inexact exceptions are raised 483 | if the abstract input cannot be represented exactly as a subnormal double- 484 | precision floating-point number. 485 | The input significand `zSig' has its binary point between bits 62 486 | and 61, which is 10 bits to the left of the usual location. This shifted 487 | significand must be normalized or smaller. If `zSig' is not normalized, 488 | `zExp' must be 0; in that case, the result returned is a subnormal number, 489 | and it must not require rounding. In the usual case that `zSig' is 490 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. 491 | The handling of underflow and overflow follows the IEC/IEEE Standard for 492 | Binary Floating-Point Arithmetic. 493 *----------------------------------------------------------------------------*/ 494 495 static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM) 496 { 497 int8 roundingMode; 498 flag roundNearestEven; 499 int_fast16_t roundIncrement, roundBits; 500 flag isTiny; 501 502 roundingMode = STATUS(float_rounding_mode); 503 roundNearestEven = ( roundingMode == float_round_nearest_even ); 504 roundIncrement = 0x200; 505 if ( ! roundNearestEven ) { 506 if ( roundingMode == float_round_to_zero ) { 507 roundIncrement = 0; 508 } 509 else { 510 roundIncrement = 0x3FF; 511 if ( zSign ) { 512 if ( roundingMode == float_round_up ) roundIncrement = 0; 513 } 514 else { 515 if ( roundingMode == float_round_down ) roundIncrement = 0; 516 } 517 } 518 } 519 roundBits = zSig & 0x3FF; 520 if ( 0x7FD <= (uint16_t) zExp ) { 521 if ( ( 0x7FD < zExp ) 522 || ( ( zExp == 0x7FD ) 523 && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) 524 ) { 525 float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); 526 return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 )); 527 } 528 if ( zExp < 0 ) { 529 if (STATUS(flush_to_zero)) { 530 float_raise(float_flag_output_denormal STATUS_VAR); 531 return packFloat64(zSign, 0, 0); 532 } 533 isTiny = 534 ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) 535 || ( zExp < -1 ) 536 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); 537 shift64RightJamming( zSig, - zExp, &zSig ); 538 zExp = 0; 539 roundBits = zSig & 0x3FF; 540 if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); 541 } 542 } 543 if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; 544 zSig = ( zSig + roundIncrement )>>10; 545 zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); 546 if ( zSig == 0 ) zExp = 0; 547 return packFloat64( zSign, zExp, zSig ); 548 549 } 550 551 /*---------------------------------------------------------------------------- 552 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 553 | and significand `zSig', and returns the proper double-precision floating- 554 | point value corresponding to the abstract input. This routine is just like 555 | `roundAndPackFloat64' except that `zSig' does not have to be normalized. 556 | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' 557 | floating-point exponent. 558 *----------------------------------------------------------------------------*/ 559 560 static float64 561 normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM) 562 { 563 int8 shiftCount; 564 565 shiftCount = countLeadingZeros64( zSig ) - 1; 566 return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); 567 568 } 569 570 /*---------------------------------------------------------------------------- 571 | Returns the fraction bits of the extended double-precision floating-point 572 | value `a'. 573 *----------------------------------------------------------------------------*/ 574 575 INLINE uint64_t extractFloatx80Frac( floatx80 a ) 576 { 577 578 return a.low; 579 580 } 581 582 /*---------------------------------------------------------------------------- 583 | Returns the exponent bits of the extended double-precision floating-point 584 | value `a'. 585 *----------------------------------------------------------------------------*/ 586 587 INLINE int32 extractFloatx80Exp( floatx80 a ) 588 { 589 590 return a.high & 0x7FFF; 591 592 } 593 594 /*---------------------------------------------------------------------------- 595 | Returns the sign bit of the extended double-precision floating-point value 596 | `a'. 597 *----------------------------------------------------------------------------*/ 598 599 INLINE flag extractFloatx80Sign( floatx80 a ) 600 { 601 602 return a.high>>15; 603 604 } 605 606 /*---------------------------------------------------------------------------- 607 | Normalizes the subnormal extended double-precision floating-point value 608 | represented by the denormalized significand `aSig'. The normalized exponent 609 | and significand are stored at the locations pointed to by `zExpPtr' and 610 | `zSigPtr', respectively. 611 *----------------------------------------------------------------------------*/ 612 613 static void 614 normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr ) 615 { 616 int8 shiftCount; 617 618 shiftCount = countLeadingZeros64( aSig ); 619 *zSigPtr = aSig<<shiftCount; 620 *zExpPtr = 1 - shiftCount; 621 622 } 623 624 /*---------------------------------------------------------------------------- 625 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an 626 | extended double-precision floating-point value, returning the result. 627 *----------------------------------------------------------------------------*/ 628 629 INLINE floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig ) 630 { 631 floatx80 z; 632 633 z.low = zSig; 634 z.high = ( ( (uint16_t) zSign )<<15 ) + zExp; 635 return z; 636 637 } 638 639 /*---------------------------------------------------------------------------- 640 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 641 | and extended significand formed by the concatenation of `zSig0' and `zSig1', 642 | and returns the proper extended double-precision floating-point value 643 | corresponding to the abstract input. Ordinarily, the abstract value is 644 | rounded and packed into the extended double-precision format, with the 645 | inexact exception raised if the abstract input cannot be represented 646 | exactly. However, if the abstract value is too large, the overflow and 647 | inexact exceptions are raised and an infinity or maximal finite value is 648 | returned. If the abstract value is too small, the input value is rounded to 649 | a subnormal number, and the underflow and inexact exceptions are raised if 650 | the abstract input cannot be represented exactly as a subnormal extended 651 | double-precision floating-point number. 652 | If `roundingPrecision' is 32 or 64, the result is rounded to the same 653 | number of bits as single or double precision, respectively. Otherwise, the 654 | result is rounded to the full precision of the extended double-precision 655 | format. 656 | The input significand must be normalized or smaller. If the input 657 | significand is not normalized, `zExp' must be 0; in that case, the result 658 | returned is a subnormal number, and it must not require rounding. The 659 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary 660 | Floating-Point Arithmetic. 661 *----------------------------------------------------------------------------*/ 662 663 static floatx80 664 roundAndPackFloatx80( 665 int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 666 STATUS_PARAM) 667 { 668 int8 roundingMode; 669 flag roundNearestEven, increment, isTiny; 670 int64 roundIncrement, roundMask, roundBits; 671 672 roundingMode = STATUS(float_rounding_mode); 673 roundNearestEven = ( roundingMode == float_round_nearest_even ); 674 if ( roundingPrecision == 80 ) goto precision80; 675 if ( roundingPrecision == 64 ) { 676 roundIncrement = LIT64( 0x0000000000000400 ); 677 roundMask = LIT64( 0x00000000000007FF ); 678 } 679 else if ( roundingPrecision == 32 ) { 680 roundIncrement = LIT64( 0x0000008000000000 ); 681 roundMask = LIT64( 0x000000FFFFFFFFFF ); 682 } 683 else { 684 goto precision80; 685 } 686 zSig0 |= ( zSig1 != 0 ); 687 if ( ! roundNearestEven ) { 688 if ( roundingMode == float_round_to_zero ) { 689 roundIncrement = 0; 690 } 691 else { 692 roundIncrement = roundMask; 693 if ( zSign ) { 694 if ( roundingMode == float_round_up ) roundIncrement = 0; 695 } 696 else { 697 if ( roundingMode == float_round_down ) roundIncrement = 0; 698 } 699 } 700 } 701 roundBits = zSig0 & roundMask; 702 if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { 703 if ( ( 0x7FFE < zExp ) 704 || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) 705 ) { 706 goto overflow; 707 } 708 if ( zExp <= 0 ) { 709 if (STATUS(flush_to_zero)) { 710 float_raise(float_flag_output_denormal STATUS_VAR); 711 return packFloatx80(zSign, 0, 0); 712 } 713 isTiny = 714 ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) 715 || ( zExp < 0 ) 716 || ( zSig0 <= zSig0 + roundIncrement ); 717 shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); 718 zExp = 0; 719 roundBits = zSig0 & roundMask; 720 if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); 721 if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; 722 zSig0 += roundIncrement; 723 if ( (int64_t) zSig0 < 0 ) zExp = 1; 724 roundIncrement = roundMask + 1; 725 if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { 726 roundMask |= roundIncrement; 727 } 728 zSig0 &= ~ roundMask; 729 return packFloatx80( zSign, zExp, zSig0 ); 730 } 731 } 732 if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; 733 zSig0 += roundIncrement; 734 if ( zSig0 < roundIncrement ) { 735 ++zExp; 736 zSig0 = LIT64( 0x8000000000000000 ); 737 } 738 roundIncrement = roundMask + 1; 739 if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { 740 roundMask |= roundIncrement; 741 } 742 zSig0 &= ~ roundMask; 743 if ( zSig0 == 0 ) zExp = 0; 744 return packFloatx80( zSign, zExp, zSig0 ); 745 precision80: 746 increment = ( (int64_t) zSig1 < 0 ); 747 if ( ! roundNearestEven ) { 748 if ( roundingMode == float_round_to_zero ) { 749 increment = 0; 750 } 751 else { 752 if ( zSign ) { 753 increment = ( roundingMode == float_round_down ) && zSig1; 754 } 755 else { 756 increment = ( roundingMode == float_round_up ) && zSig1; 757 } 758 } 759 } 760 if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { 761 if ( ( 0x7FFE < zExp ) 762 || ( ( zExp == 0x7FFE ) 763 && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) 764 && increment 765 ) 766 ) { 767 roundMask = 0; 768 overflow: 769 float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); 770 if ( ( roundingMode == float_round_to_zero ) 771 || ( zSign && ( roundingMode == float_round_up ) ) 772 || ( ! zSign && ( roundingMode == float_round_down ) ) 773 ) { 774 return packFloatx80( zSign, 0x7FFE, ~ roundMask ); 775 } 776 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 777 } 778 if ( zExp <= 0 ) { 779 isTiny = 780 ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) 781 || ( zExp < 0 ) 782 || ! increment 783 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); 784 shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); 785 zExp = 0; 786 if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR); 787 if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; 788 if ( roundNearestEven ) { 789 increment = ( (int64_t) zSig1 < 0 ); 790 } 791 else { 792 if ( zSign ) { 793 increment = ( roundingMode == float_round_down ) && zSig1; 794 } 795 else { 796 increment = ( roundingMode == float_round_up ) && zSig1; 797 } 798 } 799 if ( increment ) { 800 ++zSig0; 801 zSig0 &= 802 ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); 803 if ( (int64_t) zSig0 < 0 ) zExp = 1; 804 } 805 return packFloatx80( zSign, zExp, zSig0 ); 806 } 807 } 808 if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; 809 if ( increment ) { 810 ++zSig0; 811 if ( zSig0 == 0 ) { 812 ++zExp; 813 zSig0 = LIT64( 0x8000000000000000 ); 814 } 815 else { 816 zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); 817 } 818 } 819 else { 820 if ( zSig0 == 0 ) zExp = 0; 821 } 822 return packFloatx80( zSign, zExp, zSig0 ); 823 824 } 825 826 /*---------------------------------------------------------------------------- 827 | Takes an abstract floating-point value having sign `zSign', exponent 828 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', 829 | and returns the proper extended double-precision floating-point value 830 | corresponding to the abstract input. This routine is just like 831 | `roundAndPackFloatx80' except that the input significand does not have to be 832 | normalized. 833 *----------------------------------------------------------------------------*/ 834 835 static floatx80 836 normalizeRoundAndPackFloatx80( 837 int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 838 STATUS_PARAM) 839 { 840 int8 shiftCount; 841 842 if ( zSig0 == 0 ) { 843 zSig0 = zSig1; 844 zSig1 = 0; 845 zExp -= 64; 846 } 847 shiftCount = countLeadingZeros64( zSig0 ); 848 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 849 zExp -= shiftCount; 850 return 851 roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR); 852 853 } 854 855 /*---------------------------------------------------------------------------- 856 | Returns the least-significant 64 fraction bits of the quadruple-precision 857 | floating-point value `a'. 858 *----------------------------------------------------------------------------*/ 859 860 INLINE uint64_t extractFloat128Frac1( float128 a ) 861 { 862 863 return a.low; 864 865 } 866 867 /*---------------------------------------------------------------------------- 868 | Returns the most-significant 48 fraction bits of the quadruple-precision 869 | floating-point value `a'. 870 *----------------------------------------------------------------------------*/ 871 872 INLINE uint64_t extractFloat128Frac0( float128 a ) 873 { 874 875 return a.high & LIT64( 0x0000FFFFFFFFFFFF ); 876 877 } 878 879 /*---------------------------------------------------------------------------- 880 | Returns the exponent bits of the quadruple-precision floating-point value 881 | `a'. 882 *----------------------------------------------------------------------------*/ 883 884 INLINE int32 extractFloat128Exp( float128 a ) 885 { 886 887 return ( a.high>>48 ) & 0x7FFF; 888 889 } 890 891 /*---------------------------------------------------------------------------- 892 | Returns the sign bit of the quadruple-precision floating-point value `a'. 893 *----------------------------------------------------------------------------*/ 894 895 INLINE flag extractFloat128Sign( float128 a ) 896 { 897 898 return a.high>>63; 899 900 } 901 902 /*---------------------------------------------------------------------------- 903 | Normalizes the subnormal quadruple-precision floating-point value 904 | represented by the denormalized significand formed by the concatenation of 905 | `aSig0' and `aSig1'. The normalized exponent is stored at the location 906 | pointed to by `zExpPtr'. The most significant 49 bits of the normalized 907 | significand are stored at the location pointed to by `zSig0Ptr', and the 908 | least significant 64 bits of the normalized significand are stored at the 909 | location pointed to by `zSig1Ptr'. 910 *----------------------------------------------------------------------------*/ 911 912 static void 913 normalizeFloat128Subnormal( 914 uint64_t aSig0, 915 uint64_t aSig1, 916 int32 *zExpPtr, 917 uint64_t *zSig0Ptr, 918 uint64_t *zSig1Ptr 919 ) 920 { 921 int8 shiftCount; 922 923 if ( aSig0 == 0 ) { 924 shiftCount = countLeadingZeros64( aSig1 ) - 15; 925 if ( shiftCount < 0 ) { 926 *zSig0Ptr = aSig1>>( - shiftCount ); 927 *zSig1Ptr = aSig1<<( shiftCount & 63 ); 928 } 929 else { 930 *zSig0Ptr = aSig1<<shiftCount; 931 *zSig1Ptr = 0; 932 } 933 *zExpPtr = - shiftCount - 63; 934 } 935 else { 936 shiftCount = countLeadingZeros64( aSig0 ) - 15; 937 shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); 938 *zExpPtr = 1 - shiftCount; 939 } 940 941 } 942 943 /*---------------------------------------------------------------------------- 944 | Packs the sign `zSign', the exponent `zExp', and the significand formed 945 | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision 946 | floating-point value, returning the result. After being shifted into the 947 | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply 948 | added together to form the most significant 32 bits of the result. This 949 | means that any integer portion of `zSig0' will be added into the exponent. 950 | Since a properly normalized significand will have an integer portion equal 951 | to 1, the `zExp' input should be 1 less than the desired result exponent 952 | whenever `zSig0' and `zSig1' concatenated form a complete, normalized 953 | significand. 954 *----------------------------------------------------------------------------*/ 955 956 INLINE float128 957 packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 ) 958 { 959 float128 z; 960 961 z.low = zSig1; 962 z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; 963 return z; 964 965 } 966 967 /*---------------------------------------------------------------------------- 968 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 969 | and extended significand formed by the concatenation of `zSig0', `zSig1', 970 | and `zSig2', and returns the proper quadruple-precision floating-point value 971 | corresponding to the abstract input. Ordinarily, the abstract value is 972 | simply rounded and packed into the quadruple-precision format, with the 973 | inexact exception raised if the abstract input cannot be represented 974 | exactly. However, if the abstract value is too large, the overflow and 975 | inexact exceptions are raised and an infinity or maximal finite value is 976 | returned. If the abstract value is too small, the input value is rounded to 977 | a subnormal number, and the underflow and inexact exceptions are raised if 978 | the abstract input cannot be represented exactly as a subnormal quadruple- 979 | precision floating-point number. 980 | The input significand must be normalized or smaller. If the input 981 | significand is not normalized, `zExp' must be 0; in that case, the result 982 | returned is a subnormal number, and it must not require rounding. In the 983 | usual case that the input significand is normalized, `zExp' must be 1 less 984 | than the ``true'' floating-point exponent. The handling of underflow and 985 | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 986 *----------------------------------------------------------------------------*/ 987 988 static float128 989 roundAndPackFloat128( 990 flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM) 991 { 992 int8 roundingMode; 993 flag roundNearestEven, increment, isTiny; 994 995 roundingMode = STATUS(float_rounding_mode); 996 roundNearestEven = ( roundingMode == float_round_nearest_even ); 997 increment = ( (int64_t) zSig2 < 0 ); 998 if ( ! roundNearestEven ) { 999 if ( roundingMode == float_round_to_zero ) { 1000 increment = 0; 1001 } 1002 else { 1003 if ( zSign ) { 1004 increment = ( roundingMode == float_round_down ) && zSig2; 1005 } 1006 else { 1007 increment = ( roundingMode == float_round_up ) && zSig2; 1008 } 1009 } 1010 } 1011 if ( 0x7FFD <= (uint32_t) zExp ) { 1012 if ( ( 0x7FFD < zExp ) 1013 || ( ( zExp == 0x7FFD ) 1014 && eq128( 1015 LIT64( 0x0001FFFFFFFFFFFF ), 1016 LIT64( 0xFFFFFFFFFFFFFFFF ), 1017 zSig0, 1018 zSig1 1019 ) 1020 && increment 1021 ) 1022 ) { 1023 float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); 1024 if ( ( roundingMode == float_round_to_zero ) 1025 || ( zSign && ( roundingMode == float_round_up ) ) 1026 || ( ! zSign && ( roundingMode == float_round_down ) ) 1027 ) { 1028 return 1029 packFloat128( 1030 zSign, 1031 0x7FFE, 1032 LIT64( 0x0000FFFFFFFFFFFF ), 1033 LIT64( 0xFFFFFFFFFFFFFFFF ) 1034 ); 1035 } 1036 return packFloat128( zSign, 0x7FFF, 0, 0 ); 1037 } 1038 if ( zExp < 0 ) { 1039 if (STATUS(flush_to_zero)) { 1040 float_raise(float_flag_output_denormal STATUS_VAR); 1041 return packFloat128(zSign, 0, 0, 0); 1042 } 1043 isTiny = 1044 ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) 1045 || ( zExp < -1 ) 1046 || ! increment 1047 || lt128( 1048 zSig0, 1049 zSig1, 1050 LIT64( 0x0001FFFFFFFFFFFF ), 1051 LIT64( 0xFFFFFFFFFFFFFFFF ) 1052 ); 1053 shift128ExtraRightJamming( 1054 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); 1055 zExp = 0; 1056 if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR); 1057 if ( roundNearestEven ) { 1058 increment = ( (int64_t) zSig2 < 0 ); 1059 } 1060 else { 1061 if ( zSign ) { 1062 increment = ( roundingMode == float_round_down ) && zSig2; 1063 } 1064 else { 1065 increment = ( roundingMode == float_round_up ) && zSig2; 1066 } 1067 } 1068 } 1069 } 1070 if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact; 1071 if ( increment ) { 1072 add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); 1073 zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); 1074 } 1075 else { 1076 if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; 1077 } 1078 return packFloat128( zSign, zExp, zSig0, zSig1 ); 1079 1080 } 1081 1082 /*---------------------------------------------------------------------------- 1083 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 1084 | and significand formed by the concatenation of `zSig0' and `zSig1', and 1085 | returns the proper quadruple-precision floating-point value corresponding 1086 | to the abstract input. This routine is just like `roundAndPackFloat128' 1087 | except that the input significand has fewer bits and does not have to be 1088 | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- 1089 | point exponent. 1090 *----------------------------------------------------------------------------*/ 1091 1092 static float128 1093 normalizeRoundAndPackFloat128( 1094 flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM) 1095 { 1096 int8 shiftCount; 1097 uint64_t zSig2; 1098 1099 if ( zSig0 == 0 ) { 1100 zSig0 = zSig1; 1101 zSig1 = 0; 1102 zExp -= 64; 1103 } 1104 shiftCount = countLeadingZeros64( zSig0 ) - 15; 1105 if ( 0 <= shiftCount ) { 1106 zSig2 = 0; 1107 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 1108 } 1109 else { 1110 shift128ExtraRightJamming( 1111 zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); 1112 } 1113 zExp -= shiftCount; 1114 return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR); 1115 1116 } 1117 1118 /*---------------------------------------------------------------------------- 1119 | Returns the result of converting the 32-bit two's complement integer `a' 1120 | to the single-precision floating-point format. The conversion is performed 1121 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1122 *----------------------------------------------------------------------------*/ 1123 1124 float32 int32_to_float32( int32 a STATUS_PARAM ) 1125 { 1126 flag zSign; 1127 1128 if ( a == 0 ) return float32_zero; 1129 if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); 1130 zSign = ( a < 0 ); 1131 return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR ); 1132 1133 } 1134 1135 /*---------------------------------------------------------------------------- 1136 | Returns the result of converting the 32-bit two's complement integer `a' 1137 | to the double-precision floating-point format. The conversion is performed 1138 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1139 *----------------------------------------------------------------------------*/ 1140 1141 float64 int32_to_float64( int32 a STATUS_PARAM ) 1142 { 1143 flag zSign; 1144 uint32 absA; 1145 int8 shiftCount; 1146 uint64_t zSig; 1147 1148 if ( a == 0 ) return float64_zero; 1149 zSign = ( a < 0 ); 1150 absA = zSign ? - a : a; 1151 shiftCount = countLeadingZeros32( absA ) + 21; 1152 zSig = absA; 1153 return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); 1154 1155 } 1156 1157 /*---------------------------------------------------------------------------- 1158 | Returns the result of converting the 32-bit two's complement integer `a' 1159 | to the extended double-precision floating-point format. The conversion 1160 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 1161 | Arithmetic. 1162 *----------------------------------------------------------------------------*/ 1163 1164 floatx80 int32_to_floatx80( int32 a STATUS_PARAM ) 1165 { 1166 flag zSign; 1167 uint32 absA; 1168 int8 shiftCount; 1169 uint64_t zSig; 1170 1171 if ( a == 0 ) return packFloatx80( 0, 0, 0 ); 1172 zSign = ( a < 0 ); 1173 absA = zSign ? - a : a; 1174 shiftCount = countLeadingZeros32( absA ) + 32; 1175 zSig = absA; 1176 return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); 1177 1178 } 1179 1180 /*---------------------------------------------------------------------------- 1181 | Returns the result of converting the 32-bit two's complement integer `a' to 1182 | the quadruple-precision floating-point format. The conversion is performed 1183 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1184 *----------------------------------------------------------------------------*/ 1185 1186 float128 int32_to_float128( int32 a STATUS_PARAM ) 1187 { 1188 flag zSign; 1189 uint32 absA; 1190 int8 shiftCount; 1191 uint64_t zSig0; 1192 1193 if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); 1194 zSign = ( a < 0 ); 1195 absA = zSign ? - a : a; 1196 shiftCount = countLeadingZeros32( absA ) + 17; 1197 zSig0 = absA; 1198 return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); 1199 1200 } 1201 1202 /*---------------------------------------------------------------------------- 1203 | Returns the result of converting the 64-bit two's complement integer `a' 1204 | to the single-precision floating-point format. The conversion is performed 1205 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1206 *----------------------------------------------------------------------------*/ 1207 1208 float32 int64_to_float32( int64 a STATUS_PARAM ) 1209 { 1210 flag zSign; 1211 uint64 absA; 1212 int8 shiftCount; 1213 1214 if ( a == 0 ) return float32_zero; 1215 zSign = ( a < 0 ); 1216 absA = zSign ? - a : a; 1217 shiftCount = countLeadingZeros64( absA ) - 40; 1218 if ( 0 <= shiftCount ) { 1219 return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); 1220 } 1221 else { 1222 shiftCount += 7; 1223 if ( shiftCount < 0 ) { 1224 shift64RightJamming( absA, - shiftCount, &absA ); 1225 } 1226 else { 1227 absA <<= shiftCount; 1228 } 1229 return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR ); 1230 } 1231 1232 } 1233 1234 float32 uint64_to_float32( uint64 a STATUS_PARAM ) 1235 { 1236 int8 shiftCount; 1237 1238 if ( a == 0 ) return float32_zero; 1239 shiftCount = countLeadingZeros64( a ) - 40; 1240 if ( 0 <= shiftCount ) { 1241 return packFloat32( 1 > 0, 0x95 - shiftCount, a<<shiftCount ); 1242 } 1243 else { 1244 shiftCount += 7; 1245 if ( shiftCount < 0 ) { 1246 shift64RightJamming( a, - shiftCount, &a ); 1247 } 1248 else { 1249 a <<= shiftCount; 1250 } 1251 return roundAndPackFloat32( 1 > 0, 0x9C - shiftCount, a STATUS_VAR ); 1252 } 1253 } 1254 1255 /*---------------------------------------------------------------------------- 1256 | Returns the result of converting the 64-bit two's complement integer `a' 1257 | to the double-precision floating-point format. The conversion is performed 1258 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1259 *----------------------------------------------------------------------------*/ 1260 1261 float64 int64_to_float64( int64 a STATUS_PARAM ) 1262 { 1263 flag zSign; 1264 1265 if ( a == 0 ) return float64_zero; 1266 if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) { 1267 return packFloat64( 1, 0x43E, 0 ); 1268 } 1269 zSign = ( a < 0 ); 1270 return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR ); 1271 1272 } 1273 1274 float64 uint64_to_float64( uint64 a STATUS_PARAM ) 1275 { 1276 if ( a == 0 ) return float64_zero; 1277 return normalizeRoundAndPackFloat64( 0, 0x43C, a STATUS_VAR ); 1278 1279 } 1280 1281 /*---------------------------------------------------------------------------- 1282 | Returns the result of converting the 64-bit two's complement integer `a' 1283 | to the extended double-precision floating-point format. The conversion 1284 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 1285 | Arithmetic. 1286 *----------------------------------------------------------------------------*/ 1287 1288 floatx80 int64_to_floatx80( int64 a STATUS_PARAM ) 1289 { 1290 flag zSign; 1291 uint64 absA; 1292 int8 shiftCount; 1293 1294 if ( a == 0 ) return packFloatx80( 0, 0, 0 ); 1295 zSign = ( a < 0 ); 1296 absA = zSign ? - a : a; 1297 shiftCount = countLeadingZeros64( absA ); 1298 return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); 1299 1300 } 1301 1302 /*---------------------------------------------------------------------------- 1303 | Returns the result of converting the 64-bit two's complement integer `a' to 1304 | the quadruple-precision floating-point format. The conversion is performed 1305 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1306 *----------------------------------------------------------------------------*/ 1307 1308 float128 int64_to_float128( int64 a STATUS_PARAM ) 1309 { 1310 flag zSign; 1311 uint64 absA; 1312 int8 shiftCount; 1313 int32 zExp; 1314 uint64_t zSig0, zSig1; 1315 1316 if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); 1317 zSign = ( a < 0 ); 1318 absA = zSign ? - a : a; 1319 shiftCount = countLeadingZeros64( absA ) + 49; 1320 zExp = 0x406E - shiftCount; 1321 if ( 64 <= shiftCount ) { 1322 zSig1 = 0; 1323 zSig0 = absA; 1324 shiftCount -= 64; 1325 } 1326 else { 1327 zSig1 = absA; 1328 zSig0 = 0; 1329 } 1330 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 1331 return packFloat128( zSign, zExp, zSig0, zSig1 ); 1332 1333 } 1334 1335 /*---------------------------------------------------------------------------- 1336 | Returns the result of converting the single-precision floating-point value 1337 | `a' to the 32-bit two's complement integer format. The conversion is 1338 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1339 | Arithmetic---which means in particular that the conversion is rounded 1340 | according to the current rounding mode. If `a' is a NaN, the largest 1341 | positive integer is returned. Otherwise, if the conversion overflows, the 1342 | largest integer with the same sign as `a' is returned. 1343 *----------------------------------------------------------------------------*/ 1344 1345 int32 float32_to_int32( float32 a STATUS_PARAM ) 1346 { 1347 flag aSign; 1348 int_fast16_t aExp, shiftCount; 1349 uint32_t aSig; 1350 uint64_t aSig64; 1351 1352 a = float32_squash_input_denormal(a STATUS_VAR); 1353 aSig = extractFloat32Frac( a ); 1354 aExp = extractFloat32Exp( a ); 1355 aSign = extractFloat32Sign( a ); 1356 if ( ( aExp == 0xFF ) && aSig ) aSign = 0; 1357 if ( aExp ) aSig |= 0x00800000; 1358 shiftCount = 0xAF - aExp; 1359 aSig64 = aSig; 1360 aSig64 <<= 32; 1361 if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); 1362 return roundAndPackInt32( aSign, aSig64 STATUS_VAR ); 1363 1364 } 1365 1366 /*---------------------------------------------------------------------------- 1367 | Returns the result of converting the single-precision floating-point value 1368 | `a' to the 32-bit two's complement integer format. The conversion is 1369 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1370 | Arithmetic, except that the conversion is always rounded toward zero. 1371 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 1372 | the conversion overflows, the largest integer with the same sign as `a' is 1373 | returned. 1374 *----------------------------------------------------------------------------*/ 1375 1376 int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM ) 1377 { 1378 flag aSign; 1379 int_fast16_t aExp, shiftCount; 1380 uint32_t aSig; 1381 int32_t z; 1382 a = float32_squash_input_denormal(a STATUS_VAR); 1383 1384 aSig = extractFloat32Frac( a ); 1385 aExp = extractFloat32Exp( a ); 1386 aSign = extractFloat32Sign( a ); 1387 shiftCount = aExp - 0x9E; 1388 if ( 0 <= shiftCount ) { 1389 if ( float32_val(a) != 0xCF000000 ) { 1390 float_raise( float_flag_invalid STATUS_VAR); 1391 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; 1392 } 1393 return (int32_t) 0x80000000; 1394 } 1395 else if ( aExp <= 0x7E ) { 1396 if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; 1397 return 0; 1398 } 1399 aSig = ( aSig | 0x00800000 )<<8; 1400 z = aSig>>( - shiftCount ); 1401 if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { 1402 STATUS(float_exception_flags) |= float_flag_inexact; 1403 } 1404 if ( aSign ) z = - z; 1405 return z; 1406 1407 } 1408 1409 /*---------------------------------------------------------------------------- 1410 | Returns the result of converting the single-precision floating-point value 1411 | `a' to the 16-bit two's complement integer format. The conversion is 1412 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1413 | Arithmetic, except that the conversion is always rounded toward zero. 1414 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 1415 | the conversion overflows, the largest integer with the same sign as `a' is 1416 | returned. 1417 *----------------------------------------------------------------------------*/ 1418 1419 int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM) 1420 { 1421 flag aSign; 1422 int_fast16_t aExp, shiftCount; 1423 uint32_t aSig; 1424 int32 z; 1425 1426 aSig = extractFloat32Frac( a ); 1427 aExp = extractFloat32Exp( a ); 1428 aSign = extractFloat32Sign( a ); 1429 shiftCount = aExp - 0x8E; 1430 if ( 0 <= shiftCount ) { 1431 if ( float32_val(a) != 0xC7000000 ) { 1432 float_raise( float_flag_invalid STATUS_VAR); 1433 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { 1434 return 0x7FFF; 1435 } 1436 } 1437 return (int32_t) 0xffff8000; 1438 } 1439 else if ( aExp <= 0x7E ) { 1440 if ( aExp | aSig ) { 1441 STATUS(float_exception_flags) |= float_flag_inexact; 1442 } 1443 return 0; 1444 } 1445 shiftCount -= 0x10; 1446 aSig = ( aSig | 0x00800000 )<<8; 1447 z = aSig>>( - shiftCount ); 1448 if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) { 1449 STATUS(float_exception_flags) |= float_flag_inexact; 1450 } 1451 if ( aSign ) { 1452 z = - z; 1453 } 1454 return z; 1455 1456 } 1457 1458 /*---------------------------------------------------------------------------- 1459 | Returns the result of converting the single-precision floating-point value 1460 | `a' to the 64-bit two's complement integer format. The conversion is 1461 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1462 | Arithmetic---which means in particular that the conversion is rounded 1463 | according to the current rounding mode. If `a' is a NaN, the largest 1464 | positive integer is returned. Otherwise, if the conversion overflows, the 1465 | largest integer with the same sign as `a' is returned. 1466 *----------------------------------------------------------------------------*/ 1467 1468 int64 float32_to_int64( float32 a STATUS_PARAM ) 1469 { 1470 flag aSign; 1471 int_fast16_t aExp, shiftCount; 1472 uint32_t aSig; 1473 uint64_t aSig64, aSigExtra; 1474 a = float32_squash_input_denormal(a STATUS_VAR); 1475 1476 aSig = extractFloat32Frac( a ); 1477 aExp = extractFloat32Exp( a ); 1478 aSign = extractFloat32Sign( a ); 1479 shiftCount = 0xBE - aExp; 1480 if ( shiftCount < 0 ) { 1481 float_raise( float_flag_invalid STATUS_VAR); 1482 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { 1483 return LIT64( 0x7FFFFFFFFFFFFFFF ); 1484 } 1485 return (int64_t) LIT64( 0x8000000000000000 ); 1486 } 1487 if ( aExp ) aSig |= 0x00800000; 1488 aSig64 = aSig; 1489 aSig64 <<= 40; 1490 shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); 1491 return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR ); 1492 1493 } 1494 1495 /*---------------------------------------------------------------------------- 1496 | Returns the result of converting the single-precision floating-point value 1497 | `a' to the 64-bit two's complement integer format. The conversion is 1498 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1499 | Arithmetic, except that the conversion is always rounded toward zero. If 1500 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the 1501 | conversion overflows, the largest integer with the same sign as `a' is 1502 | returned. 1503 *----------------------------------------------------------------------------*/ 1504 1505 int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM ) 1506 { 1507 flag aSign; 1508 int_fast16_t aExp, shiftCount; 1509 uint32_t aSig; 1510 uint64_t aSig64; 1511 int64 z; 1512 a = float32_squash_input_denormal(a STATUS_VAR); 1513 1514 aSig = extractFloat32Frac( a ); 1515 aExp = extractFloat32Exp( a ); 1516 aSign = extractFloat32Sign( a ); 1517 shiftCount = aExp - 0xBE; 1518 if ( 0 <= shiftCount ) { 1519 if ( float32_val(a) != 0xDF000000 ) { 1520 float_raise( float_flag_invalid STATUS_VAR); 1521 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { 1522 return LIT64( 0x7FFFFFFFFFFFFFFF ); 1523 } 1524 } 1525 return (int64_t) LIT64( 0x8000000000000000 ); 1526 } 1527 else if ( aExp <= 0x7E ) { 1528 if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; 1529 return 0; 1530 } 1531 aSig64 = aSig | 0x00800000; 1532 aSig64 <<= 40; 1533 z = aSig64>>( - shiftCount ); 1534 if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) { 1535 STATUS(float_exception_flags) |= float_flag_inexact; 1536 } 1537 if ( aSign ) z = - z; 1538 return z; 1539 1540 } 1541 1542 /*---------------------------------------------------------------------------- 1543 | Returns the result of converting the single-precision floating-point value 1544 | `a' to the double-precision floating-point format. The conversion is 1545 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1546 | Arithmetic. 1547 *----------------------------------------------------------------------------*/ 1548 1549 float64 float32_to_float64( float32 a STATUS_PARAM ) 1550 { 1551 flag aSign; 1552 int_fast16_t aExp; 1553 uint32_t aSig; 1554 a = float32_squash_input_denormal(a STATUS_VAR); 1555 1556 aSig = extractFloat32Frac( a ); 1557 aExp = extractFloat32Exp( a ); 1558 aSign = extractFloat32Sign( a ); 1559 if ( aExp == 0xFF ) { 1560 if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 1561 return packFloat64( aSign, 0x7FF, 0 ); 1562 } 1563 if ( aExp == 0 ) { 1564 if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); 1565 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 1566 --aExp; 1567 } 1568 return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 ); 1569 1570 } 1571 1572 /*---------------------------------------------------------------------------- 1573 | Returns the result of converting the single-precision floating-point value 1574 | `a' to the extended double-precision floating-point format. The conversion 1575 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 1576 | Arithmetic. 1577 *----------------------------------------------------------------------------*/ 1578 1579 floatx80 float32_to_floatx80( float32 a STATUS_PARAM ) 1580 { 1581 flag aSign; 1582 int_fast16_t aExp; 1583 uint32_t aSig; 1584 1585 a = float32_squash_input_denormal(a STATUS_VAR); 1586 aSig = extractFloat32Frac( a ); 1587 aExp = extractFloat32Exp( a ); 1588 aSign = extractFloat32Sign( a ); 1589 if ( aExp == 0xFF ) { 1590 if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 1591 return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 1592 } 1593 if ( aExp == 0 ) { 1594 if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); 1595 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 1596 } 1597 aSig |= 0x00800000; 1598 return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); 1599 1600 } 1601 1602 /*---------------------------------------------------------------------------- 1603 | Returns the result of converting the single-precision floating-point value 1604 | `a' to the double-precision floating-point format. The conversion is 1605 | performed according to the IEC/IEEE Standard for Binary Floating-Point 1606 | Arithmetic. 1607 *----------------------------------------------------------------------------*/ 1608 1609 float128 float32_to_float128( float32 a STATUS_PARAM ) 1610 { 1611 flag aSign; 1612 int_fast16_t aExp; 1613 uint32_t aSig; 1614 1615 a = float32_squash_input_denormal(a STATUS_VAR); 1616 aSig = extractFloat32Frac( a ); 1617 aExp = extractFloat32Exp( a ); 1618 aSign = extractFloat32Sign( a ); 1619 if ( aExp == 0xFF ) { 1620 if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 1621 return packFloat128( aSign, 0x7FFF, 0, 0 ); 1622 } 1623 if ( aExp == 0 ) { 1624 if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); 1625 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 1626 --aExp; 1627 } 1628 return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); 1629 1630 } 1631 1632 /*---------------------------------------------------------------------------- 1633 | Rounds the single-precision floating-point value `a' to an integer, and 1634 | returns the result as a single-precision floating-point value. The 1635 | operation is performed according to the IEC/IEEE Standard for Binary 1636 | Floating-Point Arithmetic. 1637 *----------------------------------------------------------------------------*/ 1638 1639 float32 float32_round_to_int( float32 a STATUS_PARAM) 1640 { 1641 flag aSign; 1642 int_fast16_t aExp; 1643 uint32_t lastBitMask, roundBitsMask; 1644 int8 roundingMode; 1645 uint32_t z; 1646 a = float32_squash_input_denormal(a STATUS_VAR); 1647 1648 aExp = extractFloat32Exp( a ); 1649 if ( 0x96 <= aExp ) { 1650 if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { 1651 return propagateFloat32NaN( a, a STATUS_VAR ); 1652 } 1653 return a; 1654 } 1655 if ( aExp <= 0x7E ) { 1656 if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a; 1657 STATUS(float_exception_flags) |= float_flag_inexact; 1658 aSign = extractFloat32Sign( a ); 1659 switch ( STATUS(float_rounding_mode) ) { 1660 case float_round_nearest_even: 1661 if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { 1662 return packFloat32( aSign, 0x7F, 0 ); 1663 } 1664 break; 1665 case float_round_down: 1666 return make_float32(aSign ? 0xBF800000 : 0); 1667 case float_round_up: 1668 return make_float32(aSign ? 0x80000000 : 0x3F800000); 1669 } 1670 return packFloat32( aSign, 0, 0 ); 1671 } 1672 lastBitMask = 1; 1673 lastBitMask <<= 0x96 - aExp; 1674 roundBitsMask = lastBitMask - 1; 1675 z = float32_val(a); 1676 roundingMode = STATUS(float_rounding_mode); 1677 if ( roundingMode == float_round_nearest_even ) { 1678 z += lastBitMask>>1; 1679 if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; 1680 } 1681 else if ( roundingMode != float_round_to_zero ) { 1682 if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) { 1683 z += roundBitsMask; 1684 } 1685 } 1686 z &= ~ roundBitsMask; 1687 if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact; 1688 return make_float32(z); 1689 1690 } 1691 1692 /*---------------------------------------------------------------------------- 1693 | Returns the result of adding the absolute values of the single-precision 1694 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated 1695 | before being returned. `zSign' is ignored if the result is a NaN. 1696 | The addition is performed according to the IEC/IEEE Standard for Binary 1697 | Floating-Point Arithmetic. 1698 *----------------------------------------------------------------------------*/ 1699 1700 static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) 1701 { 1702 int_fast16_t aExp, bExp, zExp; 1703 uint32_t aSig, bSig, zSig; 1704 int_fast16_t expDiff; 1705 1706 aSig = extractFloat32Frac( a ); 1707 aExp = extractFloat32Exp( a ); 1708 bSig = extractFloat32Frac( b ); 1709 bExp = extractFloat32Exp( b ); 1710 expDiff = aExp - bExp; 1711 aSig <<= 6; 1712 bSig <<= 6; 1713 if ( 0 < expDiff ) { 1714 if ( aExp == 0xFF ) { 1715 if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1716 return a; 1717 } 1718 if ( bExp == 0 ) { 1719 --expDiff; 1720 } 1721 else { 1722 bSig |= 0x20000000; 1723 } 1724 shift32RightJamming( bSig, expDiff, &bSig ); 1725 zExp = aExp; 1726 } 1727 else if ( expDiff < 0 ) { 1728 if ( bExp == 0xFF ) { 1729 if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1730 return packFloat32( zSign, 0xFF, 0 ); 1731 } 1732 if ( aExp == 0 ) { 1733 ++expDiff; 1734 } 1735 else { 1736 aSig |= 0x20000000; 1737 } 1738 shift32RightJamming( aSig, - expDiff, &aSig ); 1739 zExp = bExp; 1740 } 1741 else { 1742 if ( aExp == 0xFF ) { 1743 if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1744 return a; 1745 } 1746 if ( aExp == 0 ) { 1747 if (STATUS(flush_to_zero)) { 1748 if (aSig | bSig) { 1749 float_raise(float_flag_output_denormal STATUS_VAR); 1750 } 1751 return packFloat32(zSign, 0, 0); 1752 } 1753 return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); 1754 } 1755 zSig = 0x40000000 + aSig + bSig; 1756 zExp = aExp; 1757 goto roundAndPack; 1758 } 1759 aSig |= 0x20000000; 1760 zSig = ( aSig + bSig )<<1; 1761 --zExp; 1762 if ( (int32_t) zSig < 0 ) { 1763 zSig = aSig + bSig; 1764 ++zExp; 1765 } 1766 roundAndPack: 1767 return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); 1768 1769 } 1770 1771 /*---------------------------------------------------------------------------- 1772 | Returns the result of subtracting the absolute values of the single- 1773 | precision floating-point values `a' and `b'. If `zSign' is 1, the 1774 | difference is negated before being returned. `zSign' is ignored if the 1775 | result is a NaN. The subtraction is performed according to the IEC/IEEE 1776 | Standard for Binary Floating-Point Arithmetic. 1777 *----------------------------------------------------------------------------*/ 1778 1779 static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) 1780 { 1781 int_fast16_t aExp, bExp, zExp; 1782 uint32_t aSig, bSig, zSig; 1783 int_fast16_t expDiff; 1784 1785 aSig = extractFloat32Frac( a ); 1786 aExp = extractFloat32Exp( a ); 1787 bSig = extractFloat32Frac( b ); 1788 bExp = extractFloat32Exp( b ); 1789 expDiff = aExp - bExp; 1790 aSig <<= 7; 1791 bSig <<= 7; 1792 if ( 0 < expDiff ) goto aExpBigger; 1793 if ( expDiff < 0 ) goto bExpBigger; 1794 if ( aExp == 0xFF ) { 1795 if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1796 float_raise( float_flag_invalid STATUS_VAR); 1797 return float32_default_nan; 1798 } 1799 if ( aExp == 0 ) { 1800 aExp = 1; 1801 bExp = 1; 1802 } 1803 if ( bSig < aSig ) goto aBigger; 1804 if ( aSig < bSig ) goto bBigger; 1805 return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); 1806 bExpBigger: 1807 if ( bExp == 0xFF ) { 1808 if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1809 return packFloat32( zSign ^ 1, 0xFF, 0 ); 1810 } 1811 if ( aExp == 0 ) { 1812 ++expDiff; 1813 } 1814 else { 1815 aSig |= 0x40000000; 1816 } 1817 shift32RightJamming( aSig, - expDiff, &aSig ); 1818 bSig |= 0x40000000; 1819 bBigger: 1820 zSig = bSig - aSig; 1821 zExp = bExp; 1822 zSign ^= 1; 1823 goto normalizeRoundAndPack; 1824 aExpBigger: 1825 if ( aExp == 0xFF ) { 1826 if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1827 return a; 1828 } 1829 if ( bExp == 0 ) { 1830 --expDiff; 1831 } 1832 else { 1833 bSig |= 0x40000000; 1834 } 1835 shift32RightJamming( bSig, expDiff, &bSig ); 1836 aSig |= 0x40000000; 1837 aBigger: 1838 zSig = aSig - bSig; 1839 zExp = aExp; 1840 normalizeRoundAndPack: 1841 --zExp; 1842 return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); 1843 1844 } 1845 1846 /*---------------------------------------------------------------------------- 1847 | Returns the result of adding the single-precision floating-point values `a' 1848 | and `b'. The operation is performed according to the IEC/IEEE Standard for 1849 | Binary Floating-Point Arithmetic. 1850 *----------------------------------------------------------------------------*/ 1851 1852 float32 float32_add( float32 a, float32 b STATUS_PARAM ) 1853 { 1854 flag aSign, bSign; 1855 a = float32_squash_input_denormal(a STATUS_VAR); 1856 b = float32_squash_input_denormal(b STATUS_VAR); 1857 1858 aSign = extractFloat32Sign( a ); 1859 bSign = extractFloat32Sign( b ); 1860 if ( aSign == bSign ) { 1861 return addFloat32Sigs( a, b, aSign STATUS_VAR); 1862 } 1863 else { 1864 return subFloat32Sigs( a, b, aSign STATUS_VAR ); 1865 } 1866 1867 } 1868 1869 /*---------------------------------------------------------------------------- 1870 | Returns the result of subtracting the single-precision floating-point values 1871 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 1872 | for Binary Floating-Point Arithmetic. 1873 *----------------------------------------------------------------------------*/ 1874 1875 float32 float32_sub( float32 a, float32 b STATUS_PARAM ) 1876 { 1877 flag aSign, bSign; 1878 a = float32_squash_input_denormal(a STATUS_VAR); 1879 b = float32_squash_input_denormal(b STATUS_VAR); 1880 1881 aSign = extractFloat32Sign( a ); 1882 bSign = extractFloat32Sign( b ); 1883 if ( aSign == bSign ) { 1884 return subFloat32Sigs( a, b, aSign STATUS_VAR ); 1885 } 1886 else { 1887 return addFloat32Sigs( a, b, aSign STATUS_VAR ); 1888 } 1889 1890 } 1891 1892 /*---------------------------------------------------------------------------- 1893 | Returns the result of multiplying the single-precision floating-point values 1894 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 1895 | for Binary Floating-Point Arithmetic. 1896 *----------------------------------------------------------------------------*/ 1897 1898 float32 float32_mul( float32 a, float32 b STATUS_PARAM ) 1899 { 1900 flag aSign, bSign, zSign; 1901 int_fast16_t aExp, bExp, zExp; 1902 uint32_t aSig, bSig; 1903 uint64_t zSig64; 1904 uint32_t zSig; 1905 1906 a = float32_squash_input_denormal(a STATUS_VAR); 1907 b = float32_squash_input_denormal(b STATUS_VAR); 1908 1909 aSig = extractFloat32Frac( a ); 1910 aExp = extractFloat32Exp( a ); 1911 aSign = extractFloat32Sign( a ); 1912 bSig = extractFloat32Frac( b ); 1913 bExp = extractFloat32Exp( b ); 1914 bSign = extractFloat32Sign( b ); 1915 zSign = aSign ^ bSign; 1916 if ( aExp == 0xFF ) { 1917 if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { 1918 return propagateFloat32NaN( a, b STATUS_VAR ); 1919 } 1920 if ( ( bExp | bSig ) == 0 ) { 1921 float_raise( float_flag_invalid STATUS_VAR); 1922 return float32_default_nan; 1923 } 1924 return packFloat32( zSign, 0xFF, 0 ); 1925 } 1926 if ( bExp == 0xFF ) { 1927 if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1928 if ( ( aExp | aSig ) == 0 ) { 1929 float_raise( float_flag_invalid STATUS_VAR); 1930 return float32_default_nan; 1931 } 1932 return packFloat32( zSign, 0xFF, 0 ); 1933 } 1934 if ( aExp == 0 ) { 1935 if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); 1936 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 1937 } 1938 if ( bExp == 0 ) { 1939 if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); 1940 normalizeFloat32Subnormal( bSig, &bExp, &bSig ); 1941 } 1942 zExp = aExp + bExp - 0x7F; 1943 aSig = ( aSig | 0x00800000 )<<7; 1944 bSig = ( bSig | 0x00800000 )<<8; 1945 shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 ); 1946 zSig = zSig64; 1947 if ( 0 <= (int32_t) ( zSig<<1 ) ) { 1948 zSig <<= 1; 1949 --zExp; 1950 } 1951 return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); 1952 1953 } 1954 1955 /*---------------------------------------------------------------------------- 1956 | Returns the result of dividing the single-precision floating-point value `a' 1957 | by the corresponding value `b'. The operation is performed according to the 1958 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1959 *----------------------------------------------------------------------------*/ 1960 1961 float32 float32_div( float32 a, float32 b STATUS_PARAM ) 1962 { 1963 flag aSign, bSign, zSign; 1964 int_fast16_t aExp, bExp, zExp; 1965 uint32_t aSig, bSig, zSig; 1966 a = float32_squash_input_denormal(a STATUS_VAR); 1967 b = float32_squash_input_denormal(b STATUS_VAR); 1968 1969 aSig = extractFloat32Frac( a ); 1970 aExp = extractFloat32Exp( a ); 1971 aSign = extractFloat32Sign( a ); 1972 bSig = extractFloat32Frac( b ); 1973 bExp = extractFloat32Exp( b ); 1974 bSign = extractFloat32Sign( b ); 1975 zSign = aSign ^ bSign; 1976 if ( aExp == 0xFF ) { 1977 if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1978 if ( bExp == 0xFF ) { 1979 if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1980 float_raise( float_flag_invalid STATUS_VAR); 1981 return float32_default_nan; 1982 } 1983 return packFloat32( zSign, 0xFF, 0 ); 1984 } 1985 if ( bExp == 0xFF ) { 1986 if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 1987 return packFloat32( zSign, 0, 0 ); 1988 } 1989 if ( bExp == 0 ) { 1990 if ( bSig == 0 ) { 1991 if ( ( aExp | aSig ) == 0 ) { 1992 float_raise( float_flag_invalid STATUS_VAR); 1993 return float32_default_nan; 1994 } 1995 float_raise( float_flag_divbyzero STATUS_VAR); 1996 return packFloat32( zSign, 0xFF, 0 ); 1997 } 1998 normalizeFloat32Subnormal( bSig, &bExp, &bSig ); 1999 } 2000 if ( aExp == 0 ) { 2001 if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); 2002 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2003 } 2004 zExp = aExp - bExp + 0x7D; 2005 aSig = ( aSig | 0x00800000 )<<7; 2006 bSig = ( bSig | 0x00800000 )<<8; 2007 if ( bSig <= ( aSig + aSig ) ) { 2008 aSig >>= 1; 2009 ++zExp; 2010 } 2011 zSig = ( ( (uint64_t) aSig )<<32 ) / bSig; 2012 if ( ( zSig & 0x3F ) == 0 ) { 2013 zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 ); 2014 } 2015 return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); 2016 2017 } 2018 2019 /*---------------------------------------------------------------------------- 2020 | Returns the remainder of the single-precision floating-point value `a' 2021 | with respect to the corresponding value `b'. The operation is performed 2022 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2023 *----------------------------------------------------------------------------*/ 2024 2025 float32 float32_rem( float32 a, float32 b STATUS_PARAM ) 2026 { 2027 flag aSign, zSign; 2028 int_fast16_t aExp, bExp, expDiff; 2029 uint32_t aSig, bSig; 2030 uint32_t q; 2031 uint64_t aSig64, bSig64, q64; 2032 uint32_t alternateASig; 2033 int32_t sigMean; 2034 a = float32_squash_input_denormal(a STATUS_VAR); 2035 b = float32_squash_input_denormal(b STATUS_VAR); 2036 2037 aSig = extractFloat32Frac( a ); 2038 aExp = extractFloat32Exp( a ); 2039 aSign = extractFloat32Sign( a ); 2040 bSig = extractFloat32Frac( b ); 2041 bExp = extractFloat32Exp( b ); 2042 if ( aExp == 0xFF ) { 2043 if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { 2044 return propagateFloat32NaN( a, b STATUS_VAR ); 2045 } 2046 float_raise( float_flag_invalid STATUS_VAR); 2047 return float32_default_nan; 2048 } 2049 if ( bExp == 0xFF ) { 2050 if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); 2051 return a; 2052 } 2053 if ( bExp == 0 ) { 2054 if ( bSig == 0 ) { 2055 float_raise( float_flag_invalid STATUS_VAR); 2056 return float32_default_nan; 2057 } 2058 normalizeFloat32Subnormal( bSig, &bExp, &bSig ); 2059 } 2060 if ( aExp == 0 ) { 2061 if ( aSig == 0 ) return a; 2062 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2063 } 2064 expDiff = aExp - bExp; 2065 aSig |= 0x00800000; 2066 bSig |= 0x00800000; 2067 if ( expDiff < 32 ) { 2068 aSig <<= 8; 2069 bSig <<= 8; 2070 if ( expDiff < 0 ) { 2071 if ( expDiff < -1 ) return a; 2072 aSig >>= 1; 2073 } 2074 q = ( bSig <= aSig ); 2075 if ( q ) aSig -= bSig; 2076 if ( 0 < expDiff ) { 2077 q = ( ( (uint64_t) aSig )<<32 ) / bSig; 2078 q >>= 32 - expDiff; 2079 bSig >>= 2; 2080 aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; 2081 } 2082 else { 2083 aSig >>= 2; 2084 bSig >>= 2; 2085 } 2086 } 2087 else { 2088 if ( bSig <= aSig ) aSig -= bSig; 2089 aSig64 = ( (uint64_t) aSig )<<40; 2090 bSig64 = ( (uint64_t) bSig )<<40; 2091 expDiff -= 64; 2092 while ( 0 < expDiff ) { 2093 q64 = estimateDiv128To64( aSig64, 0, bSig64 ); 2094 q64 = ( 2 < q64 ) ? q64 - 2 : 0; 2095 aSig64 = - ( ( bSig * q64 )<<38 ); 2096 expDiff -= 62; 2097 } 2098 expDiff += 64; 2099 q64 = estimateDiv128To64( aSig64, 0, bSig64 ); 2100 q64 = ( 2 < q64 ) ? q64 - 2 : 0; 2101 q = q64>>( 64 - expDiff ); 2102 bSig <<= 6; 2103 aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; 2104 } 2105 do { 2106 alternateASig = aSig; 2107 ++q; 2108 aSig -= bSig; 2109 } while ( 0 <= (int32_t) aSig ); 2110 sigMean = aSig + alternateASig; 2111 if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { 2112 aSig = alternateASig; 2113 } 2114 zSign = ( (int32_t) aSig < 0 ); 2115 if ( zSign ) aSig = - aSig; 2116 return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR ); 2117 2118 } 2119 2120 /*---------------------------------------------------------------------------- 2121 | Returns the result of multiplying the single-precision floating-point values 2122 | `a' and `b' then adding 'c', with no intermediate rounding step after the 2123 | multiplication. The operation is performed according to the IEC/IEEE 2124 | Standard for Binary Floating-Point Arithmetic 754-2008. 2125 | The flags argument allows the caller to select negation of the 2126 | addend, the intermediate product, or the final result. (The difference 2127 | between this and having the caller do a separate negation is that negating 2128 | externally will flip the sign bit on NaNs.) 2129 *----------------------------------------------------------------------------*/ 2130 2131 float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM) 2132 { 2133 flag aSign, bSign, cSign, zSign; 2134 int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; 2135 uint32_t aSig, bSig, cSig; 2136 flag pInf, pZero, pSign; 2137 uint64_t pSig64, cSig64, zSig64; 2138 uint32_t pSig; 2139 int shiftcount; 2140 flag signflip, infzero; 2141 2142 a = float32_squash_input_denormal(a STATUS_VAR); 2143 b = float32_squash_input_denormal(b STATUS_VAR); 2144 c = float32_squash_input_denormal(c STATUS_VAR); 2145 aSig = extractFloat32Frac(a); 2146 aExp = extractFloat32Exp(a); 2147 aSign = extractFloat32Sign(a); 2148 bSig = extractFloat32Frac(b); 2149 bExp = extractFloat32Exp(b); 2150 bSign = extractFloat32Sign(b); 2151 cSig = extractFloat32Frac(c); 2152 cExp = extractFloat32Exp(c); 2153 cSign = extractFloat32Sign(c); 2154 2155 infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) || 2156 (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0)); 2157 2158 /* It is implementation-defined whether the cases of (0,inf,qnan) 2159 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN 2160 * they return if they do), so we have to hand this information 2161 * off to the target-specific pick-a-NaN routine. 2162 */ 2163 if (((aExp == 0xff) && aSig) || 2164 ((bExp == 0xff) && bSig) || 2165 ((cExp == 0xff) && cSig)) { 2166 return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR); 2167 } 2168 2169 if (infzero) { 2170 float_raise(float_flag_invalid STATUS_VAR); 2171 return float32_default_nan; 2172 } 2173 2174 if (flags & float_muladd_negate_c) { 2175 cSign ^= 1; 2176 } 2177 2178 signflip = (flags & float_muladd_negate_result) ? 1 : 0; 2179 2180 /* Work out the sign and type of the product */ 2181 pSign = aSign ^ bSign; 2182 if (flags & float_muladd_negate_product) { 2183 pSign ^= 1; 2184 } 2185 pInf = (aExp == 0xff) || (bExp == 0xff); 2186 pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); 2187 2188 if (cExp == 0xff) { 2189 if (pInf && (pSign ^ cSign)) { 2190 /* addition of opposite-signed infinities => InvalidOperation */ 2191 float_raise(float_flag_invalid STATUS_VAR); 2192 return float32_default_nan; 2193 } 2194 /* Otherwise generate an infinity of the same sign */ 2195 return packFloat32(cSign ^ signflip, 0xff, 0); 2196 } 2197 2198 if (pInf) { 2199 return packFloat32(pSign ^ signflip, 0xff, 0); 2200 } 2201 2202 if (pZero) { 2203 if (cExp == 0) { 2204 if (cSig == 0) { 2205 /* Adding two exact zeroes */ 2206 if (pSign == cSign) { 2207 zSign = pSign; 2208 } else if (STATUS(float_rounding_mode) == float_round_down) { 2209 zSign = 1; 2210 } else { 2211 zSign = 0; 2212 } 2213 return packFloat32(zSign ^ signflip, 0, 0); 2214 } 2215 /* Exact zero plus a denorm */ 2216 if (STATUS(flush_to_zero)) { 2217 float_raise(float_flag_output_denormal STATUS_VAR); 2218 return packFloat32(cSign ^ signflip, 0, 0); 2219 } 2220 } 2221 /* Zero plus something non-zero : just return the something */ 2222 return make_float32(float32_val(c) ^ (signflip << 31)); 2223 } 2224 2225 if (aExp == 0) { 2226 normalizeFloat32Subnormal(aSig, &aExp, &aSig); 2227 } 2228 if (bExp == 0) { 2229 normalizeFloat32Subnormal(bSig, &bExp, &bSig); 2230 } 2231 2232 /* Calculate the actual result a * b + c */ 2233 2234 /* Multiply first; this is easy. */ 2235 /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f 2236 * because we want the true exponent, not the "one-less-than" 2237 * flavour that roundAndPackFloat32() takes. 2238 */ 2239 pExp = aExp + bExp - 0x7e; 2240 aSig = (aSig | 0x00800000) << 7; 2241 bSig = (bSig | 0x00800000) << 8; 2242 pSig64 = (uint64_t)aSig * bSig; 2243 if ((int64_t)(pSig64 << 1) >= 0) { 2244 pSig64 <<= 1; 2245 pExp--; 2246 } 2247 2248 zSign = pSign ^ signflip; 2249 2250 /* Now pSig64 is the significand of the multiply, with the explicit bit in 2251 * position 62. 2252 */ 2253 if (cExp == 0) { 2254 if (!cSig) { 2255 /* Throw out the special case of c being an exact zero now */ 2256 shift64RightJamming(pSig64, 32, &pSig64); 2257 pSig = pSig64; 2258 return roundAndPackFloat32(zSign, pExp - 1, 2259 pSig STATUS_VAR); 2260 } 2261 normalizeFloat32Subnormal(cSig, &cExp, &cSig); 2262 } 2263 2264 cSig64 = (uint64_t)cSig << (62 - 23); 2265 cSig64 |= LIT64(0x4000000000000000); 2266 expDiff = pExp - cExp; 2267 2268 if (pSign == cSign) { 2269 /* Addition */ 2270 if (expDiff > 0) { 2271 /* scale c to match p */ 2272 shift64RightJamming(cSig64, expDiff, &cSig64); 2273 zExp = pExp; 2274 } else if (expDiff < 0) { 2275 /* scale p to match c */ 2276 shift64RightJamming(pSig64, -expDiff, &pSig64); 2277 zExp = cExp; 2278 } else { 2279 /* no scaling needed */ 2280 zExp = cExp; 2281 } 2282 /* Add significands and make sure explicit bit ends up in posn 62 */ 2283 zSig64 = pSig64 + cSig64; 2284 if ((int64_t)zSig64 < 0) { 2285 shift64RightJamming(zSig64, 1, &zSig64); 2286 } else { 2287 zExp--; 2288 } 2289 } else { 2290 /* Subtraction */ 2291 if (expDiff > 0) { 2292 shift64RightJamming(cSig64, expDiff, &cSig64); 2293 zSig64 = pSig64 - cSig64; 2294 zExp = pExp; 2295 } else if (expDiff < 0) { 2296 shift64RightJamming(pSig64, -expDiff, &pSig64); 2297 zSig64 = cSig64 - pSig64; 2298 zExp = cExp; 2299 zSign ^= 1; 2300 } else { 2301 zExp = pExp; 2302 if (cSig64 < pSig64) { 2303 zSig64 = pSig64 - cSig64; 2304 } else if (pSig64 < cSig64) { 2305 zSig64 = cSig64 - pSig64; 2306 zSign ^= 1; 2307 } else { 2308 /* Exact zero */ 2309 zSign = signflip; 2310 if (STATUS(float_rounding_mode) == float_round_down) { 2311 zSign ^= 1; 2312 } 2313 return packFloat32(zSign, 0, 0); 2314 } 2315 } 2316 --zExp; 2317 /* Normalize to put the explicit bit back into bit 62. */ 2318 shiftcount = countLeadingZeros64(zSig64) - 1; 2319 zSig64 <<= shiftcount; 2320 zExp -= shiftcount; 2321 } 2322 shift64RightJamming(zSig64, 32, &zSig64); 2323 return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR); 2324 } 2325 2326 2327 /*---------------------------------------------------------------------------- 2328 | Returns the square root of the single-precision floating-point value `a'. 2329 | The operation is performed according to the IEC/IEEE Standard for Binary 2330 | Floating-Point Arithmetic. 2331 *----------------------------------------------------------------------------*/ 2332 2333 float32 float32_sqrt( float32 a STATUS_PARAM ) 2334 { 2335 flag aSign; 2336 int_fast16_t aExp, zExp; 2337 uint32_t aSig, zSig; 2338 uint64_t rem, term; 2339 a = float32_squash_input_denormal(a STATUS_VAR); 2340 2341 aSig = extractFloat32Frac( a ); 2342 aExp = extractFloat32Exp( a ); 2343 aSign = extractFloat32Sign( a ); 2344 if ( aExp == 0xFF ) { 2345 if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); 2346 if ( ! aSign ) return a; 2347 float_raise( float_flag_invalid STATUS_VAR); 2348 return float32_default_nan; 2349 } 2350 if ( aSign ) { 2351 if ( ( aExp | aSig ) == 0 ) return a; 2352 float_raise( float_flag_invalid STATUS_VAR); 2353 return float32_default_nan; 2354 } 2355 if ( aExp == 0 ) { 2356 if ( aSig == 0 ) return float32_zero; 2357 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2358 } 2359 zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; 2360 aSig = ( aSig | 0x00800000 )<<8; 2361 zSig = estimateSqrt32( aExp, aSig ) + 2; 2362 if ( ( zSig & 0x7F ) <= 5 ) { 2363 if ( zSig < 2 ) { 2364 zSig = 0x7FFFFFFF; 2365 goto roundAndPack; 2366 } 2367 aSig >>= aExp & 1; 2368 term = ( (uint64_t) zSig ) * zSig; 2369 rem = ( ( (uint64_t) aSig )<<32 ) - term; 2370 while ( (int64_t) rem < 0 ) { 2371 --zSig; 2372 rem += ( ( (uint64_t) zSig )<<1 ) | 1; 2373 } 2374 zSig |= ( rem != 0 ); 2375 } 2376 shift32RightJamming( zSig, 1, &zSig ); 2377 roundAndPack: 2378 return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR ); 2379 2380 } 2381 2382 /*---------------------------------------------------------------------------- 2383 | Returns the binary exponential of the single-precision floating-point value 2384 | `a'. The operation is performed according to the IEC/IEEE Standard for 2385 | Binary Floating-Point Arithmetic. 2386 | 2387 | Uses the following identities: 2388 | 2389 | 1. ------------------------------------------------------------------------- 2390 | x x*ln(2) 2391 | 2 = e 2392 | 2393 | 2. ------------------------------------------------------------------------- 2394 | 2 3 4 5 n 2395 | x x x x x x x 2396 | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... 2397 | 1! 2! 3! 4! 5! n! 2398 *----------------------------------------------------------------------------*/ 2399 2400 static const float64 float32_exp2_coefficients[15] = 2401 { 2402 const_float64( 0x3ff0000000000000ll ), /* 1 */ 2403 const_float64( 0x3fe0000000000000ll ), /* 2 */ 2404 const_float64( 0x3fc5555555555555ll ), /* 3 */ 2405 const_float64( 0x3fa5555555555555ll ), /* 4 */ 2406 const_float64( 0x3f81111111111111ll ), /* 5 */ 2407 const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ 2408 const_float64( 0x3f2a01a01a01a01all ), /* 7 */ 2409 const_float64( 0x3efa01a01a01a01all ), /* 8 */ 2410 const_float64( 0x3ec71de3a556c734ll ), /* 9 */ 2411 const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ 2412 const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ 2413 const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ 2414 const_float64( 0x3de6124613a86d09ll ), /* 13 */ 2415 const_float64( 0x3da93974a8c07c9dll ), /* 14 */ 2416 const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ 2417 }; 2418 2419 float32 float32_exp2( float32 a STATUS_PARAM ) 2420 { 2421 flag aSign; 2422 int_fast16_t aExp; 2423 uint32_t aSig; 2424 float64 r, x, xn; 2425 int i; 2426 a = float32_squash_input_denormal(a STATUS_VAR); 2427 2428 aSig = extractFloat32Frac( a ); 2429 aExp = extractFloat32Exp( a ); 2430 aSign = extractFloat32Sign( a ); 2431 2432 if ( aExp == 0xFF) { 2433 if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); 2434 return (aSign) ? float32_zero : a; 2435 } 2436 if (aExp == 0) { 2437 if (aSig == 0) return float32_one; 2438 } 2439 2440 float_raise( float_flag_inexact STATUS_VAR); 2441 2442 /* ******************************* */ 2443 /* using float64 for approximation */ 2444 /* ******************************* */ 2445 x = float32_to_float64(a STATUS_VAR); 2446 x = float64_mul(x, float64_ln2 STATUS_VAR); 2447 2448 xn = x; 2449 r = float64_one; 2450 for (i = 0 ; i < 15 ; i++) { 2451 float64 f; 2452 2453 f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR); 2454 r = float64_add(r, f STATUS_VAR); 2455 2456 xn = float64_mul(xn, x STATUS_VAR); 2457 } 2458 2459 return float64_to_float32(r, status); 2460 } 2461 2462 /*---------------------------------------------------------------------------- 2463 | Returns the binary log of the single-precision floating-point value `a'. 2464 | The operation is performed according to the IEC/IEEE Standard for Binary 2465 | Floating-Point Arithmetic. 2466 *----------------------------------------------------------------------------*/ 2467 float32 float32_log2( float32 a STATUS_PARAM ) 2468 { 2469 flag aSign, zSign; 2470 int_fast16_t aExp; 2471 uint32_t aSig, zSig, i; 2472 2473 a = float32_squash_input_denormal(a STATUS_VAR); 2474 aSig = extractFloat32Frac( a ); 2475 aExp = extractFloat32Exp( a ); 2476 aSign = extractFloat32Sign( a ); 2477 2478 if ( aExp == 0 ) { 2479 if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); 2480 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 2481 } 2482 if ( aSign ) { 2483 float_raise( float_flag_invalid STATUS_VAR); 2484 return float32_default_nan; 2485 } 2486 if ( aExp == 0xFF ) { 2487 if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); 2488 return a; 2489 } 2490 2491 aExp -= 0x7F; 2492 aSig |= 0x00800000; 2493 zSign = aExp < 0; 2494 zSig = aExp << 23; 2495 2496 for (i = 1 << 22; i > 0; i >>= 1) { 2497 aSig = ( (uint64_t)aSig * aSig ) >> 23; 2498 if ( aSig & 0x01000000 ) { 2499 aSig >>= 1; 2500 zSig |= i; 2501 } 2502 } 2503 2504 if ( zSign ) 2505 zSig = -zSig; 2506 2507 return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR ); 2508 } 2509 2510 /*---------------------------------------------------------------------------- 2511 | Returns 1 if the single-precision floating-point value `a' is equal to 2512 | the corresponding value `b', and 0 otherwise. The invalid exception is 2513 | raised if either operand is a NaN. Otherwise, the comparison is performed 2514 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2515 *----------------------------------------------------------------------------*/ 2516 2517 int float32_eq( float32 a, float32 b STATUS_PARAM ) 2518 { 2519 uint32_t av, bv; 2520 a = float32_squash_input_denormal(a STATUS_VAR); 2521 b = float32_squash_input_denormal(b STATUS_VAR); 2522 2523 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2524 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2525 ) { 2526 float_raise( float_flag_invalid STATUS_VAR); 2527 return 0; 2528 } 2529 av = float32_val(a); 2530 bv = float32_val(b); 2531 return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 2532 } 2533 2534 /*---------------------------------------------------------------------------- 2535 | Returns 1 if the single-precision floating-point value `a' is less than 2536 | or equal to the corresponding value `b', and 0 otherwise. The invalid 2537 | exception is raised if either operand is a NaN. The comparison is performed 2538 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2539 *----------------------------------------------------------------------------*/ 2540 2541 int float32_le( float32 a, float32 b STATUS_PARAM ) 2542 { 2543 flag aSign, bSign; 2544 uint32_t av, bv; 2545 a = float32_squash_input_denormal(a STATUS_VAR); 2546 b = float32_squash_input_denormal(b STATUS_VAR); 2547 2548 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2549 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2550 ) { 2551 float_raise( float_flag_invalid STATUS_VAR); 2552 return 0; 2553 } 2554 aSign = extractFloat32Sign( a ); 2555 bSign = extractFloat32Sign( b ); 2556 av = float32_val(a); 2557 bv = float32_val(b); 2558 if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 2559 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 2560 2561 } 2562 2563 /*---------------------------------------------------------------------------- 2564 | Returns 1 if the single-precision floating-point value `a' is less than 2565 | the corresponding value `b', and 0 otherwise. The invalid exception is 2566 | raised if either operand is a NaN. The comparison is performed according 2567 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2568 *----------------------------------------------------------------------------*/ 2569 2570 int float32_lt( float32 a, float32 b STATUS_PARAM ) 2571 { 2572 flag aSign, bSign; 2573 uint32_t av, bv; 2574 a = float32_squash_input_denormal(a STATUS_VAR); 2575 b = float32_squash_input_denormal(b STATUS_VAR); 2576 2577 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2578 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2579 ) { 2580 float_raise( float_flag_invalid STATUS_VAR); 2581 return 0; 2582 } 2583 aSign = extractFloat32Sign( a ); 2584 bSign = extractFloat32Sign( b ); 2585 av = float32_val(a); 2586 bv = float32_val(b); 2587 if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); 2588 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 2589 2590 } 2591 2592 /*---------------------------------------------------------------------------- 2593 | Returns 1 if the single-precision floating-point values `a' and `b' cannot 2594 | be compared, and 0 otherwise. The invalid exception is raised if either 2595 | operand is a NaN. The comparison is performed according to the IEC/IEEE 2596 | Standard for Binary Floating-Point Arithmetic. 2597 *----------------------------------------------------------------------------*/ 2598 2599 int float32_unordered( float32 a, float32 b STATUS_PARAM ) 2600 { 2601 a = float32_squash_input_denormal(a STATUS_VAR); 2602 b = float32_squash_input_denormal(b STATUS_VAR); 2603 2604 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2605 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2606 ) { 2607 float_raise( float_flag_invalid STATUS_VAR); 2608 return 1; 2609 } 2610 return 0; 2611 } 2612 2613 /*---------------------------------------------------------------------------- 2614 | Returns 1 if the single-precision floating-point value `a' is equal to 2615 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 2616 | exception. The comparison is performed according to the IEC/IEEE Standard 2617 | for Binary Floating-Point Arithmetic. 2618 *----------------------------------------------------------------------------*/ 2619 2620 int float32_eq_quiet( float32 a, float32 b STATUS_PARAM ) 2621 { 2622 a = float32_squash_input_denormal(a STATUS_VAR); 2623 b = float32_squash_input_denormal(b STATUS_VAR); 2624 2625 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2626 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2627 ) { 2628 if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { 2629 float_raise( float_flag_invalid STATUS_VAR); 2630 } 2631 return 0; 2632 } 2633 return ( float32_val(a) == float32_val(b) ) || 2634 ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); 2635 } 2636 2637 /*---------------------------------------------------------------------------- 2638 | Returns 1 if the single-precision floating-point value `a' is less than or 2639 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 2640 | cause an exception. Otherwise, the comparison is performed according to the 2641 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2642 *----------------------------------------------------------------------------*/ 2643 2644 int float32_le_quiet( float32 a, float32 b STATUS_PARAM ) 2645 { 2646 flag aSign, bSign; 2647 uint32_t av, bv; 2648 a = float32_squash_input_denormal(a STATUS_VAR); 2649 b = float32_squash_input_denormal(b STATUS_VAR); 2650 2651 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2652 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2653 ) { 2654 if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { 2655 float_raise( float_flag_invalid STATUS_VAR); 2656 } 2657 return 0; 2658 } 2659 aSign = extractFloat32Sign( a ); 2660 bSign = extractFloat32Sign( b ); 2661 av = float32_val(a); 2662 bv = float32_val(b); 2663 if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 2664 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 2665 2666 } 2667 2668 /*---------------------------------------------------------------------------- 2669 | Returns 1 if the single-precision floating-point value `a' is less than 2670 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 2671 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 2672 | Standard for Binary Floating-Point Arithmetic. 2673 *----------------------------------------------------------------------------*/ 2674 2675 int float32_lt_quiet( float32 a, float32 b STATUS_PARAM ) 2676 { 2677 flag aSign, bSign; 2678 uint32_t av, bv; 2679 a = float32_squash_input_denormal(a STATUS_VAR); 2680 b = float32_squash_input_denormal(b STATUS_VAR); 2681 2682 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2683 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2684 ) { 2685 if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { 2686 float_raise( float_flag_invalid STATUS_VAR); 2687 } 2688 return 0; 2689 } 2690 aSign = extractFloat32Sign( a ); 2691 bSign = extractFloat32Sign( b ); 2692 av = float32_val(a); 2693 bv = float32_val(b); 2694 if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); 2695 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 2696 2697 } 2698 2699 /*---------------------------------------------------------------------------- 2700 | Returns 1 if the single-precision floating-point values `a' and `b' cannot 2701 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 2702 | comparison is performed according to the IEC/IEEE Standard for Binary 2703 | Floating-Point Arithmetic. 2704 *----------------------------------------------------------------------------*/ 2705 2706 int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM ) 2707 { 2708 a = float32_squash_input_denormal(a STATUS_VAR); 2709 b = float32_squash_input_denormal(b STATUS_VAR); 2710 2711 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 2712 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 2713 ) { 2714 if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { 2715 float_raise( float_flag_invalid STATUS_VAR); 2716 } 2717 return 1; 2718 } 2719 return 0; 2720 } 2721 2722 /*---------------------------------------------------------------------------- 2723 | Returns the result of converting the double-precision floating-point value 2724 | `a' to the 32-bit two's complement integer format. The conversion is 2725 | performed according to the IEC/IEEE Standard for Binary Floating-Point 2726 | Arithmetic---which means in particular that the conversion is rounded 2727 | according to the current rounding mode. If `a' is a NaN, the largest 2728 | positive integer is returned. Otherwise, if the conversion overflows, the 2729 | largest integer with the same sign as `a' is returned. 2730 *----------------------------------------------------------------------------*/ 2731 2732 int32 float64_to_int32( float64 a STATUS_PARAM ) 2733 { 2734 flag aSign; 2735 int_fast16_t aExp, shiftCount; 2736 uint64_t aSig; 2737 a = float64_squash_input_denormal(a STATUS_VAR); 2738 2739 aSig = extractFloat64Frac( a ); 2740 aExp = extractFloat64Exp( a ); 2741 aSign = extractFloat64Sign( a ); 2742 if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; 2743 if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); 2744 shiftCount = 0x42C - aExp; 2745 if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); 2746 return roundAndPackInt32( aSign, aSig STATUS_VAR ); 2747 2748 } 2749 2750 /*---------------------------------------------------------------------------- 2751 | Returns the result of converting the double-precision floating-point value 2752 | `a' to the 32-bit two's complement integer format. The conversion is 2753 | performed according to the IEC/IEEE Standard for Binary Floating-Point 2754 | Arithmetic, except that the conversion is always rounded toward zero. 2755 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 2756 | the conversion overflows, the largest integer with the same sign as `a' is 2757 | returned. 2758 *----------------------------------------------------------------------------*/ 2759 2760 int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM ) 2761 { 2762 flag aSign; 2763 int_fast16_t aExp, shiftCount; 2764 uint64_t aSig, savedASig; 2765 int32_t z; 2766 a = float64_squash_input_denormal(a STATUS_VAR); 2767 2768 aSig = extractFloat64Frac( a ); 2769 aExp = extractFloat64Exp( a ); 2770 aSign = extractFloat64Sign( a ); 2771 if ( 0x41E < aExp ) { 2772 if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; 2773 goto invalid; 2774 } 2775 else if ( aExp < 0x3FF ) { 2776 if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; 2777 return 0; 2778 } 2779 aSig |= LIT64( 0x0010000000000000 ); 2780 shiftCount = 0x433 - aExp; 2781 savedASig = aSig; 2782 aSig >>= shiftCount; 2783 z = aSig; 2784 if ( aSign ) z = - z; 2785 if ( ( z < 0 ) ^ aSign ) { 2786 invalid: 2787 float_raise( float_flag_invalid STATUS_VAR); 2788 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 2789 } 2790 if ( ( aSig<<shiftCount ) != savedASig ) { 2791 STATUS(float_exception_flags) |= float_flag_inexact; 2792 } 2793 return z; 2794 2795 } 2796 2797 /*---------------------------------------------------------------------------- 2798 | Returns the result of converting the double-precision floating-point value 2799 | `a' to the 16-bit two's complement integer format. The conversion is 2800 | performed according to the IEC/IEEE Standard for Binary Floating-Point 2801 | Arithmetic, except that the conversion is always rounded toward zero. 2802 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 2803 | the conversion overflows, the largest integer with the same sign as `a' is 2804 | returned. 2805 *----------------------------------------------------------------------------*/ 2806 2807 int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM) 2808 { 2809 flag aSign; 2810 int_fast16_t aExp, shiftCount; 2811 uint64_t aSig, savedASig; 2812 int32 z; 2813 2814 aSig = extractFloat64Frac( a ); 2815 aExp = extractFloat64Exp( a ); 2816 aSign = extractFloat64Sign( a ); 2817 if ( 0x40E < aExp ) { 2818 if ( ( aExp == 0x7FF ) && aSig ) { 2819 aSign = 0; 2820 } 2821 goto invalid; 2822 } 2823 else if ( aExp < 0x3FF ) { 2824 if ( aExp || aSig ) { 2825 STATUS(float_exception_flags) |= float_flag_inexact; 2826 } 2827 return 0; 2828 } 2829 aSig |= LIT64( 0x0010000000000000 ); 2830 shiftCount = 0x433 - aExp; 2831 savedASig = aSig; 2832 aSig >>= shiftCount; 2833 z = aSig; 2834 if ( aSign ) { 2835 z = - z; 2836 } 2837 if ( ( (int16_t)z < 0 ) ^ aSign ) { 2838 invalid: 2839 float_raise( float_flag_invalid STATUS_VAR); 2840 return aSign ? (int32_t) 0xffff8000 : 0x7FFF; 2841 } 2842 if ( ( aSig<<shiftCount ) != savedASig ) { 2843 STATUS(float_exception_flags) |= float_flag_inexact; 2844 } 2845 return z; 2846 } 2847 2848 /*---------------------------------------------------------------------------- 2849 | Returns the result of converting the double-precision floating-point value 2850 | `a' to the 64-bit two's complement integer format. The conversion is 2851 | performed according to the IEC/IEEE Standard for Binary Floating-Point 2852 | Arithmetic---which means in particular that the conversion is rounded 2853 | according to the current rounding mode. If `a' is a NaN, the largest 2854 | positive integer is returned. Otherwise, if the conversion overflows, the 2855 | largest integer with the same sign as `a' is returned. 2856 *----------------------------------------------------------------------------*/ 2857 2858 int64 float64_to_int64( float64 a STATUS_PARAM ) 2859 { 2860 flag aSign; 2861 int_fast16_t aExp, shiftCount; 2862 uint64_t aSig, aSigExtra; 2863 a = float64_squash_input_denormal(a STATUS_VAR); 2864 2865 aSig = extractFloat64Frac( a ); 2866 aExp = extractFloat64Exp( a ); 2867 aSign = extractFloat64Sign( a ); 2868 if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); 2869 shiftCount = 0x433 - aExp; 2870 if ( shiftCount <= 0 ) { 2871 if ( 0x43E < aExp ) { 2872 float_raise( float_flag_invalid STATUS_VAR); 2873 if ( ! aSign 2874 || ( ( aExp == 0x7FF ) 2875 && ( aSig != LIT64( 0x0010000000000000 ) ) ) 2876 ) { 2877 return LIT64( 0x7FFFFFFFFFFFFFFF ); 2878 } 2879 return (int64_t) LIT64( 0x8000000000000000 ); 2880 } 2881 aSigExtra = 0; 2882 aSig <<= - shiftCount; 2883 } 2884 else { 2885 shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); 2886 } 2887 return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); 2888 2889 } 2890 2891 /*---------------------------------------------------------------------------- 2892 | Returns the result of converting the double-precision floating-point value 2893 | `a' to the 64-bit two's complement integer format. The conversion is 2894 | performed according to the IEC/IEEE Standard for Binary Floating-Point 2895 | Arithmetic, except that the conversion is always rounded toward zero. 2896 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 2897 | the conversion overflows, the largest integer with the same sign as `a' is 2898 | returned. 2899 *----------------------------------------------------------------------------*/ 2900 2901 int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM ) 2902 { 2903 flag aSign; 2904 int_fast16_t aExp, shiftCount; 2905 uint64_t aSig; 2906 int64 z; 2907 a = float64_squash_input_denormal(a STATUS_VAR); 2908 2909 aSig = extractFloat64Frac( a ); 2910 aExp = extractFloat64Exp( a ); 2911 aSign = extractFloat64Sign( a ); 2912 if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); 2913 shiftCount = aExp - 0x433; 2914 if ( 0 <= shiftCount ) { 2915 if ( 0x43E <= aExp ) { 2916 if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { 2917 float_raise( float_flag_invalid STATUS_VAR); 2918 if ( ! aSign 2919 || ( ( aExp == 0x7FF ) 2920 && ( aSig != LIT64( 0x0010000000000000 ) ) ) 2921 ) { 2922 return LIT64( 0x7FFFFFFFFFFFFFFF ); 2923 } 2924 } 2925 return (int64_t) LIT64( 0x8000000000000000 ); 2926 } 2927 z = aSig<<shiftCount; 2928 } 2929 else { 2930 if ( aExp < 0x3FE ) { 2931 if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; 2932 return 0; 2933 } 2934 z = aSig>>( - shiftCount ); 2935 if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { 2936 STATUS(float_exception_flags) |= float_flag_inexact; 2937 } 2938 } 2939 if ( aSign ) z = - z; 2940 return z; 2941 2942 } 2943 2944 /*---------------------------------------------------------------------------- 2945 | Returns the result of converting the double-precision floating-point value 2946 | `a' to the single-precision floating-point format. The conversion is 2947 | performed according to the IEC/IEEE Standard for Binary Floating-Point 2948 | Arithmetic. 2949 *----------------------------------------------------------------------------*/ 2950 2951 float32 float64_to_float32( float64 a STATUS_PARAM ) 2952 { 2953 flag aSign; 2954 int_fast16_t aExp; 2955 uint64_t aSig; 2956 uint32_t zSig; 2957 a = float64_squash_input_denormal(a STATUS_VAR); 2958 2959 aSig = extractFloat64Frac( a ); 2960 aExp = extractFloat64Exp( a ); 2961 aSign = extractFloat64Sign( a ); 2962 if ( aExp == 0x7FF ) { 2963 if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 2964 return packFloat32( aSign, 0xFF, 0 ); 2965 } 2966 shift64RightJamming( aSig, 22, &aSig ); 2967 zSig = aSig; 2968 if ( aExp || zSig ) { 2969 zSig |= 0x40000000; 2970 aExp -= 0x381; 2971 } 2972 return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); 2973 2974 } 2975 2976 2977 /*---------------------------------------------------------------------------- 2978 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a 2979 | half-precision floating-point value, returning the result. After being 2980 | shifted into the proper positions, the three fields are simply added 2981 | together to form the result. This means that any integer portion of `zSig' 2982 | will be added into the exponent. Since a properly normalized significand 2983 | will have an integer portion equal to 1, the `zExp' input should be 1 less 2984 | than the desired result exponent whenever `zSig' is a complete, normalized 2985 | significand. 2986 *----------------------------------------------------------------------------*/ 2987 static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig) 2988 { 2989 return make_float16( 2990 (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig); 2991 } 2992 2993 /* Half precision floats come in two formats: standard IEEE and "ARM" format. 2994 The latter gains extra exponent range by omitting the NaN/Inf encodings. */ 2995 2996 float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM) 2997 { 2998 flag aSign; 2999 int_fast16_t aExp; 3000 uint32_t aSig; 3001 3002 aSign = extractFloat16Sign(a); 3003 aExp = extractFloat16Exp(a); 3004 aSig = extractFloat16Frac(a); 3005 3006 if (aExp == 0x1f && ieee) { 3007 if (aSig) { 3008 return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR); 3009 } 3010 return packFloat32(aSign, 0xff, aSig << 13); 3011 } 3012 if (aExp == 0) { 3013 int8 shiftCount; 3014 3015 if (aSig == 0) { 3016 return packFloat32(aSign, 0, 0); 3017 } 3018 3019 shiftCount = countLeadingZeros32( aSig ) - 21; 3020 aSig = aSig << shiftCount; 3021 aExp = -shiftCount; 3022 } 3023 return packFloat32( aSign, aExp + 0x70, aSig << 13); 3024 } 3025 3026 float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM) 3027 { 3028 flag aSign; 3029 int_fast16_t aExp; 3030 uint32_t aSig; 3031 uint32_t mask; 3032 uint32_t increment; 3033 int8 roundingMode; 3034 a = float32_squash_input_denormal(a STATUS_VAR); 3035 3036 aSig = extractFloat32Frac( a ); 3037 aExp = extractFloat32Exp( a ); 3038 aSign = extractFloat32Sign( a ); 3039 if ( aExp == 0xFF ) { 3040 if (aSig) { 3041 /* Input is a NaN */ 3042 float16 r = commonNaNToFloat16( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 3043 if (!ieee) { 3044 return packFloat16(aSign, 0, 0); 3045 } 3046 return r; 3047 } 3048 /* Infinity */ 3049 if (!ieee) { 3050 float_raise(float_flag_invalid STATUS_VAR); 3051 return packFloat16(aSign, 0x1f, 0x3ff); 3052 } 3053 return packFloat16(aSign, 0x1f, 0); 3054 } 3055 if (aExp == 0 && aSig == 0) { 3056 return packFloat16(aSign, 0, 0); 3057 } 3058 /* Decimal point between bits 22 and 23. */ 3059 aSig |= 0x00800000; 3060 aExp -= 0x7f; 3061 if (aExp < -14) { 3062 mask = 0x00ffffff; 3063 if (aExp >= -24) { 3064 mask >>= 25 + aExp; 3065 } 3066 } else { 3067 mask = 0x00001fff; 3068 } 3069 if (aSig & mask) { 3070 float_raise( float_flag_underflow STATUS_VAR ); 3071 roundingMode = STATUS(float_rounding_mode); 3072 switch (roundingMode) { 3073 case float_round_nearest_even: 3074 increment = (mask + 1) >> 1; 3075 if ((aSig & mask) == increment) { 3076 increment = aSig & (increment << 1); 3077 } 3078 break; 3079 case float_round_up: 3080 increment = aSign ? 0 : mask; 3081 break; 3082 case float_round_down: 3083 increment = aSign ? mask : 0; 3084 break; 3085 default: /* round_to_zero */ 3086 increment = 0; 3087 break; 3088 } 3089 aSig += increment; 3090 if (aSig >= 0x01000000) { 3091 aSig >>= 1; 3092 aExp++; 3093 } 3094 } else if (aExp < -14 3095 && STATUS(float_detect_tininess) == float_tininess_before_rounding) { 3096 float_raise( float_flag_underflow STATUS_VAR); 3097 } 3098 3099 if (ieee) { 3100 if (aExp > 15) { 3101 float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); 3102 return packFloat16(aSign, 0x1f, 0); 3103 } 3104 } else { 3105 if (aExp > 16) { 3106 float_raise(float_flag_invalid | float_flag_inexact STATUS_VAR); 3107 return packFloat16(aSign, 0x1f, 0x3ff); 3108 } 3109 } 3110 if (aExp < -24) { 3111 return packFloat16(aSign, 0, 0); 3112 } 3113 if (aExp < -14) { 3114 aSig >>= -14 - aExp; 3115 aExp = -14; 3116 } 3117 return packFloat16(aSign, aExp + 14, aSig >> 13); 3118 } 3119 3120 /*---------------------------------------------------------------------------- 3121 | Returns the result of converting the double-precision floating-point value 3122 | `a' to the extended double-precision floating-point format. The conversion 3123 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 3124 | Arithmetic. 3125 *----------------------------------------------------------------------------*/ 3126 3127 floatx80 float64_to_floatx80( float64 a STATUS_PARAM ) 3128 { 3129 flag aSign; 3130 int_fast16_t aExp; 3131 uint64_t aSig; 3132 3133 a = float64_squash_input_denormal(a STATUS_VAR); 3134 aSig = extractFloat64Frac( a ); 3135 aExp = extractFloat64Exp( a ); 3136 aSign = extractFloat64Sign( a ); 3137 if ( aExp == 0x7FF ) { 3138 if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 3139 return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 3140 } 3141 if ( aExp == 0 ) { 3142 if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); 3143 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3144 } 3145 return 3146 packFloatx80( 3147 aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); 3148 3149 } 3150 3151 /*---------------------------------------------------------------------------- 3152 | Returns the result of converting the double-precision floating-point value 3153 | `a' to the quadruple-precision floating-point format. The conversion is 3154 | performed according to the IEC/IEEE Standard for Binary Floating-Point 3155 | Arithmetic. 3156 *----------------------------------------------------------------------------*/ 3157 3158 float128 float64_to_float128( float64 a STATUS_PARAM ) 3159 { 3160 flag aSign; 3161 int_fast16_t aExp; 3162 uint64_t aSig, zSig0, zSig1; 3163 3164 a = float64_squash_input_denormal(a STATUS_VAR); 3165 aSig = extractFloat64Frac( a ); 3166 aExp = extractFloat64Exp( a ); 3167 aSign = extractFloat64Sign( a ); 3168 if ( aExp == 0x7FF ) { 3169 if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 3170 return packFloat128( aSign, 0x7FFF, 0, 0 ); 3171 } 3172 if ( aExp == 0 ) { 3173 if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); 3174 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3175 --aExp; 3176 } 3177 shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); 3178 return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); 3179 3180 } 3181 3182 /*---------------------------------------------------------------------------- 3183 | Rounds the double-precision floating-point value `a' to an integer, and 3184 | returns the result as a double-precision floating-point value. The 3185 | operation is performed according to the IEC/IEEE Standard for Binary 3186 | Floating-Point Arithmetic. 3187 *----------------------------------------------------------------------------*/ 3188 3189 float64 float64_round_to_int( float64 a STATUS_PARAM ) 3190 { 3191 flag aSign; 3192 int_fast16_t aExp; 3193 uint64_t lastBitMask, roundBitsMask; 3194 int8 roundingMode; 3195 uint64_t z; 3196 a = float64_squash_input_denormal(a STATUS_VAR); 3197 3198 aExp = extractFloat64Exp( a ); 3199 if ( 0x433 <= aExp ) { 3200 if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { 3201 return propagateFloat64NaN( a, a STATUS_VAR ); 3202 } 3203 return a; 3204 } 3205 if ( aExp < 0x3FF ) { 3206 if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a; 3207 STATUS(float_exception_flags) |= float_flag_inexact; 3208 aSign = extractFloat64Sign( a ); 3209 switch ( STATUS(float_rounding_mode) ) { 3210 case float_round_nearest_even: 3211 if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { 3212 return packFloat64( aSign, 0x3FF, 0 ); 3213 } 3214 break; 3215 case float_round_down: 3216 return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); 3217 case float_round_up: 3218 return make_float64( 3219 aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); 3220 } 3221 return packFloat64( aSign, 0, 0 ); 3222 } 3223 lastBitMask = 1; 3224 lastBitMask <<= 0x433 - aExp; 3225 roundBitsMask = lastBitMask - 1; 3226 z = float64_val(a); 3227 roundingMode = STATUS(float_rounding_mode); 3228 if ( roundingMode == float_round_nearest_even ) { 3229 z += lastBitMask>>1; 3230 if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; 3231 } 3232 else if ( roundingMode != float_round_to_zero ) { 3233 if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) { 3234 z += roundBitsMask; 3235 } 3236 } 3237 z &= ~ roundBitsMask; 3238 if ( z != float64_val(a) ) 3239 STATUS(float_exception_flags) |= float_flag_inexact; 3240 return make_float64(z); 3241 3242 } 3243 3244 float64 float64_trunc_to_int( float64 a STATUS_PARAM) 3245 { 3246 int oldmode; 3247 float64 res; 3248 oldmode = STATUS(float_rounding_mode); 3249 STATUS(float_rounding_mode) = float_round_to_zero; 3250 res = float64_round_to_int(a STATUS_VAR); 3251 STATUS(float_rounding_mode) = oldmode; 3252 return res; 3253 } 3254 3255 /*---------------------------------------------------------------------------- 3256 | Returns the result of adding the absolute values of the double-precision 3257 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated 3258 | before being returned. `zSign' is ignored if the result is a NaN. 3259 | The addition is performed according to the IEC/IEEE Standard for Binary 3260 | Floating-Point Arithmetic. 3261 *----------------------------------------------------------------------------*/ 3262 3263 static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) 3264 { 3265 int_fast16_t aExp, bExp, zExp; 3266 uint64_t aSig, bSig, zSig; 3267 int_fast16_t expDiff; 3268 3269 aSig = extractFloat64Frac( a ); 3270 aExp = extractFloat64Exp( a ); 3271 bSig = extractFloat64Frac( b ); 3272 bExp = extractFloat64Exp( b ); 3273 expDiff = aExp - bExp; 3274 aSig <<= 9; 3275 bSig <<= 9; 3276 if ( 0 < expDiff ) { 3277 if ( aExp == 0x7FF ) { 3278 if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3279 return a; 3280 } 3281 if ( bExp == 0 ) { 3282 --expDiff; 3283 } 3284 else { 3285 bSig |= LIT64( 0x2000000000000000 ); 3286 } 3287 shift64RightJamming( bSig, expDiff, &bSig ); 3288 zExp = aExp; 3289 } 3290 else if ( expDiff < 0 ) { 3291 if ( bExp == 0x7FF ) { 3292 if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3293 return packFloat64( zSign, 0x7FF, 0 ); 3294 } 3295 if ( aExp == 0 ) { 3296 ++expDiff; 3297 } 3298 else { 3299 aSig |= LIT64( 0x2000000000000000 ); 3300 } 3301 shift64RightJamming( aSig, - expDiff, &aSig ); 3302 zExp = bExp; 3303 } 3304 else { 3305 if ( aExp == 0x7FF ) { 3306 if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3307 return a; 3308 } 3309 if ( aExp == 0 ) { 3310 if (STATUS(flush_to_zero)) { 3311 if (aSig | bSig) { 3312 float_raise(float_flag_output_denormal STATUS_VAR); 3313 } 3314 return packFloat64(zSign, 0, 0); 3315 } 3316 return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); 3317 } 3318 zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; 3319 zExp = aExp; 3320 goto roundAndPack; 3321 } 3322 aSig |= LIT64( 0x2000000000000000 ); 3323 zSig = ( aSig + bSig )<<1; 3324 --zExp; 3325 if ( (int64_t) zSig < 0 ) { 3326 zSig = aSig + bSig; 3327 ++zExp; 3328 } 3329 roundAndPack: 3330 return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); 3331 3332 } 3333 3334 /*---------------------------------------------------------------------------- 3335 | Returns the result of subtracting the absolute values of the double- 3336 | precision floating-point values `a' and `b'. If `zSign' is 1, the 3337 | difference is negated before being returned. `zSign' is ignored if the 3338 | result is a NaN. The subtraction is performed according to the IEC/IEEE 3339 | Standard for Binary Floating-Point Arithmetic. 3340 *----------------------------------------------------------------------------*/ 3341 3342 static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) 3343 { 3344 int_fast16_t aExp, bExp, zExp; 3345 uint64_t aSig, bSig, zSig; 3346 int_fast16_t expDiff; 3347 3348 aSig = extractFloat64Frac( a ); 3349 aExp = extractFloat64Exp( a ); 3350 bSig = extractFloat64Frac( b ); 3351 bExp = extractFloat64Exp( b ); 3352 expDiff = aExp - bExp; 3353 aSig <<= 10; 3354 bSig <<= 10; 3355 if ( 0 < expDiff ) goto aExpBigger; 3356 if ( expDiff < 0 ) goto bExpBigger; 3357 if ( aExp == 0x7FF ) { 3358 if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3359 float_raise( float_flag_invalid STATUS_VAR); 3360 return float64_default_nan; 3361 } 3362 if ( aExp == 0 ) { 3363 aExp = 1; 3364 bExp = 1; 3365 } 3366 if ( bSig < aSig ) goto aBigger; 3367 if ( aSig < bSig ) goto bBigger; 3368 return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); 3369 bExpBigger: 3370 if ( bExp == 0x7FF ) { 3371 if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3372 return packFloat64( zSign ^ 1, 0x7FF, 0 ); 3373 } 3374 if ( aExp == 0 ) { 3375 ++expDiff; 3376 } 3377 else { 3378 aSig |= LIT64( 0x4000000000000000 ); 3379 } 3380 shift64RightJamming( aSig, - expDiff, &aSig ); 3381 bSig |= LIT64( 0x4000000000000000 ); 3382 bBigger: 3383 zSig = bSig - aSig; 3384 zExp = bExp; 3385 zSign ^= 1; 3386 goto normalizeRoundAndPack; 3387 aExpBigger: 3388 if ( aExp == 0x7FF ) { 3389 if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3390 return a; 3391 } 3392 if ( bExp == 0 ) { 3393 --expDiff; 3394 } 3395 else { 3396 bSig |= LIT64( 0x4000000000000000 ); 3397 } 3398 shift64RightJamming( bSig, expDiff, &bSig ); 3399 aSig |= LIT64( 0x4000000000000000 ); 3400 aBigger: 3401 zSig = aSig - bSig; 3402 zExp = aExp; 3403 normalizeRoundAndPack: 3404 --zExp; 3405 return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); 3406 3407 } 3408 3409 /*---------------------------------------------------------------------------- 3410 | Returns the result of adding the double-precision floating-point values `a' 3411 | and `b'. The operation is performed according to the IEC/IEEE Standard for 3412 | Binary Floating-Point Arithmetic. 3413 *----------------------------------------------------------------------------*/ 3414 3415 float64 float64_add( float64 a, float64 b STATUS_PARAM ) 3416 { 3417 flag aSign, bSign; 3418 a = float64_squash_input_denormal(a STATUS_VAR); 3419 b = float64_squash_input_denormal(b STATUS_VAR); 3420 3421 aSign = extractFloat64Sign( a ); 3422 bSign = extractFloat64Sign( b ); 3423 if ( aSign == bSign ) { 3424 return addFloat64Sigs( a, b, aSign STATUS_VAR ); 3425 } 3426 else { 3427 return subFloat64Sigs( a, b, aSign STATUS_VAR ); 3428 } 3429 3430 } 3431 3432 /*---------------------------------------------------------------------------- 3433 | Returns the result of subtracting the double-precision floating-point values 3434 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 3435 | for Binary Floating-Point Arithmetic. 3436 *----------------------------------------------------------------------------*/ 3437 3438 float64 float64_sub( float64 a, float64 b STATUS_PARAM ) 3439 { 3440 flag aSign, bSign; 3441 a = float64_squash_input_denormal(a STATUS_VAR); 3442 b = float64_squash_input_denormal(b STATUS_VAR); 3443 3444 aSign = extractFloat64Sign( a ); 3445 bSign = extractFloat64Sign( b ); 3446 if ( aSign == bSign ) { 3447 return subFloat64Sigs( a, b, aSign STATUS_VAR ); 3448 } 3449 else { 3450 return addFloat64Sigs( a, b, aSign STATUS_VAR ); 3451 } 3452 3453 } 3454 3455 /*---------------------------------------------------------------------------- 3456 | Returns the result of multiplying the double-precision floating-point values 3457 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 3458 | for Binary Floating-Point Arithmetic. 3459 *----------------------------------------------------------------------------*/ 3460 3461 float64 float64_mul( float64 a, float64 b STATUS_PARAM ) 3462 { 3463 flag aSign, bSign, zSign; 3464 int_fast16_t aExp, bExp, zExp; 3465 uint64_t aSig, bSig, zSig0, zSig1; 3466 3467 a = float64_squash_input_denormal(a STATUS_VAR); 3468 b = float64_squash_input_denormal(b STATUS_VAR); 3469 3470 aSig = extractFloat64Frac( a ); 3471 aExp = extractFloat64Exp( a ); 3472 aSign = extractFloat64Sign( a ); 3473 bSig = extractFloat64Frac( b ); 3474 bExp = extractFloat64Exp( b ); 3475 bSign = extractFloat64Sign( b ); 3476 zSign = aSign ^ bSign; 3477 if ( aExp == 0x7FF ) { 3478 if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { 3479 return propagateFloat64NaN( a, b STATUS_VAR ); 3480 } 3481 if ( ( bExp | bSig ) == 0 ) { 3482 float_raise( float_flag_invalid STATUS_VAR); 3483 return float64_default_nan; 3484 } 3485 return packFloat64( zSign, 0x7FF, 0 ); 3486 } 3487 if ( bExp == 0x7FF ) { 3488 if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3489 if ( ( aExp | aSig ) == 0 ) { 3490 float_raise( float_flag_invalid STATUS_VAR); 3491 return float64_default_nan; 3492 } 3493 return packFloat64( zSign, 0x7FF, 0 ); 3494 } 3495 if ( aExp == 0 ) { 3496 if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); 3497 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3498 } 3499 if ( bExp == 0 ) { 3500 if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); 3501 normalizeFloat64Subnormal( bSig, &bExp, &bSig ); 3502 } 3503 zExp = aExp + bExp - 0x3FF; 3504 aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; 3505 bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; 3506 mul64To128( aSig, bSig, &zSig0, &zSig1 ); 3507 zSig0 |= ( zSig1 != 0 ); 3508 if ( 0 <= (int64_t) ( zSig0<<1 ) ) { 3509 zSig0 <<= 1; 3510 --zExp; 3511 } 3512 return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR ); 3513 3514 } 3515 3516 /*---------------------------------------------------------------------------- 3517 | Returns the result of dividing the double-precision floating-point value `a' 3518 | by the corresponding value `b'. The operation is performed according to 3519 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 3520 *----------------------------------------------------------------------------*/ 3521 3522 float64 float64_div( float64 a, float64 b STATUS_PARAM ) 3523 { 3524 flag aSign, bSign, zSign; 3525 int_fast16_t aExp, bExp, zExp; 3526 uint64_t aSig, bSig, zSig; 3527 uint64_t rem0, rem1; 3528 uint64_t term0, term1; 3529 a = float64_squash_input_denormal(a STATUS_VAR); 3530 b = float64_squash_input_denormal(b STATUS_VAR); 3531 3532 aSig = extractFloat64Frac( a ); 3533 aExp = extractFloat64Exp( a ); 3534 aSign = extractFloat64Sign( a ); 3535 bSig = extractFloat64Frac( b ); 3536 bExp = extractFloat64Exp( b ); 3537 bSign = extractFloat64Sign( b ); 3538 zSign = aSign ^ bSign; 3539 if ( aExp == 0x7FF ) { 3540 if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3541 if ( bExp == 0x7FF ) { 3542 if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3543 float_raise( float_flag_invalid STATUS_VAR); 3544 return float64_default_nan; 3545 } 3546 return packFloat64( zSign, 0x7FF, 0 ); 3547 } 3548 if ( bExp == 0x7FF ) { 3549 if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3550 return packFloat64( zSign, 0, 0 ); 3551 } 3552 if ( bExp == 0 ) { 3553 if ( bSig == 0 ) { 3554 if ( ( aExp | aSig ) == 0 ) { 3555 float_raise( float_flag_invalid STATUS_VAR); 3556 return float64_default_nan; 3557 } 3558 float_raise( float_flag_divbyzero STATUS_VAR); 3559 return packFloat64( zSign, 0x7FF, 0 ); 3560 } 3561 normalizeFloat64Subnormal( bSig, &bExp, &bSig ); 3562 } 3563 if ( aExp == 0 ) { 3564 if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); 3565 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3566 } 3567 zExp = aExp - bExp + 0x3FD; 3568 aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; 3569 bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; 3570 if ( bSig <= ( aSig + aSig ) ) { 3571 aSig >>= 1; 3572 ++zExp; 3573 } 3574 zSig = estimateDiv128To64( aSig, 0, bSig ); 3575 if ( ( zSig & 0x1FF ) <= 2 ) { 3576 mul64To128( bSig, zSig, &term0, &term1 ); 3577 sub128( aSig, 0, term0, term1, &rem0, &rem1 ); 3578 while ( (int64_t) rem0 < 0 ) { 3579 --zSig; 3580 add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); 3581 } 3582 zSig |= ( rem1 != 0 ); 3583 } 3584 return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); 3585 3586 } 3587 3588 /*---------------------------------------------------------------------------- 3589 | Returns the remainder of the double-precision floating-point value `a' 3590 | with respect to the corresponding value `b'. The operation is performed 3591 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 3592 *----------------------------------------------------------------------------*/ 3593 3594 float64 float64_rem( float64 a, float64 b STATUS_PARAM ) 3595 { 3596 flag aSign, zSign; 3597 int_fast16_t aExp, bExp, expDiff; 3598 uint64_t aSig, bSig; 3599 uint64_t q, alternateASig; 3600 int64_t sigMean; 3601 3602 a = float64_squash_input_denormal(a STATUS_VAR); 3603 b = float64_squash_input_denormal(b STATUS_VAR); 3604 aSig = extractFloat64Frac( a ); 3605 aExp = extractFloat64Exp( a ); 3606 aSign = extractFloat64Sign( a ); 3607 bSig = extractFloat64Frac( b ); 3608 bExp = extractFloat64Exp( b ); 3609 if ( aExp == 0x7FF ) { 3610 if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { 3611 return propagateFloat64NaN( a, b STATUS_VAR ); 3612 } 3613 float_raise( float_flag_invalid STATUS_VAR); 3614 return float64_default_nan; 3615 } 3616 if ( bExp == 0x7FF ) { 3617 if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); 3618 return a; 3619 } 3620 if ( bExp == 0 ) { 3621 if ( bSig == 0 ) { 3622 float_raise( float_flag_invalid STATUS_VAR); 3623 return float64_default_nan; 3624 } 3625 normalizeFloat64Subnormal( bSig, &bExp, &bSig ); 3626 } 3627 if ( aExp == 0 ) { 3628 if ( aSig == 0 ) return a; 3629 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3630 } 3631 expDiff = aExp - bExp; 3632 aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; 3633 bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; 3634 if ( expDiff < 0 ) { 3635 if ( expDiff < -1 ) return a; 3636 aSig >>= 1; 3637 } 3638 q = ( bSig <= aSig ); 3639 if ( q ) aSig -= bSig; 3640 expDiff -= 64; 3641 while ( 0 < expDiff ) { 3642 q = estimateDiv128To64( aSig, 0, bSig ); 3643 q = ( 2 < q ) ? q - 2 : 0; 3644 aSig = - ( ( bSig>>2 ) * q ); 3645 expDiff -= 62; 3646 } 3647 expDiff += 64; 3648 if ( 0 < expDiff ) { 3649 q = estimateDiv128To64( aSig, 0, bSig ); 3650 q = ( 2 < q ) ? q - 2 : 0; 3651 q >>= 64 - expDiff; 3652 bSig >>= 2; 3653 aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; 3654 } 3655 else { 3656 aSig >>= 2; 3657 bSig >>= 2; 3658 } 3659 do { 3660 alternateASig = aSig; 3661 ++q; 3662 aSig -= bSig; 3663 } while ( 0 <= (int64_t) aSig ); 3664 sigMean = aSig + alternateASig; 3665 if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { 3666 aSig = alternateASig; 3667 } 3668 zSign = ( (int64_t) aSig < 0 ); 3669 if ( zSign ) aSig = - aSig; 3670 return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR ); 3671 3672 } 3673 3674 /*---------------------------------------------------------------------------- 3675 | Returns the result of multiplying the double-precision floating-point values 3676 | `a' and `b' then adding 'c', with no intermediate rounding step after the 3677 | multiplication. The operation is performed according to the IEC/IEEE 3678 | Standard for Binary Floating-Point Arithmetic 754-2008. 3679 | The flags argument allows the caller to select negation of the 3680 | addend, the intermediate product, or the final result. (The difference 3681 | between this and having the caller do a separate negation is that negating 3682 | externally will flip the sign bit on NaNs.) 3683 *----------------------------------------------------------------------------*/ 3684 3685 float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM) 3686 { 3687 flag aSign, bSign, cSign, zSign; 3688 int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff; 3689 uint64_t aSig, bSig, cSig; 3690 flag pInf, pZero, pSign; 3691 uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1; 3692 int shiftcount; 3693 flag signflip, infzero; 3694 3695 a = float64_squash_input_denormal(a STATUS_VAR); 3696 b = float64_squash_input_denormal(b STATUS_VAR); 3697 c = float64_squash_input_denormal(c STATUS_VAR); 3698 aSig = extractFloat64Frac(a); 3699 aExp = extractFloat64Exp(a); 3700 aSign = extractFloat64Sign(a); 3701 bSig = extractFloat64Frac(b); 3702 bExp = extractFloat64Exp(b); 3703 bSign = extractFloat64Sign(b); 3704 cSig = extractFloat64Frac(c); 3705 cExp = extractFloat64Exp(c); 3706 cSign = extractFloat64Sign(c); 3707 3708 infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) || 3709 (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0)); 3710 3711 /* It is implementation-defined whether the cases of (0,inf,qnan) 3712 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN 3713 * they return if they do), so we have to hand this information 3714 * off to the target-specific pick-a-NaN routine. 3715 */ 3716 if (((aExp == 0x7ff) && aSig) || 3717 ((bExp == 0x7ff) && bSig) || 3718 ((cExp == 0x7ff) && cSig)) { 3719 return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR); 3720 } 3721 3722 if (infzero) { 3723 float_raise(float_flag_invalid STATUS_VAR); 3724 return float64_default_nan; 3725 } 3726 3727 if (flags & float_muladd_negate_c) { 3728 cSign ^= 1; 3729 } 3730 3731 signflip = (flags & float_muladd_negate_result) ? 1 : 0; 3732 3733 /* Work out the sign and type of the product */ 3734 pSign = aSign ^ bSign; 3735 if (flags & float_muladd_negate_product) { 3736 pSign ^= 1; 3737 } 3738 pInf = (aExp == 0x7ff) || (bExp == 0x7ff); 3739 pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0); 3740 3741 if (cExp == 0x7ff) { 3742 if (pInf && (pSign ^ cSign)) { 3743 /* addition of opposite-signed infinities => InvalidOperation */ 3744 float_raise(float_flag_invalid STATUS_VAR); 3745 return float64_default_nan; 3746 } 3747 /* Otherwise generate an infinity of the same sign */ 3748 return packFloat64(cSign ^ signflip, 0x7ff, 0); 3749 } 3750 3751 if (pInf) { 3752 return packFloat64(pSign ^ signflip, 0x7ff, 0); 3753 } 3754 3755 if (pZero) { 3756 if (cExp == 0) { 3757 if (cSig == 0) { 3758 /* Adding two exact zeroes */ 3759 if (pSign == cSign) { 3760 zSign = pSign; 3761 } else if (STATUS(float_rounding_mode) == float_round_down) { 3762 zSign = 1; 3763 } else { 3764 zSign = 0; 3765 } 3766 return packFloat64(zSign ^ signflip, 0, 0); 3767 } 3768 /* Exact zero plus a denorm */ 3769 if (STATUS(flush_to_zero)) { 3770 float_raise(float_flag_output_denormal STATUS_VAR); 3771 return packFloat64(cSign ^ signflip, 0, 0); 3772 } 3773 } 3774 /* Zero plus something non-zero : just return the something */ 3775 return make_float64(float64_val(c) ^ ((uint64_t)signflip << 63)); 3776 } 3777 3778 if (aExp == 0) { 3779 normalizeFloat64Subnormal(aSig, &aExp, &aSig); 3780 } 3781 if (bExp == 0) { 3782 normalizeFloat64Subnormal(bSig, &bExp, &bSig); 3783 } 3784 3785 /* Calculate the actual result a * b + c */ 3786 3787 /* Multiply first; this is easy. */ 3788 /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff 3789 * because we want the true exponent, not the "one-less-than" 3790 * flavour that roundAndPackFloat64() takes. 3791 */ 3792 pExp = aExp + bExp - 0x3fe; 3793 aSig = (aSig | LIT64(0x0010000000000000))<<10; 3794 bSig = (bSig | LIT64(0x0010000000000000))<<11; 3795 mul64To128(aSig, bSig, &pSig0, &pSig1); 3796 if ((int64_t)(pSig0 << 1) >= 0) { 3797 shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1); 3798 pExp--; 3799 } 3800 3801 zSign = pSign ^ signflip; 3802 3803 /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit 3804 * bit in position 126. 3805 */ 3806 if (cExp == 0) { 3807 if (!cSig) { 3808 /* Throw out the special case of c being an exact zero now */ 3809 shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1); 3810 return roundAndPackFloat64(zSign, pExp - 1, 3811 pSig1 STATUS_VAR); 3812 } 3813 normalizeFloat64Subnormal(cSig, &cExp, &cSig); 3814 } 3815 3816 /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the 3817 * significand of the addend, with the explicit bit in position 126. 3818 */ 3819 cSig0 = cSig << (126 - 64 - 52); 3820 cSig1 = 0; 3821 cSig0 |= LIT64(0x4000000000000000); 3822 expDiff = pExp - cExp; 3823 3824 if (pSign == cSign) { 3825 /* Addition */ 3826 if (expDiff > 0) { 3827 /* scale c to match p */ 3828 shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); 3829 zExp = pExp; 3830 } else if (expDiff < 0) { 3831 /* scale p to match c */ 3832 shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); 3833 zExp = cExp; 3834 } else { 3835 /* no scaling needed */ 3836 zExp = cExp; 3837 } 3838 /* Add significands and make sure explicit bit ends up in posn 126 */ 3839 add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); 3840 if ((int64_t)zSig0 < 0) { 3841 shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1); 3842 } else { 3843 zExp--; 3844 } 3845 shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1); 3846 return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR); 3847 } else { 3848 /* Subtraction */ 3849 if (expDiff > 0) { 3850 shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1); 3851 sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); 3852 zExp = pExp; 3853 } else if (expDiff < 0) { 3854 shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1); 3855 sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); 3856 zExp = cExp; 3857 zSign ^= 1; 3858 } else { 3859 zExp = pExp; 3860 if (lt128(cSig0, cSig1, pSig0, pSig1)) { 3861 sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1); 3862 } else if (lt128(pSig0, pSig1, cSig0, cSig1)) { 3863 sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1); 3864 zSign ^= 1; 3865 } else { 3866 /* Exact zero */ 3867 zSign = signflip; 3868 if (STATUS(float_rounding_mode) == float_round_down) { 3869 zSign ^= 1; 3870 } 3871 return packFloat64(zSign, 0, 0); 3872 } 3873 } 3874 --zExp; 3875 /* Do the equivalent of normalizeRoundAndPackFloat64() but 3876 * starting with the significand in a pair of uint64_t. 3877 */ 3878 if (zSig0) { 3879 shiftcount = countLeadingZeros64(zSig0) - 1; 3880 shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1); 3881 if (zSig1) { 3882 zSig0 |= 1; 3883 } 3884 zExp -= shiftcount; 3885 } else { 3886 shiftcount = countLeadingZeros64(zSig1) - 1; 3887 zSig0 = zSig1 << shiftcount; 3888 zExp -= (shiftcount + 64); 3889 } 3890 return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR); 3891 } 3892 } 3893 3894 /*---------------------------------------------------------------------------- 3895 | Returns the square root of the double-precision floating-point value `a'. 3896 | The operation is performed according to the IEC/IEEE Standard for Binary 3897 | Floating-Point Arithmetic. 3898 *----------------------------------------------------------------------------*/ 3899 3900 float64 float64_sqrt( float64 a STATUS_PARAM ) 3901 { 3902 flag aSign; 3903 int_fast16_t aExp, zExp; 3904 uint64_t aSig, zSig, doubleZSig; 3905 uint64_t rem0, rem1, term0, term1; 3906 a = float64_squash_input_denormal(a STATUS_VAR); 3907 3908 aSig = extractFloat64Frac( a ); 3909 aExp = extractFloat64Exp( a ); 3910 aSign = extractFloat64Sign( a ); 3911 if ( aExp == 0x7FF ) { 3912 if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR ); 3913 if ( ! aSign ) return a; 3914 float_raise( float_flag_invalid STATUS_VAR); 3915 return float64_default_nan; 3916 } 3917 if ( aSign ) { 3918 if ( ( aExp | aSig ) == 0 ) return a; 3919 float_raise( float_flag_invalid STATUS_VAR); 3920 return float64_default_nan; 3921 } 3922 if ( aExp == 0 ) { 3923 if ( aSig == 0 ) return float64_zero; 3924 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3925 } 3926 zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; 3927 aSig |= LIT64( 0x0010000000000000 ); 3928 zSig = estimateSqrt32( aExp, aSig>>21 ); 3929 aSig <<= 9 - ( aExp & 1 ); 3930 zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); 3931 if ( ( zSig & 0x1FF ) <= 5 ) { 3932 doubleZSig = zSig<<1; 3933 mul64To128( zSig, zSig, &term0, &term1 ); 3934 sub128( aSig, 0, term0, term1, &rem0, &rem1 ); 3935 while ( (int64_t) rem0 < 0 ) { 3936 --zSig; 3937 doubleZSig -= 2; 3938 add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); 3939 } 3940 zSig |= ( ( rem0 | rem1 ) != 0 ); 3941 } 3942 return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR ); 3943 3944 } 3945 3946 /*---------------------------------------------------------------------------- 3947 | Returns the binary log of the double-precision floating-point value `a'. 3948 | The operation is performed according to the IEC/IEEE Standard for Binary 3949 | Floating-Point Arithmetic. 3950 *----------------------------------------------------------------------------*/ 3951 float64 float64_log2( float64 a STATUS_PARAM ) 3952 { 3953 flag aSign, zSign; 3954 int_fast16_t aExp; 3955 uint64_t aSig, aSig0, aSig1, zSig, i; 3956 a = float64_squash_input_denormal(a STATUS_VAR); 3957 3958 aSig = extractFloat64Frac( a ); 3959 aExp = extractFloat64Exp( a ); 3960 aSign = extractFloat64Sign( a ); 3961 3962 if ( aExp == 0 ) { 3963 if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); 3964 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 3965 } 3966 if ( aSign ) { 3967 float_raise( float_flag_invalid STATUS_VAR); 3968 return float64_default_nan; 3969 } 3970 if ( aExp == 0x7FF ) { 3971 if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR ); 3972 return a; 3973 } 3974 3975 aExp -= 0x3FF; 3976 aSig |= LIT64( 0x0010000000000000 ); 3977 zSign = aExp < 0; 3978 zSig = (uint64_t)aExp << 52; 3979 for (i = 1LL << 51; i > 0; i >>= 1) { 3980 mul64To128( aSig, aSig, &aSig0, &aSig1 ); 3981 aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); 3982 if ( aSig & LIT64( 0x0020000000000000 ) ) { 3983 aSig >>= 1; 3984 zSig |= i; 3985 } 3986 } 3987 3988 if ( zSign ) 3989 zSig = -zSig; 3990 return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR ); 3991 } 3992 3993 /*---------------------------------------------------------------------------- 3994 | Returns 1 if the double-precision floating-point value `a' is equal to the 3995 | corresponding value `b', and 0 otherwise. The invalid exception is raised 3996 | if either operand is a NaN. Otherwise, the comparison is performed 3997 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 3998 *----------------------------------------------------------------------------*/ 3999 4000 int float64_eq( float64 a, float64 b STATUS_PARAM ) 4001 { 4002 uint64_t av, bv; 4003 a = float64_squash_input_denormal(a STATUS_VAR); 4004 b = float64_squash_input_denormal(b STATUS_VAR); 4005 4006 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4007 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4008 ) { 4009 float_raise( float_flag_invalid STATUS_VAR); 4010 return 0; 4011 } 4012 av = float64_val(a); 4013 bv = float64_val(b); 4014 return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 4015 4016 } 4017 4018 /*---------------------------------------------------------------------------- 4019 | Returns 1 if the double-precision floating-point value `a' is less than or 4020 | equal to the corresponding value `b', and 0 otherwise. The invalid 4021 | exception is raised if either operand is a NaN. The comparison is performed 4022 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4023 *----------------------------------------------------------------------------*/ 4024 4025 int float64_le( float64 a, float64 b STATUS_PARAM ) 4026 { 4027 flag aSign, bSign; 4028 uint64_t av, bv; 4029 a = float64_squash_input_denormal(a STATUS_VAR); 4030 b = float64_squash_input_denormal(b STATUS_VAR); 4031 4032 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4033 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4034 ) { 4035 float_raise( float_flag_invalid STATUS_VAR); 4036 return 0; 4037 } 4038 aSign = extractFloat64Sign( a ); 4039 bSign = extractFloat64Sign( b ); 4040 av = float64_val(a); 4041 bv = float64_val(b); 4042 if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 4043 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 4044 4045 } 4046 4047 /*---------------------------------------------------------------------------- 4048 | Returns 1 if the double-precision floating-point value `a' is less than 4049 | the corresponding value `b', and 0 otherwise. The invalid exception is 4050 | raised if either operand is a NaN. The comparison is performed according 4051 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4052 *----------------------------------------------------------------------------*/ 4053 4054 int float64_lt( float64 a, float64 b STATUS_PARAM ) 4055 { 4056 flag aSign, bSign; 4057 uint64_t av, bv; 4058 4059 a = float64_squash_input_denormal(a STATUS_VAR); 4060 b = float64_squash_input_denormal(b STATUS_VAR); 4061 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4062 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4063 ) { 4064 float_raise( float_flag_invalid STATUS_VAR); 4065 return 0; 4066 } 4067 aSign = extractFloat64Sign( a ); 4068 bSign = extractFloat64Sign( b ); 4069 av = float64_val(a); 4070 bv = float64_val(b); 4071 if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); 4072 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 4073 4074 } 4075 4076 /*---------------------------------------------------------------------------- 4077 | Returns 1 if the double-precision floating-point values `a' and `b' cannot 4078 | be compared, and 0 otherwise. The invalid exception is raised if either 4079 | operand is a NaN. The comparison is performed according to the IEC/IEEE 4080 | Standard for Binary Floating-Point Arithmetic. 4081 *----------------------------------------------------------------------------*/ 4082 4083 int float64_unordered( float64 a, float64 b STATUS_PARAM ) 4084 { 4085 a = float64_squash_input_denormal(a STATUS_VAR); 4086 b = float64_squash_input_denormal(b STATUS_VAR); 4087 4088 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4089 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4090 ) { 4091 float_raise( float_flag_invalid STATUS_VAR); 4092 return 1; 4093 } 4094 return 0; 4095 } 4096 4097 /*---------------------------------------------------------------------------- 4098 | Returns 1 if the double-precision floating-point value `a' is equal to the 4099 | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 4100 | exception.The comparison is performed according to the IEC/IEEE Standard 4101 | for Binary Floating-Point Arithmetic. 4102 *----------------------------------------------------------------------------*/ 4103 4104 int float64_eq_quiet( float64 a, float64 b STATUS_PARAM ) 4105 { 4106 uint64_t av, bv; 4107 a = float64_squash_input_denormal(a STATUS_VAR); 4108 b = float64_squash_input_denormal(b STATUS_VAR); 4109 4110 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4111 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4112 ) { 4113 if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { 4114 float_raise( float_flag_invalid STATUS_VAR); 4115 } 4116 return 0; 4117 } 4118 av = float64_val(a); 4119 bv = float64_val(b); 4120 return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 4121 4122 } 4123 4124 /*---------------------------------------------------------------------------- 4125 | Returns 1 if the double-precision floating-point value `a' is less than or 4126 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 4127 | cause an exception. Otherwise, the comparison is performed according to the 4128 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4129 *----------------------------------------------------------------------------*/ 4130 4131 int float64_le_quiet( float64 a, float64 b STATUS_PARAM ) 4132 { 4133 flag aSign, bSign; 4134 uint64_t av, bv; 4135 a = float64_squash_input_denormal(a STATUS_VAR); 4136 b = float64_squash_input_denormal(b STATUS_VAR); 4137 4138 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4139 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4140 ) { 4141 if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { 4142 float_raise( float_flag_invalid STATUS_VAR); 4143 } 4144 return 0; 4145 } 4146 aSign = extractFloat64Sign( a ); 4147 bSign = extractFloat64Sign( b ); 4148 av = float64_val(a); 4149 bv = float64_val(b); 4150 if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 4151 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 4152 4153 } 4154 4155 /*---------------------------------------------------------------------------- 4156 | Returns 1 if the double-precision floating-point value `a' is less than 4157 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 4158 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 4159 | Standard for Binary Floating-Point Arithmetic. 4160 *----------------------------------------------------------------------------*/ 4161 4162 int float64_lt_quiet( float64 a, float64 b STATUS_PARAM ) 4163 { 4164 flag aSign, bSign; 4165 uint64_t av, bv; 4166 a = float64_squash_input_denormal(a STATUS_VAR); 4167 b = float64_squash_input_denormal(b STATUS_VAR); 4168 4169 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4170 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4171 ) { 4172 if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { 4173 float_raise( float_flag_invalid STATUS_VAR); 4174 } 4175 return 0; 4176 } 4177 aSign = extractFloat64Sign( a ); 4178 bSign = extractFloat64Sign( b ); 4179 av = float64_val(a); 4180 bv = float64_val(b); 4181 if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); 4182 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 4183 4184 } 4185 4186 /*---------------------------------------------------------------------------- 4187 | Returns 1 if the double-precision floating-point values `a' and `b' cannot 4188 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 4189 | comparison is performed according to the IEC/IEEE Standard for Binary 4190 | Floating-Point Arithmetic. 4191 *----------------------------------------------------------------------------*/ 4192 4193 int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM ) 4194 { 4195 a = float64_squash_input_denormal(a STATUS_VAR); 4196 b = float64_squash_input_denormal(b STATUS_VAR); 4197 4198 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 4199 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 4200 ) { 4201 if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { 4202 float_raise( float_flag_invalid STATUS_VAR); 4203 } 4204 return 1; 4205 } 4206 return 0; 4207 } 4208 4209 /*---------------------------------------------------------------------------- 4210 | Returns the result of converting the extended double-precision floating- 4211 | point value `a' to the 32-bit two's complement integer format. The 4212 | conversion is performed according to the IEC/IEEE Standard for Binary 4213 | Floating-Point Arithmetic---which means in particular that the conversion 4214 | is rounded according to the current rounding mode. If `a' is a NaN, the 4215 | largest positive integer is returned. Otherwise, if the conversion 4216 | overflows, the largest integer with the same sign as `a' is returned. 4217 *----------------------------------------------------------------------------*/ 4218 4219 int32 floatx80_to_int32( floatx80 a STATUS_PARAM ) 4220 { 4221 flag aSign; 4222 int32 aExp, shiftCount; 4223 uint64_t aSig; 4224 4225 aSig = extractFloatx80Frac( a ); 4226 aExp = extractFloatx80Exp( a ); 4227 aSign = extractFloatx80Sign( a ); 4228 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; 4229 shiftCount = 0x4037 - aExp; 4230 if ( shiftCount <= 0 ) shiftCount = 1; 4231 shift64RightJamming( aSig, shiftCount, &aSig ); 4232 return roundAndPackInt32( aSign, aSig STATUS_VAR ); 4233 4234 } 4235 4236 /*---------------------------------------------------------------------------- 4237 | Returns the result of converting the extended double-precision floating- 4238 | point value `a' to the 32-bit two's complement integer format. The 4239 | conversion is performed according to the IEC/IEEE Standard for Binary 4240 | Floating-Point Arithmetic, except that the conversion is always rounded 4241 | toward zero. If `a' is a NaN, the largest positive integer is returned. 4242 | Otherwise, if the conversion overflows, the largest integer with the same 4243 | sign as `a' is returned. 4244 *----------------------------------------------------------------------------*/ 4245 4246 int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM ) 4247 { 4248 flag aSign; 4249 int32 aExp, shiftCount; 4250 uint64_t aSig, savedASig; 4251 int32_t z; 4252 4253 aSig = extractFloatx80Frac( a ); 4254 aExp = extractFloatx80Exp( a ); 4255 aSign = extractFloatx80Sign( a ); 4256 if ( 0x401E < aExp ) { 4257 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; 4258 goto invalid; 4259 } 4260 else if ( aExp < 0x3FFF ) { 4261 if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; 4262 return 0; 4263 } 4264 shiftCount = 0x403E - aExp; 4265 savedASig = aSig; 4266 aSig >>= shiftCount; 4267 z = aSig; 4268 if ( aSign ) z = - z; 4269 if ( ( z < 0 ) ^ aSign ) { 4270 invalid: 4271 float_raise( float_flag_invalid STATUS_VAR); 4272 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 4273 } 4274 if ( ( aSig<<shiftCount ) != savedASig ) { 4275 STATUS(float_exception_flags) |= float_flag_inexact; 4276 } 4277 return z; 4278 4279 } 4280 4281 /*---------------------------------------------------------------------------- 4282 | Returns the result of converting the extended double-precision floating- 4283 | point value `a' to the 64-bit two's complement integer format. The 4284 | conversion is performed according to the IEC/IEEE Standard for Binary 4285 | Floating-Point Arithmetic---which means in particular that the conversion 4286 | is rounded according to the current rounding mode. If `a' is a NaN, 4287 | the largest positive integer is returned. Otherwise, if the conversion 4288 | overflows, the largest integer with the same sign as `a' is returned. 4289 *----------------------------------------------------------------------------*/ 4290 4291 int64 floatx80_to_int64( floatx80 a STATUS_PARAM ) 4292 { 4293 flag aSign; 4294 int32 aExp, shiftCount; 4295 uint64_t aSig, aSigExtra; 4296 4297 aSig = extractFloatx80Frac( a ); 4298 aExp = extractFloatx80Exp( a ); 4299 aSign = extractFloatx80Sign( a ); 4300 shiftCount = 0x403E - aExp; 4301 if ( shiftCount <= 0 ) { 4302 if ( shiftCount ) { 4303 float_raise( float_flag_invalid STATUS_VAR); 4304 if ( ! aSign 4305 || ( ( aExp == 0x7FFF ) 4306 && ( aSig != LIT64( 0x8000000000000000 ) ) ) 4307 ) { 4308 return LIT64( 0x7FFFFFFFFFFFFFFF ); 4309 } 4310 return (int64_t) LIT64( 0x8000000000000000 ); 4311 } 4312 aSigExtra = 0; 4313 } 4314 else { 4315 shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); 4316 } 4317 return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); 4318 4319 } 4320 4321 /*---------------------------------------------------------------------------- 4322 | Returns the result of converting the extended double-precision floating- 4323 | point value `a' to the 64-bit two's complement integer format. The 4324 | conversion is performed according to the IEC/IEEE Standard for Binary 4325 | Floating-Point Arithmetic, except that the conversion is always rounded 4326 | toward zero. If `a' is a NaN, the largest positive integer is returned. 4327 | Otherwise, if the conversion overflows, the largest integer with the same 4328 | sign as `a' is returned. 4329 *----------------------------------------------------------------------------*/ 4330 4331 int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM ) 4332 { 4333 flag aSign; 4334 int32 aExp, shiftCount; 4335 uint64_t aSig; 4336 int64 z; 4337 4338 aSig = extractFloatx80Frac( a ); 4339 aExp = extractFloatx80Exp( a ); 4340 aSign = extractFloatx80Sign( a ); 4341 shiftCount = aExp - 0x403E; 4342 if ( 0 <= shiftCount ) { 4343 aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); 4344 if ( ( a.high != 0xC03E ) || aSig ) { 4345 float_raise( float_flag_invalid STATUS_VAR); 4346 if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { 4347 return LIT64( 0x7FFFFFFFFFFFFFFF ); 4348 } 4349 } 4350 return (int64_t) LIT64( 0x8000000000000000 ); 4351 } 4352 else if ( aExp < 0x3FFF ) { 4353 if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; 4354 return 0; 4355 } 4356 z = aSig>>( - shiftCount ); 4357 if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { 4358 STATUS(float_exception_flags) |= float_flag_inexact; 4359 } 4360 if ( aSign ) z = - z; 4361 return z; 4362 4363 } 4364 4365 /*---------------------------------------------------------------------------- 4366 | Returns the result of converting the extended double-precision floating- 4367 | point value `a' to the single-precision floating-point format. The 4368 | conversion is performed according to the IEC/IEEE Standard for Binary 4369 | Floating-Point Arithmetic. 4370 *----------------------------------------------------------------------------*/ 4371 4372 float32 floatx80_to_float32( floatx80 a STATUS_PARAM ) 4373 { 4374 flag aSign; 4375 int32 aExp; 4376 uint64_t aSig; 4377 4378 aSig = extractFloatx80Frac( a ); 4379 aExp = extractFloatx80Exp( a ); 4380 aSign = extractFloatx80Sign( a ); 4381 if ( aExp == 0x7FFF ) { 4382 if ( (uint64_t) ( aSig<<1 ) ) { 4383 return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 4384 } 4385 return packFloat32( aSign, 0xFF, 0 ); 4386 } 4387 shift64RightJamming( aSig, 33, &aSig ); 4388 if ( aExp || aSig ) aExp -= 0x3F81; 4389 return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); 4390 4391 } 4392 4393 /*---------------------------------------------------------------------------- 4394 | Returns the result of converting the extended double-precision floating- 4395 | point value `a' to the double-precision floating-point format. The 4396 | conversion is performed according to the IEC/IEEE Standard for Binary 4397 | Floating-Point Arithmetic. 4398 *----------------------------------------------------------------------------*/ 4399 4400 float64 floatx80_to_float64( floatx80 a STATUS_PARAM ) 4401 { 4402 flag aSign; 4403 int32 aExp; 4404 uint64_t aSig, zSig; 4405 4406 aSig = extractFloatx80Frac( a ); 4407 aExp = extractFloatx80Exp( a ); 4408 aSign = extractFloatx80Sign( a ); 4409 if ( aExp == 0x7FFF ) { 4410 if ( (uint64_t) ( aSig<<1 ) ) { 4411 return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 4412 } 4413 return packFloat64( aSign, 0x7FF, 0 ); 4414 } 4415 shift64RightJamming( aSig, 1, &zSig ); 4416 if ( aExp || aSig ) aExp -= 0x3C01; 4417 return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR ); 4418 4419 } 4420 4421 /*---------------------------------------------------------------------------- 4422 | Returns the result of converting the extended double-precision floating- 4423 | point value `a' to the quadruple-precision floating-point format. The 4424 | conversion is performed according to the IEC/IEEE Standard for Binary 4425 | Floating-Point Arithmetic. 4426 *----------------------------------------------------------------------------*/ 4427 4428 float128 floatx80_to_float128( floatx80 a STATUS_PARAM ) 4429 { 4430 flag aSign; 4431 int_fast16_t aExp; 4432 uint64_t aSig, zSig0, zSig1; 4433 4434 aSig = extractFloatx80Frac( a ); 4435 aExp = extractFloatx80Exp( a ); 4436 aSign = extractFloatx80Sign( a ); 4437 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { 4438 return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 4439 } 4440 shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); 4441 return packFloat128( aSign, aExp, zSig0, zSig1 ); 4442 4443 } 4444 4445 /*---------------------------------------------------------------------------- 4446 | Rounds the extended double-precision floating-point value `a' to an integer, 4447 | and returns the result as an extended quadruple-precision floating-point 4448 | value. The operation is performed according to the IEC/IEEE Standard for 4449 | Binary Floating-Point Arithmetic. 4450 *----------------------------------------------------------------------------*/ 4451 4452 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM ) 4453 { 4454 flag aSign; 4455 int32 aExp; 4456 uint64_t lastBitMask, roundBitsMask; 4457 int8 roundingMode; 4458 floatx80 z; 4459 4460 aExp = extractFloatx80Exp( a ); 4461 if ( 0x403E <= aExp ) { 4462 if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { 4463 return propagateFloatx80NaN( a, a STATUS_VAR ); 4464 } 4465 return a; 4466 } 4467 if ( aExp < 0x3FFF ) { 4468 if ( ( aExp == 0 ) 4469 && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { 4470 return a; 4471 } 4472 STATUS(float_exception_flags) |= float_flag_inexact; 4473 aSign = extractFloatx80Sign( a ); 4474 switch ( STATUS(float_rounding_mode) ) { 4475 case float_round_nearest_even: 4476 if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) 4477 ) { 4478 return 4479 packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); 4480 } 4481 break; 4482 case float_round_down: 4483 return 4484 aSign ? 4485 packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) 4486 : packFloatx80( 0, 0, 0 ); 4487 case float_round_up: 4488 return 4489 aSign ? packFloatx80( 1, 0, 0 ) 4490 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); 4491 } 4492 return packFloatx80( aSign, 0, 0 ); 4493 } 4494 lastBitMask = 1; 4495 lastBitMask <<= 0x403E - aExp; 4496 roundBitsMask = lastBitMask - 1; 4497 z = a; 4498 roundingMode = STATUS(float_rounding_mode); 4499 if ( roundingMode == float_round_nearest_even ) { 4500 z.low += lastBitMask>>1; 4501 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; 4502 } 4503 else if ( roundingMode != float_round_to_zero ) { 4504 if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { 4505 z.low += roundBitsMask; 4506 } 4507 } 4508 z.low &= ~ roundBitsMask; 4509 if ( z.low == 0 ) { 4510 ++z.high; 4511 z.low = LIT64( 0x8000000000000000 ); 4512 } 4513 if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact; 4514 return z; 4515 4516 } 4517 4518 /*---------------------------------------------------------------------------- 4519 | Returns the result of adding the absolute values of the extended double- 4520 | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is 4521 | negated before being returned. `zSign' is ignored if the result is a NaN. 4522 | The addition is performed according to the IEC/IEEE Standard for Binary 4523 | Floating-Point Arithmetic. 4524 *----------------------------------------------------------------------------*/ 4525 4526 static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM) 4527 { 4528 int32 aExp, bExp, zExp; 4529 uint64_t aSig, bSig, zSig0, zSig1; 4530 int32 expDiff; 4531 4532 aSig = extractFloatx80Frac( a ); 4533 aExp = extractFloatx80Exp( a ); 4534 bSig = extractFloatx80Frac( b ); 4535 bExp = extractFloatx80Exp( b ); 4536 expDiff = aExp - bExp; 4537 if ( 0 < expDiff ) { 4538 if ( aExp == 0x7FFF ) { 4539 if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4540 return a; 4541 } 4542 if ( bExp == 0 ) --expDiff; 4543 shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); 4544 zExp = aExp; 4545 } 4546 else if ( expDiff < 0 ) { 4547 if ( bExp == 0x7FFF ) { 4548 if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4549 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 4550 } 4551 if ( aExp == 0 ) ++expDiff; 4552 shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); 4553 zExp = bExp; 4554 } 4555 else { 4556 if ( aExp == 0x7FFF ) { 4557 if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { 4558 return propagateFloatx80NaN( a, b STATUS_VAR ); 4559 } 4560 return a; 4561 } 4562 zSig1 = 0; 4563 zSig0 = aSig + bSig; 4564 if ( aExp == 0 ) { 4565 normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); 4566 goto roundAndPack; 4567 } 4568 zExp = aExp; 4569 goto shiftRight1; 4570 } 4571 zSig0 = aSig + bSig; 4572 if ( (int64_t) zSig0 < 0 ) goto roundAndPack; 4573 shiftRight1: 4574 shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); 4575 zSig0 |= LIT64( 0x8000000000000000 ); 4576 ++zExp; 4577 roundAndPack: 4578 return 4579 roundAndPackFloatx80( 4580 STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); 4581 4582 } 4583 4584 /*---------------------------------------------------------------------------- 4585 | Returns the result of subtracting the absolute values of the extended 4586 | double-precision floating-point values `a' and `b'. If `zSign' is 1, the 4587 | difference is negated before being returned. `zSign' is ignored if the 4588 | result is a NaN. The subtraction is performed according to the IEC/IEEE 4589 | Standard for Binary Floating-Point Arithmetic. 4590 *----------------------------------------------------------------------------*/ 4591 4592 static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM ) 4593 { 4594 int32 aExp, bExp, zExp; 4595 uint64_t aSig, bSig, zSig0, zSig1; 4596 int32 expDiff; 4597 floatx80 z; 4598 4599 aSig = extractFloatx80Frac( a ); 4600 aExp = extractFloatx80Exp( a ); 4601 bSig = extractFloatx80Frac( b ); 4602 bExp = extractFloatx80Exp( b ); 4603 expDiff = aExp - bExp; 4604 if ( 0 < expDiff ) goto aExpBigger; 4605 if ( expDiff < 0 ) goto bExpBigger; 4606 if ( aExp == 0x7FFF ) { 4607 if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { 4608 return propagateFloatx80NaN( a, b STATUS_VAR ); 4609 } 4610 float_raise( float_flag_invalid STATUS_VAR); 4611 z.low = floatx80_default_nan_low; 4612 z.high = floatx80_default_nan_high; 4613 return z; 4614 } 4615 if ( aExp == 0 ) { 4616 aExp = 1; 4617 bExp = 1; 4618 } 4619 zSig1 = 0; 4620 if ( bSig < aSig ) goto aBigger; 4621 if ( aSig < bSig ) goto bBigger; 4622 return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); 4623 bExpBigger: 4624 if ( bExp == 0x7FFF ) { 4625 if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4626 return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); 4627 } 4628 if ( aExp == 0 ) ++expDiff; 4629 shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); 4630 bBigger: 4631 sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); 4632 zExp = bExp; 4633 zSign ^= 1; 4634 goto normalizeRoundAndPack; 4635 aExpBigger: 4636 if ( aExp == 0x7FFF ) { 4637 if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4638 return a; 4639 } 4640 if ( bExp == 0 ) --expDiff; 4641 shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); 4642 aBigger: 4643 sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); 4644 zExp = aExp; 4645 normalizeRoundAndPack: 4646 return 4647 normalizeRoundAndPackFloatx80( 4648 STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); 4649 4650 } 4651 4652 /*---------------------------------------------------------------------------- 4653 | Returns the result of adding the extended double-precision floating-point 4654 | values `a' and `b'. The operation is performed according to the IEC/IEEE 4655 | Standard for Binary Floating-Point Arithmetic. 4656 *----------------------------------------------------------------------------*/ 4657 4658 floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM ) 4659 { 4660 flag aSign, bSign; 4661 4662 aSign = extractFloatx80Sign( a ); 4663 bSign = extractFloatx80Sign( b ); 4664 if ( aSign == bSign ) { 4665 return addFloatx80Sigs( a, b, aSign STATUS_VAR ); 4666 } 4667 else { 4668 return subFloatx80Sigs( a, b, aSign STATUS_VAR ); 4669 } 4670 4671 } 4672 4673 /*---------------------------------------------------------------------------- 4674 | Returns the result of subtracting the extended double-precision floating- 4675 | point values `a' and `b'. The operation is performed according to the 4676 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4677 *----------------------------------------------------------------------------*/ 4678 4679 floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM ) 4680 { 4681 flag aSign, bSign; 4682 4683 aSign = extractFloatx80Sign( a ); 4684 bSign = extractFloatx80Sign( b ); 4685 if ( aSign == bSign ) { 4686 return subFloatx80Sigs( a, b, aSign STATUS_VAR ); 4687 } 4688 else { 4689 return addFloatx80Sigs( a, b, aSign STATUS_VAR ); 4690 } 4691 4692 } 4693 4694 /*---------------------------------------------------------------------------- 4695 | Returns the result of multiplying the extended double-precision floating- 4696 | point values `a' and `b'. The operation is performed according to the 4697 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4698 *----------------------------------------------------------------------------*/ 4699 4700 floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM ) 4701 { 4702 flag aSign, bSign, zSign; 4703 int32 aExp, bExp, zExp; 4704 uint64_t aSig, bSig, zSig0, zSig1; 4705 floatx80 z; 4706 4707 aSig = extractFloatx80Frac( a ); 4708 aExp = extractFloatx80Exp( a ); 4709 aSign = extractFloatx80Sign( a ); 4710 bSig = extractFloatx80Frac( b ); 4711 bExp = extractFloatx80Exp( b ); 4712 bSign = extractFloatx80Sign( b ); 4713 zSign = aSign ^ bSign; 4714 if ( aExp == 0x7FFF ) { 4715 if ( (uint64_t) ( aSig<<1 ) 4716 || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { 4717 return propagateFloatx80NaN( a, b STATUS_VAR ); 4718 } 4719 if ( ( bExp | bSig ) == 0 ) goto invalid; 4720 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 4721 } 4722 if ( bExp == 0x7FFF ) { 4723 if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4724 if ( ( aExp | aSig ) == 0 ) { 4725 invalid: 4726 float_raise( float_flag_invalid STATUS_VAR); 4727 z.low = floatx80_default_nan_low; 4728 z.high = floatx80_default_nan_high; 4729 return z; 4730 } 4731 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 4732 } 4733 if ( aExp == 0 ) { 4734 if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); 4735 normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); 4736 } 4737 if ( bExp == 0 ) { 4738 if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); 4739 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 4740 } 4741 zExp = aExp + bExp - 0x3FFE; 4742 mul64To128( aSig, bSig, &zSig0, &zSig1 ); 4743 if ( 0 < (int64_t) zSig0 ) { 4744 shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); 4745 --zExp; 4746 } 4747 return 4748 roundAndPackFloatx80( 4749 STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); 4750 4751 } 4752 4753 /*---------------------------------------------------------------------------- 4754 | Returns the result of dividing the extended double-precision floating-point 4755 | value `a' by the corresponding value `b'. The operation is performed 4756 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4757 *----------------------------------------------------------------------------*/ 4758 4759 floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM ) 4760 { 4761 flag aSign, bSign, zSign; 4762 int32 aExp, bExp, zExp; 4763 uint64_t aSig, bSig, zSig0, zSig1; 4764 uint64_t rem0, rem1, rem2, term0, term1, term2; 4765 floatx80 z; 4766 4767 aSig = extractFloatx80Frac( a ); 4768 aExp = extractFloatx80Exp( a ); 4769 aSign = extractFloatx80Sign( a ); 4770 bSig = extractFloatx80Frac( b ); 4771 bExp = extractFloatx80Exp( b ); 4772 bSign = extractFloatx80Sign( b ); 4773 zSign = aSign ^ bSign; 4774 if ( aExp == 0x7FFF ) { 4775 if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4776 if ( bExp == 0x7FFF ) { 4777 if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4778 goto invalid; 4779 } 4780 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 4781 } 4782 if ( bExp == 0x7FFF ) { 4783 if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4784 return packFloatx80( zSign, 0, 0 ); 4785 } 4786 if ( bExp == 0 ) { 4787 if ( bSig == 0 ) { 4788 if ( ( aExp | aSig ) == 0 ) { 4789 invalid: 4790 float_raise( float_flag_invalid STATUS_VAR); 4791 z.low = floatx80_default_nan_low; 4792 z.high = floatx80_default_nan_high; 4793 return z; 4794 } 4795 float_raise( float_flag_divbyzero STATUS_VAR); 4796 return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 4797 } 4798 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 4799 } 4800 if ( aExp == 0 ) { 4801 if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); 4802 normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); 4803 } 4804 zExp = aExp - bExp + 0x3FFE; 4805 rem1 = 0; 4806 if ( bSig <= aSig ) { 4807 shift128Right( aSig, 0, 1, &aSig, &rem1 ); 4808 ++zExp; 4809 } 4810 zSig0 = estimateDiv128To64( aSig, rem1, bSig ); 4811 mul64To128( bSig, zSig0, &term0, &term1 ); 4812 sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); 4813 while ( (int64_t) rem0 < 0 ) { 4814 --zSig0; 4815 add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); 4816 } 4817 zSig1 = estimateDiv128To64( rem1, 0, bSig ); 4818 if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { 4819 mul64To128( bSig, zSig1, &term1, &term2 ); 4820 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 4821 while ( (int64_t) rem1 < 0 ) { 4822 --zSig1; 4823 add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); 4824 } 4825 zSig1 |= ( ( rem1 | rem2 ) != 0 ); 4826 } 4827 return 4828 roundAndPackFloatx80( 4829 STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); 4830 4831 } 4832 4833 /*---------------------------------------------------------------------------- 4834 | Returns the remainder of the extended double-precision floating-point value 4835 | `a' with respect to the corresponding value `b'. The operation is performed 4836 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4837 *----------------------------------------------------------------------------*/ 4838 4839 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM ) 4840 { 4841 flag aSign, zSign; 4842 int32 aExp, bExp, expDiff; 4843 uint64_t aSig0, aSig1, bSig; 4844 uint64_t q, term0, term1, alternateASig0, alternateASig1; 4845 floatx80 z; 4846 4847 aSig0 = extractFloatx80Frac( a ); 4848 aExp = extractFloatx80Exp( a ); 4849 aSign = extractFloatx80Sign( a ); 4850 bSig = extractFloatx80Frac( b ); 4851 bExp = extractFloatx80Exp( b ); 4852 if ( aExp == 0x7FFF ) { 4853 if ( (uint64_t) ( aSig0<<1 ) 4854 || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { 4855 return propagateFloatx80NaN( a, b STATUS_VAR ); 4856 } 4857 goto invalid; 4858 } 4859 if ( bExp == 0x7FFF ) { 4860 if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); 4861 return a; 4862 } 4863 if ( bExp == 0 ) { 4864 if ( bSig == 0 ) { 4865 invalid: 4866 float_raise( float_flag_invalid STATUS_VAR); 4867 z.low = floatx80_default_nan_low; 4868 z.high = floatx80_default_nan_high; 4869 return z; 4870 } 4871 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 4872 } 4873 if ( aExp == 0 ) { 4874 if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; 4875 normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); 4876 } 4877 bSig |= LIT64( 0x8000000000000000 ); 4878 zSign = aSign; 4879 expDiff = aExp - bExp; 4880 aSig1 = 0; 4881 if ( expDiff < 0 ) { 4882 if ( expDiff < -1 ) return a; 4883 shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); 4884 expDiff = 0; 4885 } 4886 q = ( bSig <= aSig0 ); 4887 if ( q ) aSig0 -= bSig; 4888 expDiff -= 64; 4889 while ( 0 < expDiff ) { 4890 q = estimateDiv128To64( aSig0, aSig1, bSig ); 4891 q = ( 2 < q ) ? q - 2 : 0; 4892 mul64To128( bSig, q, &term0, &term1 ); 4893 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 4894 shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); 4895 expDiff -= 62; 4896 } 4897 expDiff += 64; 4898 if ( 0 < expDiff ) { 4899 q = estimateDiv128To64( aSig0, aSig1, bSig ); 4900 q = ( 2 < q ) ? q - 2 : 0; 4901 q >>= 64 - expDiff; 4902 mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); 4903 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 4904 shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); 4905 while ( le128( term0, term1, aSig0, aSig1 ) ) { 4906 ++q; 4907 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 4908 } 4909 } 4910 else { 4911 term1 = 0; 4912 term0 = bSig; 4913 } 4914 sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); 4915 if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) 4916 || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) 4917 && ( q & 1 ) ) 4918 ) { 4919 aSig0 = alternateASig0; 4920 aSig1 = alternateASig1; 4921 zSign = ! zSign; 4922 } 4923 return 4924 normalizeRoundAndPackFloatx80( 4925 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR ); 4926 4927 } 4928 4929 /*---------------------------------------------------------------------------- 4930 | Returns the square root of the extended double-precision floating-point 4931 | value `a'. The operation is performed according to the IEC/IEEE Standard 4932 | for Binary Floating-Point Arithmetic. 4933 *----------------------------------------------------------------------------*/ 4934 4935 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM ) 4936 { 4937 flag aSign; 4938 int32 aExp, zExp; 4939 uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; 4940 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 4941 floatx80 z; 4942 4943 aSig0 = extractFloatx80Frac( a ); 4944 aExp = extractFloatx80Exp( a ); 4945 aSign = extractFloatx80Sign( a ); 4946 if ( aExp == 0x7FFF ) { 4947 if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR ); 4948 if ( ! aSign ) return a; 4949 goto invalid; 4950 } 4951 if ( aSign ) { 4952 if ( ( aExp | aSig0 ) == 0 ) return a; 4953 invalid: 4954 float_raise( float_flag_invalid STATUS_VAR); 4955 z.low = floatx80_default_nan_low; 4956 z.high = floatx80_default_nan_high; 4957 return z; 4958 } 4959 if ( aExp == 0 ) { 4960 if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); 4961 normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); 4962 } 4963 zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; 4964 zSig0 = estimateSqrt32( aExp, aSig0>>32 ); 4965 shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); 4966 zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); 4967 doubleZSig0 = zSig0<<1; 4968 mul64To128( zSig0, zSig0, &term0, &term1 ); 4969 sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); 4970 while ( (int64_t) rem0 < 0 ) { 4971 --zSig0; 4972 doubleZSig0 -= 2; 4973 add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); 4974 } 4975 zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); 4976 if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { 4977 if ( zSig1 == 0 ) zSig1 = 1; 4978 mul64To128( doubleZSig0, zSig1, &term1, &term2 ); 4979 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 4980 mul64To128( zSig1, zSig1, &term2, &term3 ); 4981 sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); 4982 while ( (int64_t) rem1 < 0 ) { 4983 --zSig1; 4984 shortShift128Left( 0, zSig1, 1, &term2, &term3 ); 4985 term3 |= 1; 4986 term2 |= doubleZSig0; 4987 add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); 4988 } 4989 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 4990 } 4991 shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); 4992 zSig0 |= doubleZSig0; 4993 return 4994 roundAndPackFloatx80( 4995 STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR ); 4996 4997 } 4998 4999 /*---------------------------------------------------------------------------- 5000 | Returns 1 if the extended double-precision floating-point value `a' is equal 5001 | to the corresponding value `b', and 0 otherwise. The invalid exception is 5002 | raised if either operand is a NaN. Otherwise, the comparison is performed 5003 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5004 *----------------------------------------------------------------------------*/ 5005 5006 int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM ) 5007 { 5008 5009 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5010 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5011 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5012 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5013 ) { 5014 float_raise( float_flag_invalid STATUS_VAR); 5015 return 0; 5016 } 5017 return 5018 ( a.low == b.low ) 5019 && ( ( a.high == b.high ) 5020 || ( ( a.low == 0 ) 5021 && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 5022 ); 5023 5024 } 5025 5026 /*---------------------------------------------------------------------------- 5027 | Returns 1 if the extended double-precision floating-point value `a' is 5028 | less than or equal to the corresponding value `b', and 0 otherwise. The 5029 | invalid exception is raised if either operand is a NaN. The comparison is 5030 | performed according to the IEC/IEEE Standard for Binary Floating-Point 5031 | Arithmetic. 5032 *----------------------------------------------------------------------------*/ 5033 5034 int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM ) 5035 { 5036 flag aSign, bSign; 5037 5038 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5039 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5040 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5041 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5042 ) { 5043 float_raise( float_flag_invalid STATUS_VAR); 5044 return 0; 5045 } 5046 aSign = extractFloatx80Sign( a ); 5047 bSign = extractFloatx80Sign( b ); 5048 if ( aSign != bSign ) { 5049 return 5050 aSign 5051 || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 5052 == 0 ); 5053 } 5054 return 5055 aSign ? le128( b.high, b.low, a.high, a.low ) 5056 : le128( a.high, a.low, b.high, b.low ); 5057 5058 } 5059 5060 /*---------------------------------------------------------------------------- 5061 | Returns 1 if the extended double-precision floating-point value `a' is 5062 | less than the corresponding value `b', and 0 otherwise. The invalid 5063 | exception is raised if either operand is a NaN. The comparison is performed 5064 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5065 *----------------------------------------------------------------------------*/ 5066 5067 int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM ) 5068 { 5069 flag aSign, bSign; 5070 5071 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5072 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5073 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5074 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5075 ) { 5076 float_raise( float_flag_invalid STATUS_VAR); 5077 return 0; 5078 } 5079 aSign = extractFloatx80Sign( a ); 5080 bSign = extractFloatx80Sign( b ); 5081 if ( aSign != bSign ) { 5082 return 5083 aSign 5084 && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 5085 != 0 ); 5086 } 5087 return 5088 aSign ? lt128( b.high, b.low, a.high, a.low ) 5089 : lt128( a.high, a.low, b.high, b.low ); 5090 5091 } 5092 5093 /*---------------------------------------------------------------------------- 5094 | Returns 1 if the extended double-precision floating-point values `a' and `b' 5095 | cannot be compared, and 0 otherwise. The invalid exception is raised if 5096 | either operand is a NaN. The comparison is performed according to the 5097 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5098 *----------------------------------------------------------------------------*/ 5099 int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM ) 5100 { 5101 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5102 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5103 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5104 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5105 ) { 5106 float_raise( float_flag_invalid STATUS_VAR); 5107 return 1; 5108 } 5109 return 0; 5110 } 5111 5112 /*---------------------------------------------------------------------------- 5113 | Returns 1 if the extended double-precision floating-point value `a' is 5114 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 5115 | cause an exception. The comparison is performed according to the IEC/IEEE 5116 | Standard for Binary Floating-Point Arithmetic. 5117 *----------------------------------------------------------------------------*/ 5118 5119 int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM ) 5120 { 5121 5122 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5123 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5124 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5125 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5126 ) { 5127 if ( floatx80_is_signaling_nan( a ) 5128 || floatx80_is_signaling_nan( b ) ) { 5129 float_raise( float_flag_invalid STATUS_VAR); 5130 } 5131 return 0; 5132 } 5133 return 5134 ( a.low == b.low ) 5135 && ( ( a.high == b.high ) 5136 || ( ( a.low == 0 ) 5137 && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 5138 ); 5139 5140 } 5141 5142 /*---------------------------------------------------------------------------- 5143 | Returns 1 if the extended double-precision floating-point value `a' is less 5144 | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs 5145 | do not cause an exception. Otherwise, the comparison is performed according 5146 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5147 *----------------------------------------------------------------------------*/ 5148 5149 int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM ) 5150 { 5151 flag aSign, bSign; 5152 5153 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5154 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5155 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5156 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5157 ) { 5158 if ( floatx80_is_signaling_nan( a ) 5159 || floatx80_is_signaling_nan( b ) ) { 5160 float_raise( float_flag_invalid STATUS_VAR); 5161 } 5162 return 0; 5163 } 5164 aSign = extractFloatx80Sign( a ); 5165 bSign = extractFloatx80Sign( b ); 5166 if ( aSign != bSign ) { 5167 return 5168 aSign 5169 || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 5170 == 0 ); 5171 } 5172 return 5173 aSign ? le128( b.high, b.low, a.high, a.low ) 5174 : le128( a.high, a.low, b.high, b.low ); 5175 5176 } 5177 5178 /*---------------------------------------------------------------------------- 5179 | Returns 1 if the extended double-precision floating-point value `a' is less 5180 | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause 5181 | an exception. Otherwise, the comparison is performed according to the 5182 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5183 *----------------------------------------------------------------------------*/ 5184 5185 int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM ) 5186 { 5187 flag aSign, bSign; 5188 5189 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5190 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5191 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5192 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5193 ) { 5194 if ( floatx80_is_signaling_nan( a ) 5195 || floatx80_is_signaling_nan( b ) ) { 5196 float_raise( float_flag_invalid STATUS_VAR); 5197 } 5198 return 0; 5199 } 5200 aSign = extractFloatx80Sign( a ); 5201 bSign = extractFloatx80Sign( b ); 5202 if ( aSign != bSign ) { 5203 return 5204 aSign 5205 && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 5206 != 0 ); 5207 } 5208 return 5209 aSign ? lt128( b.high, b.low, a.high, a.low ) 5210 : lt128( a.high, a.low, b.high, b.low ); 5211 5212 } 5213 5214 /*---------------------------------------------------------------------------- 5215 | Returns 1 if the extended double-precision floating-point values `a' and `b' 5216 | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. 5217 | The comparison is performed according to the IEC/IEEE Standard for Binary 5218 | Floating-Point Arithmetic. 5219 *----------------------------------------------------------------------------*/ 5220 int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM ) 5221 { 5222 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 5223 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 5224 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 5225 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 5226 ) { 5227 if ( floatx80_is_signaling_nan( a ) 5228 || floatx80_is_signaling_nan( b ) ) { 5229 float_raise( float_flag_invalid STATUS_VAR); 5230 } 5231 return 1; 5232 } 5233 return 0; 5234 } 5235 5236 /*---------------------------------------------------------------------------- 5237 | Returns the result of converting the quadruple-precision floating-point 5238 | value `a' to the 32-bit two's complement integer format. The conversion 5239 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5240 | Arithmetic---which means in particular that the conversion is rounded 5241 | according to the current rounding mode. If `a' is a NaN, the largest 5242 | positive integer is returned. Otherwise, if the conversion overflows, the 5243 | largest integer with the same sign as `a' is returned. 5244 *----------------------------------------------------------------------------*/ 5245 5246 int32 float128_to_int32( float128 a STATUS_PARAM ) 5247 { 5248 flag aSign; 5249 int32 aExp, shiftCount; 5250 uint64_t aSig0, aSig1; 5251 5252 aSig1 = extractFloat128Frac1( a ); 5253 aSig0 = extractFloat128Frac0( a ); 5254 aExp = extractFloat128Exp( a ); 5255 aSign = extractFloat128Sign( a ); 5256 if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; 5257 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); 5258 aSig0 |= ( aSig1 != 0 ); 5259 shiftCount = 0x4028 - aExp; 5260 if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); 5261 return roundAndPackInt32( aSign, aSig0 STATUS_VAR ); 5262 5263 } 5264 5265 /*---------------------------------------------------------------------------- 5266 | Returns the result of converting the quadruple-precision floating-point 5267 | value `a' to the 32-bit two's complement integer format. The conversion 5268 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5269 | Arithmetic, except that the conversion is always rounded toward zero. If 5270 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the 5271 | conversion overflows, the largest integer with the same sign as `a' is 5272 | returned. 5273 *----------------------------------------------------------------------------*/ 5274 5275 int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM ) 5276 { 5277 flag aSign; 5278 int32 aExp, shiftCount; 5279 uint64_t aSig0, aSig1, savedASig; 5280 int32_t z; 5281 5282 aSig1 = extractFloat128Frac1( a ); 5283 aSig0 = extractFloat128Frac0( a ); 5284 aExp = extractFloat128Exp( a ); 5285 aSign = extractFloat128Sign( a ); 5286 aSig0 |= ( aSig1 != 0 ); 5287 if ( 0x401E < aExp ) { 5288 if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; 5289 goto invalid; 5290 } 5291 else if ( aExp < 0x3FFF ) { 5292 if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact; 5293 return 0; 5294 } 5295 aSig0 |= LIT64( 0x0001000000000000 ); 5296 shiftCount = 0x402F - aExp; 5297 savedASig = aSig0; 5298 aSig0 >>= shiftCount; 5299 z = aSig0; 5300 if ( aSign ) z = - z; 5301 if ( ( z < 0 ) ^ aSign ) { 5302 invalid: 5303 float_raise( float_flag_invalid STATUS_VAR); 5304 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 5305 } 5306 if ( ( aSig0<<shiftCount ) != savedASig ) { 5307 STATUS(float_exception_flags) |= float_flag_inexact; 5308 } 5309 return z; 5310 5311 } 5312 5313 /*---------------------------------------------------------------------------- 5314 | Returns the result of converting the quadruple-precision floating-point 5315 | value `a' to the 64-bit two's complement integer format. The conversion 5316 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5317 | Arithmetic---which means in particular that the conversion is rounded 5318 | according to the current rounding mode. If `a' is a NaN, the largest 5319 | positive integer is returned. Otherwise, if the conversion overflows, the 5320 | largest integer with the same sign as `a' is returned. 5321 *----------------------------------------------------------------------------*/ 5322 5323 int64 float128_to_int64( float128 a STATUS_PARAM ) 5324 { 5325 flag aSign; 5326 int32 aExp, shiftCount; 5327 uint64_t aSig0, aSig1; 5328 5329 aSig1 = extractFloat128Frac1( a ); 5330 aSig0 = extractFloat128Frac0( a ); 5331 aExp = extractFloat128Exp( a ); 5332 aSign = extractFloat128Sign( a ); 5333 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); 5334 shiftCount = 0x402F - aExp; 5335 if ( shiftCount <= 0 ) { 5336 if ( 0x403E < aExp ) { 5337 float_raise( float_flag_invalid STATUS_VAR); 5338 if ( ! aSign 5339 || ( ( aExp == 0x7FFF ) 5340 && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) 5341 ) 5342 ) { 5343 return LIT64( 0x7FFFFFFFFFFFFFFF ); 5344 } 5345 return (int64_t) LIT64( 0x8000000000000000 ); 5346 } 5347 shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); 5348 } 5349 else { 5350 shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); 5351 } 5352 return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR ); 5353 5354 } 5355 5356 /*---------------------------------------------------------------------------- 5357 | Returns the result of converting the quadruple-precision floating-point 5358 | value `a' to the 64-bit two's complement integer format. The conversion 5359 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5360 | Arithmetic, except that the conversion is always rounded toward zero. 5361 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 5362 | the conversion overflows, the largest integer with the same sign as `a' is 5363 | returned. 5364 *----------------------------------------------------------------------------*/ 5365 5366 int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM ) 5367 { 5368 flag aSign; 5369 int32 aExp, shiftCount; 5370 uint64_t aSig0, aSig1; 5371 int64 z; 5372 5373 aSig1 = extractFloat128Frac1( a ); 5374 aSig0 = extractFloat128Frac0( a ); 5375 aExp = extractFloat128Exp( a ); 5376 aSign = extractFloat128Sign( a ); 5377 if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); 5378 shiftCount = aExp - 0x402F; 5379 if ( 0 < shiftCount ) { 5380 if ( 0x403E <= aExp ) { 5381 aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); 5382 if ( ( a.high == LIT64( 0xC03E000000000000 ) ) 5383 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { 5384 if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; 5385 } 5386 else { 5387 float_raise( float_flag_invalid STATUS_VAR); 5388 if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { 5389 return LIT64( 0x7FFFFFFFFFFFFFFF ); 5390 } 5391 } 5392 return (int64_t) LIT64( 0x8000000000000000 ); 5393 } 5394 z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); 5395 if ( (uint64_t) ( aSig1<<shiftCount ) ) { 5396 STATUS(float_exception_flags) |= float_flag_inexact; 5397 } 5398 } 5399 else { 5400 if ( aExp < 0x3FFF ) { 5401 if ( aExp | aSig0 | aSig1 ) { 5402 STATUS(float_exception_flags) |= float_flag_inexact; 5403 } 5404 return 0; 5405 } 5406 z = aSig0>>( - shiftCount ); 5407 if ( aSig1 5408 || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { 5409 STATUS(float_exception_flags) |= float_flag_inexact; 5410 } 5411 } 5412 if ( aSign ) z = - z; 5413 return z; 5414 5415 } 5416 5417 /*---------------------------------------------------------------------------- 5418 | Returns the result of converting the quadruple-precision floating-point 5419 | value `a' to the single-precision floating-point format. The conversion 5420 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5421 | Arithmetic. 5422 *----------------------------------------------------------------------------*/ 5423 5424 float32 float128_to_float32( float128 a STATUS_PARAM ) 5425 { 5426 flag aSign; 5427 int32 aExp; 5428 uint64_t aSig0, aSig1; 5429 uint32_t zSig; 5430 5431 aSig1 = extractFloat128Frac1( a ); 5432 aSig0 = extractFloat128Frac0( a ); 5433 aExp = extractFloat128Exp( a ); 5434 aSign = extractFloat128Sign( a ); 5435 if ( aExp == 0x7FFF ) { 5436 if ( aSig0 | aSig1 ) { 5437 return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 5438 } 5439 return packFloat32( aSign, 0xFF, 0 ); 5440 } 5441 aSig0 |= ( aSig1 != 0 ); 5442 shift64RightJamming( aSig0, 18, &aSig0 ); 5443 zSig = aSig0; 5444 if ( aExp || zSig ) { 5445 zSig |= 0x40000000; 5446 aExp -= 0x3F81; 5447 } 5448 return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); 5449 5450 } 5451 5452 /*---------------------------------------------------------------------------- 5453 | Returns the result of converting the quadruple-precision floating-point 5454 | value `a' to the double-precision floating-point format. The conversion 5455 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5456 | Arithmetic. 5457 *----------------------------------------------------------------------------*/ 5458 5459 float64 float128_to_float64( float128 a STATUS_PARAM ) 5460 { 5461 flag aSign; 5462 int32 aExp; 5463 uint64_t aSig0, aSig1; 5464 5465 aSig1 = extractFloat128Frac1( a ); 5466 aSig0 = extractFloat128Frac0( a ); 5467 aExp = extractFloat128Exp( a ); 5468 aSign = extractFloat128Sign( a ); 5469 if ( aExp == 0x7FFF ) { 5470 if ( aSig0 | aSig1 ) { 5471 return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 5472 } 5473 return packFloat64( aSign, 0x7FF, 0 ); 5474 } 5475 shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); 5476 aSig0 |= ( aSig1 != 0 ); 5477 if ( aExp || aSig0 ) { 5478 aSig0 |= LIT64( 0x4000000000000000 ); 5479 aExp -= 0x3C01; 5480 } 5481 return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR ); 5482 5483 } 5484 5485 /*---------------------------------------------------------------------------- 5486 | Returns the result of converting the quadruple-precision floating-point 5487 | value `a' to the extended double-precision floating-point format. The 5488 | conversion is performed according to the IEC/IEEE Standard for Binary 5489 | Floating-Point Arithmetic. 5490 *----------------------------------------------------------------------------*/ 5491 5492 floatx80 float128_to_floatx80( float128 a STATUS_PARAM ) 5493 { 5494 flag aSign; 5495 int32 aExp; 5496 uint64_t aSig0, aSig1; 5497 5498 aSig1 = extractFloat128Frac1( a ); 5499 aSig0 = extractFloat128Frac0( a ); 5500 aExp = extractFloat128Exp( a ); 5501 aSign = extractFloat128Sign( a ); 5502 if ( aExp == 0x7FFF ) { 5503 if ( aSig0 | aSig1 ) { 5504 return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR ); 5505 } 5506 return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); 5507 } 5508 if ( aExp == 0 ) { 5509 if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); 5510 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 5511 } 5512 else { 5513 aSig0 |= LIT64( 0x0001000000000000 ); 5514 } 5515 shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); 5516 return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR ); 5517 5518 } 5519 5520 /*---------------------------------------------------------------------------- 5521 | Rounds the quadruple-precision floating-point value `a' to an integer, and 5522 | returns the result as a quadruple-precision floating-point value. The 5523 | operation is performed according to the IEC/IEEE Standard for Binary 5524 | Floating-Point Arithmetic. 5525 *----------------------------------------------------------------------------*/ 5526 5527 float128 float128_round_to_int( float128 a STATUS_PARAM ) 5528 { 5529 flag aSign; 5530 int32 aExp; 5531 uint64_t lastBitMask, roundBitsMask; 5532 int8 roundingMode; 5533 float128 z; 5534 5535 aExp = extractFloat128Exp( a ); 5536 if ( 0x402F <= aExp ) { 5537 if ( 0x406F <= aExp ) { 5538 if ( ( aExp == 0x7FFF ) 5539 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) 5540 ) { 5541 return propagateFloat128NaN( a, a STATUS_VAR ); 5542 } 5543 return a; 5544 } 5545 lastBitMask = 1; 5546 lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; 5547 roundBitsMask = lastBitMask - 1; 5548 z = a; 5549 roundingMode = STATUS(float_rounding_mode); 5550 if ( roundingMode == float_round_nearest_even ) { 5551 if ( lastBitMask ) { 5552 add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); 5553 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; 5554 } 5555 else { 5556 if ( (int64_t) z.low < 0 ) { 5557 ++z.high; 5558 if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; 5559 } 5560 } 5561 } 5562 else if ( roundingMode != float_round_to_zero ) { 5563 if ( extractFloat128Sign( z ) 5564 ^ ( roundingMode == float_round_up ) ) { 5565 add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); 5566 } 5567 } 5568 z.low &= ~ roundBitsMask; 5569 } 5570 else { 5571 if ( aExp < 0x3FFF ) { 5572 if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; 5573 STATUS(float_exception_flags) |= float_flag_inexact; 5574 aSign = extractFloat128Sign( a ); 5575 switch ( STATUS(float_rounding_mode) ) { 5576 case float_round_nearest_even: 5577 if ( ( aExp == 0x3FFE ) 5578 && ( extractFloat128Frac0( a ) 5579 | extractFloat128Frac1( a ) ) 5580 ) { 5581 return packFloat128( aSign, 0x3FFF, 0, 0 ); 5582 } 5583 break; 5584 case float_round_down: 5585 return 5586 aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) 5587 : packFloat128( 0, 0, 0, 0 ); 5588 case float_round_up: 5589 return 5590 aSign ? packFloat128( 1, 0, 0, 0 ) 5591 : packFloat128( 0, 0x3FFF, 0, 0 ); 5592 } 5593 return packFloat128( aSign, 0, 0, 0 ); 5594 } 5595 lastBitMask = 1; 5596 lastBitMask <<= 0x402F - aExp; 5597 roundBitsMask = lastBitMask - 1; 5598 z.low = 0; 5599 z.high = a.high; 5600 roundingMode = STATUS(float_rounding_mode); 5601 if ( roundingMode == float_round_nearest_even ) { 5602 z.high += lastBitMask>>1; 5603 if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { 5604 z.high &= ~ lastBitMask; 5605 } 5606 } 5607 else if ( roundingMode != float_round_to_zero ) { 5608 if ( extractFloat128Sign( z ) 5609 ^ ( roundingMode == float_round_up ) ) { 5610 z.high |= ( a.low != 0 ); 5611 z.high += roundBitsMask; 5612 } 5613 } 5614 z.high &= ~ roundBitsMask; 5615 } 5616 if ( ( z.low != a.low ) || ( z.high != a.high ) ) { 5617 STATUS(float_exception_flags) |= float_flag_inexact; 5618 } 5619 return z; 5620 5621 } 5622 5623 /*---------------------------------------------------------------------------- 5624 | Returns the result of adding the absolute values of the quadruple-precision 5625 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated 5626 | before being returned. `zSign' is ignored if the result is a NaN. 5627 | The addition is performed according to the IEC/IEEE Standard for Binary 5628 | Floating-Point Arithmetic. 5629 *----------------------------------------------------------------------------*/ 5630 5631 static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) 5632 { 5633 int32 aExp, bExp, zExp; 5634 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; 5635 int32 expDiff; 5636 5637 aSig1 = extractFloat128Frac1( a ); 5638 aSig0 = extractFloat128Frac0( a ); 5639 aExp = extractFloat128Exp( a ); 5640 bSig1 = extractFloat128Frac1( b ); 5641 bSig0 = extractFloat128Frac0( b ); 5642 bExp = extractFloat128Exp( b ); 5643 expDiff = aExp - bExp; 5644 if ( 0 < expDiff ) { 5645 if ( aExp == 0x7FFF ) { 5646 if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 5647 return a; 5648 } 5649 if ( bExp == 0 ) { 5650 --expDiff; 5651 } 5652 else { 5653 bSig0 |= LIT64( 0x0001000000000000 ); 5654 } 5655 shift128ExtraRightJamming( 5656 bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); 5657 zExp = aExp; 5658 } 5659 else if ( expDiff < 0 ) { 5660 if ( bExp == 0x7FFF ) { 5661 if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 5662 return packFloat128( zSign, 0x7FFF, 0, 0 ); 5663 } 5664 if ( aExp == 0 ) { 5665 ++expDiff; 5666 } 5667 else { 5668 aSig0 |= LIT64( 0x0001000000000000 ); 5669 } 5670 shift128ExtraRightJamming( 5671 aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); 5672 zExp = bExp; 5673 } 5674 else { 5675 if ( aExp == 0x7FFF ) { 5676 if ( aSig0 | aSig1 | bSig0 | bSig1 ) { 5677 return propagateFloat128NaN( a, b STATUS_VAR ); 5678 } 5679 return a; 5680 } 5681 add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 5682 if ( aExp == 0 ) { 5683 if (STATUS(flush_to_zero)) { 5684 if (zSig0 | zSig1) { 5685 float_raise(float_flag_output_denormal STATUS_VAR); 5686 } 5687 return packFloat128(zSign, 0, 0, 0); 5688 } 5689 return packFloat128( zSign, 0, zSig0, zSig1 ); 5690 } 5691 zSig2 = 0; 5692 zSig0 |= LIT64( 0x0002000000000000 ); 5693 zExp = aExp; 5694 goto shiftRight1; 5695 } 5696 aSig0 |= LIT64( 0x0001000000000000 ); 5697 add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 5698 --zExp; 5699 if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; 5700 ++zExp; 5701 shiftRight1: 5702 shift128ExtraRightJamming( 5703 zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); 5704 roundAndPack: 5705 return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); 5706 5707 } 5708 5709 /*---------------------------------------------------------------------------- 5710 | Returns the result of subtracting the absolute values of the quadruple- 5711 | precision floating-point values `a' and `b'. If `zSign' is 1, the 5712 | difference is negated before being returned. `zSign' is ignored if the 5713 | result is a NaN. The subtraction is performed according to the IEC/IEEE 5714 | Standard for Binary Floating-Point Arithmetic. 5715 *----------------------------------------------------------------------------*/ 5716 5717 static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) 5718 { 5719 int32 aExp, bExp, zExp; 5720 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; 5721 int32 expDiff; 5722 float128 z; 5723 5724 aSig1 = extractFloat128Frac1( a ); 5725 aSig0 = extractFloat128Frac0( a ); 5726 aExp = extractFloat128Exp( a ); 5727 bSig1 = extractFloat128Frac1( b ); 5728 bSig0 = extractFloat128Frac0( b ); 5729 bExp = extractFloat128Exp( b ); 5730 expDiff = aExp - bExp; 5731 shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); 5732 shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); 5733 if ( 0 < expDiff ) goto aExpBigger; 5734 if ( expDiff < 0 ) goto bExpBigger; 5735 if ( aExp == 0x7FFF ) { 5736 if ( aSig0 | aSig1 | bSig0 | bSig1 ) { 5737 return propagateFloat128NaN( a, b STATUS_VAR ); 5738 } 5739 float_raise( float_flag_invalid STATUS_VAR); 5740 z.low = float128_default_nan_low; 5741 z.high = float128_default_nan_high; 5742 return z; 5743 } 5744 if ( aExp == 0 ) { 5745 aExp = 1; 5746 bExp = 1; 5747 } 5748 if ( bSig0 < aSig0 ) goto aBigger; 5749 if ( aSig0 < bSig0 ) goto bBigger; 5750 if ( bSig1 < aSig1 ) goto aBigger; 5751 if ( aSig1 < bSig1 ) goto bBigger; 5752 return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 ); 5753 bExpBigger: 5754 if ( bExp == 0x7FFF ) { 5755 if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 5756 return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); 5757 } 5758 if ( aExp == 0 ) { 5759 ++expDiff; 5760 } 5761 else { 5762 aSig0 |= LIT64( 0x4000000000000000 ); 5763 } 5764 shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); 5765 bSig0 |= LIT64( 0x4000000000000000 ); 5766 bBigger: 5767 sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); 5768 zExp = bExp; 5769 zSign ^= 1; 5770 goto normalizeRoundAndPack; 5771 aExpBigger: 5772 if ( aExp == 0x7FFF ) { 5773 if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 5774 return a; 5775 } 5776 if ( bExp == 0 ) { 5777 --expDiff; 5778 } 5779 else { 5780 bSig0 |= LIT64( 0x4000000000000000 ); 5781 } 5782 shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); 5783 aSig0 |= LIT64( 0x4000000000000000 ); 5784 aBigger: 5785 sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 5786 zExp = aExp; 5787 normalizeRoundAndPack: 5788 --zExp; 5789 return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR ); 5790 5791 } 5792 5793 /*---------------------------------------------------------------------------- 5794 | Returns the result of adding the quadruple-precision floating-point values 5795 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 5796 | for Binary Floating-Point Arithmetic. 5797 *----------------------------------------------------------------------------*/ 5798 5799 float128 float128_add( float128 a, float128 b STATUS_PARAM ) 5800 { 5801 flag aSign, bSign; 5802 5803 aSign = extractFloat128Sign( a ); 5804 bSign = extractFloat128Sign( b ); 5805 if ( aSign == bSign ) { 5806 return addFloat128Sigs( a, b, aSign STATUS_VAR ); 5807 } 5808 else { 5809 return subFloat128Sigs( a, b, aSign STATUS_VAR ); 5810 } 5811 5812 } 5813 5814 /*---------------------------------------------------------------------------- 5815 | Returns the result of subtracting the quadruple-precision floating-point 5816 | values `a' and `b'. The operation is performed according to the IEC/IEEE 5817 | Standard for Binary Floating-Point Arithmetic. 5818 *----------------------------------------------------------------------------*/ 5819 5820 float128 float128_sub( float128 a, float128 b STATUS_PARAM ) 5821 { 5822 flag aSign, bSign; 5823 5824 aSign = extractFloat128Sign( a ); 5825 bSign = extractFloat128Sign( b ); 5826 if ( aSign == bSign ) { 5827 return subFloat128Sigs( a, b, aSign STATUS_VAR ); 5828 } 5829 else { 5830 return addFloat128Sigs( a, b, aSign STATUS_VAR ); 5831 } 5832 5833 } 5834 5835 /*---------------------------------------------------------------------------- 5836 | Returns the result of multiplying the quadruple-precision floating-point 5837 | values `a' and `b'. The operation is performed according to the IEC/IEEE 5838 | Standard for Binary Floating-Point Arithmetic. 5839 *----------------------------------------------------------------------------*/ 5840 5841 float128 float128_mul( float128 a, float128 b STATUS_PARAM ) 5842 { 5843 flag aSign, bSign, zSign; 5844 int32 aExp, bExp, zExp; 5845 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; 5846 float128 z; 5847 5848 aSig1 = extractFloat128Frac1( a ); 5849 aSig0 = extractFloat128Frac0( a ); 5850 aExp = extractFloat128Exp( a ); 5851 aSign = extractFloat128Sign( a ); 5852 bSig1 = extractFloat128Frac1( b ); 5853 bSig0 = extractFloat128Frac0( b ); 5854 bExp = extractFloat128Exp( b ); 5855 bSign = extractFloat128Sign( b ); 5856 zSign = aSign ^ bSign; 5857 if ( aExp == 0x7FFF ) { 5858 if ( ( aSig0 | aSig1 ) 5859 || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { 5860 return propagateFloat128NaN( a, b STATUS_VAR ); 5861 } 5862 if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; 5863 return packFloat128( zSign, 0x7FFF, 0, 0 ); 5864 } 5865 if ( bExp == 0x7FFF ) { 5866 if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 5867 if ( ( aExp | aSig0 | aSig1 ) == 0 ) { 5868 invalid: 5869 float_raise( float_flag_invalid STATUS_VAR); 5870 z.low = float128_default_nan_low; 5871 z.high = float128_default_nan_high; 5872 return z; 5873 } 5874 return packFloat128( zSign, 0x7FFF, 0, 0 ); 5875 } 5876 if ( aExp == 0 ) { 5877 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 5878 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 5879 } 5880 if ( bExp == 0 ) { 5881 if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 5882 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 5883 } 5884 zExp = aExp + bExp - 0x4000; 5885 aSig0 |= LIT64( 0x0001000000000000 ); 5886 shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); 5887 mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); 5888 add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); 5889 zSig2 |= ( zSig3 != 0 ); 5890 if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { 5891 shift128ExtraRightJamming( 5892 zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); 5893 ++zExp; 5894 } 5895 return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); 5896 5897 } 5898 5899 /*---------------------------------------------------------------------------- 5900 | Returns the result of dividing the quadruple-precision floating-point value 5901 | `a' by the corresponding value `b'. The operation is performed according to 5902 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5903 *----------------------------------------------------------------------------*/ 5904 5905 float128 float128_div( float128 a, float128 b STATUS_PARAM ) 5906 { 5907 flag aSign, bSign, zSign; 5908 int32 aExp, bExp, zExp; 5909 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; 5910 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 5911 float128 z; 5912 5913 aSig1 = extractFloat128Frac1( a ); 5914 aSig0 = extractFloat128Frac0( a ); 5915 aExp = extractFloat128Exp( a ); 5916 aSign = extractFloat128Sign( a ); 5917 bSig1 = extractFloat128Frac1( b ); 5918 bSig0 = extractFloat128Frac0( b ); 5919 bExp = extractFloat128Exp( b ); 5920 bSign = extractFloat128Sign( b ); 5921 zSign = aSign ^ bSign; 5922 if ( aExp == 0x7FFF ) { 5923 if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 5924 if ( bExp == 0x7FFF ) { 5925 if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 5926 goto invalid; 5927 } 5928 return packFloat128( zSign, 0x7FFF, 0, 0 ); 5929 } 5930 if ( bExp == 0x7FFF ) { 5931 if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 5932 return packFloat128( zSign, 0, 0, 0 ); 5933 } 5934 if ( bExp == 0 ) { 5935 if ( ( bSig0 | bSig1 ) == 0 ) { 5936 if ( ( aExp | aSig0 | aSig1 ) == 0 ) { 5937 invalid: 5938 float_raise( float_flag_invalid STATUS_VAR); 5939 z.low = float128_default_nan_low; 5940 z.high = float128_default_nan_high; 5941 return z; 5942 } 5943 float_raise( float_flag_divbyzero STATUS_VAR); 5944 return packFloat128( zSign, 0x7FFF, 0, 0 ); 5945 } 5946 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 5947 } 5948 if ( aExp == 0 ) { 5949 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 5950 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 5951 } 5952 zExp = aExp - bExp + 0x3FFD; 5953 shortShift128Left( 5954 aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); 5955 shortShift128Left( 5956 bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); 5957 if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { 5958 shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); 5959 ++zExp; 5960 } 5961 zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); 5962 mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); 5963 sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); 5964 while ( (int64_t) rem0 < 0 ) { 5965 --zSig0; 5966 add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); 5967 } 5968 zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); 5969 if ( ( zSig1 & 0x3FFF ) <= 4 ) { 5970 mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); 5971 sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); 5972 while ( (int64_t) rem1 < 0 ) { 5973 --zSig1; 5974 add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); 5975 } 5976 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 5977 } 5978 shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); 5979 return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); 5980 5981 } 5982 5983 /*---------------------------------------------------------------------------- 5984 | Returns the remainder of the quadruple-precision floating-point value `a' 5985 | with respect to the corresponding value `b'. The operation is performed 5986 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5987 *----------------------------------------------------------------------------*/ 5988 5989 float128 float128_rem( float128 a, float128 b STATUS_PARAM ) 5990 { 5991 flag aSign, zSign; 5992 int32 aExp, bExp, expDiff; 5993 uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; 5994 uint64_t allZero, alternateASig0, alternateASig1, sigMean1; 5995 int64_t sigMean0; 5996 float128 z; 5997 5998 aSig1 = extractFloat128Frac1( a ); 5999 aSig0 = extractFloat128Frac0( a ); 6000 aExp = extractFloat128Exp( a ); 6001 aSign = extractFloat128Sign( a ); 6002 bSig1 = extractFloat128Frac1( b ); 6003 bSig0 = extractFloat128Frac0( b ); 6004 bExp = extractFloat128Exp( b ); 6005 if ( aExp == 0x7FFF ) { 6006 if ( ( aSig0 | aSig1 ) 6007 || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { 6008 return propagateFloat128NaN( a, b STATUS_VAR ); 6009 } 6010 goto invalid; 6011 } 6012 if ( bExp == 0x7FFF ) { 6013 if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); 6014 return a; 6015 } 6016 if ( bExp == 0 ) { 6017 if ( ( bSig0 | bSig1 ) == 0 ) { 6018 invalid: 6019 float_raise( float_flag_invalid STATUS_VAR); 6020 z.low = float128_default_nan_low; 6021 z.high = float128_default_nan_high; 6022 return z; 6023 } 6024 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 6025 } 6026 if ( aExp == 0 ) { 6027 if ( ( aSig0 | aSig1 ) == 0 ) return a; 6028 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 6029 } 6030 expDiff = aExp - bExp; 6031 if ( expDiff < -1 ) return a; 6032 shortShift128Left( 6033 aSig0 | LIT64( 0x0001000000000000 ), 6034 aSig1, 6035 15 - ( expDiff < 0 ), 6036 &aSig0, 6037 &aSig1 6038 ); 6039 shortShift128Left( 6040 bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); 6041 q = le128( bSig0, bSig1, aSig0, aSig1 ); 6042 if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); 6043 expDiff -= 64; 6044 while ( 0 < expDiff ) { 6045 q = estimateDiv128To64( aSig0, aSig1, bSig0 ); 6046 q = ( 4 < q ) ? q - 4 : 0; 6047 mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); 6048 shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); 6049 shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); 6050 sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); 6051 expDiff -= 61; 6052 } 6053 if ( -64 < expDiff ) { 6054 q = estimateDiv128To64( aSig0, aSig1, bSig0 ); 6055 q = ( 4 < q ) ? q - 4 : 0; 6056 q >>= - expDiff; 6057 shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); 6058 expDiff += 52; 6059 if ( expDiff < 0 ) { 6060 shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); 6061 } 6062 else { 6063 shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); 6064 } 6065 mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); 6066 sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); 6067 } 6068 else { 6069 shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); 6070 shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); 6071 } 6072 do { 6073 alternateASig0 = aSig0; 6074 alternateASig1 = aSig1; 6075 ++q; 6076 sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); 6077 } while ( 0 <= (int64_t) aSig0 ); 6078 add128( 6079 aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); 6080 if ( ( sigMean0 < 0 ) 6081 || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { 6082 aSig0 = alternateASig0; 6083 aSig1 = alternateASig1; 6084 } 6085 zSign = ( (int64_t) aSig0 < 0 ); 6086 if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); 6087 return 6088 normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR ); 6089 6090 } 6091 6092 /*---------------------------------------------------------------------------- 6093 | Returns the square root of the quadruple-precision floating-point value `a'. 6094 | The operation is performed according to the IEC/IEEE Standard for Binary 6095 | Floating-Point Arithmetic. 6096 *----------------------------------------------------------------------------*/ 6097 6098 float128 float128_sqrt( float128 a STATUS_PARAM ) 6099 { 6100 flag aSign; 6101 int32 aExp, zExp; 6102 uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; 6103 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 6104 float128 z; 6105 6106 aSig1 = extractFloat128Frac1( a ); 6107 aSig0 = extractFloat128Frac0( a ); 6108 aExp = extractFloat128Exp( a ); 6109 aSign = extractFloat128Sign( a ); 6110 if ( aExp == 0x7FFF ) { 6111 if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR ); 6112 if ( ! aSign ) return a; 6113 goto invalid; 6114 } 6115 if ( aSign ) { 6116 if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; 6117 invalid: 6118 float_raise( float_flag_invalid STATUS_VAR); 6119 z.low = float128_default_nan_low; 6120 z.high = float128_default_nan_high; 6121 return z; 6122 } 6123 if ( aExp == 0 ) { 6124 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); 6125 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 6126 } 6127 zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; 6128 aSig0 |= LIT64( 0x0001000000000000 ); 6129 zSig0 = estimateSqrt32( aExp, aSig0>>17 ); 6130 shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); 6131 zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); 6132 doubleZSig0 = zSig0<<1; 6133 mul64To128( zSig0, zSig0, &term0, &term1 ); 6134 sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); 6135 while ( (int64_t) rem0 < 0 ) { 6136 --zSig0; 6137 doubleZSig0 -= 2; 6138 add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); 6139 } 6140 zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); 6141 if ( ( zSig1 & 0x1FFF ) <= 5 ) { 6142 if ( zSig1 == 0 ) zSig1 = 1; 6143 mul64To128( doubleZSig0, zSig1, &term1, &term2 ); 6144 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 6145 mul64To128( zSig1, zSig1, &term2, &term3 ); 6146 sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); 6147 while ( (int64_t) rem1 < 0 ) { 6148 --zSig1; 6149 shortShift128Left( 0, zSig1, 1, &term2, &term3 ); 6150 term3 |= 1; 6151 term2 |= doubleZSig0; 6152 add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); 6153 } 6154 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 6155 } 6156 shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); 6157 return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); 6158 6159 } 6160 6161 /*---------------------------------------------------------------------------- 6162 | Returns 1 if the quadruple-precision floating-point value `a' is equal to 6163 | the corresponding value `b', and 0 otherwise. The invalid exception is 6164 | raised if either operand is a NaN. Otherwise, the comparison is performed 6165 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6166 *----------------------------------------------------------------------------*/ 6167 6168 int float128_eq( float128 a, float128 b STATUS_PARAM ) 6169 { 6170 6171 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6172 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6173 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6174 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6175 ) { 6176 float_raise( float_flag_invalid STATUS_VAR); 6177 return 0; 6178 } 6179 return 6180 ( a.low == b.low ) 6181 && ( ( a.high == b.high ) 6182 || ( ( a.low == 0 ) 6183 && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 6184 ); 6185 6186 } 6187 6188 /*---------------------------------------------------------------------------- 6189 | Returns 1 if the quadruple-precision floating-point value `a' is less than 6190 | or equal to the corresponding value `b', and 0 otherwise. The invalid 6191 | exception is raised if either operand is a NaN. The comparison is performed 6192 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6193 *----------------------------------------------------------------------------*/ 6194 6195 int float128_le( float128 a, float128 b STATUS_PARAM ) 6196 { 6197 flag aSign, bSign; 6198 6199 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6200 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6201 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6202 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6203 ) { 6204 float_raise( float_flag_invalid STATUS_VAR); 6205 return 0; 6206 } 6207 aSign = extractFloat128Sign( a ); 6208 bSign = extractFloat128Sign( b ); 6209 if ( aSign != bSign ) { 6210 return 6211 aSign 6212 || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6213 == 0 ); 6214 } 6215 return 6216 aSign ? le128( b.high, b.low, a.high, a.low ) 6217 : le128( a.high, a.low, b.high, b.low ); 6218 6219 } 6220 6221 /*---------------------------------------------------------------------------- 6222 | Returns 1 if the quadruple-precision floating-point value `a' is less than 6223 | the corresponding value `b', and 0 otherwise. The invalid exception is 6224 | raised if either operand is a NaN. The comparison is performed according 6225 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6226 *----------------------------------------------------------------------------*/ 6227 6228 int float128_lt( float128 a, float128 b STATUS_PARAM ) 6229 { 6230 flag aSign, bSign; 6231 6232 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6233 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6234 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6235 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6236 ) { 6237 float_raise( float_flag_invalid STATUS_VAR); 6238 return 0; 6239 } 6240 aSign = extractFloat128Sign( a ); 6241 bSign = extractFloat128Sign( b ); 6242 if ( aSign != bSign ) { 6243 return 6244 aSign 6245 && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6246 != 0 ); 6247 } 6248 return 6249 aSign ? lt128( b.high, b.low, a.high, a.low ) 6250 : lt128( a.high, a.low, b.high, b.low ); 6251 6252 } 6253 6254 /*---------------------------------------------------------------------------- 6255 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot 6256 | be compared, and 0 otherwise. The invalid exception is raised if either 6257 | operand is a NaN. The comparison is performed according to the IEC/IEEE 6258 | Standard for Binary Floating-Point Arithmetic. 6259 *----------------------------------------------------------------------------*/ 6260 6261 int float128_unordered( float128 a, float128 b STATUS_PARAM ) 6262 { 6263 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6264 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6265 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6266 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6267 ) { 6268 float_raise( float_flag_invalid STATUS_VAR); 6269 return 1; 6270 } 6271 return 0; 6272 } 6273 6274 /*---------------------------------------------------------------------------- 6275 | Returns 1 if the quadruple-precision floating-point value `a' is equal to 6276 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 6277 | exception. The comparison is performed according to the IEC/IEEE Standard 6278 | for Binary Floating-Point Arithmetic. 6279 *----------------------------------------------------------------------------*/ 6280 6281 int float128_eq_quiet( float128 a, float128 b STATUS_PARAM ) 6282 { 6283 6284 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6285 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6286 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6287 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6288 ) { 6289 if ( float128_is_signaling_nan( a ) 6290 || float128_is_signaling_nan( b ) ) { 6291 float_raise( float_flag_invalid STATUS_VAR); 6292 } 6293 return 0; 6294 } 6295 return 6296 ( a.low == b.low ) 6297 && ( ( a.high == b.high ) 6298 || ( ( a.low == 0 ) 6299 && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 6300 ); 6301 6302 } 6303 6304 /*---------------------------------------------------------------------------- 6305 | Returns 1 if the quadruple-precision floating-point value `a' is less than 6306 | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 6307 | cause an exception. Otherwise, the comparison is performed according to the 6308 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6309 *----------------------------------------------------------------------------*/ 6310 6311 int float128_le_quiet( float128 a, float128 b STATUS_PARAM ) 6312 { 6313 flag aSign, bSign; 6314 6315 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6316 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6317 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6318 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6319 ) { 6320 if ( float128_is_signaling_nan( a ) 6321 || float128_is_signaling_nan( b ) ) { 6322 float_raise( float_flag_invalid STATUS_VAR); 6323 } 6324 return 0; 6325 } 6326 aSign = extractFloat128Sign( a ); 6327 bSign = extractFloat128Sign( b ); 6328 if ( aSign != bSign ) { 6329 return 6330 aSign 6331 || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6332 == 0 ); 6333 } 6334 return 6335 aSign ? le128( b.high, b.low, a.high, a.low ) 6336 : le128( a.high, a.low, b.high, b.low ); 6337 6338 } 6339 6340 /*---------------------------------------------------------------------------- 6341 | Returns 1 if the quadruple-precision floating-point value `a' is less than 6342 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 6343 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 6344 | Standard for Binary Floating-Point Arithmetic. 6345 *----------------------------------------------------------------------------*/ 6346 6347 int float128_lt_quiet( float128 a, float128 b STATUS_PARAM ) 6348 { 6349 flag aSign, bSign; 6350 6351 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6352 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6353 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6354 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6355 ) { 6356 if ( float128_is_signaling_nan( a ) 6357 || float128_is_signaling_nan( b ) ) { 6358 float_raise( float_flag_invalid STATUS_VAR); 6359 } 6360 return 0; 6361 } 6362 aSign = extractFloat128Sign( a ); 6363 bSign = extractFloat128Sign( b ); 6364 if ( aSign != bSign ) { 6365 return 6366 aSign 6367 && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6368 != 0 ); 6369 } 6370 return 6371 aSign ? lt128( b.high, b.low, a.high, a.low ) 6372 : lt128( a.high, a.low, b.high, b.low ); 6373 6374 } 6375 6376 /*---------------------------------------------------------------------------- 6377 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot 6378 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 6379 | comparison is performed according to the IEC/IEEE Standard for Binary 6380 | Floating-Point Arithmetic. 6381 *----------------------------------------------------------------------------*/ 6382 6383 int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM ) 6384 { 6385 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 6386 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 6387 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 6388 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 6389 ) { 6390 if ( float128_is_signaling_nan( a ) 6391 || float128_is_signaling_nan( b ) ) { 6392 float_raise( float_flag_invalid STATUS_VAR); 6393 } 6394 return 1; 6395 } 6396 return 0; 6397 } 6398 6399 /* misc functions */ 6400 float32 uint32_to_float32( uint32 a STATUS_PARAM ) 6401 { 6402 return int64_to_float32(a STATUS_VAR); 6403 } 6404 6405 float64 uint32_to_float64( uint32 a STATUS_PARAM ) 6406 { 6407 return int64_to_float64(a STATUS_VAR); 6408 } 6409 6410 uint32 float32_to_uint32( float32 a STATUS_PARAM ) 6411 { 6412 int64_t v; 6413 uint32 res; 6414 6415 v = float32_to_int64(a STATUS_VAR); 6416 if (v < 0) { 6417 res = 0; 6418 float_raise( float_flag_invalid STATUS_VAR); 6419 } else if (v > 0xffffffff) { 6420 res = 0xffffffff; 6421 float_raise( float_flag_invalid STATUS_VAR); 6422 } else { 6423 res = v; 6424 } 6425 return res; 6426 } 6427 6428 uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM ) 6429 { 6430 int64_t v; 6431 uint32 res; 6432 6433 v = float32_to_int64_round_to_zero(a STATUS_VAR); 6434 if (v < 0) { 6435 res = 0; 6436 float_raise( float_flag_invalid STATUS_VAR); 6437 } else if (v > 0xffffffff) { 6438 res = 0xffffffff; 6439 float_raise( float_flag_invalid STATUS_VAR); 6440 } else { 6441 res = v; 6442 } 6443 return res; 6444 } 6445 6446 uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM) 6447 { 6448 int64_t v; 6449 uint_fast16_t res; 6450 6451 v = float32_to_int64_round_to_zero(a STATUS_VAR); 6452 if (v < 0) { 6453 res = 0; 6454 float_raise( float_flag_invalid STATUS_VAR); 6455 } else if (v > 0xffff) { 6456 res = 0xffff; 6457 float_raise( float_flag_invalid STATUS_VAR); 6458 } else { 6459 res = v; 6460 } 6461 return res; 6462 } 6463 6464 uint32 float64_to_uint32( float64 a STATUS_PARAM ) 6465 { 6466 int64_t v; 6467 uint32 res; 6468 6469 v = float64_to_int64(a STATUS_VAR); 6470 if (v < 0) { 6471 res = 0; 6472 float_raise( float_flag_invalid STATUS_VAR); 6473 } else if (v > 0xffffffff) { 6474 res = 0xffffffff; 6475 float_raise( float_flag_invalid STATUS_VAR); 6476 } else { 6477 res = v; 6478 } 6479 return res; 6480 } 6481 6482 uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM ) 6483 { 6484 int64_t v; 6485 uint32 res; 6486 6487 v = float64_to_int64_round_to_zero(a STATUS_VAR); 6488 if (v < 0) { 6489 res = 0; 6490 float_raise( float_flag_invalid STATUS_VAR); 6491 } else if (v > 0xffffffff) { 6492 res = 0xffffffff; 6493 float_raise( float_flag_invalid STATUS_VAR); 6494 } else { 6495 res = v; 6496 } 6497 return res; 6498 } 6499 6500 uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM) 6501 { 6502 int64_t v; 6503 uint_fast16_t res; 6504 6505 v = float64_to_int64_round_to_zero(a STATUS_VAR); 6506 if (v < 0) { 6507 res = 0; 6508 float_raise( float_flag_invalid STATUS_VAR); 6509 } else if (v > 0xffff) { 6510 res = 0xffff; 6511 float_raise( float_flag_invalid STATUS_VAR); 6512 } else { 6513 res = v; 6514 } 6515 return res; 6516 } 6517 6518 /* FIXME: This looks broken. */ 6519 uint64_t float64_to_uint64 (float64 a STATUS_PARAM) 6520 { 6521 int64_t v; 6522 6523 v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); 6524 v += float64_val(a); 6525 v = float64_to_int64(make_float64(v) STATUS_VAR); 6526 6527 return v - INT64_MIN; 6528 } 6529 6530 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) 6531 { 6532 int64_t v; 6533 6534 v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); 6535 v += float64_val(a); 6536 v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR); 6537 6538 return v - INT64_MIN; 6539 } 6540 6541 #define COMPARE(s, nan_exp) \ 6542 INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \ 6543 int is_quiet STATUS_PARAM ) \ 6544 { \ 6545 flag aSign, bSign; \ 6546 uint ## s ## _t av, bv; \ 6547 a = float ## s ## _squash_input_denormal(a STATUS_VAR); \ 6548 b = float ## s ## _squash_input_denormal(b STATUS_VAR); \ 6549 \ 6550 if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ 6551 extractFloat ## s ## Frac( a ) ) || \ 6552 ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ 6553 extractFloat ## s ## Frac( b ) )) { \ 6554 if (!is_quiet || \ 6555 float ## s ## _is_signaling_nan( a ) || \ 6556 float ## s ## _is_signaling_nan( b ) ) { \ 6557 float_raise( float_flag_invalid STATUS_VAR); \ 6558 } \ 6559 return float_relation_unordered; \ 6560 } \ 6561 aSign = extractFloat ## s ## Sign( a ); \ 6562 bSign = extractFloat ## s ## Sign( b ); \ 6563 av = float ## s ## _val(a); \ 6564 bv = float ## s ## _val(b); \ 6565 if ( aSign != bSign ) { \ 6566 if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \ 6567 /* zero case */ \ 6568 return float_relation_equal; \ 6569 } else { \ 6570 return 1 - (2 * aSign); \ 6571 } \ 6572 } else { \ 6573 if (av == bv) { \ 6574 return float_relation_equal; \ 6575 } else { \ 6576 return 1 - 2 * (aSign ^ ( av < bv )); \ 6577 } \ 6578 } \ 6579 } \ 6580 \ 6581 int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \ 6582 { \ 6583 return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \ 6584 } \ 6585 \ 6586 int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \ 6587 { \ 6588 return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \ 6589 } 6590 6591 COMPARE(32, 0xff) 6592 COMPARE(64, 0x7ff) 6593 6594 INLINE int floatx80_compare_internal( floatx80 a, floatx80 b, 6595 int is_quiet STATUS_PARAM ) 6596 { 6597 flag aSign, bSign; 6598 6599 if (( ( extractFloatx80Exp( a ) == 0x7fff ) && 6600 ( extractFloatx80Frac( a )<<1 ) ) || 6601 ( ( extractFloatx80Exp( b ) == 0x7fff ) && 6602 ( extractFloatx80Frac( b )<<1 ) )) { 6603 if (!is_quiet || 6604 floatx80_is_signaling_nan( a ) || 6605 floatx80_is_signaling_nan( b ) ) { 6606 float_raise( float_flag_invalid STATUS_VAR); 6607 } 6608 return float_relation_unordered; 6609 } 6610 aSign = extractFloatx80Sign( a ); 6611 bSign = extractFloatx80Sign( b ); 6612 if ( aSign != bSign ) { 6613 6614 if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && 6615 ( ( a.low | b.low ) == 0 ) ) { 6616 /* zero case */ 6617 return float_relation_equal; 6618 } else { 6619 return 1 - (2 * aSign); 6620 } 6621 } else { 6622 if (a.low == b.low && a.high == b.high) { 6623 return float_relation_equal; 6624 } else { 6625 return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); 6626 } 6627 } 6628 } 6629 6630 int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM ) 6631 { 6632 return floatx80_compare_internal(a, b, 0 STATUS_VAR); 6633 } 6634 6635 int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM ) 6636 { 6637 return floatx80_compare_internal(a, b, 1 STATUS_VAR); 6638 } 6639 6640 INLINE int float128_compare_internal( float128 a, float128 b, 6641 int is_quiet STATUS_PARAM ) 6642 { 6643 flag aSign, bSign; 6644 6645 if (( ( extractFloat128Exp( a ) == 0x7fff ) && 6646 ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || 6647 ( ( extractFloat128Exp( b ) == 0x7fff ) && 6648 ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { 6649 if (!is_quiet || 6650 float128_is_signaling_nan( a ) || 6651 float128_is_signaling_nan( b ) ) { 6652 float_raise( float_flag_invalid STATUS_VAR); 6653 } 6654 return float_relation_unordered; 6655 } 6656 aSign = extractFloat128Sign( a ); 6657 bSign = extractFloat128Sign( b ); 6658 if ( aSign != bSign ) { 6659 if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { 6660 /* zero case */ 6661 return float_relation_equal; 6662 } else { 6663 return 1 - (2 * aSign); 6664 } 6665 } else { 6666 if (a.low == b.low && a.high == b.high) { 6667 return float_relation_equal; 6668 } else { 6669 return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); 6670 } 6671 } 6672 } 6673 6674 int float128_compare( float128 a, float128 b STATUS_PARAM ) 6675 { 6676 return float128_compare_internal(a, b, 0 STATUS_VAR); 6677 } 6678 6679 int float128_compare_quiet( float128 a, float128 b STATUS_PARAM ) 6680 { 6681 return float128_compare_internal(a, b, 1 STATUS_VAR); 6682 } 6683 6684 /* min() and max() functions. These can't be implemented as 6685 * 'compare and pick one input' because that would mishandle 6686 * NaNs and +0 vs -0. 6687 */ 6688 #define MINMAX(s, nan_exp) \ 6689 INLINE float ## s float ## s ## _minmax(float ## s a, float ## s b, \ 6690 int ismin STATUS_PARAM ) \ 6691 { \ 6692 flag aSign, bSign; \ 6693 uint ## s ## _t av, bv; \ 6694 a = float ## s ## _squash_input_denormal(a STATUS_VAR); \ 6695 b = float ## s ## _squash_input_denormal(b STATUS_VAR); \ 6696 if (float ## s ## _is_any_nan(a) || \ 6697 float ## s ## _is_any_nan(b)) { \ 6698 return propagateFloat ## s ## NaN(a, b STATUS_VAR); \ 6699 } \ 6700 aSign = extractFloat ## s ## Sign(a); \ 6701 bSign = extractFloat ## s ## Sign(b); \ 6702 av = float ## s ## _val(a); \ 6703 bv = float ## s ## _val(b); \ 6704 if (aSign != bSign) { \ 6705 if (ismin) { \ 6706 return aSign ? a : b; \ 6707 } else { \ 6708 return aSign ? b : a; \ 6709 } \ 6710 } else { \ 6711 if (ismin) { \ 6712 return (aSign ^ (av < bv)) ? a : b; \ 6713 } else { \ 6714 return (aSign ^ (av < bv)) ? b : a; \ 6715 } \ 6716 } \ 6717 } \ 6718 \ 6719 float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM) \ 6720 { \ 6721 return float ## s ## _minmax(a, b, 1 STATUS_VAR); \ 6722 } \ 6723 \ 6724 float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM) \ 6725 { \ 6726 return float ## s ## _minmax(a, b, 0 STATUS_VAR); \ 6727 } 6728 6729 MINMAX(32, 0xff) 6730 MINMAX(64, 0x7ff) 6731 6732 6733 /* Multiply A by 2 raised to the power N. */ 6734 float32 float32_scalbn( float32 a, int n STATUS_PARAM ) 6735 { 6736 flag aSign; 6737 int16_t aExp; 6738 uint32_t aSig; 6739 6740 a = float32_squash_input_denormal(a STATUS_VAR); 6741 aSig = extractFloat32Frac( a ); 6742 aExp = extractFloat32Exp( a ); 6743 aSign = extractFloat32Sign( a ); 6744 6745 if ( aExp == 0xFF ) { 6746 if ( aSig ) { 6747 return propagateFloat32NaN( a, a STATUS_VAR ); 6748 } 6749 return a; 6750 } 6751 if ( aExp != 0 ) 6752 aSig |= 0x00800000; 6753 else if ( aSig == 0 ) 6754 return a; 6755 6756 if (n > 0x200) { 6757 n = 0x200; 6758 } else if (n < -0x200) { 6759 n = -0x200; 6760 } 6761 6762 aExp += n - 1; 6763 aSig <<= 7; 6764 return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); 6765 } 6766 6767 float64 float64_scalbn( float64 a, int n STATUS_PARAM ) 6768 { 6769 flag aSign; 6770 int16_t aExp; 6771 uint64_t aSig; 6772 6773 a = float64_squash_input_denormal(a STATUS_VAR); 6774 aSig = extractFloat64Frac( a ); 6775 aExp = extractFloat64Exp( a ); 6776 aSign = extractFloat64Sign( a ); 6777 6778 if ( aExp == 0x7FF ) { 6779 if ( aSig ) { 6780 return propagateFloat64NaN( a, a STATUS_VAR ); 6781 } 6782 return a; 6783 } 6784 if ( aExp != 0 ) 6785 aSig |= LIT64( 0x0010000000000000 ); 6786 else if ( aSig == 0 ) 6787 return a; 6788 6789 if (n > 0x1000) { 6790 n = 0x1000; 6791 } else if (n < -0x1000) { 6792 n = -0x1000; 6793 } 6794 6795 aExp += n - 1; 6796 aSig <<= 10; 6797 return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR ); 6798 } 6799 6800 floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM ) 6801 { 6802 flag aSign; 6803 int32_t aExp; 6804 uint64_t aSig; 6805 6806 aSig = extractFloatx80Frac( a ); 6807 aExp = extractFloatx80Exp( a ); 6808 aSign = extractFloatx80Sign( a ); 6809 6810 if ( aExp == 0x7FFF ) { 6811 if ( aSig<<1 ) { 6812 return propagateFloatx80NaN( a, a STATUS_VAR ); 6813 } 6814 return a; 6815 } 6816 6817 if (aExp == 0 && aSig == 0) 6818 return a; 6819 6820 if (n > 0x10000) { 6821 n = 0x10000; 6822 } else if (n < -0x10000) { 6823 n = -0x10000; 6824 } 6825 6826 aExp += n; 6827 return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision), 6828 aSign, aExp, aSig, 0 STATUS_VAR ); 6829 } 6830 6831 float128 float128_scalbn( float128 a, int n STATUS_PARAM ) 6832 { 6833 flag aSign; 6834 int32_t aExp; 6835 uint64_t aSig0, aSig1; 6836 6837 aSig1 = extractFloat128Frac1( a ); 6838 aSig0 = extractFloat128Frac0( a ); 6839 aExp = extractFloat128Exp( a ); 6840 aSign = extractFloat128Sign( a ); 6841 if ( aExp == 0x7FFF ) { 6842 if ( aSig0 | aSig1 ) { 6843 return propagateFloat128NaN( a, a STATUS_VAR ); 6844 } 6845 return a; 6846 } 6847 if ( aExp != 0 ) 6848 aSig0 |= LIT64( 0x0001000000000000 ); 6849 else if ( aSig0 == 0 && aSig1 == 0 ) 6850 return a; 6851 6852 if (n > 0x10000) { 6853 n = 0x10000; 6854 } else if (n < -0x10000) { 6855 n = -0x10000; 6856 } 6857 6858 aExp += n - 1; 6859 return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 6860 STATUS_VAR ); 6861 6862 } 6863