1 /* 2 * QEMU float support 3 * 4 * The code in this source file is derived from release 2a of the SoftFloat 5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and 6 * some later contributions) are provided under that license, as detailed below. 7 * It has subsequently been modified by contributors to the QEMU Project, 8 * so some portions are provided under: 9 * the SoftFloat-2a license 10 * the BSD license 11 * GPL-v2-or-later 12 * 13 * Any future contributions to this file after December 1st 2014 will be 14 * taken to be licensed under the Softfloat-2a license unless specifically 15 * indicated otherwise. 16 */ 17 18 /* 19 =============================================================================== 20 This C source file is part of the SoftFloat IEC/IEEE Floating-point 21 Arithmetic Package, Release 2a. 22 23 Written by John R. Hauser. This work was made possible in part by the 24 International Computer Science Institute, located at Suite 600, 1947 Center 25 Street, Berkeley, California 94704. Funding was partially provided by the 26 National Science Foundation under grant MIP-9311980. The original version 27 of this code was written as part of a project to build a fixed-point vector 28 processor in collaboration with the University of California at Berkeley, 29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 31 arithmetic/SoftFloat.html'. 32 33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 38 39 Derivative works are acceptable, even for commercial purposes, so long as 40 (1) they include prominent notice that the work is derivative, and (2) they 41 include prominent notice akin to these four paragraphs for those parts of 42 this code that are retained. 43 44 =============================================================================== 45 */ 46 47 /* BSD licensing: 48 * Copyright (c) 2006, Fabrice Bellard 49 * All rights reserved. 50 * 51 * Redistribution and use in source and binary forms, with or without 52 * modification, are permitted provided that the following conditions are met: 53 * 54 * 1. Redistributions of source code must retain the above copyright notice, 55 * this list of conditions and the following disclaimer. 56 * 57 * 2. Redistributions in binary form must reproduce the above copyright notice, 58 * this list of conditions and the following disclaimer in the documentation 59 * and/or other materials provided with the distribution. 60 * 61 * 3. Neither the name of the copyright holder nor the names of its contributors 62 * may be used to endorse or promote products derived from this software without 63 * specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 75 * THE POSSIBILITY OF SUCH DAMAGE. 76 */ 77 78 /* Portions of this work are licensed under the terms of the GNU GPL, 79 * version 2 or later. See the COPYING file in the top-level directory. 80 */ 81 82 /* softfloat (and in particular the code in softfloat-specialize.h) is 83 * target-dependent and needs the TARGET_* macros. 84 */ 85 #include "qemu/osdep.h" 86 #include <math.h> 87 #include "qemu/bitops.h" 88 #include "fpu/softfloat.h" 89 90 /* We only need stdlib for abort() */ 91 92 /*---------------------------------------------------------------------------- 93 | Primitive arithmetic functions, including multi-word arithmetic, and 94 | division and square root approximations. (Can be specialized to target if 95 | desired.) 96 *----------------------------------------------------------------------------*/ 97 #include "fpu/softfloat-macros.h" 98 99 /* 100 * Hardfloat 101 * 102 * Fast emulation of guest FP instructions is challenging for two reasons. 103 * First, FP instruction semantics are similar but not identical, particularly 104 * when handling NaNs. Second, emulating at reasonable speed the guest FP 105 * exception flags is not trivial: reading the host's flags register with a 106 * feclearexcept & fetestexcept pair is slow [slightly slower than soft-fp], 107 * and trapping on every FP exception is not fast nor pleasant to work with. 108 * 109 * We address these challenges by leveraging the host FPU for a subset of the 110 * operations. To do this we expand on the idea presented in this paper: 111 * 112 * Guo, Yu-Chuan, et al. "Translating the ARM Neon and VFP instructions in a 113 * binary translator." Software: Practice and Experience 46.12 (2016):1591-1615. 114 * 115 * The idea is thus to leverage the host FPU to (1) compute FP operations 116 * and (2) identify whether FP exceptions occurred while avoiding 117 * expensive exception flag register accesses. 118 * 119 * An important optimization shown in the paper is that given that exception 120 * flags are rarely cleared by the guest, we can avoid recomputing some flags. 121 * This is particularly useful for the inexact flag, which is very frequently 122 * raised in floating-point workloads. 123 * 124 * We optimize the code further by deferring to soft-fp whenever FP exception 125 * detection might get hairy. Two examples: (1) when at least one operand is 126 * denormal/inf/NaN; (2) when operands are not guaranteed to lead to a 0 result 127 * and the result is < the minimum normal. 128 */ 129 #define GEN_INPUT_FLUSH__NOCHECK(name, soft_t) \ 130 static inline void name(soft_t *a, float_status *s) \ 131 { \ 132 if (unlikely(soft_t ## _is_denormal(*a))) { \ 133 *a = soft_t ## _set_sign(soft_t ## _zero, \ 134 soft_t ## _is_neg(*a)); \ 135 s->float_exception_flags |= float_flag_input_denormal; \ 136 } \ 137 } 138 139 GEN_INPUT_FLUSH__NOCHECK(float32_input_flush__nocheck, float32) 140 GEN_INPUT_FLUSH__NOCHECK(float64_input_flush__nocheck, float64) 141 #undef GEN_INPUT_FLUSH__NOCHECK 142 143 #define GEN_INPUT_FLUSH1(name, soft_t) \ 144 static inline void name(soft_t *a, float_status *s) \ 145 { \ 146 if (likely(!s->flush_inputs_to_zero)) { \ 147 return; \ 148 } \ 149 soft_t ## _input_flush__nocheck(a, s); \ 150 } 151 152 GEN_INPUT_FLUSH1(float32_input_flush1, float32) 153 GEN_INPUT_FLUSH1(float64_input_flush1, float64) 154 #undef GEN_INPUT_FLUSH1 155 156 #define GEN_INPUT_FLUSH2(name, soft_t) \ 157 static inline void name(soft_t *a, soft_t *b, float_status *s) \ 158 { \ 159 if (likely(!s->flush_inputs_to_zero)) { \ 160 return; \ 161 } \ 162 soft_t ## _input_flush__nocheck(a, s); \ 163 soft_t ## _input_flush__nocheck(b, s); \ 164 } 165 166 GEN_INPUT_FLUSH2(float32_input_flush2, float32) 167 GEN_INPUT_FLUSH2(float64_input_flush2, float64) 168 #undef GEN_INPUT_FLUSH2 169 170 #define GEN_INPUT_FLUSH3(name, soft_t) \ 171 static inline void name(soft_t *a, soft_t *b, soft_t *c, float_status *s) \ 172 { \ 173 if (likely(!s->flush_inputs_to_zero)) { \ 174 return; \ 175 } \ 176 soft_t ## _input_flush__nocheck(a, s); \ 177 soft_t ## _input_flush__nocheck(b, s); \ 178 soft_t ## _input_flush__nocheck(c, s); \ 179 } 180 181 GEN_INPUT_FLUSH3(float32_input_flush3, float32) 182 GEN_INPUT_FLUSH3(float64_input_flush3, float64) 183 #undef GEN_INPUT_FLUSH3 184 185 /* 186 * Choose whether to use fpclassify or float32/64_* primitives in the generated 187 * hardfloat functions. Each combination of number of inputs and float size 188 * gets its own value. 189 */ 190 #if defined(__x86_64__) 191 # define QEMU_HARDFLOAT_1F32_USE_FP 0 192 # define QEMU_HARDFLOAT_1F64_USE_FP 1 193 # define QEMU_HARDFLOAT_2F32_USE_FP 0 194 # define QEMU_HARDFLOAT_2F64_USE_FP 1 195 # define QEMU_HARDFLOAT_3F32_USE_FP 0 196 # define QEMU_HARDFLOAT_3F64_USE_FP 1 197 #else 198 # define QEMU_HARDFLOAT_1F32_USE_FP 0 199 # define QEMU_HARDFLOAT_1F64_USE_FP 0 200 # define QEMU_HARDFLOAT_2F32_USE_FP 0 201 # define QEMU_HARDFLOAT_2F64_USE_FP 0 202 # define QEMU_HARDFLOAT_3F32_USE_FP 0 203 # define QEMU_HARDFLOAT_3F64_USE_FP 0 204 #endif 205 206 /* 207 * QEMU_HARDFLOAT_USE_ISINF chooses whether to use isinf() over 208 * float{32,64}_is_infinity when !USE_FP. 209 * On x86_64/aarch64, using the former over the latter can yield a ~6% speedup. 210 * On power64 however, using isinf() reduces fp-bench performance by up to 50%. 211 */ 212 #if defined(__x86_64__) || defined(__aarch64__) 213 # define QEMU_HARDFLOAT_USE_ISINF 1 214 #else 215 # define QEMU_HARDFLOAT_USE_ISINF 0 216 #endif 217 218 /* 219 * Some targets clear the FP flags before most FP operations. This prevents 220 * the use of hardfloat, since hardfloat relies on the inexact flag being 221 * already set. 222 */ 223 #if defined(TARGET_PPC) || defined(__FAST_MATH__) 224 # if defined(__FAST_MATH__) 225 # warning disabling hardfloat due to -ffast-math: hardfloat requires an exact \ 226 IEEE implementation 227 # endif 228 # define QEMU_NO_HARDFLOAT 1 229 # define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN 230 #else 231 # define QEMU_NO_HARDFLOAT 0 232 # define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN __attribute__((noinline)) 233 #endif 234 235 static inline bool can_use_fpu(const float_status *s) 236 { 237 if (QEMU_NO_HARDFLOAT) { 238 return false; 239 } 240 return likely(s->float_exception_flags & float_flag_inexact && 241 s->float_rounding_mode == float_round_nearest_even); 242 } 243 244 /* 245 * Hardfloat generation functions. Each operation can have two flavors: 246 * either using softfloat primitives (e.g. float32_is_zero_or_normal) for 247 * most condition checks, or native ones (e.g. fpclassify). 248 * 249 * The flavor is chosen by the callers. Instead of using macros, we rely on the 250 * compiler to propagate constants and inline everything into the callers. 251 * 252 * We only generate functions for operations with two inputs, since only 253 * these are common enough to justify consolidating them into common code. 254 */ 255 256 typedef union { 257 float32 s; 258 float h; 259 } union_float32; 260 261 typedef union { 262 float64 s; 263 double h; 264 } union_float64; 265 266 typedef bool (*f32_check_fn)(union_float32 a, union_float32 b); 267 typedef bool (*f64_check_fn)(union_float64 a, union_float64 b); 268 269 typedef float32 (*soft_f32_op2_fn)(float32 a, float32 b, float_status *s); 270 typedef float64 (*soft_f64_op2_fn)(float64 a, float64 b, float_status *s); 271 typedef float (*hard_f32_op2_fn)(float a, float b); 272 typedef double (*hard_f64_op2_fn)(double a, double b); 273 274 /* 2-input is-zero-or-normal */ 275 static inline bool f32_is_zon2(union_float32 a, union_float32 b) 276 { 277 if (QEMU_HARDFLOAT_2F32_USE_FP) { 278 /* 279 * Not using a temp variable for consecutive fpclassify calls ends up 280 * generating faster code. 281 */ 282 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && 283 (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO); 284 } 285 return float32_is_zero_or_normal(a.s) && 286 float32_is_zero_or_normal(b.s); 287 } 288 289 static inline bool f64_is_zon2(union_float64 a, union_float64 b) 290 { 291 if (QEMU_HARDFLOAT_2F64_USE_FP) { 292 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && 293 (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO); 294 } 295 return float64_is_zero_or_normal(a.s) && 296 float64_is_zero_or_normal(b.s); 297 } 298 299 /* 3-input is-zero-or-normal */ 300 static inline 301 bool f32_is_zon3(union_float32 a, union_float32 b, union_float32 c) 302 { 303 if (QEMU_HARDFLOAT_3F32_USE_FP) { 304 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && 305 (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) && 306 (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO); 307 } 308 return float32_is_zero_or_normal(a.s) && 309 float32_is_zero_or_normal(b.s) && 310 float32_is_zero_or_normal(c.s); 311 } 312 313 static inline 314 bool f64_is_zon3(union_float64 a, union_float64 b, union_float64 c) 315 { 316 if (QEMU_HARDFLOAT_3F64_USE_FP) { 317 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && 318 (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) && 319 (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO); 320 } 321 return float64_is_zero_or_normal(a.s) && 322 float64_is_zero_or_normal(b.s) && 323 float64_is_zero_or_normal(c.s); 324 } 325 326 static inline bool f32_is_inf(union_float32 a) 327 { 328 if (QEMU_HARDFLOAT_USE_ISINF) { 329 return isinf(a.h); 330 } 331 return float32_is_infinity(a.s); 332 } 333 334 static inline bool f64_is_inf(union_float64 a) 335 { 336 if (QEMU_HARDFLOAT_USE_ISINF) { 337 return isinf(a.h); 338 } 339 return float64_is_infinity(a.s); 340 } 341 342 /* Note: @fast_test and @post can be NULL */ 343 static inline float32 344 float32_gen2(float32 xa, float32 xb, float_status *s, 345 hard_f32_op2_fn hard, soft_f32_op2_fn soft, 346 f32_check_fn pre, f32_check_fn post, 347 f32_check_fn fast_test, soft_f32_op2_fn fast_op) 348 { 349 union_float32 ua, ub, ur; 350 351 ua.s = xa; 352 ub.s = xb; 353 354 if (unlikely(!can_use_fpu(s))) { 355 goto soft; 356 } 357 358 float32_input_flush2(&ua.s, &ub.s, s); 359 if (unlikely(!pre(ua, ub))) { 360 goto soft; 361 } 362 if (fast_test && fast_test(ua, ub)) { 363 return fast_op(ua.s, ub.s, s); 364 } 365 366 ur.h = hard(ua.h, ub.h); 367 if (unlikely(f32_is_inf(ur))) { 368 s->float_exception_flags |= float_flag_overflow; 369 } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) { 370 if (post == NULL || post(ua, ub)) { 371 goto soft; 372 } 373 } 374 return ur.s; 375 376 soft: 377 return soft(ua.s, ub.s, s); 378 } 379 380 static inline float64 381 float64_gen2(float64 xa, float64 xb, float_status *s, 382 hard_f64_op2_fn hard, soft_f64_op2_fn soft, 383 f64_check_fn pre, f64_check_fn post, 384 f64_check_fn fast_test, soft_f64_op2_fn fast_op) 385 { 386 union_float64 ua, ub, ur; 387 388 ua.s = xa; 389 ub.s = xb; 390 391 if (unlikely(!can_use_fpu(s))) { 392 goto soft; 393 } 394 395 float64_input_flush2(&ua.s, &ub.s, s); 396 if (unlikely(!pre(ua, ub))) { 397 goto soft; 398 } 399 if (fast_test && fast_test(ua, ub)) { 400 return fast_op(ua.s, ub.s, s); 401 } 402 403 ur.h = hard(ua.h, ub.h); 404 if (unlikely(f64_is_inf(ur))) { 405 s->float_exception_flags |= float_flag_overflow; 406 } else if (unlikely(fabs(ur.h) <= DBL_MIN)) { 407 if (post == NULL || post(ua, ub)) { 408 goto soft; 409 } 410 } 411 return ur.s; 412 413 soft: 414 return soft(ua.s, ub.s, s); 415 } 416 417 /*---------------------------------------------------------------------------- 418 | Returns the fraction bits of the single-precision floating-point value `a'. 419 *----------------------------------------------------------------------------*/ 420 421 static inline uint32_t extractFloat32Frac(float32 a) 422 { 423 return float32_val(a) & 0x007FFFFF; 424 } 425 426 /*---------------------------------------------------------------------------- 427 | Returns the exponent bits of the single-precision floating-point value `a'. 428 *----------------------------------------------------------------------------*/ 429 430 static inline int extractFloat32Exp(float32 a) 431 { 432 return (float32_val(a) >> 23) & 0xFF; 433 } 434 435 /*---------------------------------------------------------------------------- 436 | Returns the sign bit of the single-precision floating-point value `a'. 437 *----------------------------------------------------------------------------*/ 438 439 static inline flag extractFloat32Sign(float32 a) 440 { 441 return float32_val(a) >> 31; 442 } 443 444 /*---------------------------------------------------------------------------- 445 | Returns the fraction bits of the double-precision floating-point value `a'. 446 *----------------------------------------------------------------------------*/ 447 448 static inline uint64_t extractFloat64Frac(float64 a) 449 { 450 return float64_val(a) & UINT64_C(0x000FFFFFFFFFFFFF); 451 } 452 453 /*---------------------------------------------------------------------------- 454 | Returns the exponent bits of the double-precision floating-point value `a'. 455 *----------------------------------------------------------------------------*/ 456 457 static inline int extractFloat64Exp(float64 a) 458 { 459 return (float64_val(a) >> 52) & 0x7FF; 460 } 461 462 /*---------------------------------------------------------------------------- 463 | Returns the sign bit of the double-precision floating-point value `a'. 464 *----------------------------------------------------------------------------*/ 465 466 static inline flag extractFloat64Sign(float64 a) 467 { 468 return float64_val(a) >> 63; 469 } 470 471 /* 472 * Classify a floating point number. Everything above float_class_qnan 473 * is a NaN so cls >= float_class_qnan is any NaN. 474 */ 475 476 typedef enum __attribute__ ((__packed__)) { 477 float_class_unclassified, 478 float_class_zero, 479 float_class_normal, 480 float_class_inf, 481 float_class_qnan, /* all NaNs from here */ 482 float_class_snan, 483 } FloatClass; 484 485 /* Simple helpers for checking if, or what kind of, NaN we have */ 486 static inline __attribute__((unused)) bool is_nan(FloatClass c) 487 { 488 return unlikely(c >= float_class_qnan); 489 } 490 491 static inline __attribute__((unused)) bool is_snan(FloatClass c) 492 { 493 return c == float_class_snan; 494 } 495 496 static inline __attribute__((unused)) bool is_qnan(FloatClass c) 497 { 498 return c == float_class_qnan; 499 } 500 501 /* 502 * Structure holding all of the decomposed parts of a float. The 503 * exponent is unbiased and the fraction is normalized. All 504 * calculations are done with a 64 bit fraction and then rounded as 505 * appropriate for the final format. 506 * 507 * Thanks to the packed FloatClass a decent compiler should be able to 508 * fit the whole structure into registers and avoid using the stack 509 * for parameter passing. 510 */ 511 512 typedef struct { 513 uint64_t frac; 514 int32_t exp; 515 FloatClass cls; 516 bool sign; 517 } FloatParts; 518 519 #define DECOMPOSED_BINARY_POINT (64 - 2) 520 #define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT) 521 #define DECOMPOSED_OVERFLOW_BIT (DECOMPOSED_IMPLICIT_BIT << 1) 522 523 /* Structure holding all of the relevant parameters for a format. 524 * exp_size: the size of the exponent field 525 * exp_bias: the offset applied to the exponent field 526 * exp_max: the maximum normalised exponent 527 * frac_size: the size of the fraction field 528 * frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT 529 * The following are computed based the size of fraction 530 * frac_lsb: least significant bit of fraction 531 * frac_lsbm1: the bit below the least significant bit (for rounding) 532 * round_mask/roundeven_mask: masks used for rounding 533 * The following optional modifiers are available: 534 * arm_althp: handle ARM Alternative Half Precision 535 */ 536 typedef struct { 537 int exp_size; 538 int exp_bias; 539 int exp_max; 540 int frac_size; 541 int frac_shift; 542 uint64_t frac_lsb; 543 uint64_t frac_lsbm1; 544 uint64_t round_mask; 545 uint64_t roundeven_mask; 546 bool arm_althp; 547 } FloatFmt; 548 549 /* Expand fields based on the size of exponent and fraction */ 550 #define FLOAT_PARAMS(E, F) \ 551 .exp_size = E, \ 552 .exp_bias = ((1 << E) - 1) >> 1, \ 553 .exp_max = (1 << E) - 1, \ 554 .frac_size = F, \ 555 .frac_shift = DECOMPOSED_BINARY_POINT - F, \ 556 .frac_lsb = 1ull << (DECOMPOSED_BINARY_POINT - F), \ 557 .frac_lsbm1 = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1), \ 558 .round_mask = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1, \ 559 .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1 560 561 static const FloatFmt float16_params = { 562 FLOAT_PARAMS(5, 10) 563 }; 564 565 static const FloatFmt float16_params_ahp = { 566 FLOAT_PARAMS(5, 10), 567 .arm_althp = true 568 }; 569 570 static const FloatFmt float32_params = { 571 FLOAT_PARAMS(8, 23) 572 }; 573 574 static const FloatFmt float64_params = { 575 FLOAT_PARAMS(11, 52) 576 }; 577 578 /* Unpack a float to parts, but do not canonicalize. */ 579 static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw) 580 { 581 const int sign_pos = fmt.frac_size + fmt.exp_size; 582 583 return (FloatParts) { 584 .cls = float_class_unclassified, 585 .sign = extract64(raw, sign_pos, 1), 586 .exp = extract64(raw, fmt.frac_size, fmt.exp_size), 587 .frac = extract64(raw, 0, fmt.frac_size), 588 }; 589 } 590 591 static inline FloatParts float16_unpack_raw(float16 f) 592 { 593 return unpack_raw(float16_params, f); 594 } 595 596 static inline FloatParts float32_unpack_raw(float32 f) 597 { 598 return unpack_raw(float32_params, f); 599 } 600 601 static inline FloatParts float64_unpack_raw(float64 f) 602 { 603 return unpack_raw(float64_params, f); 604 } 605 606 /* Pack a float from parts, but do not canonicalize. */ 607 static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p) 608 { 609 const int sign_pos = fmt.frac_size + fmt.exp_size; 610 uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp); 611 return deposit64(ret, sign_pos, 1, p.sign); 612 } 613 614 static inline float16 float16_pack_raw(FloatParts p) 615 { 616 return make_float16(pack_raw(float16_params, p)); 617 } 618 619 static inline float32 float32_pack_raw(FloatParts p) 620 { 621 return make_float32(pack_raw(float32_params, p)); 622 } 623 624 static inline float64 float64_pack_raw(FloatParts p) 625 { 626 return make_float64(pack_raw(float64_params, p)); 627 } 628 629 /*---------------------------------------------------------------------------- 630 | Functions and definitions to determine: (1) whether tininess for underflow 631 | is detected before or after rounding by default, (2) what (if anything) 632 | happens when exceptions are raised, (3) how signaling NaNs are distinguished 633 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs 634 | are propagated from function inputs to output. These details are target- 635 | specific. 636 *----------------------------------------------------------------------------*/ 637 #include "softfloat-specialize.inc.c" 638 639 /* Canonicalize EXP and FRAC, setting CLS. */ 640 static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm, 641 float_status *status) 642 { 643 if (part.exp == parm->exp_max && !parm->arm_althp) { 644 if (part.frac == 0) { 645 part.cls = float_class_inf; 646 } else { 647 part.frac <<= parm->frac_shift; 648 part.cls = (parts_is_snan_frac(part.frac, status) 649 ? float_class_snan : float_class_qnan); 650 } 651 } else if (part.exp == 0) { 652 if (likely(part.frac == 0)) { 653 part.cls = float_class_zero; 654 } else if (status->flush_inputs_to_zero) { 655 float_raise(float_flag_input_denormal, status); 656 part.cls = float_class_zero; 657 part.frac = 0; 658 } else { 659 int shift = clz64(part.frac) - 1; 660 part.cls = float_class_normal; 661 part.exp = parm->frac_shift - parm->exp_bias - shift + 1; 662 part.frac <<= shift; 663 } 664 } else { 665 part.cls = float_class_normal; 666 part.exp -= parm->exp_bias; 667 part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift); 668 } 669 return part; 670 } 671 672 /* Round and uncanonicalize a floating-point number by parts. There 673 * are FRAC_SHIFT bits that may require rounding at the bottom of the 674 * fraction; these bits will be removed. The exponent will be biased 675 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. 676 */ 677 678 static FloatParts round_canonical(FloatParts p, float_status *s, 679 const FloatFmt *parm) 680 { 681 const uint64_t frac_lsb = parm->frac_lsb; 682 const uint64_t frac_lsbm1 = parm->frac_lsbm1; 683 const uint64_t round_mask = parm->round_mask; 684 const uint64_t roundeven_mask = parm->roundeven_mask; 685 const int exp_max = parm->exp_max; 686 const int frac_shift = parm->frac_shift; 687 uint64_t frac, inc; 688 int exp, flags = 0; 689 bool overflow_norm; 690 691 frac = p.frac; 692 exp = p.exp; 693 694 switch (p.cls) { 695 case float_class_normal: 696 switch (s->float_rounding_mode) { 697 case float_round_nearest_even: 698 overflow_norm = false; 699 inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); 700 break; 701 case float_round_ties_away: 702 overflow_norm = false; 703 inc = frac_lsbm1; 704 break; 705 case float_round_to_zero: 706 overflow_norm = true; 707 inc = 0; 708 break; 709 case float_round_up: 710 inc = p.sign ? 0 : round_mask; 711 overflow_norm = p.sign; 712 break; 713 case float_round_down: 714 inc = p.sign ? round_mask : 0; 715 overflow_norm = !p.sign; 716 break; 717 case float_round_to_odd: 718 overflow_norm = true; 719 inc = frac & frac_lsb ? 0 : round_mask; 720 break; 721 default: 722 g_assert_not_reached(); 723 } 724 725 exp += parm->exp_bias; 726 if (likely(exp > 0)) { 727 if (frac & round_mask) { 728 flags |= float_flag_inexact; 729 frac += inc; 730 if (frac & DECOMPOSED_OVERFLOW_BIT) { 731 frac >>= 1; 732 exp++; 733 } 734 } 735 frac >>= frac_shift; 736 737 if (parm->arm_althp) { 738 /* ARM Alt HP eschews Inf and NaN for a wider exponent. */ 739 if (unlikely(exp > exp_max)) { 740 /* Overflow. Return the maximum normal. */ 741 flags = float_flag_invalid; 742 exp = exp_max; 743 frac = -1; 744 } 745 } else if (unlikely(exp >= exp_max)) { 746 flags |= float_flag_overflow | float_flag_inexact; 747 if (overflow_norm) { 748 exp = exp_max - 1; 749 frac = -1; 750 } else { 751 p.cls = float_class_inf; 752 goto do_inf; 753 } 754 } 755 } else if (s->flush_to_zero) { 756 flags |= float_flag_output_denormal; 757 p.cls = float_class_zero; 758 goto do_zero; 759 } else { 760 bool is_tiny = (s->float_detect_tininess 761 == float_tininess_before_rounding) 762 || (exp < 0) 763 || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT); 764 765 shift64RightJamming(frac, 1 - exp, &frac); 766 if (frac & round_mask) { 767 /* Need to recompute round-to-even. */ 768 switch (s->float_rounding_mode) { 769 case float_round_nearest_even: 770 inc = ((frac & roundeven_mask) != frac_lsbm1 771 ? frac_lsbm1 : 0); 772 break; 773 case float_round_to_odd: 774 inc = frac & frac_lsb ? 0 : round_mask; 775 break; 776 } 777 flags |= float_flag_inexact; 778 frac += inc; 779 } 780 781 exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0); 782 frac >>= frac_shift; 783 784 if (is_tiny && (flags & float_flag_inexact)) { 785 flags |= float_flag_underflow; 786 } 787 if (exp == 0 && frac == 0) { 788 p.cls = float_class_zero; 789 } 790 } 791 break; 792 793 case float_class_zero: 794 do_zero: 795 exp = 0; 796 frac = 0; 797 break; 798 799 case float_class_inf: 800 do_inf: 801 assert(!parm->arm_althp); 802 exp = exp_max; 803 frac = 0; 804 break; 805 806 case float_class_qnan: 807 case float_class_snan: 808 assert(!parm->arm_althp); 809 exp = exp_max; 810 frac >>= parm->frac_shift; 811 break; 812 813 default: 814 g_assert_not_reached(); 815 } 816 817 float_raise(flags, s); 818 p.exp = exp; 819 p.frac = frac; 820 return p; 821 } 822 823 /* Explicit FloatFmt version */ 824 static FloatParts float16a_unpack_canonical(float16 f, float_status *s, 825 const FloatFmt *params) 826 { 827 return sf_canonicalize(float16_unpack_raw(f), params, s); 828 } 829 830 static FloatParts float16_unpack_canonical(float16 f, float_status *s) 831 { 832 return float16a_unpack_canonical(f, s, &float16_params); 833 } 834 835 static float16 float16a_round_pack_canonical(FloatParts p, float_status *s, 836 const FloatFmt *params) 837 { 838 return float16_pack_raw(round_canonical(p, s, params)); 839 } 840 841 static float16 float16_round_pack_canonical(FloatParts p, float_status *s) 842 { 843 return float16a_round_pack_canonical(p, s, &float16_params); 844 } 845 846 static FloatParts float32_unpack_canonical(float32 f, float_status *s) 847 { 848 return sf_canonicalize(float32_unpack_raw(f), &float32_params, s); 849 } 850 851 static float32 float32_round_pack_canonical(FloatParts p, float_status *s) 852 { 853 return float32_pack_raw(round_canonical(p, s, &float32_params)); 854 } 855 856 static FloatParts float64_unpack_canonical(float64 f, float_status *s) 857 { 858 return sf_canonicalize(float64_unpack_raw(f), &float64_params, s); 859 } 860 861 static float64 float64_round_pack_canonical(FloatParts p, float_status *s) 862 { 863 return float64_pack_raw(round_canonical(p, s, &float64_params)); 864 } 865 866 static FloatParts return_nan(FloatParts a, float_status *s) 867 { 868 switch (a.cls) { 869 case float_class_snan: 870 s->float_exception_flags |= float_flag_invalid; 871 a = parts_silence_nan(a, s); 872 /* fall through */ 873 case float_class_qnan: 874 if (s->default_nan_mode) { 875 return parts_default_nan(s); 876 } 877 break; 878 879 default: 880 g_assert_not_reached(); 881 } 882 return a; 883 } 884 885 static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s) 886 { 887 if (is_snan(a.cls) || is_snan(b.cls)) { 888 s->float_exception_flags |= float_flag_invalid; 889 } 890 891 if (s->default_nan_mode) { 892 return parts_default_nan(s); 893 } else { 894 if (pickNaN(a.cls, b.cls, 895 a.frac > b.frac || 896 (a.frac == b.frac && a.sign < b.sign))) { 897 a = b; 898 } 899 if (is_snan(a.cls)) { 900 return parts_silence_nan(a, s); 901 } 902 } 903 return a; 904 } 905 906 static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c, 907 bool inf_zero, float_status *s) 908 { 909 int which; 910 911 if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) { 912 s->float_exception_flags |= float_flag_invalid; 913 } 914 915 which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s); 916 917 if (s->default_nan_mode) { 918 /* Note that this check is after pickNaNMulAdd so that function 919 * has an opportunity to set the Invalid flag. 920 */ 921 which = 3; 922 } 923 924 switch (which) { 925 case 0: 926 break; 927 case 1: 928 a = b; 929 break; 930 case 2: 931 a = c; 932 break; 933 case 3: 934 return parts_default_nan(s); 935 default: 936 g_assert_not_reached(); 937 } 938 939 if (is_snan(a.cls)) { 940 return parts_silence_nan(a, s); 941 } 942 return a; 943 } 944 945 /* 946 * Returns the result of adding or subtracting the values of the 947 * floating-point values `a' and `b'. The operation is performed 948 * according to the IEC/IEEE Standard for Binary Floating-Point 949 * Arithmetic. 950 */ 951 952 static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract, 953 float_status *s) 954 { 955 bool a_sign = a.sign; 956 bool b_sign = b.sign ^ subtract; 957 958 if (a_sign != b_sign) { 959 /* Subtraction */ 960 961 if (a.cls == float_class_normal && b.cls == float_class_normal) { 962 if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) { 963 shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); 964 a.frac = a.frac - b.frac; 965 } else { 966 shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); 967 a.frac = b.frac - a.frac; 968 a.exp = b.exp; 969 a_sign ^= 1; 970 } 971 972 if (a.frac == 0) { 973 a.cls = float_class_zero; 974 a.sign = s->float_rounding_mode == float_round_down; 975 } else { 976 int shift = clz64(a.frac) - 1; 977 a.frac = a.frac << shift; 978 a.exp = a.exp - shift; 979 a.sign = a_sign; 980 } 981 return a; 982 } 983 if (is_nan(a.cls) || is_nan(b.cls)) { 984 return pick_nan(a, b, s); 985 } 986 if (a.cls == float_class_inf) { 987 if (b.cls == float_class_inf) { 988 float_raise(float_flag_invalid, s); 989 return parts_default_nan(s); 990 } 991 return a; 992 } 993 if (a.cls == float_class_zero && b.cls == float_class_zero) { 994 a.sign = s->float_rounding_mode == float_round_down; 995 return a; 996 } 997 if (a.cls == float_class_zero || b.cls == float_class_inf) { 998 b.sign = a_sign ^ 1; 999 return b; 1000 } 1001 if (b.cls == float_class_zero) { 1002 return a; 1003 } 1004 } else { 1005 /* Addition */ 1006 if (a.cls == float_class_normal && b.cls == float_class_normal) { 1007 if (a.exp > b.exp) { 1008 shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); 1009 } else if (a.exp < b.exp) { 1010 shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); 1011 a.exp = b.exp; 1012 } 1013 a.frac += b.frac; 1014 if (a.frac & DECOMPOSED_OVERFLOW_BIT) { 1015 shift64RightJamming(a.frac, 1, &a.frac); 1016 a.exp += 1; 1017 } 1018 return a; 1019 } 1020 if (is_nan(a.cls) || is_nan(b.cls)) { 1021 return pick_nan(a, b, s); 1022 } 1023 if (a.cls == float_class_inf || b.cls == float_class_zero) { 1024 return a; 1025 } 1026 if (b.cls == float_class_inf || a.cls == float_class_zero) { 1027 b.sign = b_sign; 1028 return b; 1029 } 1030 } 1031 g_assert_not_reached(); 1032 } 1033 1034 /* 1035 * Returns the result of adding or subtracting the floating-point 1036 * values `a' and `b'. The operation is performed according to the 1037 * IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1038 */ 1039 1040 float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status) 1041 { 1042 FloatParts pa = float16_unpack_canonical(a, status); 1043 FloatParts pb = float16_unpack_canonical(b, status); 1044 FloatParts pr = addsub_floats(pa, pb, false, status); 1045 1046 return float16_round_pack_canonical(pr, status); 1047 } 1048 1049 float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status) 1050 { 1051 FloatParts pa = float16_unpack_canonical(a, status); 1052 FloatParts pb = float16_unpack_canonical(b, status); 1053 FloatParts pr = addsub_floats(pa, pb, true, status); 1054 1055 return float16_round_pack_canonical(pr, status); 1056 } 1057 1058 static float32 QEMU_SOFTFLOAT_ATTR 1059 soft_f32_addsub(float32 a, float32 b, bool subtract, float_status *status) 1060 { 1061 FloatParts pa = float32_unpack_canonical(a, status); 1062 FloatParts pb = float32_unpack_canonical(b, status); 1063 FloatParts pr = addsub_floats(pa, pb, subtract, status); 1064 1065 return float32_round_pack_canonical(pr, status); 1066 } 1067 1068 static inline float32 soft_f32_add(float32 a, float32 b, float_status *status) 1069 { 1070 return soft_f32_addsub(a, b, false, status); 1071 } 1072 1073 static inline float32 soft_f32_sub(float32 a, float32 b, float_status *status) 1074 { 1075 return soft_f32_addsub(a, b, true, status); 1076 } 1077 1078 static float64 QEMU_SOFTFLOAT_ATTR 1079 soft_f64_addsub(float64 a, float64 b, bool subtract, float_status *status) 1080 { 1081 FloatParts pa = float64_unpack_canonical(a, status); 1082 FloatParts pb = float64_unpack_canonical(b, status); 1083 FloatParts pr = addsub_floats(pa, pb, subtract, status); 1084 1085 return float64_round_pack_canonical(pr, status); 1086 } 1087 1088 static inline float64 soft_f64_add(float64 a, float64 b, float_status *status) 1089 { 1090 return soft_f64_addsub(a, b, false, status); 1091 } 1092 1093 static inline float64 soft_f64_sub(float64 a, float64 b, float_status *status) 1094 { 1095 return soft_f64_addsub(a, b, true, status); 1096 } 1097 1098 static float hard_f32_add(float a, float b) 1099 { 1100 return a + b; 1101 } 1102 1103 static float hard_f32_sub(float a, float b) 1104 { 1105 return a - b; 1106 } 1107 1108 static double hard_f64_add(double a, double b) 1109 { 1110 return a + b; 1111 } 1112 1113 static double hard_f64_sub(double a, double b) 1114 { 1115 return a - b; 1116 } 1117 1118 static bool f32_addsub_post(union_float32 a, union_float32 b) 1119 { 1120 if (QEMU_HARDFLOAT_2F32_USE_FP) { 1121 return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO); 1122 } 1123 return !(float32_is_zero(a.s) && float32_is_zero(b.s)); 1124 } 1125 1126 static bool f64_addsub_post(union_float64 a, union_float64 b) 1127 { 1128 if (QEMU_HARDFLOAT_2F64_USE_FP) { 1129 return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO); 1130 } else { 1131 return !(float64_is_zero(a.s) && float64_is_zero(b.s)); 1132 } 1133 } 1134 1135 static float32 float32_addsub(float32 a, float32 b, float_status *s, 1136 hard_f32_op2_fn hard, soft_f32_op2_fn soft) 1137 { 1138 return float32_gen2(a, b, s, hard, soft, 1139 f32_is_zon2, f32_addsub_post, NULL, NULL); 1140 } 1141 1142 static float64 float64_addsub(float64 a, float64 b, float_status *s, 1143 hard_f64_op2_fn hard, soft_f64_op2_fn soft) 1144 { 1145 return float64_gen2(a, b, s, hard, soft, 1146 f64_is_zon2, f64_addsub_post, NULL, NULL); 1147 } 1148 1149 float32 QEMU_FLATTEN 1150 float32_add(float32 a, float32 b, float_status *s) 1151 { 1152 return float32_addsub(a, b, s, hard_f32_add, soft_f32_add); 1153 } 1154 1155 float32 QEMU_FLATTEN 1156 float32_sub(float32 a, float32 b, float_status *s) 1157 { 1158 return float32_addsub(a, b, s, hard_f32_sub, soft_f32_sub); 1159 } 1160 1161 float64 QEMU_FLATTEN 1162 float64_add(float64 a, float64 b, float_status *s) 1163 { 1164 return float64_addsub(a, b, s, hard_f64_add, soft_f64_add); 1165 } 1166 1167 float64 QEMU_FLATTEN 1168 float64_sub(float64 a, float64 b, float_status *s) 1169 { 1170 return float64_addsub(a, b, s, hard_f64_sub, soft_f64_sub); 1171 } 1172 1173 /* 1174 * Returns the result of multiplying the floating-point values `a' and 1175 * `b'. The operation is performed according to the IEC/IEEE Standard 1176 * for Binary Floating-Point Arithmetic. 1177 */ 1178 1179 static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s) 1180 { 1181 bool sign = a.sign ^ b.sign; 1182 1183 if (a.cls == float_class_normal && b.cls == float_class_normal) { 1184 uint64_t hi, lo; 1185 int exp = a.exp + b.exp; 1186 1187 mul64To128(a.frac, b.frac, &hi, &lo); 1188 shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); 1189 if (lo & DECOMPOSED_OVERFLOW_BIT) { 1190 shift64RightJamming(lo, 1, &lo); 1191 exp += 1; 1192 } 1193 1194 /* Re-use a */ 1195 a.exp = exp; 1196 a.sign = sign; 1197 a.frac = lo; 1198 return a; 1199 } 1200 /* handle all the NaN cases */ 1201 if (is_nan(a.cls) || is_nan(b.cls)) { 1202 return pick_nan(a, b, s); 1203 } 1204 /* Inf * Zero == NaN */ 1205 if ((a.cls == float_class_inf && b.cls == float_class_zero) || 1206 (a.cls == float_class_zero && b.cls == float_class_inf)) { 1207 s->float_exception_flags |= float_flag_invalid; 1208 return parts_default_nan(s); 1209 } 1210 /* Multiply by 0 or Inf */ 1211 if (a.cls == float_class_inf || a.cls == float_class_zero) { 1212 a.sign = sign; 1213 return a; 1214 } 1215 if (b.cls == float_class_inf || b.cls == float_class_zero) { 1216 b.sign = sign; 1217 return b; 1218 } 1219 g_assert_not_reached(); 1220 } 1221 1222 float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status) 1223 { 1224 FloatParts pa = float16_unpack_canonical(a, status); 1225 FloatParts pb = float16_unpack_canonical(b, status); 1226 FloatParts pr = mul_floats(pa, pb, status); 1227 1228 return float16_round_pack_canonical(pr, status); 1229 } 1230 1231 static float32 QEMU_SOFTFLOAT_ATTR 1232 soft_f32_mul(float32 a, float32 b, float_status *status) 1233 { 1234 FloatParts pa = float32_unpack_canonical(a, status); 1235 FloatParts pb = float32_unpack_canonical(b, status); 1236 FloatParts pr = mul_floats(pa, pb, status); 1237 1238 return float32_round_pack_canonical(pr, status); 1239 } 1240 1241 static float64 QEMU_SOFTFLOAT_ATTR 1242 soft_f64_mul(float64 a, float64 b, float_status *status) 1243 { 1244 FloatParts pa = float64_unpack_canonical(a, status); 1245 FloatParts pb = float64_unpack_canonical(b, status); 1246 FloatParts pr = mul_floats(pa, pb, status); 1247 1248 return float64_round_pack_canonical(pr, status); 1249 } 1250 1251 static float hard_f32_mul(float a, float b) 1252 { 1253 return a * b; 1254 } 1255 1256 static double hard_f64_mul(double a, double b) 1257 { 1258 return a * b; 1259 } 1260 1261 static bool f32_mul_fast_test(union_float32 a, union_float32 b) 1262 { 1263 return float32_is_zero(a.s) || float32_is_zero(b.s); 1264 } 1265 1266 static bool f64_mul_fast_test(union_float64 a, union_float64 b) 1267 { 1268 return float64_is_zero(a.s) || float64_is_zero(b.s); 1269 } 1270 1271 static float32 f32_mul_fast_op(float32 a, float32 b, float_status *s) 1272 { 1273 bool signbit = float32_is_neg(a) ^ float32_is_neg(b); 1274 1275 return float32_set_sign(float32_zero, signbit); 1276 } 1277 1278 static float64 f64_mul_fast_op(float64 a, float64 b, float_status *s) 1279 { 1280 bool signbit = float64_is_neg(a) ^ float64_is_neg(b); 1281 1282 return float64_set_sign(float64_zero, signbit); 1283 } 1284 1285 float32 QEMU_FLATTEN 1286 float32_mul(float32 a, float32 b, float_status *s) 1287 { 1288 return float32_gen2(a, b, s, hard_f32_mul, soft_f32_mul, 1289 f32_is_zon2, NULL, f32_mul_fast_test, f32_mul_fast_op); 1290 } 1291 1292 float64 QEMU_FLATTEN 1293 float64_mul(float64 a, float64 b, float_status *s) 1294 { 1295 return float64_gen2(a, b, s, hard_f64_mul, soft_f64_mul, 1296 f64_is_zon2, NULL, f64_mul_fast_test, f64_mul_fast_op); 1297 } 1298 1299 /* 1300 * Returns the result of multiplying the floating-point values `a' and 1301 * `b' then adding 'c', with no intermediate rounding step after the 1302 * multiplication. The operation is performed according to the 1303 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008. 1304 * The flags argument allows the caller to select negation of the 1305 * addend, the intermediate product, or the final result. (The 1306 * difference between this and having the caller do a separate 1307 * negation is that negating externally will flip the sign bit on 1308 * NaNs.) 1309 */ 1310 1311 static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c, 1312 int flags, float_status *s) 1313 { 1314 bool inf_zero = ((1 << a.cls) | (1 << b.cls)) == 1315 ((1 << float_class_inf) | (1 << float_class_zero)); 1316 bool p_sign; 1317 bool sign_flip = flags & float_muladd_negate_result; 1318 FloatClass p_class; 1319 uint64_t hi, lo; 1320 int p_exp; 1321 1322 /* It is implementation-defined whether the cases of (0,inf,qnan) 1323 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN 1324 * they return if they do), so we have to hand this information 1325 * off to the target-specific pick-a-NaN routine. 1326 */ 1327 if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) { 1328 return pick_nan_muladd(a, b, c, inf_zero, s); 1329 } 1330 1331 if (inf_zero) { 1332 s->float_exception_flags |= float_flag_invalid; 1333 return parts_default_nan(s); 1334 } 1335 1336 if (flags & float_muladd_negate_c) { 1337 c.sign ^= 1; 1338 } 1339 1340 p_sign = a.sign ^ b.sign; 1341 1342 if (flags & float_muladd_negate_product) { 1343 p_sign ^= 1; 1344 } 1345 1346 if (a.cls == float_class_inf || b.cls == float_class_inf) { 1347 p_class = float_class_inf; 1348 } else if (a.cls == float_class_zero || b.cls == float_class_zero) { 1349 p_class = float_class_zero; 1350 } else { 1351 p_class = float_class_normal; 1352 } 1353 1354 if (c.cls == float_class_inf) { 1355 if (p_class == float_class_inf && p_sign != c.sign) { 1356 s->float_exception_flags |= float_flag_invalid; 1357 return parts_default_nan(s); 1358 } else { 1359 a.cls = float_class_inf; 1360 a.sign = c.sign ^ sign_flip; 1361 return a; 1362 } 1363 } 1364 1365 if (p_class == float_class_inf) { 1366 a.cls = float_class_inf; 1367 a.sign = p_sign ^ sign_flip; 1368 return a; 1369 } 1370 1371 if (p_class == float_class_zero) { 1372 if (c.cls == float_class_zero) { 1373 if (p_sign != c.sign) { 1374 p_sign = s->float_rounding_mode == float_round_down; 1375 } 1376 c.sign = p_sign; 1377 } else if (flags & float_muladd_halve_result) { 1378 c.exp -= 1; 1379 } 1380 c.sign ^= sign_flip; 1381 return c; 1382 } 1383 1384 /* a & b should be normals now... */ 1385 assert(a.cls == float_class_normal && 1386 b.cls == float_class_normal); 1387 1388 p_exp = a.exp + b.exp; 1389 1390 /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit 1391 * result. 1392 */ 1393 mul64To128(a.frac, b.frac, &hi, &lo); 1394 /* binary point now at bit 124 */ 1395 1396 /* check for overflow */ 1397 if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) { 1398 shift128RightJamming(hi, lo, 1, &hi, &lo); 1399 p_exp += 1; 1400 } 1401 1402 /* + add/sub */ 1403 if (c.cls == float_class_zero) { 1404 /* move binary point back to 62 */ 1405 shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); 1406 } else { 1407 int exp_diff = p_exp - c.exp; 1408 if (p_sign == c.sign) { 1409 /* Addition */ 1410 if (exp_diff <= 0) { 1411 shift128RightJamming(hi, lo, 1412 DECOMPOSED_BINARY_POINT - exp_diff, 1413 &hi, &lo); 1414 lo += c.frac; 1415 p_exp = c.exp; 1416 } else { 1417 uint64_t c_hi, c_lo; 1418 /* shift c to the same binary point as the product (124) */ 1419 c_hi = c.frac >> 2; 1420 c_lo = 0; 1421 shift128RightJamming(c_hi, c_lo, 1422 exp_diff, 1423 &c_hi, &c_lo); 1424 add128(hi, lo, c_hi, c_lo, &hi, &lo); 1425 /* move binary point back to 62 */ 1426 shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo); 1427 } 1428 1429 if (lo & DECOMPOSED_OVERFLOW_BIT) { 1430 shift64RightJamming(lo, 1, &lo); 1431 p_exp += 1; 1432 } 1433 1434 } else { 1435 /* Subtraction */ 1436 uint64_t c_hi, c_lo; 1437 /* make C binary point match product at bit 124 */ 1438 c_hi = c.frac >> 2; 1439 c_lo = 0; 1440 1441 if (exp_diff <= 0) { 1442 shift128RightJamming(hi, lo, -exp_diff, &hi, &lo); 1443 if (exp_diff == 0 1444 && 1445 (hi > c_hi || (hi == c_hi && lo >= c_lo))) { 1446 sub128(hi, lo, c_hi, c_lo, &hi, &lo); 1447 } else { 1448 sub128(c_hi, c_lo, hi, lo, &hi, &lo); 1449 p_sign ^= 1; 1450 p_exp = c.exp; 1451 } 1452 } else { 1453 shift128RightJamming(c_hi, c_lo, 1454 exp_diff, 1455 &c_hi, &c_lo); 1456 sub128(hi, lo, c_hi, c_lo, &hi, &lo); 1457 } 1458 1459 if (hi == 0 && lo == 0) { 1460 a.cls = float_class_zero; 1461 a.sign = s->float_rounding_mode == float_round_down; 1462 a.sign ^= sign_flip; 1463 return a; 1464 } else { 1465 int shift; 1466 if (hi != 0) { 1467 shift = clz64(hi); 1468 } else { 1469 shift = clz64(lo) + 64; 1470 } 1471 /* Normalizing to a binary point of 124 is the 1472 correct adjust for the exponent. However since we're 1473 shifting, we might as well put the binary point back 1474 at 62 where we really want it. Therefore shift as 1475 if we're leaving 1 bit at the top of the word, but 1476 adjust the exponent as if we're leaving 3 bits. */ 1477 shift -= 1; 1478 if (shift >= 64) { 1479 lo = lo << (shift - 64); 1480 } else { 1481 hi = (hi << shift) | (lo >> (64 - shift)); 1482 lo = hi | ((lo << shift) != 0); 1483 } 1484 p_exp -= shift - 2; 1485 } 1486 } 1487 } 1488 1489 if (flags & float_muladd_halve_result) { 1490 p_exp -= 1; 1491 } 1492 1493 /* finally prepare our result */ 1494 a.cls = float_class_normal; 1495 a.sign = p_sign ^ sign_flip; 1496 a.exp = p_exp; 1497 a.frac = lo; 1498 1499 return a; 1500 } 1501 1502 float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c, 1503 int flags, float_status *status) 1504 { 1505 FloatParts pa = float16_unpack_canonical(a, status); 1506 FloatParts pb = float16_unpack_canonical(b, status); 1507 FloatParts pc = float16_unpack_canonical(c, status); 1508 FloatParts pr = muladd_floats(pa, pb, pc, flags, status); 1509 1510 return float16_round_pack_canonical(pr, status); 1511 } 1512 1513 static float32 QEMU_SOFTFLOAT_ATTR 1514 soft_f32_muladd(float32 a, float32 b, float32 c, int flags, 1515 float_status *status) 1516 { 1517 FloatParts pa = float32_unpack_canonical(a, status); 1518 FloatParts pb = float32_unpack_canonical(b, status); 1519 FloatParts pc = float32_unpack_canonical(c, status); 1520 FloatParts pr = muladd_floats(pa, pb, pc, flags, status); 1521 1522 return float32_round_pack_canonical(pr, status); 1523 } 1524 1525 static float64 QEMU_SOFTFLOAT_ATTR 1526 soft_f64_muladd(float64 a, float64 b, float64 c, int flags, 1527 float_status *status) 1528 { 1529 FloatParts pa = float64_unpack_canonical(a, status); 1530 FloatParts pb = float64_unpack_canonical(b, status); 1531 FloatParts pc = float64_unpack_canonical(c, status); 1532 FloatParts pr = muladd_floats(pa, pb, pc, flags, status); 1533 1534 return float64_round_pack_canonical(pr, status); 1535 } 1536 1537 static bool force_soft_fma; 1538 1539 float32 QEMU_FLATTEN 1540 float32_muladd(float32 xa, float32 xb, float32 xc, int flags, float_status *s) 1541 { 1542 union_float32 ua, ub, uc, ur; 1543 1544 ua.s = xa; 1545 ub.s = xb; 1546 uc.s = xc; 1547 1548 if (unlikely(!can_use_fpu(s))) { 1549 goto soft; 1550 } 1551 if (unlikely(flags & float_muladd_halve_result)) { 1552 goto soft; 1553 } 1554 1555 float32_input_flush3(&ua.s, &ub.s, &uc.s, s); 1556 if (unlikely(!f32_is_zon3(ua, ub, uc))) { 1557 goto soft; 1558 } 1559 1560 if (unlikely(force_soft_fma)) { 1561 goto soft; 1562 } 1563 1564 /* 1565 * When (a || b) == 0, there's no need to check for under/over flow, 1566 * since we know the addend is (normal || 0) and the product is 0. 1567 */ 1568 if (float32_is_zero(ua.s) || float32_is_zero(ub.s)) { 1569 union_float32 up; 1570 bool prod_sign; 1571 1572 prod_sign = float32_is_neg(ua.s) ^ float32_is_neg(ub.s); 1573 prod_sign ^= !!(flags & float_muladd_negate_product); 1574 up.s = float32_set_sign(float32_zero, prod_sign); 1575 1576 if (flags & float_muladd_negate_c) { 1577 uc.h = -uc.h; 1578 } 1579 ur.h = up.h + uc.h; 1580 } else { 1581 union_float32 ua_orig = ua; 1582 union_float32 uc_orig = uc; 1583 1584 if (flags & float_muladd_negate_product) { 1585 ua.h = -ua.h; 1586 } 1587 if (flags & float_muladd_negate_c) { 1588 uc.h = -uc.h; 1589 } 1590 1591 ur.h = fmaf(ua.h, ub.h, uc.h); 1592 1593 if (unlikely(f32_is_inf(ur))) { 1594 s->float_exception_flags |= float_flag_overflow; 1595 } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) { 1596 ua = ua_orig; 1597 uc = uc_orig; 1598 goto soft; 1599 } 1600 } 1601 if (flags & float_muladd_negate_result) { 1602 return float32_chs(ur.s); 1603 } 1604 return ur.s; 1605 1606 soft: 1607 return soft_f32_muladd(ua.s, ub.s, uc.s, flags, s); 1608 } 1609 1610 float64 QEMU_FLATTEN 1611 float64_muladd(float64 xa, float64 xb, float64 xc, int flags, float_status *s) 1612 { 1613 union_float64 ua, ub, uc, ur; 1614 1615 ua.s = xa; 1616 ub.s = xb; 1617 uc.s = xc; 1618 1619 if (unlikely(!can_use_fpu(s))) { 1620 goto soft; 1621 } 1622 if (unlikely(flags & float_muladd_halve_result)) { 1623 goto soft; 1624 } 1625 1626 float64_input_flush3(&ua.s, &ub.s, &uc.s, s); 1627 if (unlikely(!f64_is_zon3(ua, ub, uc))) { 1628 goto soft; 1629 } 1630 1631 if (unlikely(force_soft_fma)) { 1632 goto soft; 1633 } 1634 1635 /* 1636 * When (a || b) == 0, there's no need to check for under/over flow, 1637 * since we know the addend is (normal || 0) and the product is 0. 1638 */ 1639 if (float64_is_zero(ua.s) || float64_is_zero(ub.s)) { 1640 union_float64 up; 1641 bool prod_sign; 1642 1643 prod_sign = float64_is_neg(ua.s) ^ float64_is_neg(ub.s); 1644 prod_sign ^= !!(flags & float_muladd_negate_product); 1645 up.s = float64_set_sign(float64_zero, prod_sign); 1646 1647 if (flags & float_muladd_negate_c) { 1648 uc.h = -uc.h; 1649 } 1650 ur.h = up.h + uc.h; 1651 } else { 1652 union_float64 ua_orig = ua; 1653 union_float64 uc_orig = uc; 1654 1655 if (flags & float_muladd_negate_product) { 1656 ua.h = -ua.h; 1657 } 1658 if (flags & float_muladd_negate_c) { 1659 uc.h = -uc.h; 1660 } 1661 1662 ur.h = fma(ua.h, ub.h, uc.h); 1663 1664 if (unlikely(f64_is_inf(ur))) { 1665 s->float_exception_flags |= float_flag_overflow; 1666 } else if (unlikely(fabs(ur.h) <= FLT_MIN)) { 1667 ua = ua_orig; 1668 uc = uc_orig; 1669 goto soft; 1670 } 1671 } 1672 if (flags & float_muladd_negate_result) { 1673 return float64_chs(ur.s); 1674 } 1675 return ur.s; 1676 1677 soft: 1678 return soft_f64_muladd(ua.s, ub.s, uc.s, flags, s); 1679 } 1680 1681 /* 1682 * Returns the result of dividing the floating-point value `a' by the 1683 * corresponding value `b'. The operation is performed according to 1684 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 1685 */ 1686 1687 static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s) 1688 { 1689 bool sign = a.sign ^ b.sign; 1690 1691 if (a.cls == float_class_normal && b.cls == float_class_normal) { 1692 uint64_t n0, n1, q, r; 1693 int exp = a.exp - b.exp; 1694 1695 /* 1696 * We want a 2*N / N-bit division to produce exactly an N-bit 1697 * result, so that we do not lose any precision and so that we 1698 * do not have to renormalize afterward. If A.frac < B.frac, 1699 * then division would produce an (N-1)-bit result; shift A left 1700 * by one to produce the an N-bit result, and decrement the 1701 * exponent to match. 1702 * 1703 * The udiv_qrnnd algorithm that we're using requires normalization, 1704 * i.e. the msb of the denominator must be set. Since we know that 1705 * DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left 1706 * by one (more), and the remainder must be shifted right by one. 1707 */ 1708 if (a.frac < b.frac) { 1709 exp -= 1; 1710 shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0); 1711 } else { 1712 shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0); 1713 } 1714 q = udiv_qrnnd(&r, n1, n0, b.frac << 1); 1715 1716 /* 1717 * Set lsb if there is a remainder, to set inexact. 1718 * As mentioned above, to find the actual value of the remainder we 1719 * would need to shift right, but (1) we are only concerned about 1720 * non-zero-ness, and (2) the remainder will always be even because 1721 * both inputs to the division primitive are even. 1722 */ 1723 a.frac = q | (r != 0); 1724 a.sign = sign; 1725 a.exp = exp; 1726 return a; 1727 } 1728 /* handle all the NaN cases */ 1729 if (is_nan(a.cls) || is_nan(b.cls)) { 1730 return pick_nan(a, b, s); 1731 } 1732 /* 0/0 or Inf/Inf */ 1733 if (a.cls == b.cls 1734 && 1735 (a.cls == float_class_inf || a.cls == float_class_zero)) { 1736 s->float_exception_flags |= float_flag_invalid; 1737 return parts_default_nan(s); 1738 } 1739 /* Inf / x or 0 / x */ 1740 if (a.cls == float_class_inf || a.cls == float_class_zero) { 1741 a.sign = sign; 1742 return a; 1743 } 1744 /* Div 0 => Inf */ 1745 if (b.cls == float_class_zero) { 1746 s->float_exception_flags |= float_flag_divbyzero; 1747 a.cls = float_class_inf; 1748 a.sign = sign; 1749 return a; 1750 } 1751 /* Div by Inf */ 1752 if (b.cls == float_class_inf) { 1753 a.cls = float_class_zero; 1754 a.sign = sign; 1755 return a; 1756 } 1757 g_assert_not_reached(); 1758 } 1759 1760 float16 float16_div(float16 a, float16 b, float_status *status) 1761 { 1762 FloatParts pa = float16_unpack_canonical(a, status); 1763 FloatParts pb = float16_unpack_canonical(b, status); 1764 FloatParts pr = div_floats(pa, pb, status); 1765 1766 return float16_round_pack_canonical(pr, status); 1767 } 1768 1769 static float32 QEMU_SOFTFLOAT_ATTR 1770 soft_f32_div(float32 a, float32 b, float_status *status) 1771 { 1772 FloatParts pa = float32_unpack_canonical(a, status); 1773 FloatParts pb = float32_unpack_canonical(b, status); 1774 FloatParts pr = div_floats(pa, pb, status); 1775 1776 return float32_round_pack_canonical(pr, status); 1777 } 1778 1779 static float64 QEMU_SOFTFLOAT_ATTR 1780 soft_f64_div(float64 a, float64 b, float_status *status) 1781 { 1782 FloatParts pa = float64_unpack_canonical(a, status); 1783 FloatParts pb = float64_unpack_canonical(b, status); 1784 FloatParts pr = div_floats(pa, pb, status); 1785 1786 return float64_round_pack_canonical(pr, status); 1787 } 1788 1789 static float hard_f32_div(float a, float b) 1790 { 1791 return a / b; 1792 } 1793 1794 static double hard_f64_div(double a, double b) 1795 { 1796 return a / b; 1797 } 1798 1799 static bool f32_div_pre(union_float32 a, union_float32 b) 1800 { 1801 if (QEMU_HARDFLOAT_2F32_USE_FP) { 1802 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && 1803 fpclassify(b.h) == FP_NORMAL; 1804 } 1805 return float32_is_zero_or_normal(a.s) && float32_is_normal(b.s); 1806 } 1807 1808 static bool f64_div_pre(union_float64 a, union_float64 b) 1809 { 1810 if (QEMU_HARDFLOAT_2F64_USE_FP) { 1811 return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) && 1812 fpclassify(b.h) == FP_NORMAL; 1813 } 1814 return float64_is_zero_or_normal(a.s) && float64_is_normal(b.s); 1815 } 1816 1817 static bool f32_div_post(union_float32 a, union_float32 b) 1818 { 1819 if (QEMU_HARDFLOAT_2F32_USE_FP) { 1820 return fpclassify(a.h) != FP_ZERO; 1821 } 1822 return !float32_is_zero(a.s); 1823 } 1824 1825 static bool f64_div_post(union_float64 a, union_float64 b) 1826 { 1827 if (QEMU_HARDFLOAT_2F64_USE_FP) { 1828 return fpclassify(a.h) != FP_ZERO; 1829 } 1830 return !float64_is_zero(a.s); 1831 } 1832 1833 float32 QEMU_FLATTEN 1834 float32_div(float32 a, float32 b, float_status *s) 1835 { 1836 return float32_gen2(a, b, s, hard_f32_div, soft_f32_div, 1837 f32_div_pre, f32_div_post, NULL, NULL); 1838 } 1839 1840 float64 QEMU_FLATTEN 1841 float64_div(float64 a, float64 b, float_status *s) 1842 { 1843 return float64_gen2(a, b, s, hard_f64_div, soft_f64_div, 1844 f64_div_pre, f64_div_post, NULL, NULL); 1845 } 1846 1847 /* 1848 * Float to Float conversions 1849 * 1850 * Returns the result of converting one float format to another. The 1851 * conversion is performed according to the IEC/IEEE Standard for 1852 * Binary Floating-Point Arithmetic. 1853 * 1854 * The float_to_float helper only needs to take care of raising 1855 * invalid exceptions and handling the conversion on NaNs. 1856 */ 1857 1858 static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf, 1859 float_status *s) 1860 { 1861 if (dstf->arm_althp) { 1862 switch (a.cls) { 1863 case float_class_qnan: 1864 case float_class_snan: 1865 /* There is no NaN in the destination format. Raise Invalid 1866 * and return a zero with the sign of the input NaN. 1867 */ 1868 s->float_exception_flags |= float_flag_invalid; 1869 a.cls = float_class_zero; 1870 a.frac = 0; 1871 a.exp = 0; 1872 break; 1873 1874 case float_class_inf: 1875 /* There is no Inf in the destination format. Raise Invalid 1876 * and return the maximum normal with the correct sign. 1877 */ 1878 s->float_exception_flags |= float_flag_invalid; 1879 a.cls = float_class_normal; 1880 a.exp = dstf->exp_max; 1881 a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift; 1882 break; 1883 1884 default: 1885 break; 1886 } 1887 } else if (is_nan(a.cls)) { 1888 if (is_snan(a.cls)) { 1889 s->float_exception_flags |= float_flag_invalid; 1890 a = parts_silence_nan(a, s); 1891 } 1892 if (s->default_nan_mode) { 1893 return parts_default_nan(s); 1894 } 1895 } 1896 return a; 1897 } 1898 1899 float32 float16_to_float32(float16 a, bool ieee, float_status *s) 1900 { 1901 const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; 1902 FloatParts p = float16a_unpack_canonical(a, s, fmt16); 1903 FloatParts pr = float_to_float(p, &float32_params, s); 1904 return float32_round_pack_canonical(pr, s); 1905 } 1906 1907 float64 float16_to_float64(float16 a, bool ieee, float_status *s) 1908 { 1909 const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; 1910 FloatParts p = float16a_unpack_canonical(a, s, fmt16); 1911 FloatParts pr = float_to_float(p, &float64_params, s); 1912 return float64_round_pack_canonical(pr, s); 1913 } 1914 1915 float16 float32_to_float16(float32 a, bool ieee, float_status *s) 1916 { 1917 const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; 1918 FloatParts p = float32_unpack_canonical(a, s); 1919 FloatParts pr = float_to_float(p, fmt16, s); 1920 return float16a_round_pack_canonical(pr, s, fmt16); 1921 } 1922 1923 static float64 QEMU_SOFTFLOAT_ATTR 1924 soft_float32_to_float64(float32 a, float_status *s) 1925 { 1926 FloatParts p = float32_unpack_canonical(a, s); 1927 FloatParts pr = float_to_float(p, &float64_params, s); 1928 return float64_round_pack_canonical(pr, s); 1929 } 1930 1931 float64 float32_to_float64(float32 a, float_status *s) 1932 { 1933 if (likely(float32_is_normal(a))) { 1934 /* Widening conversion can never produce inexact results. */ 1935 union_float32 uf; 1936 union_float64 ud; 1937 uf.s = a; 1938 ud.h = uf.h; 1939 return ud.s; 1940 } else if (float32_is_zero(a)) { 1941 return float64_set_sign(float64_zero, float32_is_neg(a)); 1942 } else { 1943 return soft_float32_to_float64(a, s); 1944 } 1945 } 1946 1947 float16 float64_to_float16(float64 a, bool ieee, float_status *s) 1948 { 1949 const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp; 1950 FloatParts p = float64_unpack_canonical(a, s); 1951 FloatParts pr = float_to_float(p, fmt16, s); 1952 return float16a_round_pack_canonical(pr, s, fmt16); 1953 } 1954 1955 float32 float64_to_float32(float64 a, float_status *s) 1956 { 1957 FloatParts p = float64_unpack_canonical(a, s); 1958 FloatParts pr = float_to_float(p, &float32_params, s); 1959 return float32_round_pack_canonical(pr, s); 1960 } 1961 1962 /* 1963 * Rounds the floating-point value `a' to an integer, and returns the 1964 * result as a floating-point value. The operation is performed 1965 * according to the IEC/IEEE Standard for Binary Floating-Point 1966 * Arithmetic. 1967 */ 1968 1969 static FloatParts round_to_int(FloatParts a, int rmode, 1970 int scale, float_status *s) 1971 { 1972 switch (a.cls) { 1973 case float_class_qnan: 1974 case float_class_snan: 1975 return return_nan(a, s); 1976 1977 case float_class_zero: 1978 case float_class_inf: 1979 /* already "integral" */ 1980 break; 1981 1982 case float_class_normal: 1983 scale = MIN(MAX(scale, -0x10000), 0x10000); 1984 a.exp += scale; 1985 1986 if (a.exp >= DECOMPOSED_BINARY_POINT) { 1987 /* already integral */ 1988 break; 1989 } 1990 if (a.exp < 0) { 1991 bool one; 1992 /* all fractional */ 1993 s->float_exception_flags |= float_flag_inexact; 1994 switch (rmode) { 1995 case float_round_nearest_even: 1996 one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT; 1997 break; 1998 case float_round_ties_away: 1999 one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT; 2000 break; 2001 case float_round_to_zero: 2002 one = false; 2003 break; 2004 case float_round_up: 2005 one = !a.sign; 2006 break; 2007 case float_round_down: 2008 one = a.sign; 2009 break; 2010 case float_round_to_odd: 2011 one = true; 2012 break; 2013 default: 2014 g_assert_not_reached(); 2015 } 2016 2017 if (one) { 2018 a.frac = DECOMPOSED_IMPLICIT_BIT; 2019 a.exp = 0; 2020 } else { 2021 a.cls = float_class_zero; 2022 } 2023 } else { 2024 uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp; 2025 uint64_t frac_lsbm1 = frac_lsb >> 1; 2026 uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb; 2027 uint64_t rnd_mask = rnd_even_mask >> 1; 2028 uint64_t inc; 2029 2030 switch (rmode) { 2031 case float_round_nearest_even: 2032 inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0); 2033 break; 2034 case float_round_ties_away: 2035 inc = frac_lsbm1; 2036 break; 2037 case float_round_to_zero: 2038 inc = 0; 2039 break; 2040 case float_round_up: 2041 inc = a.sign ? 0 : rnd_mask; 2042 break; 2043 case float_round_down: 2044 inc = a.sign ? rnd_mask : 0; 2045 break; 2046 case float_round_to_odd: 2047 inc = a.frac & frac_lsb ? 0 : rnd_mask; 2048 break; 2049 default: 2050 g_assert_not_reached(); 2051 } 2052 2053 if (a.frac & rnd_mask) { 2054 s->float_exception_flags |= float_flag_inexact; 2055 a.frac += inc; 2056 a.frac &= ~rnd_mask; 2057 if (a.frac & DECOMPOSED_OVERFLOW_BIT) { 2058 a.frac >>= 1; 2059 a.exp++; 2060 } 2061 } 2062 } 2063 break; 2064 default: 2065 g_assert_not_reached(); 2066 } 2067 return a; 2068 } 2069 2070 float16 float16_round_to_int(float16 a, float_status *s) 2071 { 2072 FloatParts pa = float16_unpack_canonical(a, s); 2073 FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s); 2074 return float16_round_pack_canonical(pr, s); 2075 } 2076 2077 float32 float32_round_to_int(float32 a, float_status *s) 2078 { 2079 FloatParts pa = float32_unpack_canonical(a, s); 2080 FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s); 2081 return float32_round_pack_canonical(pr, s); 2082 } 2083 2084 float64 float64_round_to_int(float64 a, float_status *s) 2085 { 2086 FloatParts pa = float64_unpack_canonical(a, s); 2087 FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s); 2088 return float64_round_pack_canonical(pr, s); 2089 } 2090 2091 /* 2092 * Returns the result of converting the floating-point value `a' to 2093 * the two's complement integer format. The conversion is performed 2094 * according to the IEC/IEEE Standard for Binary Floating-Point 2095 * Arithmetic---which means in particular that the conversion is 2096 * rounded according to the current rounding mode. If `a' is a NaN, 2097 * the largest positive integer is returned. Otherwise, if the 2098 * conversion overflows, the largest integer with the same sign as `a' 2099 * is returned. 2100 */ 2101 2102 static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale, 2103 int64_t min, int64_t max, 2104 float_status *s) 2105 { 2106 uint64_t r; 2107 int orig_flags = get_float_exception_flags(s); 2108 FloatParts p = round_to_int(in, rmode, scale, s); 2109 2110 switch (p.cls) { 2111 case float_class_snan: 2112 case float_class_qnan: 2113 s->float_exception_flags = orig_flags | float_flag_invalid; 2114 return max; 2115 case float_class_inf: 2116 s->float_exception_flags = orig_flags | float_flag_invalid; 2117 return p.sign ? min : max; 2118 case float_class_zero: 2119 return 0; 2120 case float_class_normal: 2121 if (p.exp < DECOMPOSED_BINARY_POINT) { 2122 r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); 2123 } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) { 2124 r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT); 2125 } else { 2126 r = UINT64_MAX; 2127 } 2128 if (p.sign) { 2129 if (r <= -(uint64_t) min) { 2130 return -r; 2131 } else { 2132 s->float_exception_flags = orig_flags | float_flag_invalid; 2133 return min; 2134 } 2135 } else { 2136 if (r <= max) { 2137 return r; 2138 } else { 2139 s->float_exception_flags = orig_flags | float_flag_invalid; 2140 return max; 2141 } 2142 } 2143 default: 2144 g_assert_not_reached(); 2145 } 2146 } 2147 2148 int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale, 2149 float_status *s) 2150 { 2151 return round_to_int_and_pack(float16_unpack_canonical(a, s), 2152 rmode, scale, INT16_MIN, INT16_MAX, s); 2153 } 2154 2155 int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale, 2156 float_status *s) 2157 { 2158 return round_to_int_and_pack(float16_unpack_canonical(a, s), 2159 rmode, scale, INT32_MIN, INT32_MAX, s); 2160 } 2161 2162 int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale, 2163 float_status *s) 2164 { 2165 return round_to_int_and_pack(float16_unpack_canonical(a, s), 2166 rmode, scale, INT64_MIN, INT64_MAX, s); 2167 } 2168 2169 int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale, 2170 float_status *s) 2171 { 2172 return round_to_int_and_pack(float32_unpack_canonical(a, s), 2173 rmode, scale, INT16_MIN, INT16_MAX, s); 2174 } 2175 2176 int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale, 2177 float_status *s) 2178 { 2179 return round_to_int_and_pack(float32_unpack_canonical(a, s), 2180 rmode, scale, INT32_MIN, INT32_MAX, s); 2181 } 2182 2183 int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale, 2184 float_status *s) 2185 { 2186 return round_to_int_and_pack(float32_unpack_canonical(a, s), 2187 rmode, scale, INT64_MIN, INT64_MAX, s); 2188 } 2189 2190 int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale, 2191 float_status *s) 2192 { 2193 return round_to_int_and_pack(float64_unpack_canonical(a, s), 2194 rmode, scale, INT16_MIN, INT16_MAX, s); 2195 } 2196 2197 int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale, 2198 float_status *s) 2199 { 2200 return round_to_int_and_pack(float64_unpack_canonical(a, s), 2201 rmode, scale, INT32_MIN, INT32_MAX, s); 2202 } 2203 2204 int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale, 2205 float_status *s) 2206 { 2207 return round_to_int_and_pack(float64_unpack_canonical(a, s), 2208 rmode, scale, INT64_MIN, INT64_MAX, s); 2209 } 2210 2211 int16_t float16_to_int16(float16 a, float_status *s) 2212 { 2213 return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s); 2214 } 2215 2216 int32_t float16_to_int32(float16 a, float_status *s) 2217 { 2218 return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s); 2219 } 2220 2221 int64_t float16_to_int64(float16 a, float_status *s) 2222 { 2223 return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s); 2224 } 2225 2226 int16_t float32_to_int16(float32 a, float_status *s) 2227 { 2228 return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s); 2229 } 2230 2231 int32_t float32_to_int32(float32 a, float_status *s) 2232 { 2233 return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s); 2234 } 2235 2236 int64_t float32_to_int64(float32 a, float_status *s) 2237 { 2238 return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s); 2239 } 2240 2241 int16_t float64_to_int16(float64 a, float_status *s) 2242 { 2243 return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s); 2244 } 2245 2246 int32_t float64_to_int32(float64 a, float_status *s) 2247 { 2248 return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s); 2249 } 2250 2251 int64_t float64_to_int64(float64 a, float_status *s) 2252 { 2253 return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s); 2254 } 2255 2256 int16_t float16_to_int16_round_to_zero(float16 a, float_status *s) 2257 { 2258 return float16_to_int16_scalbn(a, float_round_to_zero, 0, s); 2259 } 2260 2261 int32_t float16_to_int32_round_to_zero(float16 a, float_status *s) 2262 { 2263 return float16_to_int32_scalbn(a, float_round_to_zero, 0, s); 2264 } 2265 2266 int64_t float16_to_int64_round_to_zero(float16 a, float_status *s) 2267 { 2268 return float16_to_int64_scalbn(a, float_round_to_zero, 0, s); 2269 } 2270 2271 int16_t float32_to_int16_round_to_zero(float32 a, float_status *s) 2272 { 2273 return float32_to_int16_scalbn(a, float_round_to_zero, 0, s); 2274 } 2275 2276 int32_t float32_to_int32_round_to_zero(float32 a, float_status *s) 2277 { 2278 return float32_to_int32_scalbn(a, float_round_to_zero, 0, s); 2279 } 2280 2281 int64_t float32_to_int64_round_to_zero(float32 a, float_status *s) 2282 { 2283 return float32_to_int64_scalbn(a, float_round_to_zero, 0, s); 2284 } 2285 2286 int16_t float64_to_int16_round_to_zero(float64 a, float_status *s) 2287 { 2288 return float64_to_int16_scalbn(a, float_round_to_zero, 0, s); 2289 } 2290 2291 int32_t float64_to_int32_round_to_zero(float64 a, float_status *s) 2292 { 2293 return float64_to_int32_scalbn(a, float_round_to_zero, 0, s); 2294 } 2295 2296 int64_t float64_to_int64_round_to_zero(float64 a, float_status *s) 2297 { 2298 return float64_to_int64_scalbn(a, float_round_to_zero, 0, s); 2299 } 2300 2301 /* 2302 * Returns the result of converting the floating-point value `a' to 2303 * the unsigned integer format. The conversion is performed according 2304 * to the IEC/IEEE Standard for Binary Floating-Point 2305 * Arithmetic---which means in particular that the conversion is 2306 * rounded according to the current rounding mode. If `a' is a NaN, 2307 * the largest unsigned integer is returned. Otherwise, if the 2308 * conversion overflows, the largest unsigned integer is returned. If 2309 * the 'a' is negative, the result is rounded and zero is returned; 2310 * values that do not round to zero will raise the inexact exception 2311 * flag. 2312 */ 2313 2314 static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale, 2315 uint64_t max, float_status *s) 2316 { 2317 int orig_flags = get_float_exception_flags(s); 2318 FloatParts p = round_to_int(in, rmode, scale, s); 2319 uint64_t r; 2320 2321 switch (p.cls) { 2322 case float_class_snan: 2323 case float_class_qnan: 2324 s->float_exception_flags = orig_flags | float_flag_invalid; 2325 return max; 2326 case float_class_inf: 2327 s->float_exception_flags = orig_flags | float_flag_invalid; 2328 return p.sign ? 0 : max; 2329 case float_class_zero: 2330 return 0; 2331 case float_class_normal: 2332 if (p.sign) { 2333 s->float_exception_flags = orig_flags | float_flag_invalid; 2334 return 0; 2335 } 2336 2337 if (p.exp < DECOMPOSED_BINARY_POINT) { 2338 r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); 2339 } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) { 2340 r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT); 2341 } else { 2342 s->float_exception_flags = orig_flags | float_flag_invalid; 2343 return max; 2344 } 2345 2346 /* For uint64 this will never trip, but if p.exp is too large 2347 * to shift a decomposed fraction we shall have exited via the 2348 * 3rd leg above. 2349 */ 2350 if (r > max) { 2351 s->float_exception_flags = orig_flags | float_flag_invalid; 2352 return max; 2353 } 2354 return r; 2355 default: 2356 g_assert_not_reached(); 2357 } 2358 } 2359 2360 uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale, 2361 float_status *s) 2362 { 2363 return round_to_uint_and_pack(float16_unpack_canonical(a, s), 2364 rmode, scale, UINT16_MAX, s); 2365 } 2366 2367 uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale, 2368 float_status *s) 2369 { 2370 return round_to_uint_and_pack(float16_unpack_canonical(a, s), 2371 rmode, scale, UINT32_MAX, s); 2372 } 2373 2374 uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale, 2375 float_status *s) 2376 { 2377 return round_to_uint_and_pack(float16_unpack_canonical(a, s), 2378 rmode, scale, UINT64_MAX, s); 2379 } 2380 2381 uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale, 2382 float_status *s) 2383 { 2384 return round_to_uint_and_pack(float32_unpack_canonical(a, s), 2385 rmode, scale, UINT16_MAX, s); 2386 } 2387 2388 uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale, 2389 float_status *s) 2390 { 2391 return round_to_uint_and_pack(float32_unpack_canonical(a, s), 2392 rmode, scale, UINT32_MAX, s); 2393 } 2394 2395 uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale, 2396 float_status *s) 2397 { 2398 return round_to_uint_and_pack(float32_unpack_canonical(a, s), 2399 rmode, scale, UINT64_MAX, s); 2400 } 2401 2402 uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale, 2403 float_status *s) 2404 { 2405 return round_to_uint_and_pack(float64_unpack_canonical(a, s), 2406 rmode, scale, UINT16_MAX, s); 2407 } 2408 2409 uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale, 2410 float_status *s) 2411 { 2412 return round_to_uint_and_pack(float64_unpack_canonical(a, s), 2413 rmode, scale, UINT32_MAX, s); 2414 } 2415 2416 uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale, 2417 float_status *s) 2418 { 2419 return round_to_uint_and_pack(float64_unpack_canonical(a, s), 2420 rmode, scale, UINT64_MAX, s); 2421 } 2422 2423 uint16_t float16_to_uint16(float16 a, float_status *s) 2424 { 2425 return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s); 2426 } 2427 2428 uint32_t float16_to_uint32(float16 a, float_status *s) 2429 { 2430 return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s); 2431 } 2432 2433 uint64_t float16_to_uint64(float16 a, float_status *s) 2434 { 2435 return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s); 2436 } 2437 2438 uint16_t float32_to_uint16(float32 a, float_status *s) 2439 { 2440 return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s); 2441 } 2442 2443 uint32_t float32_to_uint32(float32 a, float_status *s) 2444 { 2445 return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s); 2446 } 2447 2448 uint64_t float32_to_uint64(float32 a, float_status *s) 2449 { 2450 return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s); 2451 } 2452 2453 uint16_t float64_to_uint16(float64 a, float_status *s) 2454 { 2455 return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s); 2456 } 2457 2458 uint32_t float64_to_uint32(float64 a, float_status *s) 2459 { 2460 return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s); 2461 } 2462 2463 uint64_t float64_to_uint64(float64 a, float_status *s) 2464 { 2465 return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s); 2466 } 2467 2468 uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s) 2469 { 2470 return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s); 2471 } 2472 2473 uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s) 2474 { 2475 return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s); 2476 } 2477 2478 uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s) 2479 { 2480 return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s); 2481 } 2482 2483 uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s) 2484 { 2485 return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s); 2486 } 2487 2488 uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s) 2489 { 2490 return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s); 2491 } 2492 2493 uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s) 2494 { 2495 return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s); 2496 } 2497 2498 uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s) 2499 { 2500 return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s); 2501 } 2502 2503 uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s) 2504 { 2505 return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s); 2506 } 2507 2508 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s) 2509 { 2510 return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s); 2511 } 2512 2513 /* 2514 * Integer to float conversions 2515 * 2516 * Returns the result of converting the two's complement integer `a' 2517 * to the floating-point format. The conversion is performed according 2518 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2519 */ 2520 2521 static FloatParts int_to_float(int64_t a, int scale, float_status *status) 2522 { 2523 FloatParts r = { .sign = false }; 2524 2525 if (a == 0) { 2526 r.cls = float_class_zero; 2527 } else { 2528 uint64_t f = a; 2529 int shift; 2530 2531 r.cls = float_class_normal; 2532 if (a < 0) { 2533 f = -f; 2534 r.sign = true; 2535 } 2536 shift = clz64(f) - 1; 2537 scale = MIN(MAX(scale, -0x10000), 0x10000); 2538 2539 r.exp = DECOMPOSED_BINARY_POINT - shift + scale; 2540 r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift); 2541 } 2542 2543 return r; 2544 } 2545 2546 float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status) 2547 { 2548 FloatParts pa = int_to_float(a, scale, status); 2549 return float16_round_pack_canonical(pa, status); 2550 } 2551 2552 float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status) 2553 { 2554 return int64_to_float16_scalbn(a, scale, status); 2555 } 2556 2557 float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status) 2558 { 2559 return int64_to_float16_scalbn(a, scale, status); 2560 } 2561 2562 float16 int64_to_float16(int64_t a, float_status *status) 2563 { 2564 return int64_to_float16_scalbn(a, 0, status); 2565 } 2566 2567 float16 int32_to_float16(int32_t a, float_status *status) 2568 { 2569 return int64_to_float16_scalbn(a, 0, status); 2570 } 2571 2572 float16 int16_to_float16(int16_t a, float_status *status) 2573 { 2574 return int64_to_float16_scalbn(a, 0, status); 2575 } 2576 2577 float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status) 2578 { 2579 FloatParts pa = int_to_float(a, scale, status); 2580 return float32_round_pack_canonical(pa, status); 2581 } 2582 2583 float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status) 2584 { 2585 return int64_to_float32_scalbn(a, scale, status); 2586 } 2587 2588 float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status) 2589 { 2590 return int64_to_float32_scalbn(a, scale, status); 2591 } 2592 2593 float32 int64_to_float32(int64_t a, float_status *status) 2594 { 2595 return int64_to_float32_scalbn(a, 0, status); 2596 } 2597 2598 float32 int32_to_float32(int32_t a, float_status *status) 2599 { 2600 return int64_to_float32_scalbn(a, 0, status); 2601 } 2602 2603 float32 int16_to_float32(int16_t a, float_status *status) 2604 { 2605 return int64_to_float32_scalbn(a, 0, status); 2606 } 2607 2608 float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status) 2609 { 2610 FloatParts pa = int_to_float(a, scale, status); 2611 return float64_round_pack_canonical(pa, status); 2612 } 2613 2614 float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status) 2615 { 2616 return int64_to_float64_scalbn(a, scale, status); 2617 } 2618 2619 float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status) 2620 { 2621 return int64_to_float64_scalbn(a, scale, status); 2622 } 2623 2624 float64 int64_to_float64(int64_t a, float_status *status) 2625 { 2626 return int64_to_float64_scalbn(a, 0, status); 2627 } 2628 2629 float64 int32_to_float64(int32_t a, float_status *status) 2630 { 2631 return int64_to_float64_scalbn(a, 0, status); 2632 } 2633 2634 float64 int16_to_float64(int16_t a, float_status *status) 2635 { 2636 return int64_to_float64_scalbn(a, 0, status); 2637 } 2638 2639 2640 /* 2641 * Unsigned Integer to float conversions 2642 * 2643 * Returns the result of converting the unsigned integer `a' to the 2644 * floating-point format. The conversion is performed according to the 2645 * IEC/IEEE Standard for Binary Floating-Point Arithmetic. 2646 */ 2647 2648 static FloatParts uint_to_float(uint64_t a, int scale, float_status *status) 2649 { 2650 FloatParts r = { .sign = false }; 2651 2652 if (a == 0) { 2653 r.cls = float_class_zero; 2654 } else { 2655 scale = MIN(MAX(scale, -0x10000), 0x10000); 2656 r.cls = float_class_normal; 2657 if ((int64_t)a < 0) { 2658 r.exp = DECOMPOSED_BINARY_POINT + 1 + scale; 2659 shift64RightJamming(a, 1, &a); 2660 r.frac = a; 2661 } else { 2662 int shift = clz64(a) - 1; 2663 r.exp = DECOMPOSED_BINARY_POINT - shift + scale; 2664 r.frac = a << shift; 2665 } 2666 } 2667 2668 return r; 2669 } 2670 2671 float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status) 2672 { 2673 FloatParts pa = uint_to_float(a, scale, status); 2674 return float16_round_pack_canonical(pa, status); 2675 } 2676 2677 float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status) 2678 { 2679 return uint64_to_float16_scalbn(a, scale, status); 2680 } 2681 2682 float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status) 2683 { 2684 return uint64_to_float16_scalbn(a, scale, status); 2685 } 2686 2687 float16 uint64_to_float16(uint64_t a, float_status *status) 2688 { 2689 return uint64_to_float16_scalbn(a, 0, status); 2690 } 2691 2692 float16 uint32_to_float16(uint32_t a, float_status *status) 2693 { 2694 return uint64_to_float16_scalbn(a, 0, status); 2695 } 2696 2697 float16 uint16_to_float16(uint16_t a, float_status *status) 2698 { 2699 return uint64_to_float16_scalbn(a, 0, status); 2700 } 2701 2702 float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status) 2703 { 2704 FloatParts pa = uint_to_float(a, scale, status); 2705 return float32_round_pack_canonical(pa, status); 2706 } 2707 2708 float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status) 2709 { 2710 return uint64_to_float32_scalbn(a, scale, status); 2711 } 2712 2713 float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status) 2714 { 2715 return uint64_to_float32_scalbn(a, scale, status); 2716 } 2717 2718 float32 uint64_to_float32(uint64_t a, float_status *status) 2719 { 2720 return uint64_to_float32_scalbn(a, 0, status); 2721 } 2722 2723 float32 uint32_to_float32(uint32_t a, float_status *status) 2724 { 2725 return uint64_to_float32_scalbn(a, 0, status); 2726 } 2727 2728 float32 uint16_to_float32(uint16_t a, float_status *status) 2729 { 2730 return uint64_to_float32_scalbn(a, 0, status); 2731 } 2732 2733 float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status) 2734 { 2735 FloatParts pa = uint_to_float(a, scale, status); 2736 return float64_round_pack_canonical(pa, status); 2737 } 2738 2739 float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status) 2740 { 2741 return uint64_to_float64_scalbn(a, scale, status); 2742 } 2743 2744 float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status) 2745 { 2746 return uint64_to_float64_scalbn(a, scale, status); 2747 } 2748 2749 float64 uint64_to_float64(uint64_t a, float_status *status) 2750 { 2751 return uint64_to_float64_scalbn(a, 0, status); 2752 } 2753 2754 float64 uint32_to_float64(uint32_t a, float_status *status) 2755 { 2756 return uint64_to_float64_scalbn(a, 0, status); 2757 } 2758 2759 float64 uint16_to_float64(uint16_t a, float_status *status) 2760 { 2761 return uint64_to_float64_scalbn(a, 0, status); 2762 } 2763 2764 /* Float Min/Max */ 2765 /* min() and max() functions. These can't be implemented as 2766 * 'compare and pick one input' because that would mishandle 2767 * NaNs and +0 vs -0. 2768 * 2769 * minnum() and maxnum() functions. These are similar to the min() 2770 * and max() functions but if one of the arguments is a QNaN and 2771 * the other is numerical then the numerical argument is returned. 2772 * SNaNs will get quietened before being returned. 2773 * minnum() and maxnum correspond to the IEEE 754-2008 minNum() 2774 * and maxNum() operations. min() and max() are the typical min/max 2775 * semantics provided by many CPUs which predate that specification. 2776 * 2777 * minnummag() and maxnummag() functions correspond to minNumMag() 2778 * and minNumMag() from the IEEE-754 2008. 2779 */ 2780 static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin, 2781 bool ieee, bool ismag, float_status *s) 2782 { 2783 if (unlikely(is_nan(a.cls) || is_nan(b.cls))) { 2784 if (ieee) { 2785 /* Takes two floating-point values `a' and `b', one of 2786 * which is a NaN, and returns the appropriate NaN 2787 * result. If either `a' or `b' is a signaling NaN, 2788 * the invalid exception is raised. 2789 */ 2790 if (is_snan(a.cls) || is_snan(b.cls)) { 2791 return pick_nan(a, b, s); 2792 } else if (is_nan(a.cls) && !is_nan(b.cls)) { 2793 return b; 2794 } else if (is_nan(b.cls) && !is_nan(a.cls)) { 2795 return a; 2796 } 2797 } 2798 return pick_nan(a, b, s); 2799 } else { 2800 int a_exp, b_exp; 2801 2802 switch (a.cls) { 2803 case float_class_normal: 2804 a_exp = a.exp; 2805 break; 2806 case float_class_inf: 2807 a_exp = INT_MAX; 2808 break; 2809 case float_class_zero: 2810 a_exp = INT_MIN; 2811 break; 2812 default: 2813 g_assert_not_reached(); 2814 break; 2815 } 2816 switch (b.cls) { 2817 case float_class_normal: 2818 b_exp = b.exp; 2819 break; 2820 case float_class_inf: 2821 b_exp = INT_MAX; 2822 break; 2823 case float_class_zero: 2824 b_exp = INT_MIN; 2825 break; 2826 default: 2827 g_assert_not_reached(); 2828 break; 2829 } 2830 2831 if (ismag && (a_exp != b_exp || a.frac != b.frac)) { 2832 bool a_less = a_exp < b_exp; 2833 if (a_exp == b_exp) { 2834 a_less = a.frac < b.frac; 2835 } 2836 return a_less ^ ismin ? b : a; 2837 } 2838 2839 if (a.sign == b.sign) { 2840 bool a_less = a_exp < b_exp; 2841 if (a_exp == b_exp) { 2842 a_less = a.frac < b.frac; 2843 } 2844 return a.sign ^ a_less ^ ismin ? b : a; 2845 } else { 2846 return a.sign ^ ismin ? b : a; 2847 } 2848 } 2849 } 2850 2851 #define MINMAX(sz, name, ismin, isiee, ismag) \ 2852 float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b, \ 2853 float_status *s) \ 2854 { \ 2855 FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ 2856 FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ 2857 FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s); \ 2858 \ 2859 return float ## sz ## _round_pack_canonical(pr, s); \ 2860 } 2861 2862 MINMAX(16, min, true, false, false) 2863 MINMAX(16, minnum, true, true, false) 2864 MINMAX(16, minnummag, true, true, true) 2865 MINMAX(16, max, false, false, false) 2866 MINMAX(16, maxnum, false, true, false) 2867 MINMAX(16, maxnummag, false, true, true) 2868 2869 MINMAX(32, min, true, false, false) 2870 MINMAX(32, minnum, true, true, false) 2871 MINMAX(32, minnummag, true, true, true) 2872 MINMAX(32, max, false, false, false) 2873 MINMAX(32, maxnum, false, true, false) 2874 MINMAX(32, maxnummag, false, true, true) 2875 2876 MINMAX(64, min, true, false, false) 2877 MINMAX(64, minnum, true, true, false) 2878 MINMAX(64, minnummag, true, true, true) 2879 MINMAX(64, max, false, false, false) 2880 MINMAX(64, maxnum, false, true, false) 2881 MINMAX(64, maxnummag, false, true, true) 2882 2883 #undef MINMAX 2884 2885 /* Floating point compare */ 2886 static int compare_floats(FloatParts a, FloatParts b, bool is_quiet, 2887 float_status *s) 2888 { 2889 if (is_nan(a.cls) || is_nan(b.cls)) { 2890 if (!is_quiet || 2891 a.cls == float_class_snan || 2892 b.cls == float_class_snan) { 2893 s->float_exception_flags |= float_flag_invalid; 2894 } 2895 return float_relation_unordered; 2896 } 2897 2898 if (a.cls == float_class_zero) { 2899 if (b.cls == float_class_zero) { 2900 return float_relation_equal; 2901 } 2902 return b.sign ? float_relation_greater : float_relation_less; 2903 } else if (b.cls == float_class_zero) { 2904 return a.sign ? float_relation_less : float_relation_greater; 2905 } 2906 2907 /* The only really important thing about infinity is its sign. If 2908 * both are infinities the sign marks the smallest of the two. 2909 */ 2910 if (a.cls == float_class_inf) { 2911 if ((b.cls == float_class_inf) && (a.sign == b.sign)) { 2912 return float_relation_equal; 2913 } 2914 return a.sign ? float_relation_less : float_relation_greater; 2915 } else if (b.cls == float_class_inf) { 2916 return b.sign ? float_relation_greater : float_relation_less; 2917 } 2918 2919 if (a.sign != b.sign) { 2920 return a.sign ? float_relation_less : float_relation_greater; 2921 } 2922 2923 if (a.exp == b.exp) { 2924 if (a.frac == b.frac) { 2925 return float_relation_equal; 2926 } 2927 if (a.sign) { 2928 return a.frac > b.frac ? 2929 float_relation_less : float_relation_greater; 2930 } else { 2931 return a.frac > b.frac ? 2932 float_relation_greater : float_relation_less; 2933 } 2934 } else { 2935 if (a.sign) { 2936 return a.exp > b.exp ? float_relation_less : float_relation_greater; 2937 } else { 2938 return a.exp > b.exp ? float_relation_greater : float_relation_less; 2939 } 2940 } 2941 } 2942 2943 #define COMPARE(name, attr, sz) \ 2944 static int attr \ 2945 name(float ## sz a, float ## sz b, bool is_quiet, float_status *s) \ 2946 { \ 2947 FloatParts pa = float ## sz ## _unpack_canonical(a, s); \ 2948 FloatParts pb = float ## sz ## _unpack_canonical(b, s); \ 2949 return compare_floats(pa, pb, is_quiet, s); \ 2950 } 2951 2952 COMPARE(soft_f16_compare, QEMU_FLATTEN, 16) 2953 COMPARE(soft_f32_compare, QEMU_SOFTFLOAT_ATTR, 32) 2954 COMPARE(soft_f64_compare, QEMU_SOFTFLOAT_ATTR, 64) 2955 2956 #undef COMPARE 2957 2958 int float16_compare(float16 a, float16 b, float_status *s) 2959 { 2960 return soft_f16_compare(a, b, false, s); 2961 } 2962 2963 int float16_compare_quiet(float16 a, float16 b, float_status *s) 2964 { 2965 return soft_f16_compare(a, b, true, s); 2966 } 2967 2968 static int QEMU_FLATTEN 2969 f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s) 2970 { 2971 union_float32 ua, ub; 2972 2973 ua.s = xa; 2974 ub.s = xb; 2975 2976 if (QEMU_NO_HARDFLOAT) { 2977 goto soft; 2978 } 2979 2980 float32_input_flush2(&ua.s, &ub.s, s); 2981 if (isgreaterequal(ua.h, ub.h)) { 2982 if (isgreater(ua.h, ub.h)) { 2983 return float_relation_greater; 2984 } 2985 return float_relation_equal; 2986 } 2987 if (likely(isless(ua.h, ub.h))) { 2988 return float_relation_less; 2989 } 2990 /* The only condition remaining is unordered. 2991 * Fall through to set flags. 2992 */ 2993 soft: 2994 return soft_f32_compare(ua.s, ub.s, is_quiet, s); 2995 } 2996 2997 int float32_compare(float32 a, float32 b, float_status *s) 2998 { 2999 return f32_compare(a, b, false, s); 3000 } 3001 3002 int float32_compare_quiet(float32 a, float32 b, float_status *s) 3003 { 3004 return f32_compare(a, b, true, s); 3005 } 3006 3007 static int QEMU_FLATTEN 3008 f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s) 3009 { 3010 union_float64 ua, ub; 3011 3012 ua.s = xa; 3013 ub.s = xb; 3014 3015 if (QEMU_NO_HARDFLOAT) { 3016 goto soft; 3017 } 3018 3019 float64_input_flush2(&ua.s, &ub.s, s); 3020 if (isgreaterequal(ua.h, ub.h)) { 3021 if (isgreater(ua.h, ub.h)) { 3022 return float_relation_greater; 3023 } 3024 return float_relation_equal; 3025 } 3026 if (likely(isless(ua.h, ub.h))) { 3027 return float_relation_less; 3028 } 3029 /* The only condition remaining is unordered. 3030 * Fall through to set flags. 3031 */ 3032 soft: 3033 return soft_f64_compare(ua.s, ub.s, is_quiet, s); 3034 } 3035 3036 int float64_compare(float64 a, float64 b, float_status *s) 3037 { 3038 return f64_compare(a, b, false, s); 3039 } 3040 3041 int float64_compare_quiet(float64 a, float64 b, float_status *s) 3042 { 3043 return f64_compare(a, b, true, s); 3044 } 3045 3046 /* Multiply A by 2 raised to the power N. */ 3047 static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s) 3048 { 3049 if (unlikely(is_nan(a.cls))) { 3050 return return_nan(a, s); 3051 } 3052 if (a.cls == float_class_normal) { 3053 /* The largest float type (even though not supported by FloatParts) 3054 * is float128, which has a 15 bit exponent. Bounding N to 16 bits 3055 * still allows rounding to infinity, without allowing overflow 3056 * within the int32_t that backs FloatParts.exp. 3057 */ 3058 n = MIN(MAX(n, -0x10000), 0x10000); 3059 a.exp += n; 3060 } 3061 return a; 3062 } 3063 3064 float16 float16_scalbn(float16 a, int n, float_status *status) 3065 { 3066 FloatParts pa = float16_unpack_canonical(a, status); 3067 FloatParts pr = scalbn_decomposed(pa, n, status); 3068 return float16_round_pack_canonical(pr, status); 3069 } 3070 3071 float32 float32_scalbn(float32 a, int n, float_status *status) 3072 { 3073 FloatParts pa = float32_unpack_canonical(a, status); 3074 FloatParts pr = scalbn_decomposed(pa, n, status); 3075 return float32_round_pack_canonical(pr, status); 3076 } 3077 3078 float64 float64_scalbn(float64 a, int n, float_status *status) 3079 { 3080 FloatParts pa = float64_unpack_canonical(a, status); 3081 FloatParts pr = scalbn_decomposed(pa, n, status); 3082 return float64_round_pack_canonical(pr, status); 3083 } 3084 3085 /* 3086 * Square Root 3087 * 3088 * The old softfloat code did an approximation step before zeroing in 3089 * on the final result. However for simpleness we just compute the 3090 * square root by iterating down from the implicit bit to enough extra 3091 * bits to ensure we get a correctly rounded result. 3092 * 3093 * This does mean however the calculation is slower than before, 3094 * especially for 64 bit floats. 3095 */ 3096 3097 static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p) 3098 { 3099 uint64_t a_frac, r_frac, s_frac; 3100 int bit, last_bit; 3101 3102 if (is_nan(a.cls)) { 3103 return return_nan(a, s); 3104 } 3105 if (a.cls == float_class_zero) { 3106 return a; /* sqrt(+-0) = +-0 */ 3107 } 3108 if (a.sign) { 3109 s->float_exception_flags |= float_flag_invalid; 3110 return parts_default_nan(s); 3111 } 3112 if (a.cls == float_class_inf) { 3113 return a; /* sqrt(+inf) = +inf */ 3114 } 3115 3116 assert(a.cls == float_class_normal); 3117 3118 /* We need two overflow bits at the top. Adding room for that is a 3119 * right shift. If the exponent is odd, we can discard the low bit 3120 * by multiplying the fraction by 2; that's a left shift. Combine 3121 * those and we shift right if the exponent is even. 3122 */ 3123 a_frac = a.frac; 3124 if (!(a.exp & 1)) { 3125 a_frac >>= 1; 3126 } 3127 a.exp >>= 1; 3128 3129 /* Bit-by-bit computation of sqrt. */ 3130 r_frac = 0; 3131 s_frac = 0; 3132 3133 /* Iterate from implicit bit down to the 3 extra bits to compute a 3134 * properly rounded result. Remember we've inserted one more bit 3135 * at the top, so these positions are one less. 3136 */ 3137 bit = DECOMPOSED_BINARY_POINT - 1; 3138 last_bit = MAX(p->frac_shift - 4, 0); 3139 do { 3140 uint64_t q = 1ULL << bit; 3141 uint64_t t_frac = s_frac + q; 3142 if (t_frac <= a_frac) { 3143 s_frac = t_frac + q; 3144 a_frac -= t_frac; 3145 r_frac += q; 3146 } 3147 a_frac <<= 1; 3148 } while (--bit >= last_bit); 3149 3150 /* Undo the right shift done above. If there is any remaining 3151 * fraction, the result is inexact. Set the sticky bit. 3152 */ 3153 a.frac = (r_frac << 1) + (a_frac != 0); 3154 3155 return a; 3156 } 3157 3158 float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status) 3159 { 3160 FloatParts pa = float16_unpack_canonical(a, status); 3161 FloatParts pr = sqrt_float(pa, status, &float16_params); 3162 return float16_round_pack_canonical(pr, status); 3163 } 3164 3165 static float32 QEMU_SOFTFLOAT_ATTR 3166 soft_f32_sqrt(float32 a, float_status *status) 3167 { 3168 FloatParts pa = float32_unpack_canonical(a, status); 3169 FloatParts pr = sqrt_float(pa, status, &float32_params); 3170 return float32_round_pack_canonical(pr, status); 3171 } 3172 3173 static float64 QEMU_SOFTFLOAT_ATTR 3174 soft_f64_sqrt(float64 a, float_status *status) 3175 { 3176 FloatParts pa = float64_unpack_canonical(a, status); 3177 FloatParts pr = sqrt_float(pa, status, &float64_params); 3178 return float64_round_pack_canonical(pr, status); 3179 } 3180 3181 float32 QEMU_FLATTEN float32_sqrt(float32 xa, float_status *s) 3182 { 3183 union_float32 ua, ur; 3184 3185 ua.s = xa; 3186 if (unlikely(!can_use_fpu(s))) { 3187 goto soft; 3188 } 3189 3190 float32_input_flush1(&ua.s, s); 3191 if (QEMU_HARDFLOAT_1F32_USE_FP) { 3192 if (unlikely(!(fpclassify(ua.h) == FP_NORMAL || 3193 fpclassify(ua.h) == FP_ZERO) || 3194 signbit(ua.h))) { 3195 goto soft; 3196 } 3197 } else if (unlikely(!float32_is_zero_or_normal(ua.s) || 3198 float32_is_neg(ua.s))) { 3199 goto soft; 3200 } 3201 ur.h = sqrtf(ua.h); 3202 return ur.s; 3203 3204 soft: 3205 return soft_f32_sqrt(ua.s, s); 3206 } 3207 3208 float64 QEMU_FLATTEN float64_sqrt(float64 xa, float_status *s) 3209 { 3210 union_float64 ua, ur; 3211 3212 ua.s = xa; 3213 if (unlikely(!can_use_fpu(s))) { 3214 goto soft; 3215 } 3216 3217 float64_input_flush1(&ua.s, s); 3218 if (QEMU_HARDFLOAT_1F64_USE_FP) { 3219 if (unlikely(!(fpclassify(ua.h) == FP_NORMAL || 3220 fpclassify(ua.h) == FP_ZERO) || 3221 signbit(ua.h))) { 3222 goto soft; 3223 } 3224 } else if (unlikely(!float64_is_zero_or_normal(ua.s) || 3225 float64_is_neg(ua.s))) { 3226 goto soft; 3227 } 3228 ur.h = sqrt(ua.h); 3229 return ur.s; 3230 3231 soft: 3232 return soft_f64_sqrt(ua.s, s); 3233 } 3234 3235 /*---------------------------------------------------------------------------- 3236 | The pattern for a default generated NaN. 3237 *----------------------------------------------------------------------------*/ 3238 3239 float16 float16_default_nan(float_status *status) 3240 { 3241 FloatParts p = parts_default_nan(status); 3242 p.frac >>= float16_params.frac_shift; 3243 return float16_pack_raw(p); 3244 } 3245 3246 float32 float32_default_nan(float_status *status) 3247 { 3248 FloatParts p = parts_default_nan(status); 3249 p.frac >>= float32_params.frac_shift; 3250 return float32_pack_raw(p); 3251 } 3252 3253 float64 float64_default_nan(float_status *status) 3254 { 3255 FloatParts p = parts_default_nan(status); 3256 p.frac >>= float64_params.frac_shift; 3257 return float64_pack_raw(p); 3258 } 3259 3260 float128 float128_default_nan(float_status *status) 3261 { 3262 FloatParts p = parts_default_nan(status); 3263 float128 r; 3264 3265 /* Extrapolate from the choices made by parts_default_nan to fill 3266 * in the quad-floating format. If the low bit is set, assume we 3267 * want to set all non-snan bits. 3268 */ 3269 r.low = -(p.frac & 1); 3270 r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48); 3271 r.high |= UINT64_C(0x7FFF000000000000); 3272 r.high |= (uint64_t)p.sign << 63; 3273 3274 return r; 3275 } 3276 3277 /*---------------------------------------------------------------------------- 3278 | Returns a quiet NaN from a signalling NaN for the floating point value `a'. 3279 *----------------------------------------------------------------------------*/ 3280 3281 float16 float16_silence_nan(float16 a, float_status *status) 3282 { 3283 FloatParts p = float16_unpack_raw(a); 3284 p.frac <<= float16_params.frac_shift; 3285 p = parts_silence_nan(p, status); 3286 p.frac >>= float16_params.frac_shift; 3287 return float16_pack_raw(p); 3288 } 3289 3290 float32 float32_silence_nan(float32 a, float_status *status) 3291 { 3292 FloatParts p = float32_unpack_raw(a); 3293 p.frac <<= float32_params.frac_shift; 3294 p = parts_silence_nan(p, status); 3295 p.frac >>= float32_params.frac_shift; 3296 return float32_pack_raw(p); 3297 } 3298 3299 float64 float64_silence_nan(float64 a, float_status *status) 3300 { 3301 FloatParts p = float64_unpack_raw(a); 3302 p.frac <<= float64_params.frac_shift; 3303 p = parts_silence_nan(p, status); 3304 p.frac >>= float64_params.frac_shift; 3305 return float64_pack_raw(p); 3306 } 3307 3308 3309 /*---------------------------------------------------------------------------- 3310 | If `a' is denormal and we are in flush-to-zero mode then set the 3311 | input-denormal exception and return zero. Otherwise just return the value. 3312 *----------------------------------------------------------------------------*/ 3313 3314 static bool parts_squash_denormal(FloatParts p, float_status *status) 3315 { 3316 if (p.exp == 0 && p.frac != 0) { 3317 float_raise(float_flag_input_denormal, status); 3318 return true; 3319 } 3320 3321 return false; 3322 } 3323 3324 float16 float16_squash_input_denormal(float16 a, float_status *status) 3325 { 3326 if (status->flush_inputs_to_zero) { 3327 FloatParts p = float16_unpack_raw(a); 3328 if (parts_squash_denormal(p, status)) { 3329 return float16_set_sign(float16_zero, p.sign); 3330 } 3331 } 3332 return a; 3333 } 3334 3335 float32 float32_squash_input_denormal(float32 a, float_status *status) 3336 { 3337 if (status->flush_inputs_to_zero) { 3338 FloatParts p = float32_unpack_raw(a); 3339 if (parts_squash_denormal(p, status)) { 3340 return float32_set_sign(float32_zero, p.sign); 3341 } 3342 } 3343 return a; 3344 } 3345 3346 float64 float64_squash_input_denormal(float64 a, float_status *status) 3347 { 3348 if (status->flush_inputs_to_zero) { 3349 FloatParts p = float64_unpack_raw(a); 3350 if (parts_squash_denormal(p, status)) { 3351 return float64_set_sign(float64_zero, p.sign); 3352 } 3353 } 3354 return a; 3355 } 3356 3357 /*---------------------------------------------------------------------------- 3358 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 3359 | and 7, and returns the properly rounded 32-bit integer corresponding to the 3360 | input. If `zSign' is 1, the input is negated before being converted to an 3361 | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input 3362 | is simply rounded to an integer, with the inexact exception raised if the 3363 | input cannot be represented exactly as an integer. However, if the fixed- 3364 | point input is too large, the invalid exception is raised and the largest 3365 | positive or negative integer is returned. 3366 *----------------------------------------------------------------------------*/ 3367 3368 static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status) 3369 { 3370 int8_t roundingMode; 3371 flag roundNearestEven; 3372 int8_t roundIncrement, roundBits; 3373 int32_t z; 3374 3375 roundingMode = status->float_rounding_mode; 3376 roundNearestEven = ( roundingMode == float_round_nearest_even ); 3377 switch (roundingMode) { 3378 case float_round_nearest_even: 3379 case float_round_ties_away: 3380 roundIncrement = 0x40; 3381 break; 3382 case float_round_to_zero: 3383 roundIncrement = 0; 3384 break; 3385 case float_round_up: 3386 roundIncrement = zSign ? 0 : 0x7f; 3387 break; 3388 case float_round_down: 3389 roundIncrement = zSign ? 0x7f : 0; 3390 break; 3391 case float_round_to_odd: 3392 roundIncrement = absZ & 0x80 ? 0 : 0x7f; 3393 break; 3394 default: 3395 abort(); 3396 } 3397 roundBits = absZ & 0x7F; 3398 absZ = ( absZ + roundIncrement )>>7; 3399 absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); 3400 z = absZ; 3401 if ( zSign ) z = - z; 3402 if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { 3403 float_raise(float_flag_invalid, status); 3404 return zSign ? INT32_MIN : INT32_MAX; 3405 } 3406 if (roundBits) { 3407 status->float_exception_flags |= float_flag_inexact; 3408 } 3409 return z; 3410 3411 } 3412 3413 /*---------------------------------------------------------------------------- 3414 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and 3415 | `absZ1', with binary point between bits 63 and 64 (between the input words), 3416 | and returns the properly rounded 64-bit integer corresponding to the input. 3417 | If `zSign' is 1, the input is negated before being converted to an integer. 3418 | Ordinarily, the fixed-point input is simply rounded to an integer, with 3419 | the inexact exception raised if the input cannot be represented exactly as 3420 | an integer. However, if the fixed-point input is too large, the invalid 3421 | exception is raised and the largest positive or negative integer is 3422 | returned. 3423 *----------------------------------------------------------------------------*/ 3424 3425 static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1, 3426 float_status *status) 3427 { 3428 int8_t roundingMode; 3429 flag roundNearestEven, increment; 3430 int64_t z; 3431 3432 roundingMode = status->float_rounding_mode; 3433 roundNearestEven = ( roundingMode == float_round_nearest_even ); 3434 switch (roundingMode) { 3435 case float_round_nearest_even: 3436 case float_round_ties_away: 3437 increment = ((int64_t) absZ1 < 0); 3438 break; 3439 case float_round_to_zero: 3440 increment = 0; 3441 break; 3442 case float_round_up: 3443 increment = !zSign && absZ1; 3444 break; 3445 case float_round_down: 3446 increment = zSign && absZ1; 3447 break; 3448 case float_round_to_odd: 3449 increment = !(absZ0 & 1) && absZ1; 3450 break; 3451 default: 3452 abort(); 3453 } 3454 if ( increment ) { 3455 ++absZ0; 3456 if ( absZ0 == 0 ) goto overflow; 3457 absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven ); 3458 } 3459 z = absZ0; 3460 if ( zSign ) z = - z; 3461 if ( z && ( ( z < 0 ) ^ zSign ) ) { 3462 overflow: 3463 float_raise(float_flag_invalid, status); 3464 return zSign ? INT64_MIN : INT64_MAX; 3465 } 3466 if (absZ1) { 3467 status->float_exception_flags |= float_flag_inexact; 3468 } 3469 return z; 3470 3471 } 3472 3473 /*---------------------------------------------------------------------------- 3474 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and 3475 | `absZ1', with binary point between bits 63 and 64 (between the input words), 3476 | and returns the properly rounded 64-bit unsigned integer corresponding to the 3477 | input. Ordinarily, the fixed-point input is simply rounded to an integer, 3478 | with the inexact exception raised if the input cannot be represented exactly 3479 | as an integer. However, if the fixed-point input is too large, the invalid 3480 | exception is raised and the largest unsigned integer is returned. 3481 *----------------------------------------------------------------------------*/ 3482 3483 static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0, 3484 uint64_t absZ1, float_status *status) 3485 { 3486 int8_t roundingMode; 3487 flag roundNearestEven, increment; 3488 3489 roundingMode = status->float_rounding_mode; 3490 roundNearestEven = (roundingMode == float_round_nearest_even); 3491 switch (roundingMode) { 3492 case float_round_nearest_even: 3493 case float_round_ties_away: 3494 increment = ((int64_t)absZ1 < 0); 3495 break; 3496 case float_round_to_zero: 3497 increment = 0; 3498 break; 3499 case float_round_up: 3500 increment = !zSign && absZ1; 3501 break; 3502 case float_round_down: 3503 increment = zSign && absZ1; 3504 break; 3505 case float_round_to_odd: 3506 increment = !(absZ0 & 1) && absZ1; 3507 break; 3508 default: 3509 abort(); 3510 } 3511 if (increment) { 3512 ++absZ0; 3513 if (absZ0 == 0) { 3514 float_raise(float_flag_invalid, status); 3515 return UINT64_MAX; 3516 } 3517 absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven); 3518 } 3519 3520 if (zSign && absZ0) { 3521 float_raise(float_flag_invalid, status); 3522 return 0; 3523 } 3524 3525 if (absZ1) { 3526 status->float_exception_flags |= float_flag_inexact; 3527 } 3528 return absZ0; 3529 } 3530 3531 /*---------------------------------------------------------------------------- 3532 | Normalizes the subnormal single-precision floating-point value represented 3533 | by the denormalized significand `aSig'. The normalized exponent and 3534 | significand are stored at the locations pointed to by `zExpPtr' and 3535 | `zSigPtr', respectively. 3536 *----------------------------------------------------------------------------*/ 3537 3538 static void 3539 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr) 3540 { 3541 int8_t shiftCount; 3542 3543 shiftCount = clz32(aSig) - 8; 3544 *zSigPtr = aSig<<shiftCount; 3545 *zExpPtr = 1 - shiftCount; 3546 3547 } 3548 3549 /*---------------------------------------------------------------------------- 3550 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 3551 | and significand `zSig', and returns the proper single-precision floating- 3552 | point value corresponding to the abstract input. Ordinarily, the abstract 3553 | value is simply rounded and packed into the single-precision format, with 3554 | the inexact exception raised if the abstract input cannot be represented 3555 | exactly. However, if the abstract value is too large, the overflow and 3556 | inexact exceptions are raised and an infinity or maximal finite value is 3557 | returned. If the abstract value is too small, the input value is rounded to 3558 | a subnormal number, and the underflow and inexact exceptions are raised if 3559 | the abstract input cannot be represented exactly as a subnormal single- 3560 | precision floating-point number. 3561 | The input significand `zSig' has its binary point between bits 30 3562 | and 29, which is 7 bits to the left of the usual location. This shifted 3563 | significand must be normalized or smaller. If `zSig' is not normalized, 3564 | `zExp' must be 0; in that case, the result returned is a subnormal number, 3565 | and it must not require rounding. In the usual case that `zSig' is 3566 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. 3567 | The handling of underflow and overflow follows the IEC/IEEE Standard for 3568 | Binary Floating-Point Arithmetic. 3569 *----------------------------------------------------------------------------*/ 3570 3571 static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, 3572 float_status *status) 3573 { 3574 int8_t roundingMode; 3575 flag roundNearestEven; 3576 int8_t roundIncrement, roundBits; 3577 flag isTiny; 3578 3579 roundingMode = status->float_rounding_mode; 3580 roundNearestEven = ( roundingMode == float_round_nearest_even ); 3581 switch (roundingMode) { 3582 case float_round_nearest_even: 3583 case float_round_ties_away: 3584 roundIncrement = 0x40; 3585 break; 3586 case float_round_to_zero: 3587 roundIncrement = 0; 3588 break; 3589 case float_round_up: 3590 roundIncrement = zSign ? 0 : 0x7f; 3591 break; 3592 case float_round_down: 3593 roundIncrement = zSign ? 0x7f : 0; 3594 break; 3595 case float_round_to_odd: 3596 roundIncrement = zSig & 0x80 ? 0 : 0x7f; 3597 break; 3598 default: 3599 abort(); 3600 break; 3601 } 3602 roundBits = zSig & 0x7F; 3603 if ( 0xFD <= (uint16_t) zExp ) { 3604 if ( ( 0xFD < zExp ) 3605 || ( ( zExp == 0xFD ) 3606 && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) 3607 ) { 3608 bool overflow_to_inf = roundingMode != float_round_to_odd && 3609 roundIncrement != 0; 3610 float_raise(float_flag_overflow | float_flag_inexact, status); 3611 return packFloat32(zSign, 0xFF, -!overflow_to_inf); 3612 } 3613 if ( zExp < 0 ) { 3614 if (status->flush_to_zero) { 3615 float_raise(float_flag_output_denormal, status); 3616 return packFloat32(zSign, 0, 0); 3617 } 3618 isTiny = 3619 (status->float_detect_tininess 3620 == float_tininess_before_rounding) 3621 || ( zExp < -1 ) 3622 || ( zSig + roundIncrement < 0x80000000 ); 3623 shift32RightJamming( zSig, - zExp, &zSig ); 3624 zExp = 0; 3625 roundBits = zSig & 0x7F; 3626 if (isTiny && roundBits) { 3627 float_raise(float_flag_underflow, status); 3628 } 3629 if (roundingMode == float_round_to_odd) { 3630 /* 3631 * For round-to-odd case, the roundIncrement depends on 3632 * zSig which just changed. 3633 */ 3634 roundIncrement = zSig & 0x80 ? 0 : 0x7f; 3635 } 3636 } 3637 } 3638 if (roundBits) { 3639 status->float_exception_flags |= float_flag_inexact; 3640 } 3641 zSig = ( zSig + roundIncrement )>>7; 3642 zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); 3643 if ( zSig == 0 ) zExp = 0; 3644 return packFloat32( zSign, zExp, zSig ); 3645 3646 } 3647 3648 /*---------------------------------------------------------------------------- 3649 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 3650 | and significand `zSig', and returns the proper single-precision floating- 3651 | point value corresponding to the abstract input. This routine is just like 3652 | `roundAndPackFloat32' except that `zSig' does not have to be normalized. 3653 | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' 3654 | floating-point exponent. 3655 *----------------------------------------------------------------------------*/ 3656 3657 static float32 3658 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig, 3659 float_status *status) 3660 { 3661 int8_t shiftCount; 3662 3663 shiftCount = clz32(zSig) - 1; 3664 return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, 3665 status); 3666 3667 } 3668 3669 /*---------------------------------------------------------------------------- 3670 | Normalizes the subnormal double-precision floating-point value represented 3671 | by the denormalized significand `aSig'. The normalized exponent and 3672 | significand are stored at the locations pointed to by `zExpPtr' and 3673 | `zSigPtr', respectively. 3674 *----------------------------------------------------------------------------*/ 3675 3676 static void 3677 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr) 3678 { 3679 int8_t shiftCount; 3680 3681 shiftCount = clz64(aSig) - 11; 3682 *zSigPtr = aSig<<shiftCount; 3683 *zExpPtr = 1 - shiftCount; 3684 3685 } 3686 3687 /*---------------------------------------------------------------------------- 3688 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a 3689 | double-precision floating-point value, returning the result. After being 3690 | shifted into the proper positions, the three fields are simply added 3691 | together to form the result. This means that any integer portion of `zSig' 3692 | will be added into the exponent. Since a properly normalized significand 3693 | will have an integer portion equal to 1, the `zExp' input should be 1 less 3694 | than the desired result exponent whenever `zSig' is a complete, normalized 3695 | significand. 3696 *----------------------------------------------------------------------------*/ 3697 3698 static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig) 3699 { 3700 3701 return make_float64( 3702 ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); 3703 3704 } 3705 3706 /*---------------------------------------------------------------------------- 3707 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 3708 | and significand `zSig', and returns the proper double-precision floating- 3709 | point value corresponding to the abstract input. Ordinarily, the abstract 3710 | value is simply rounded and packed into the double-precision format, with 3711 | the inexact exception raised if the abstract input cannot be represented 3712 | exactly. However, if the abstract value is too large, the overflow and 3713 | inexact exceptions are raised and an infinity or maximal finite value is 3714 | returned. If the abstract value is too small, the input value is rounded to 3715 | a subnormal number, and the underflow and inexact exceptions are raised if 3716 | the abstract input cannot be represented exactly as a subnormal double- 3717 | precision floating-point number. 3718 | The input significand `zSig' has its binary point between bits 62 3719 | and 61, which is 10 bits to the left of the usual location. This shifted 3720 | significand must be normalized or smaller. If `zSig' is not normalized, 3721 | `zExp' must be 0; in that case, the result returned is a subnormal number, 3722 | and it must not require rounding. In the usual case that `zSig' is 3723 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. 3724 | The handling of underflow and overflow follows the IEC/IEEE Standard for 3725 | Binary Floating-Point Arithmetic. 3726 *----------------------------------------------------------------------------*/ 3727 3728 static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, 3729 float_status *status) 3730 { 3731 int8_t roundingMode; 3732 flag roundNearestEven; 3733 int roundIncrement, roundBits; 3734 flag isTiny; 3735 3736 roundingMode = status->float_rounding_mode; 3737 roundNearestEven = ( roundingMode == float_round_nearest_even ); 3738 switch (roundingMode) { 3739 case float_round_nearest_even: 3740 case float_round_ties_away: 3741 roundIncrement = 0x200; 3742 break; 3743 case float_round_to_zero: 3744 roundIncrement = 0; 3745 break; 3746 case float_round_up: 3747 roundIncrement = zSign ? 0 : 0x3ff; 3748 break; 3749 case float_round_down: 3750 roundIncrement = zSign ? 0x3ff : 0; 3751 break; 3752 case float_round_to_odd: 3753 roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; 3754 break; 3755 default: 3756 abort(); 3757 } 3758 roundBits = zSig & 0x3FF; 3759 if ( 0x7FD <= (uint16_t) zExp ) { 3760 if ( ( 0x7FD < zExp ) 3761 || ( ( zExp == 0x7FD ) 3762 && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) 3763 ) { 3764 bool overflow_to_inf = roundingMode != float_round_to_odd && 3765 roundIncrement != 0; 3766 float_raise(float_flag_overflow | float_flag_inexact, status); 3767 return packFloat64(zSign, 0x7FF, -(!overflow_to_inf)); 3768 } 3769 if ( zExp < 0 ) { 3770 if (status->flush_to_zero) { 3771 float_raise(float_flag_output_denormal, status); 3772 return packFloat64(zSign, 0, 0); 3773 } 3774 isTiny = 3775 (status->float_detect_tininess 3776 == float_tininess_before_rounding) 3777 || ( zExp < -1 ) 3778 || ( zSig + roundIncrement < UINT64_C(0x8000000000000000) ); 3779 shift64RightJamming( zSig, - zExp, &zSig ); 3780 zExp = 0; 3781 roundBits = zSig & 0x3FF; 3782 if (isTiny && roundBits) { 3783 float_raise(float_flag_underflow, status); 3784 } 3785 if (roundingMode == float_round_to_odd) { 3786 /* 3787 * For round-to-odd case, the roundIncrement depends on 3788 * zSig which just changed. 3789 */ 3790 roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; 3791 } 3792 } 3793 } 3794 if (roundBits) { 3795 status->float_exception_flags |= float_flag_inexact; 3796 } 3797 zSig = ( zSig + roundIncrement )>>10; 3798 zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); 3799 if ( zSig == 0 ) zExp = 0; 3800 return packFloat64( zSign, zExp, zSig ); 3801 3802 } 3803 3804 /*---------------------------------------------------------------------------- 3805 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 3806 | and significand `zSig', and returns the proper double-precision floating- 3807 | point value corresponding to the abstract input. This routine is just like 3808 | `roundAndPackFloat64' except that `zSig' does not have to be normalized. 3809 | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' 3810 | floating-point exponent. 3811 *----------------------------------------------------------------------------*/ 3812 3813 static float64 3814 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig, 3815 float_status *status) 3816 { 3817 int8_t shiftCount; 3818 3819 shiftCount = clz64(zSig) - 1; 3820 return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, 3821 status); 3822 3823 } 3824 3825 /*---------------------------------------------------------------------------- 3826 | Normalizes the subnormal extended double-precision floating-point value 3827 | represented by the denormalized significand `aSig'. The normalized exponent 3828 | and significand are stored at the locations pointed to by `zExpPtr' and 3829 | `zSigPtr', respectively. 3830 *----------------------------------------------------------------------------*/ 3831 3832 void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, 3833 uint64_t *zSigPtr) 3834 { 3835 int8_t shiftCount; 3836 3837 shiftCount = clz64(aSig); 3838 *zSigPtr = aSig<<shiftCount; 3839 *zExpPtr = 1 - shiftCount; 3840 } 3841 3842 /*---------------------------------------------------------------------------- 3843 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 3844 | and extended significand formed by the concatenation of `zSig0' and `zSig1', 3845 | and returns the proper extended double-precision floating-point value 3846 | corresponding to the abstract input. Ordinarily, the abstract value is 3847 | rounded and packed into the extended double-precision format, with the 3848 | inexact exception raised if the abstract input cannot be represented 3849 | exactly. However, if the abstract value is too large, the overflow and 3850 | inexact exceptions are raised and an infinity or maximal finite value is 3851 | returned. If the abstract value is too small, the input value is rounded to 3852 | a subnormal number, and the underflow and inexact exceptions are raised if 3853 | the abstract input cannot be represented exactly as a subnormal extended 3854 | double-precision floating-point number. 3855 | If `roundingPrecision' is 32 or 64, the result is rounded to the same 3856 | number of bits as single or double precision, respectively. Otherwise, the 3857 | result is rounded to the full precision of the extended double-precision 3858 | format. 3859 | The input significand must be normalized or smaller. If the input 3860 | significand is not normalized, `zExp' must be 0; in that case, the result 3861 | returned is a subnormal number, and it must not require rounding. The 3862 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary 3863 | Floating-Point Arithmetic. 3864 *----------------------------------------------------------------------------*/ 3865 3866 floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign, 3867 int32_t zExp, uint64_t zSig0, uint64_t zSig1, 3868 float_status *status) 3869 { 3870 int8_t roundingMode; 3871 flag roundNearestEven, increment, isTiny; 3872 int64_t roundIncrement, roundMask, roundBits; 3873 3874 roundingMode = status->float_rounding_mode; 3875 roundNearestEven = ( roundingMode == float_round_nearest_even ); 3876 if ( roundingPrecision == 80 ) goto precision80; 3877 if ( roundingPrecision == 64 ) { 3878 roundIncrement = UINT64_C(0x0000000000000400); 3879 roundMask = UINT64_C(0x00000000000007FF); 3880 } 3881 else if ( roundingPrecision == 32 ) { 3882 roundIncrement = UINT64_C(0x0000008000000000); 3883 roundMask = UINT64_C(0x000000FFFFFFFFFF); 3884 } 3885 else { 3886 goto precision80; 3887 } 3888 zSig0 |= ( zSig1 != 0 ); 3889 switch (roundingMode) { 3890 case float_round_nearest_even: 3891 case float_round_ties_away: 3892 break; 3893 case float_round_to_zero: 3894 roundIncrement = 0; 3895 break; 3896 case float_round_up: 3897 roundIncrement = zSign ? 0 : roundMask; 3898 break; 3899 case float_round_down: 3900 roundIncrement = zSign ? roundMask : 0; 3901 break; 3902 default: 3903 abort(); 3904 } 3905 roundBits = zSig0 & roundMask; 3906 if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { 3907 if ( ( 0x7FFE < zExp ) 3908 || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) 3909 ) { 3910 goto overflow; 3911 } 3912 if ( zExp <= 0 ) { 3913 if (status->flush_to_zero) { 3914 float_raise(float_flag_output_denormal, status); 3915 return packFloatx80(zSign, 0, 0); 3916 } 3917 isTiny = 3918 (status->float_detect_tininess 3919 == float_tininess_before_rounding) 3920 || ( zExp < 0 ) 3921 || ( zSig0 <= zSig0 + roundIncrement ); 3922 shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); 3923 zExp = 0; 3924 roundBits = zSig0 & roundMask; 3925 if (isTiny && roundBits) { 3926 float_raise(float_flag_underflow, status); 3927 } 3928 if (roundBits) { 3929 status->float_exception_flags |= float_flag_inexact; 3930 } 3931 zSig0 += roundIncrement; 3932 if ( (int64_t) zSig0 < 0 ) zExp = 1; 3933 roundIncrement = roundMask + 1; 3934 if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { 3935 roundMask |= roundIncrement; 3936 } 3937 zSig0 &= ~ roundMask; 3938 return packFloatx80( zSign, zExp, zSig0 ); 3939 } 3940 } 3941 if (roundBits) { 3942 status->float_exception_flags |= float_flag_inexact; 3943 } 3944 zSig0 += roundIncrement; 3945 if ( zSig0 < roundIncrement ) { 3946 ++zExp; 3947 zSig0 = UINT64_C(0x8000000000000000); 3948 } 3949 roundIncrement = roundMask + 1; 3950 if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { 3951 roundMask |= roundIncrement; 3952 } 3953 zSig0 &= ~ roundMask; 3954 if ( zSig0 == 0 ) zExp = 0; 3955 return packFloatx80( zSign, zExp, zSig0 ); 3956 precision80: 3957 switch (roundingMode) { 3958 case float_round_nearest_even: 3959 case float_round_ties_away: 3960 increment = ((int64_t)zSig1 < 0); 3961 break; 3962 case float_round_to_zero: 3963 increment = 0; 3964 break; 3965 case float_round_up: 3966 increment = !zSign && zSig1; 3967 break; 3968 case float_round_down: 3969 increment = zSign && zSig1; 3970 break; 3971 default: 3972 abort(); 3973 } 3974 if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) { 3975 if ( ( 0x7FFE < zExp ) 3976 || ( ( zExp == 0x7FFE ) 3977 && ( zSig0 == UINT64_C(0xFFFFFFFFFFFFFFFF) ) 3978 && increment 3979 ) 3980 ) { 3981 roundMask = 0; 3982 overflow: 3983 float_raise(float_flag_overflow | float_flag_inexact, status); 3984 if ( ( roundingMode == float_round_to_zero ) 3985 || ( zSign && ( roundingMode == float_round_up ) ) 3986 || ( ! zSign && ( roundingMode == float_round_down ) ) 3987 ) { 3988 return packFloatx80( zSign, 0x7FFE, ~ roundMask ); 3989 } 3990 return packFloatx80(zSign, 3991 floatx80_infinity_high, 3992 floatx80_infinity_low); 3993 } 3994 if ( zExp <= 0 ) { 3995 isTiny = 3996 (status->float_detect_tininess 3997 == float_tininess_before_rounding) 3998 || ( zExp < 0 ) 3999 || ! increment 4000 || ( zSig0 < UINT64_C(0xFFFFFFFFFFFFFFFF) ); 4001 shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); 4002 zExp = 0; 4003 if (isTiny && zSig1) { 4004 float_raise(float_flag_underflow, status); 4005 } 4006 if (zSig1) { 4007 status->float_exception_flags |= float_flag_inexact; 4008 } 4009 switch (roundingMode) { 4010 case float_round_nearest_even: 4011 case float_round_ties_away: 4012 increment = ((int64_t)zSig1 < 0); 4013 break; 4014 case float_round_to_zero: 4015 increment = 0; 4016 break; 4017 case float_round_up: 4018 increment = !zSign && zSig1; 4019 break; 4020 case float_round_down: 4021 increment = zSign && zSig1; 4022 break; 4023 default: 4024 abort(); 4025 } 4026 if ( increment ) { 4027 ++zSig0; 4028 zSig0 &= 4029 ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); 4030 if ( (int64_t) zSig0 < 0 ) zExp = 1; 4031 } 4032 return packFloatx80( zSign, zExp, zSig0 ); 4033 } 4034 } 4035 if (zSig1) { 4036 status->float_exception_flags |= float_flag_inexact; 4037 } 4038 if ( increment ) { 4039 ++zSig0; 4040 if ( zSig0 == 0 ) { 4041 ++zExp; 4042 zSig0 = UINT64_C(0x8000000000000000); 4043 } 4044 else { 4045 zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven ); 4046 } 4047 } 4048 else { 4049 if ( zSig0 == 0 ) zExp = 0; 4050 } 4051 return packFloatx80( zSign, zExp, zSig0 ); 4052 4053 } 4054 4055 /*---------------------------------------------------------------------------- 4056 | Takes an abstract floating-point value having sign `zSign', exponent 4057 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', 4058 | and returns the proper extended double-precision floating-point value 4059 | corresponding to the abstract input. This routine is just like 4060 | `roundAndPackFloatx80' except that the input significand does not have to be 4061 | normalized. 4062 *----------------------------------------------------------------------------*/ 4063 4064 floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, 4065 flag zSign, int32_t zExp, 4066 uint64_t zSig0, uint64_t zSig1, 4067 float_status *status) 4068 { 4069 int8_t shiftCount; 4070 4071 if ( zSig0 == 0 ) { 4072 zSig0 = zSig1; 4073 zSig1 = 0; 4074 zExp -= 64; 4075 } 4076 shiftCount = clz64(zSig0); 4077 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 4078 zExp -= shiftCount; 4079 return roundAndPackFloatx80(roundingPrecision, zSign, zExp, 4080 zSig0, zSig1, status); 4081 4082 } 4083 4084 /*---------------------------------------------------------------------------- 4085 | Returns the least-significant 64 fraction bits of the quadruple-precision 4086 | floating-point value `a'. 4087 *----------------------------------------------------------------------------*/ 4088 4089 static inline uint64_t extractFloat128Frac1( float128 a ) 4090 { 4091 4092 return a.low; 4093 4094 } 4095 4096 /*---------------------------------------------------------------------------- 4097 | Returns the most-significant 48 fraction bits of the quadruple-precision 4098 | floating-point value `a'. 4099 *----------------------------------------------------------------------------*/ 4100 4101 static inline uint64_t extractFloat128Frac0( float128 a ) 4102 { 4103 4104 return a.high & UINT64_C(0x0000FFFFFFFFFFFF); 4105 4106 } 4107 4108 /*---------------------------------------------------------------------------- 4109 | Returns the exponent bits of the quadruple-precision floating-point value 4110 | `a'. 4111 *----------------------------------------------------------------------------*/ 4112 4113 static inline int32_t extractFloat128Exp( float128 a ) 4114 { 4115 4116 return ( a.high>>48 ) & 0x7FFF; 4117 4118 } 4119 4120 /*---------------------------------------------------------------------------- 4121 | Returns the sign bit of the quadruple-precision floating-point value `a'. 4122 *----------------------------------------------------------------------------*/ 4123 4124 static inline flag extractFloat128Sign( float128 a ) 4125 { 4126 4127 return a.high>>63; 4128 4129 } 4130 4131 /*---------------------------------------------------------------------------- 4132 | Normalizes the subnormal quadruple-precision floating-point value 4133 | represented by the denormalized significand formed by the concatenation of 4134 | `aSig0' and `aSig1'. The normalized exponent is stored at the location 4135 | pointed to by `zExpPtr'. The most significant 49 bits of the normalized 4136 | significand are stored at the location pointed to by `zSig0Ptr', and the 4137 | least significant 64 bits of the normalized significand are stored at the 4138 | location pointed to by `zSig1Ptr'. 4139 *----------------------------------------------------------------------------*/ 4140 4141 static void 4142 normalizeFloat128Subnormal( 4143 uint64_t aSig0, 4144 uint64_t aSig1, 4145 int32_t *zExpPtr, 4146 uint64_t *zSig0Ptr, 4147 uint64_t *zSig1Ptr 4148 ) 4149 { 4150 int8_t shiftCount; 4151 4152 if ( aSig0 == 0 ) { 4153 shiftCount = clz64(aSig1) - 15; 4154 if ( shiftCount < 0 ) { 4155 *zSig0Ptr = aSig1>>( - shiftCount ); 4156 *zSig1Ptr = aSig1<<( shiftCount & 63 ); 4157 } 4158 else { 4159 *zSig0Ptr = aSig1<<shiftCount; 4160 *zSig1Ptr = 0; 4161 } 4162 *zExpPtr = - shiftCount - 63; 4163 } 4164 else { 4165 shiftCount = clz64(aSig0) - 15; 4166 shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); 4167 *zExpPtr = 1 - shiftCount; 4168 } 4169 4170 } 4171 4172 /*---------------------------------------------------------------------------- 4173 | Packs the sign `zSign', the exponent `zExp', and the significand formed 4174 | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision 4175 | floating-point value, returning the result. After being shifted into the 4176 | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply 4177 | added together to form the most significant 32 bits of the result. This 4178 | means that any integer portion of `zSig0' will be added into the exponent. 4179 | Since a properly normalized significand will have an integer portion equal 4180 | to 1, the `zExp' input should be 1 less than the desired result exponent 4181 | whenever `zSig0' and `zSig1' concatenated form a complete, normalized 4182 | significand. 4183 *----------------------------------------------------------------------------*/ 4184 4185 static inline float128 4186 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 ) 4187 { 4188 float128 z; 4189 4190 z.low = zSig1; 4191 z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0; 4192 return z; 4193 4194 } 4195 4196 /*---------------------------------------------------------------------------- 4197 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 4198 | and extended significand formed by the concatenation of `zSig0', `zSig1', 4199 | and `zSig2', and returns the proper quadruple-precision floating-point value 4200 | corresponding to the abstract input. Ordinarily, the abstract value is 4201 | simply rounded and packed into the quadruple-precision format, with the 4202 | inexact exception raised if the abstract input cannot be represented 4203 | exactly. However, if the abstract value is too large, the overflow and 4204 | inexact exceptions are raised and an infinity or maximal finite value is 4205 | returned. If the abstract value is too small, the input value is rounded to 4206 | a subnormal number, and the underflow and inexact exceptions are raised if 4207 | the abstract input cannot be represented exactly as a subnormal quadruple- 4208 | precision floating-point number. 4209 | The input significand must be normalized or smaller. If the input 4210 | significand is not normalized, `zExp' must be 0; in that case, the result 4211 | returned is a subnormal number, and it must not require rounding. In the 4212 | usual case that the input significand is normalized, `zExp' must be 1 less 4213 | than the ``true'' floating-point exponent. The handling of underflow and 4214 | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4215 *----------------------------------------------------------------------------*/ 4216 4217 static float128 roundAndPackFloat128(flag zSign, int32_t zExp, 4218 uint64_t zSig0, uint64_t zSig1, 4219 uint64_t zSig2, float_status *status) 4220 { 4221 int8_t roundingMode; 4222 flag roundNearestEven, increment, isTiny; 4223 4224 roundingMode = status->float_rounding_mode; 4225 roundNearestEven = ( roundingMode == float_round_nearest_even ); 4226 switch (roundingMode) { 4227 case float_round_nearest_even: 4228 case float_round_ties_away: 4229 increment = ((int64_t)zSig2 < 0); 4230 break; 4231 case float_round_to_zero: 4232 increment = 0; 4233 break; 4234 case float_round_up: 4235 increment = !zSign && zSig2; 4236 break; 4237 case float_round_down: 4238 increment = zSign && zSig2; 4239 break; 4240 case float_round_to_odd: 4241 increment = !(zSig1 & 0x1) && zSig2; 4242 break; 4243 default: 4244 abort(); 4245 } 4246 if ( 0x7FFD <= (uint32_t) zExp ) { 4247 if ( ( 0x7FFD < zExp ) 4248 || ( ( zExp == 0x7FFD ) 4249 && eq128( 4250 UINT64_C(0x0001FFFFFFFFFFFF), 4251 UINT64_C(0xFFFFFFFFFFFFFFFF), 4252 zSig0, 4253 zSig1 4254 ) 4255 && increment 4256 ) 4257 ) { 4258 float_raise(float_flag_overflow | float_flag_inexact, status); 4259 if ( ( roundingMode == float_round_to_zero ) 4260 || ( zSign && ( roundingMode == float_round_up ) ) 4261 || ( ! zSign && ( roundingMode == float_round_down ) ) 4262 || (roundingMode == float_round_to_odd) 4263 ) { 4264 return 4265 packFloat128( 4266 zSign, 4267 0x7FFE, 4268 UINT64_C(0x0000FFFFFFFFFFFF), 4269 UINT64_C(0xFFFFFFFFFFFFFFFF) 4270 ); 4271 } 4272 return packFloat128( zSign, 0x7FFF, 0, 0 ); 4273 } 4274 if ( zExp < 0 ) { 4275 if (status->flush_to_zero) { 4276 float_raise(float_flag_output_denormal, status); 4277 return packFloat128(zSign, 0, 0, 0); 4278 } 4279 isTiny = 4280 (status->float_detect_tininess 4281 == float_tininess_before_rounding) 4282 || ( zExp < -1 ) 4283 || ! increment 4284 || lt128( 4285 zSig0, 4286 zSig1, 4287 UINT64_C(0x0001FFFFFFFFFFFF), 4288 UINT64_C(0xFFFFFFFFFFFFFFFF) 4289 ); 4290 shift128ExtraRightJamming( 4291 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); 4292 zExp = 0; 4293 if (isTiny && zSig2) { 4294 float_raise(float_flag_underflow, status); 4295 } 4296 switch (roundingMode) { 4297 case float_round_nearest_even: 4298 case float_round_ties_away: 4299 increment = ((int64_t)zSig2 < 0); 4300 break; 4301 case float_round_to_zero: 4302 increment = 0; 4303 break; 4304 case float_round_up: 4305 increment = !zSign && zSig2; 4306 break; 4307 case float_round_down: 4308 increment = zSign && zSig2; 4309 break; 4310 case float_round_to_odd: 4311 increment = !(zSig1 & 0x1) && zSig2; 4312 break; 4313 default: 4314 abort(); 4315 } 4316 } 4317 } 4318 if (zSig2) { 4319 status->float_exception_flags |= float_flag_inexact; 4320 } 4321 if ( increment ) { 4322 add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); 4323 zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); 4324 } 4325 else { 4326 if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; 4327 } 4328 return packFloat128( zSign, zExp, zSig0, zSig1 ); 4329 4330 } 4331 4332 /*---------------------------------------------------------------------------- 4333 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', 4334 | and significand formed by the concatenation of `zSig0' and `zSig1', and 4335 | returns the proper quadruple-precision floating-point value corresponding 4336 | to the abstract input. This routine is just like `roundAndPackFloat128' 4337 | except that the input significand has fewer bits and does not have to be 4338 | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- 4339 | point exponent. 4340 *----------------------------------------------------------------------------*/ 4341 4342 static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp, 4343 uint64_t zSig0, uint64_t zSig1, 4344 float_status *status) 4345 { 4346 int8_t shiftCount; 4347 uint64_t zSig2; 4348 4349 if ( zSig0 == 0 ) { 4350 zSig0 = zSig1; 4351 zSig1 = 0; 4352 zExp -= 64; 4353 } 4354 shiftCount = clz64(zSig0) - 15; 4355 if ( 0 <= shiftCount ) { 4356 zSig2 = 0; 4357 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 4358 } 4359 else { 4360 shift128ExtraRightJamming( 4361 zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); 4362 } 4363 zExp -= shiftCount; 4364 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); 4365 4366 } 4367 4368 4369 /*---------------------------------------------------------------------------- 4370 | Returns the result of converting the 32-bit two's complement integer `a' 4371 | to the extended double-precision floating-point format. The conversion 4372 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 4373 | Arithmetic. 4374 *----------------------------------------------------------------------------*/ 4375 4376 floatx80 int32_to_floatx80(int32_t a, float_status *status) 4377 { 4378 flag zSign; 4379 uint32_t absA; 4380 int8_t shiftCount; 4381 uint64_t zSig; 4382 4383 if ( a == 0 ) return packFloatx80( 0, 0, 0 ); 4384 zSign = ( a < 0 ); 4385 absA = zSign ? - a : a; 4386 shiftCount = clz32(absA) + 32; 4387 zSig = absA; 4388 return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); 4389 4390 } 4391 4392 /*---------------------------------------------------------------------------- 4393 | Returns the result of converting the 32-bit two's complement integer `a' to 4394 | the quadruple-precision floating-point format. The conversion is performed 4395 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4396 *----------------------------------------------------------------------------*/ 4397 4398 float128 int32_to_float128(int32_t a, float_status *status) 4399 { 4400 flag zSign; 4401 uint32_t absA; 4402 int8_t shiftCount; 4403 uint64_t zSig0; 4404 4405 if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); 4406 zSign = ( a < 0 ); 4407 absA = zSign ? - a : a; 4408 shiftCount = clz32(absA) + 17; 4409 zSig0 = absA; 4410 return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); 4411 4412 } 4413 4414 /*---------------------------------------------------------------------------- 4415 | Returns the result of converting the 64-bit two's complement integer `a' 4416 | to the extended double-precision floating-point format. The conversion 4417 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 4418 | Arithmetic. 4419 *----------------------------------------------------------------------------*/ 4420 4421 floatx80 int64_to_floatx80(int64_t a, float_status *status) 4422 { 4423 flag zSign; 4424 uint64_t absA; 4425 int8_t shiftCount; 4426 4427 if ( a == 0 ) return packFloatx80( 0, 0, 0 ); 4428 zSign = ( a < 0 ); 4429 absA = zSign ? - a : a; 4430 shiftCount = clz64(absA); 4431 return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); 4432 4433 } 4434 4435 /*---------------------------------------------------------------------------- 4436 | Returns the result of converting the 64-bit two's complement integer `a' to 4437 | the quadruple-precision floating-point format. The conversion is performed 4438 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4439 *----------------------------------------------------------------------------*/ 4440 4441 float128 int64_to_float128(int64_t a, float_status *status) 4442 { 4443 flag zSign; 4444 uint64_t absA; 4445 int8_t shiftCount; 4446 int32_t zExp; 4447 uint64_t zSig0, zSig1; 4448 4449 if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); 4450 zSign = ( a < 0 ); 4451 absA = zSign ? - a : a; 4452 shiftCount = clz64(absA) + 49; 4453 zExp = 0x406E - shiftCount; 4454 if ( 64 <= shiftCount ) { 4455 zSig1 = 0; 4456 zSig0 = absA; 4457 shiftCount -= 64; 4458 } 4459 else { 4460 zSig1 = absA; 4461 zSig0 = 0; 4462 } 4463 shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); 4464 return packFloat128( zSign, zExp, zSig0, zSig1 ); 4465 4466 } 4467 4468 /*---------------------------------------------------------------------------- 4469 | Returns the result of converting the 64-bit unsigned integer `a' 4470 | to the quadruple-precision floating-point format. The conversion is performed 4471 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4472 *----------------------------------------------------------------------------*/ 4473 4474 float128 uint64_to_float128(uint64_t a, float_status *status) 4475 { 4476 if (a == 0) { 4477 return float128_zero; 4478 } 4479 return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status); 4480 } 4481 4482 /*---------------------------------------------------------------------------- 4483 | Returns the result of converting the single-precision floating-point value 4484 | `a' to the extended double-precision floating-point format. The conversion 4485 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 4486 | Arithmetic. 4487 *----------------------------------------------------------------------------*/ 4488 4489 floatx80 float32_to_floatx80(float32 a, float_status *status) 4490 { 4491 flag aSign; 4492 int aExp; 4493 uint32_t aSig; 4494 4495 a = float32_squash_input_denormal(a, status); 4496 aSig = extractFloat32Frac( a ); 4497 aExp = extractFloat32Exp( a ); 4498 aSign = extractFloat32Sign( a ); 4499 if ( aExp == 0xFF ) { 4500 if (aSig) { 4501 floatx80 res = commonNaNToFloatx80(float32ToCommonNaN(a, status), 4502 status); 4503 return floatx80_silence_nan(res, status); 4504 } 4505 return packFloatx80(aSign, 4506 floatx80_infinity_high, 4507 floatx80_infinity_low); 4508 } 4509 if ( aExp == 0 ) { 4510 if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); 4511 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 4512 } 4513 aSig |= 0x00800000; 4514 return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); 4515 4516 } 4517 4518 /*---------------------------------------------------------------------------- 4519 | Returns the result of converting the single-precision floating-point value 4520 | `a' to the double-precision floating-point format. The conversion is 4521 | performed according to the IEC/IEEE Standard for Binary Floating-Point 4522 | Arithmetic. 4523 *----------------------------------------------------------------------------*/ 4524 4525 float128 float32_to_float128(float32 a, float_status *status) 4526 { 4527 flag aSign; 4528 int aExp; 4529 uint32_t aSig; 4530 4531 a = float32_squash_input_denormal(a, status); 4532 aSig = extractFloat32Frac( a ); 4533 aExp = extractFloat32Exp( a ); 4534 aSign = extractFloat32Sign( a ); 4535 if ( aExp == 0xFF ) { 4536 if (aSig) { 4537 return commonNaNToFloat128(float32ToCommonNaN(a, status), status); 4538 } 4539 return packFloat128( aSign, 0x7FFF, 0, 0 ); 4540 } 4541 if ( aExp == 0 ) { 4542 if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); 4543 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 4544 --aExp; 4545 } 4546 return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 ); 4547 4548 } 4549 4550 /*---------------------------------------------------------------------------- 4551 | Returns the remainder of the single-precision floating-point value `a' 4552 | with respect to the corresponding value `b'. The operation is performed 4553 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4554 *----------------------------------------------------------------------------*/ 4555 4556 float32 float32_rem(float32 a, float32 b, float_status *status) 4557 { 4558 flag aSign, zSign; 4559 int aExp, bExp, expDiff; 4560 uint32_t aSig, bSig; 4561 uint32_t q; 4562 uint64_t aSig64, bSig64, q64; 4563 uint32_t alternateASig; 4564 int32_t sigMean; 4565 a = float32_squash_input_denormal(a, status); 4566 b = float32_squash_input_denormal(b, status); 4567 4568 aSig = extractFloat32Frac( a ); 4569 aExp = extractFloat32Exp( a ); 4570 aSign = extractFloat32Sign( a ); 4571 bSig = extractFloat32Frac( b ); 4572 bExp = extractFloat32Exp( b ); 4573 if ( aExp == 0xFF ) { 4574 if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { 4575 return propagateFloat32NaN(a, b, status); 4576 } 4577 float_raise(float_flag_invalid, status); 4578 return float32_default_nan(status); 4579 } 4580 if ( bExp == 0xFF ) { 4581 if (bSig) { 4582 return propagateFloat32NaN(a, b, status); 4583 } 4584 return a; 4585 } 4586 if ( bExp == 0 ) { 4587 if ( bSig == 0 ) { 4588 float_raise(float_flag_invalid, status); 4589 return float32_default_nan(status); 4590 } 4591 normalizeFloat32Subnormal( bSig, &bExp, &bSig ); 4592 } 4593 if ( aExp == 0 ) { 4594 if ( aSig == 0 ) return a; 4595 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 4596 } 4597 expDiff = aExp - bExp; 4598 aSig |= 0x00800000; 4599 bSig |= 0x00800000; 4600 if ( expDiff < 32 ) { 4601 aSig <<= 8; 4602 bSig <<= 8; 4603 if ( expDiff < 0 ) { 4604 if ( expDiff < -1 ) return a; 4605 aSig >>= 1; 4606 } 4607 q = ( bSig <= aSig ); 4608 if ( q ) aSig -= bSig; 4609 if ( 0 < expDiff ) { 4610 q = ( ( (uint64_t) aSig )<<32 ) / bSig; 4611 q >>= 32 - expDiff; 4612 bSig >>= 2; 4613 aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; 4614 } 4615 else { 4616 aSig >>= 2; 4617 bSig >>= 2; 4618 } 4619 } 4620 else { 4621 if ( bSig <= aSig ) aSig -= bSig; 4622 aSig64 = ( (uint64_t) aSig )<<40; 4623 bSig64 = ( (uint64_t) bSig )<<40; 4624 expDiff -= 64; 4625 while ( 0 < expDiff ) { 4626 q64 = estimateDiv128To64( aSig64, 0, bSig64 ); 4627 q64 = ( 2 < q64 ) ? q64 - 2 : 0; 4628 aSig64 = - ( ( bSig * q64 )<<38 ); 4629 expDiff -= 62; 4630 } 4631 expDiff += 64; 4632 q64 = estimateDiv128To64( aSig64, 0, bSig64 ); 4633 q64 = ( 2 < q64 ) ? q64 - 2 : 0; 4634 q = q64>>( 64 - expDiff ); 4635 bSig <<= 6; 4636 aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; 4637 } 4638 do { 4639 alternateASig = aSig; 4640 ++q; 4641 aSig -= bSig; 4642 } while ( 0 <= (int32_t) aSig ); 4643 sigMean = aSig + alternateASig; 4644 if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { 4645 aSig = alternateASig; 4646 } 4647 zSign = ( (int32_t) aSig < 0 ); 4648 if ( zSign ) aSig = - aSig; 4649 return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); 4650 } 4651 4652 4653 4654 /*---------------------------------------------------------------------------- 4655 | Returns the binary exponential of the single-precision floating-point value 4656 | `a'. The operation is performed according to the IEC/IEEE Standard for 4657 | Binary Floating-Point Arithmetic. 4658 | 4659 | Uses the following identities: 4660 | 4661 | 1. ------------------------------------------------------------------------- 4662 | x x*ln(2) 4663 | 2 = e 4664 | 4665 | 2. ------------------------------------------------------------------------- 4666 | 2 3 4 5 n 4667 | x x x x x x x 4668 | e = 1 + --- + --- + --- + --- + --- + ... + --- + ... 4669 | 1! 2! 3! 4! 5! n! 4670 *----------------------------------------------------------------------------*/ 4671 4672 static const float64 float32_exp2_coefficients[15] = 4673 { 4674 const_float64( 0x3ff0000000000000ll ), /* 1 */ 4675 const_float64( 0x3fe0000000000000ll ), /* 2 */ 4676 const_float64( 0x3fc5555555555555ll ), /* 3 */ 4677 const_float64( 0x3fa5555555555555ll ), /* 4 */ 4678 const_float64( 0x3f81111111111111ll ), /* 5 */ 4679 const_float64( 0x3f56c16c16c16c17ll ), /* 6 */ 4680 const_float64( 0x3f2a01a01a01a01all ), /* 7 */ 4681 const_float64( 0x3efa01a01a01a01all ), /* 8 */ 4682 const_float64( 0x3ec71de3a556c734ll ), /* 9 */ 4683 const_float64( 0x3e927e4fb7789f5cll ), /* 10 */ 4684 const_float64( 0x3e5ae64567f544e4ll ), /* 11 */ 4685 const_float64( 0x3e21eed8eff8d898ll ), /* 12 */ 4686 const_float64( 0x3de6124613a86d09ll ), /* 13 */ 4687 const_float64( 0x3da93974a8c07c9dll ), /* 14 */ 4688 const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */ 4689 }; 4690 4691 float32 float32_exp2(float32 a, float_status *status) 4692 { 4693 flag aSign; 4694 int aExp; 4695 uint32_t aSig; 4696 float64 r, x, xn; 4697 int i; 4698 a = float32_squash_input_denormal(a, status); 4699 4700 aSig = extractFloat32Frac( a ); 4701 aExp = extractFloat32Exp( a ); 4702 aSign = extractFloat32Sign( a ); 4703 4704 if ( aExp == 0xFF) { 4705 if (aSig) { 4706 return propagateFloat32NaN(a, float32_zero, status); 4707 } 4708 return (aSign) ? float32_zero : a; 4709 } 4710 if (aExp == 0) { 4711 if (aSig == 0) return float32_one; 4712 } 4713 4714 float_raise(float_flag_inexact, status); 4715 4716 /* ******************************* */ 4717 /* using float64 for approximation */ 4718 /* ******************************* */ 4719 x = float32_to_float64(a, status); 4720 x = float64_mul(x, float64_ln2, status); 4721 4722 xn = x; 4723 r = float64_one; 4724 for (i = 0 ; i < 15 ; i++) { 4725 float64 f; 4726 4727 f = float64_mul(xn, float32_exp2_coefficients[i], status); 4728 r = float64_add(r, f, status); 4729 4730 xn = float64_mul(xn, x, status); 4731 } 4732 4733 return float64_to_float32(r, status); 4734 } 4735 4736 /*---------------------------------------------------------------------------- 4737 | Returns the binary log of the single-precision floating-point value `a'. 4738 | The operation is performed according to the IEC/IEEE Standard for Binary 4739 | Floating-Point Arithmetic. 4740 *----------------------------------------------------------------------------*/ 4741 float32 float32_log2(float32 a, float_status *status) 4742 { 4743 flag aSign, zSign; 4744 int aExp; 4745 uint32_t aSig, zSig, i; 4746 4747 a = float32_squash_input_denormal(a, status); 4748 aSig = extractFloat32Frac( a ); 4749 aExp = extractFloat32Exp( a ); 4750 aSign = extractFloat32Sign( a ); 4751 4752 if ( aExp == 0 ) { 4753 if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); 4754 normalizeFloat32Subnormal( aSig, &aExp, &aSig ); 4755 } 4756 if ( aSign ) { 4757 float_raise(float_flag_invalid, status); 4758 return float32_default_nan(status); 4759 } 4760 if ( aExp == 0xFF ) { 4761 if (aSig) { 4762 return propagateFloat32NaN(a, float32_zero, status); 4763 } 4764 return a; 4765 } 4766 4767 aExp -= 0x7F; 4768 aSig |= 0x00800000; 4769 zSign = aExp < 0; 4770 zSig = aExp << 23; 4771 4772 for (i = 1 << 22; i > 0; i >>= 1) { 4773 aSig = ( (uint64_t)aSig * aSig ) >> 23; 4774 if ( aSig & 0x01000000 ) { 4775 aSig >>= 1; 4776 zSig |= i; 4777 } 4778 } 4779 4780 if ( zSign ) 4781 zSig = -zSig; 4782 4783 return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); 4784 } 4785 4786 /*---------------------------------------------------------------------------- 4787 | Returns 1 if the single-precision floating-point value `a' is equal to 4788 | the corresponding value `b', and 0 otherwise. The invalid exception is 4789 | raised if either operand is a NaN. Otherwise, the comparison is performed 4790 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4791 *----------------------------------------------------------------------------*/ 4792 4793 int float32_eq(float32 a, float32 b, float_status *status) 4794 { 4795 uint32_t av, bv; 4796 a = float32_squash_input_denormal(a, status); 4797 b = float32_squash_input_denormal(b, status); 4798 4799 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 4800 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 4801 ) { 4802 float_raise(float_flag_invalid, status); 4803 return 0; 4804 } 4805 av = float32_val(a); 4806 bv = float32_val(b); 4807 return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 4808 } 4809 4810 /*---------------------------------------------------------------------------- 4811 | Returns 1 if the single-precision floating-point value `a' is less than 4812 | or equal to the corresponding value `b', and 0 otherwise. The invalid 4813 | exception is raised if either operand is a NaN. The comparison is performed 4814 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4815 *----------------------------------------------------------------------------*/ 4816 4817 int float32_le(float32 a, float32 b, float_status *status) 4818 { 4819 flag aSign, bSign; 4820 uint32_t av, bv; 4821 a = float32_squash_input_denormal(a, status); 4822 b = float32_squash_input_denormal(b, status); 4823 4824 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 4825 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 4826 ) { 4827 float_raise(float_flag_invalid, status); 4828 return 0; 4829 } 4830 aSign = extractFloat32Sign( a ); 4831 bSign = extractFloat32Sign( b ); 4832 av = float32_val(a); 4833 bv = float32_val(b); 4834 if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 4835 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 4836 4837 } 4838 4839 /*---------------------------------------------------------------------------- 4840 | Returns 1 if the single-precision floating-point value `a' is less than 4841 | the corresponding value `b', and 0 otherwise. The invalid exception is 4842 | raised if either operand is a NaN. The comparison is performed according 4843 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4844 *----------------------------------------------------------------------------*/ 4845 4846 int float32_lt(float32 a, float32 b, float_status *status) 4847 { 4848 flag aSign, bSign; 4849 uint32_t av, bv; 4850 a = float32_squash_input_denormal(a, status); 4851 b = float32_squash_input_denormal(b, status); 4852 4853 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 4854 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 4855 ) { 4856 float_raise(float_flag_invalid, status); 4857 return 0; 4858 } 4859 aSign = extractFloat32Sign( a ); 4860 bSign = extractFloat32Sign( b ); 4861 av = float32_val(a); 4862 bv = float32_val(b); 4863 if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); 4864 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 4865 4866 } 4867 4868 /*---------------------------------------------------------------------------- 4869 | Returns 1 if the single-precision floating-point values `a' and `b' cannot 4870 | be compared, and 0 otherwise. The invalid exception is raised if either 4871 | operand is a NaN. The comparison is performed according to the IEC/IEEE 4872 | Standard for Binary Floating-Point Arithmetic. 4873 *----------------------------------------------------------------------------*/ 4874 4875 int float32_unordered(float32 a, float32 b, float_status *status) 4876 { 4877 a = float32_squash_input_denormal(a, status); 4878 b = float32_squash_input_denormal(b, status); 4879 4880 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 4881 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 4882 ) { 4883 float_raise(float_flag_invalid, status); 4884 return 1; 4885 } 4886 return 0; 4887 } 4888 4889 /*---------------------------------------------------------------------------- 4890 | Returns 1 if the single-precision floating-point value `a' is equal to 4891 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 4892 | exception. The comparison is performed according to the IEC/IEEE Standard 4893 | for Binary Floating-Point Arithmetic. 4894 *----------------------------------------------------------------------------*/ 4895 4896 int float32_eq_quiet(float32 a, float32 b, float_status *status) 4897 { 4898 a = float32_squash_input_denormal(a, status); 4899 b = float32_squash_input_denormal(b, status); 4900 4901 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 4902 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 4903 ) { 4904 if (float32_is_signaling_nan(a, status) 4905 || float32_is_signaling_nan(b, status)) { 4906 float_raise(float_flag_invalid, status); 4907 } 4908 return 0; 4909 } 4910 return ( float32_val(a) == float32_val(b) ) || 4911 ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); 4912 } 4913 4914 /*---------------------------------------------------------------------------- 4915 | Returns 1 if the single-precision floating-point value `a' is less than or 4916 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 4917 | cause an exception. Otherwise, the comparison is performed according to the 4918 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 4919 *----------------------------------------------------------------------------*/ 4920 4921 int float32_le_quiet(float32 a, float32 b, float_status *status) 4922 { 4923 flag aSign, bSign; 4924 uint32_t av, bv; 4925 a = float32_squash_input_denormal(a, status); 4926 b = float32_squash_input_denormal(b, status); 4927 4928 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 4929 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 4930 ) { 4931 if (float32_is_signaling_nan(a, status) 4932 || float32_is_signaling_nan(b, status)) { 4933 float_raise(float_flag_invalid, status); 4934 } 4935 return 0; 4936 } 4937 aSign = extractFloat32Sign( a ); 4938 bSign = extractFloat32Sign( b ); 4939 av = float32_val(a); 4940 bv = float32_val(b); 4941 if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 ); 4942 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 4943 4944 } 4945 4946 /*---------------------------------------------------------------------------- 4947 | Returns 1 if the single-precision floating-point value `a' is less than 4948 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 4949 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 4950 | Standard for Binary Floating-Point Arithmetic. 4951 *----------------------------------------------------------------------------*/ 4952 4953 int float32_lt_quiet(float32 a, float32 b, float_status *status) 4954 { 4955 flag aSign, bSign; 4956 uint32_t av, bv; 4957 a = float32_squash_input_denormal(a, status); 4958 b = float32_squash_input_denormal(b, status); 4959 4960 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 4961 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 4962 ) { 4963 if (float32_is_signaling_nan(a, status) 4964 || float32_is_signaling_nan(b, status)) { 4965 float_raise(float_flag_invalid, status); 4966 } 4967 return 0; 4968 } 4969 aSign = extractFloat32Sign( a ); 4970 bSign = extractFloat32Sign( b ); 4971 av = float32_val(a); 4972 bv = float32_val(b); 4973 if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 ); 4974 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 4975 4976 } 4977 4978 /*---------------------------------------------------------------------------- 4979 | Returns 1 if the single-precision floating-point values `a' and `b' cannot 4980 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 4981 | comparison is performed according to the IEC/IEEE Standard for Binary 4982 | Floating-Point Arithmetic. 4983 *----------------------------------------------------------------------------*/ 4984 4985 int float32_unordered_quiet(float32 a, float32 b, float_status *status) 4986 { 4987 a = float32_squash_input_denormal(a, status); 4988 b = float32_squash_input_denormal(b, status); 4989 4990 if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) 4991 || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) 4992 ) { 4993 if (float32_is_signaling_nan(a, status) 4994 || float32_is_signaling_nan(b, status)) { 4995 float_raise(float_flag_invalid, status); 4996 } 4997 return 1; 4998 } 4999 return 0; 5000 } 5001 5002 /*---------------------------------------------------------------------------- 5003 | Returns the result of converting the double-precision floating-point value 5004 | `a' to the extended double-precision floating-point format. The conversion 5005 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 5006 | Arithmetic. 5007 *----------------------------------------------------------------------------*/ 5008 5009 floatx80 float64_to_floatx80(float64 a, float_status *status) 5010 { 5011 flag aSign; 5012 int aExp; 5013 uint64_t aSig; 5014 5015 a = float64_squash_input_denormal(a, status); 5016 aSig = extractFloat64Frac( a ); 5017 aExp = extractFloat64Exp( a ); 5018 aSign = extractFloat64Sign( a ); 5019 if ( aExp == 0x7FF ) { 5020 if (aSig) { 5021 floatx80 res = commonNaNToFloatx80(float64ToCommonNaN(a, status), 5022 status); 5023 return floatx80_silence_nan(res, status); 5024 } 5025 return packFloatx80(aSign, 5026 floatx80_infinity_high, 5027 floatx80_infinity_low); 5028 } 5029 if ( aExp == 0 ) { 5030 if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); 5031 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 5032 } 5033 return 5034 packFloatx80( 5035 aSign, aExp + 0x3C00, (aSig | UINT64_C(0x0010000000000000)) << 11); 5036 5037 } 5038 5039 /*---------------------------------------------------------------------------- 5040 | Returns the result of converting the double-precision floating-point value 5041 | `a' to the quadruple-precision floating-point format. The conversion is 5042 | performed according to the IEC/IEEE Standard for Binary Floating-Point 5043 | Arithmetic. 5044 *----------------------------------------------------------------------------*/ 5045 5046 float128 float64_to_float128(float64 a, float_status *status) 5047 { 5048 flag aSign; 5049 int aExp; 5050 uint64_t aSig, zSig0, zSig1; 5051 5052 a = float64_squash_input_denormal(a, status); 5053 aSig = extractFloat64Frac( a ); 5054 aExp = extractFloat64Exp( a ); 5055 aSign = extractFloat64Sign( a ); 5056 if ( aExp == 0x7FF ) { 5057 if (aSig) { 5058 return commonNaNToFloat128(float64ToCommonNaN(a, status), status); 5059 } 5060 return packFloat128( aSign, 0x7FFF, 0, 0 ); 5061 } 5062 if ( aExp == 0 ) { 5063 if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); 5064 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 5065 --aExp; 5066 } 5067 shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); 5068 return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); 5069 5070 } 5071 5072 5073 /*---------------------------------------------------------------------------- 5074 | Returns the remainder of the double-precision floating-point value `a' 5075 | with respect to the corresponding value `b'. The operation is performed 5076 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5077 *----------------------------------------------------------------------------*/ 5078 5079 float64 float64_rem(float64 a, float64 b, float_status *status) 5080 { 5081 flag aSign, zSign; 5082 int aExp, bExp, expDiff; 5083 uint64_t aSig, bSig; 5084 uint64_t q, alternateASig; 5085 int64_t sigMean; 5086 5087 a = float64_squash_input_denormal(a, status); 5088 b = float64_squash_input_denormal(b, status); 5089 aSig = extractFloat64Frac( a ); 5090 aExp = extractFloat64Exp( a ); 5091 aSign = extractFloat64Sign( a ); 5092 bSig = extractFloat64Frac( b ); 5093 bExp = extractFloat64Exp( b ); 5094 if ( aExp == 0x7FF ) { 5095 if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { 5096 return propagateFloat64NaN(a, b, status); 5097 } 5098 float_raise(float_flag_invalid, status); 5099 return float64_default_nan(status); 5100 } 5101 if ( bExp == 0x7FF ) { 5102 if (bSig) { 5103 return propagateFloat64NaN(a, b, status); 5104 } 5105 return a; 5106 } 5107 if ( bExp == 0 ) { 5108 if ( bSig == 0 ) { 5109 float_raise(float_flag_invalid, status); 5110 return float64_default_nan(status); 5111 } 5112 normalizeFloat64Subnormal( bSig, &bExp, &bSig ); 5113 } 5114 if ( aExp == 0 ) { 5115 if ( aSig == 0 ) return a; 5116 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 5117 } 5118 expDiff = aExp - bExp; 5119 aSig = (aSig | UINT64_C(0x0010000000000000)) << 11; 5120 bSig = (bSig | UINT64_C(0x0010000000000000)) << 11; 5121 if ( expDiff < 0 ) { 5122 if ( expDiff < -1 ) return a; 5123 aSig >>= 1; 5124 } 5125 q = ( bSig <= aSig ); 5126 if ( q ) aSig -= bSig; 5127 expDiff -= 64; 5128 while ( 0 < expDiff ) { 5129 q = estimateDiv128To64( aSig, 0, bSig ); 5130 q = ( 2 < q ) ? q - 2 : 0; 5131 aSig = - ( ( bSig>>2 ) * q ); 5132 expDiff -= 62; 5133 } 5134 expDiff += 64; 5135 if ( 0 < expDiff ) { 5136 q = estimateDiv128To64( aSig, 0, bSig ); 5137 q = ( 2 < q ) ? q - 2 : 0; 5138 q >>= 64 - expDiff; 5139 bSig >>= 2; 5140 aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; 5141 } 5142 else { 5143 aSig >>= 2; 5144 bSig >>= 2; 5145 } 5146 do { 5147 alternateASig = aSig; 5148 ++q; 5149 aSig -= bSig; 5150 } while ( 0 <= (int64_t) aSig ); 5151 sigMean = aSig + alternateASig; 5152 if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { 5153 aSig = alternateASig; 5154 } 5155 zSign = ( (int64_t) aSig < 0 ); 5156 if ( zSign ) aSig = - aSig; 5157 return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); 5158 5159 } 5160 5161 /*---------------------------------------------------------------------------- 5162 | Returns the binary log of the double-precision floating-point value `a'. 5163 | The operation is performed according to the IEC/IEEE Standard for Binary 5164 | Floating-Point Arithmetic. 5165 *----------------------------------------------------------------------------*/ 5166 float64 float64_log2(float64 a, float_status *status) 5167 { 5168 flag aSign, zSign; 5169 int aExp; 5170 uint64_t aSig, aSig0, aSig1, zSig, i; 5171 a = float64_squash_input_denormal(a, status); 5172 5173 aSig = extractFloat64Frac( a ); 5174 aExp = extractFloat64Exp( a ); 5175 aSign = extractFloat64Sign( a ); 5176 5177 if ( aExp == 0 ) { 5178 if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); 5179 normalizeFloat64Subnormal( aSig, &aExp, &aSig ); 5180 } 5181 if ( aSign ) { 5182 float_raise(float_flag_invalid, status); 5183 return float64_default_nan(status); 5184 } 5185 if ( aExp == 0x7FF ) { 5186 if (aSig) { 5187 return propagateFloat64NaN(a, float64_zero, status); 5188 } 5189 return a; 5190 } 5191 5192 aExp -= 0x3FF; 5193 aSig |= UINT64_C(0x0010000000000000); 5194 zSign = aExp < 0; 5195 zSig = (uint64_t)aExp << 52; 5196 for (i = 1LL << 51; i > 0; i >>= 1) { 5197 mul64To128( aSig, aSig, &aSig0, &aSig1 ); 5198 aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); 5199 if ( aSig & UINT64_C(0x0020000000000000) ) { 5200 aSig >>= 1; 5201 zSig |= i; 5202 } 5203 } 5204 5205 if ( zSign ) 5206 zSig = -zSig; 5207 return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); 5208 } 5209 5210 /*---------------------------------------------------------------------------- 5211 | Returns 1 if the double-precision floating-point value `a' is equal to the 5212 | corresponding value `b', and 0 otherwise. The invalid exception is raised 5213 | if either operand is a NaN. Otherwise, the comparison is performed 5214 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5215 *----------------------------------------------------------------------------*/ 5216 5217 int float64_eq(float64 a, float64 b, float_status *status) 5218 { 5219 uint64_t av, bv; 5220 a = float64_squash_input_denormal(a, status); 5221 b = float64_squash_input_denormal(b, status); 5222 5223 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 5224 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 5225 ) { 5226 float_raise(float_flag_invalid, status); 5227 return 0; 5228 } 5229 av = float64_val(a); 5230 bv = float64_val(b); 5231 return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 5232 5233 } 5234 5235 /*---------------------------------------------------------------------------- 5236 | Returns 1 if the double-precision floating-point value `a' is less than or 5237 | equal to the corresponding value `b', and 0 otherwise. The invalid 5238 | exception is raised if either operand is a NaN. The comparison is performed 5239 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5240 *----------------------------------------------------------------------------*/ 5241 5242 int float64_le(float64 a, float64 b, float_status *status) 5243 { 5244 flag aSign, bSign; 5245 uint64_t av, bv; 5246 a = float64_squash_input_denormal(a, status); 5247 b = float64_squash_input_denormal(b, status); 5248 5249 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 5250 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 5251 ) { 5252 float_raise(float_flag_invalid, status); 5253 return 0; 5254 } 5255 aSign = extractFloat64Sign( a ); 5256 bSign = extractFloat64Sign( b ); 5257 av = float64_val(a); 5258 bv = float64_val(b); 5259 if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 5260 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 5261 5262 } 5263 5264 /*---------------------------------------------------------------------------- 5265 | Returns 1 if the double-precision floating-point value `a' is less than 5266 | the corresponding value `b', and 0 otherwise. The invalid exception is 5267 | raised if either operand is a NaN. The comparison is performed according 5268 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5269 *----------------------------------------------------------------------------*/ 5270 5271 int float64_lt(float64 a, float64 b, float_status *status) 5272 { 5273 flag aSign, bSign; 5274 uint64_t av, bv; 5275 5276 a = float64_squash_input_denormal(a, status); 5277 b = float64_squash_input_denormal(b, status); 5278 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 5279 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 5280 ) { 5281 float_raise(float_flag_invalid, status); 5282 return 0; 5283 } 5284 aSign = extractFloat64Sign( a ); 5285 bSign = extractFloat64Sign( b ); 5286 av = float64_val(a); 5287 bv = float64_val(b); 5288 if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); 5289 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 5290 5291 } 5292 5293 /*---------------------------------------------------------------------------- 5294 | Returns 1 if the double-precision floating-point values `a' and `b' cannot 5295 | be compared, and 0 otherwise. The invalid exception is raised if either 5296 | operand is a NaN. The comparison is performed according to the IEC/IEEE 5297 | Standard for Binary Floating-Point Arithmetic. 5298 *----------------------------------------------------------------------------*/ 5299 5300 int float64_unordered(float64 a, float64 b, float_status *status) 5301 { 5302 a = float64_squash_input_denormal(a, status); 5303 b = float64_squash_input_denormal(b, status); 5304 5305 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 5306 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 5307 ) { 5308 float_raise(float_flag_invalid, status); 5309 return 1; 5310 } 5311 return 0; 5312 } 5313 5314 /*---------------------------------------------------------------------------- 5315 | Returns 1 if the double-precision floating-point value `a' is equal to the 5316 | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 5317 | exception.The comparison is performed according to the IEC/IEEE Standard 5318 | for Binary Floating-Point Arithmetic. 5319 *----------------------------------------------------------------------------*/ 5320 5321 int float64_eq_quiet(float64 a, float64 b, float_status *status) 5322 { 5323 uint64_t av, bv; 5324 a = float64_squash_input_denormal(a, status); 5325 b = float64_squash_input_denormal(b, status); 5326 5327 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 5328 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 5329 ) { 5330 if (float64_is_signaling_nan(a, status) 5331 || float64_is_signaling_nan(b, status)) { 5332 float_raise(float_flag_invalid, status); 5333 } 5334 return 0; 5335 } 5336 av = float64_val(a); 5337 bv = float64_val(b); 5338 return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 5339 5340 } 5341 5342 /*---------------------------------------------------------------------------- 5343 | Returns 1 if the double-precision floating-point value `a' is less than or 5344 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 5345 | cause an exception. Otherwise, the comparison is performed according to the 5346 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5347 *----------------------------------------------------------------------------*/ 5348 5349 int float64_le_quiet(float64 a, float64 b, float_status *status) 5350 { 5351 flag aSign, bSign; 5352 uint64_t av, bv; 5353 a = float64_squash_input_denormal(a, status); 5354 b = float64_squash_input_denormal(b, status); 5355 5356 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 5357 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 5358 ) { 5359 if (float64_is_signaling_nan(a, status) 5360 || float64_is_signaling_nan(b, status)) { 5361 float_raise(float_flag_invalid, status); 5362 } 5363 return 0; 5364 } 5365 aSign = extractFloat64Sign( a ); 5366 bSign = extractFloat64Sign( b ); 5367 av = float64_val(a); 5368 bv = float64_val(b); 5369 if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 ); 5370 return ( av == bv ) || ( aSign ^ ( av < bv ) ); 5371 5372 } 5373 5374 /*---------------------------------------------------------------------------- 5375 | Returns 1 if the double-precision floating-point value `a' is less than 5376 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 5377 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 5378 | Standard for Binary Floating-Point Arithmetic. 5379 *----------------------------------------------------------------------------*/ 5380 5381 int float64_lt_quiet(float64 a, float64 b, float_status *status) 5382 { 5383 flag aSign, bSign; 5384 uint64_t av, bv; 5385 a = float64_squash_input_denormal(a, status); 5386 b = float64_squash_input_denormal(b, status); 5387 5388 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 5389 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 5390 ) { 5391 if (float64_is_signaling_nan(a, status) 5392 || float64_is_signaling_nan(b, status)) { 5393 float_raise(float_flag_invalid, status); 5394 } 5395 return 0; 5396 } 5397 aSign = extractFloat64Sign( a ); 5398 bSign = extractFloat64Sign( b ); 5399 av = float64_val(a); 5400 bv = float64_val(b); 5401 if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 ); 5402 return ( av != bv ) && ( aSign ^ ( av < bv ) ); 5403 5404 } 5405 5406 /*---------------------------------------------------------------------------- 5407 | Returns 1 if the double-precision floating-point values `a' and `b' cannot 5408 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 5409 | comparison is performed according to the IEC/IEEE Standard for Binary 5410 | Floating-Point Arithmetic. 5411 *----------------------------------------------------------------------------*/ 5412 5413 int float64_unordered_quiet(float64 a, float64 b, float_status *status) 5414 { 5415 a = float64_squash_input_denormal(a, status); 5416 b = float64_squash_input_denormal(b, status); 5417 5418 if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) 5419 || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) 5420 ) { 5421 if (float64_is_signaling_nan(a, status) 5422 || float64_is_signaling_nan(b, status)) { 5423 float_raise(float_flag_invalid, status); 5424 } 5425 return 1; 5426 } 5427 return 0; 5428 } 5429 5430 /*---------------------------------------------------------------------------- 5431 | Returns the result of converting the extended double-precision floating- 5432 | point value `a' to the 32-bit two's complement integer format. The 5433 | conversion is performed according to the IEC/IEEE Standard for Binary 5434 | Floating-Point Arithmetic---which means in particular that the conversion 5435 | is rounded according to the current rounding mode. If `a' is a NaN, the 5436 | largest positive integer is returned. Otherwise, if the conversion 5437 | overflows, the largest integer with the same sign as `a' is returned. 5438 *----------------------------------------------------------------------------*/ 5439 5440 int32_t floatx80_to_int32(floatx80 a, float_status *status) 5441 { 5442 flag aSign; 5443 int32_t aExp, shiftCount; 5444 uint64_t aSig; 5445 5446 if (floatx80_invalid_encoding(a)) { 5447 float_raise(float_flag_invalid, status); 5448 return 1 << 31; 5449 } 5450 aSig = extractFloatx80Frac( a ); 5451 aExp = extractFloatx80Exp( a ); 5452 aSign = extractFloatx80Sign( a ); 5453 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; 5454 shiftCount = 0x4037 - aExp; 5455 if ( shiftCount <= 0 ) shiftCount = 1; 5456 shift64RightJamming( aSig, shiftCount, &aSig ); 5457 return roundAndPackInt32(aSign, aSig, status); 5458 5459 } 5460 5461 /*---------------------------------------------------------------------------- 5462 | Returns the result of converting the extended double-precision floating- 5463 | point value `a' to the 32-bit two's complement integer format. The 5464 | conversion is performed according to the IEC/IEEE Standard for Binary 5465 | Floating-Point Arithmetic, except that the conversion is always rounded 5466 | toward zero. If `a' is a NaN, the largest positive integer is returned. 5467 | Otherwise, if the conversion overflows, the largest integer with the same 5468 | sign as `a' is returned. 5469 *----------------------------------------------------------------------------*/ 5470 5471 int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) 5472 { 5473 flag aSign; 5474 int32_t aExp, shiftCount; 5475 uint64_t aSig, savedASig; 5476 int32_t z; 5477 5478 if (floatx80_invalid_encoding(a)) { 5479 float_raise(float_flag_invalid, status); 5480 return 1 << 31; 5481 } 5482 aSig = extractFloatx80Frac( a ); 5483 aExp = extractFloatx80Exp( a ); 5484 aSign = extractFloatx80Sign( a ); 5485 if ( 0x401E < aExp ) { 5486 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; 5487 goto invalid; 5488 } 5489 else if ( aExp < 0x3FFF ) { 5490 if (aExp || aSig) { 5491 status->float_exception_flags |= float_flag_inexact; 5492 } 5493 return 0; 5494 } 5495 shiftCount = 0x403E - aExp; 5496 savedASig = aSig; 5497 aSig >>= shiftCount; 5498 z = aSig; 5499 if ( aSign ) z = - z; 5500 if ( ( z < 0 ) ^ aSign ) { 5501 invalid: 5502 float_raise(float_flag_invalid, status); 5503 return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; 5504 } 5505 if ( ( aSig<<shiftCount ) != savedASig ) { 5506 status->float_exception_flags |= float_flag_inexact; 5507 } 5508 return z; 5509 5510 } 5511 5512 /*---------------------------------------------------------------------------- 5513 | Returns the result of converting the extended double-precision floating- 5514 | point value `a' to the 64-bit two's complement integer format. The 5515 | conversion is performed according to the IEC/IEEE Standard for Binary 5516 | Floating-Point Arithmetic---which means in particular that the conversion 5517 | is rounded according to the current rounding mode. If `a' is a NaN, 5518 | the largest positive integer is returned. Otherwise, if the conversion 5519 | overflows, the largest integer with the same sign as `a' is returned. 5520 *----------------------------------------------------------------------------*/ 5521 5522 int64_t floatx80_to_int64(floatx80 a, float_status *status) 5523 { 5524 flag aSign; 5525 int32_t aExp, shiftCount; 5526 uint64_t aSig, aSigExtra; 5527 5528 if (floatx80_invalid_encoding(a)) { 5529 float_raise(float_flag_invalid, status); 5530 return 1ULL << 63; 5531 } 5532 aSig = extractFloatx80Frac( a ); 5533 aExp = extractFloatx80Exp( a ); 5534 aSign = extractFloatx80Sign( a ); 5535 shiftCount = 0x403E - aExp; 5536 if ( shiftCount <= 0 ) { 5537 if ( shiftCount ) { 5538 float_raise(float_flag_invalid, status); 5539 if (!aSign || floatx80_is_any_nan(a)) { 5540 return INT64_MAX; 5541 } 5542 return INT64_MIN; 5543 } 5544 aSigExtra = 0; 5545 } 5546 else { 5547 shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); 5548 } 5549 return roundAndPackInt64(aSign, aSig, aSigExtra, status); 5550 5551 } 5552 5553 /*---------------------------------------------------------------------------- 5554 | Returns the result of converting the extended double-precision floating- 5555 | point value `a' to the 64-bit two's complement integer format. The 5556 | conversion is performed according to the IEC/IEEE Standard for Binary 5557 | Floating-Point Arithmetic, except that the conversion is always rounded 5558 | toward zero. If `a' is a NaN, the largest positive integer is returned. 5559 | Otherwise, if the conversion overflows, the largest integer with the same 5560 | sign as `a' is returned. 5561 *----------------------------------------------------------------------------*/ 5562 5563 int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) 5564 { 5565 flag aSign; 5566 int32_t aExp, shiftCount; 5567 uint64_t aSig; 5568 int64_t z; 5569 5570 if (floatx80_invalid_encoding(a)) { 5571 float_raise(float_flag_invalid, status); 5572 return 1ULL << 63; 5573 } 5574 aSig = extractFloatx80Frac( a ); 5575 aExp = extractFloatx80Exp( a ); 5576 aSign = extractFloatx80Sign( a ); 5577 shiftCount = aExp - 0x403E; 5578 if ( 0 <= shiftCount ) { 5579 aSig &= UINT64_C(0x7FFFFFFFFFFFFFFF); 5580 if ( ( a.high != 0xC03E ) || aSig ) { 5581 float_raise(float_flag_invalid, status); 5582 if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { 5583 return INT64_MAX; 5584 } 5585 } 5586 return INT64_MIN; 5587 } 5588 else if ( aExp < 0x3FFF ) { 5589 if (aExp | aSig) { 5590 status->float_exception_flags |= float_flag_inexact; 5591 } 5592 return 0; 5593 } 5594 z = aSig>>( - shiftCount ); 5595 if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { 5596 status->float_exception_flags |= float_flag_inexact; 5597 } 5598 if ( aSign ) z = - z; 5599 return z; 5600 5601 } 5602 5603 /*---------------------------------------------------------------------------- 5604 | Returns the result of converting the extended double-precision floating- 5605 | point value `a' to the single-precision floating-point format. The 5606 | conversion is performed according to the IEC/IEEE Standard for Binary 5607 | Floating-Point Arithmetic. 5608 *----------------------------------------------------------------------------*/ 5609 5610 float32 floatx80_to_float32(floatx80 a, float_status *status) 5611 { 5612 flag aSign; 5613 int32_t aExp; 5614 uint64_t aSig; 5615 5616 if (floatx80_invalid_encoding(a)) { 5617 float_raise(float_flag_invalid, status); 5618 return float32_default_nan(status); 5619 } 5620 aSig = extractFloatx80Frac( a ); 5621 aExp = extractFloatx80Exp( a ); 5622 aSign = extractFloatx80Sign( a ); 5623 if ( aExp == 0x7FFF ) { 5624 if ( (uint64_t) ( aSig<<1 ) ) { 5625 float32 res = commonNaNToFloat32(floatx80ToCommonNaN(a, status), 5626 status); 5627 return float32_silence_nan(res, status); 5628 } 5629 return packFloat32( aSign, 0xFF, 0 ); 5630 } 5631 shift64RightJamming( aSig, 33, &aSig ); 5632 if ( aExp || aSig ) aExp -= 0x3F81; 5633 return roundAndPackFloat32(aSign, aExp, aSig, status); 5634 5635 } 5636 5637 /*---------------------------------------------------------------------------- 5638 | Returns the result of converting the extended double-precision floating- 5639 | point value `a' to the double-precision floating-point format. The 5640 | conversion is performed according to the IEC/IEEE Standard for Binary 5641 | Floating-Point Arithmetic. 5642 *----------------------------------------------------------------------------*/ 5643 5644 float64 floatx80_to_float64(floatx80 a, float_status *status) 5645 { 5646 flag aSign; 5647 int32_t aExp; 5648 uint64_t aSig, zSig; 5649 5650 if (floatx80_invalid_encoding(a)) { 5651 float_raise(float_flag_invalid, status); 5652 return float64_default_nan(status); 5653 } 5654 aSig = extractFloatx80Frac( a ); 5655 aExp = extractFloatx80Exp( a ); 5656 aSign = extractFloatx80Sign( a ); 5657 if ( aExp == 0x7FFF ) { 5658 if ( (uint64_t) ( aSig<<1 ) ) { 5659 float64 res = commonNaNToFloat64(floatx80ToCommonNaN(a, status), 5660 status); 5661 return float64_silence_nan(res, status); 5662 } 5663 return packFloat64( aSign, 0x7FF, 0 ); 5664 } 5665 shift64RightJamming( aSig, 1, &zSig ); 5666 if ( aExp || aSig ) aExp -= 0x3C01; 5667 return roundAndPackFloat64(aSign, aExp, zSig, status); 5668 5669 } 5670 5671 /*---------------------------------------------------------------------------- 5672 | Returns the result of converting the extended double-precision floating- 5673 | point value `a' to the quadruple-precision floating-point format. The 5674 | conversion is performed according to the IEC/IEEE Standard for Binary 5675 | Floating-Point Arithmetic. 5676 *----------------------------------------------------------------------------*/ 5677 5678 float128 floatx80_to_float128(floatx80 a, float_status *status) 5679 { 5680 flag aSign; 5681 int aExp; 5682 uint64_t aSig, zSig0, zSig1; 5683 5684 if (floatx80_invalid_encoding(a)) { 5685 float_raise(float_flag_invalid, status); 5686 return float128_default_nan(status); 5687 } 5688 aSig = extractFloatx80Frac( a ); 5689 aExp = extractFloatx80Exp( a ); 5690 aSign = extractFloatx80Sign( a ); 5691 if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { 5692 float128 res = commonNaNToFloat128(floatx80ToCommonNaN(a, status), 5693 status); 5694 return float128_silence_nan(res, status); 5695 } 5696 shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); 5697 return packFloat128( aSign, aExp, zSig0, zSig1 ); 5698 5699 } 5700 5701 /*---------------------------------------------------------------------------- 5702 | Rounds the extended double-precision floating-point value `a' 5703 | to the precision provided by floatx80_rounding_precision and returns the 5704 | result as an extended double-precision floating-point value. 5705 | The operation is performed according to the IEC/IEEE Standard for Binary 5706 | Floating-Point Arithmetic. 5707 *----------------------------------------------------------------------------*/ 5708 5709 floatx80 floatx80_round(floatx80 a, float_status *status) 5710 { 5711 return roundAndPackFloatx80(status->floatx80_rounding_precision, 5712 extractFloatx80Sign(a), 5713 extractFloatx80Exp(a), 5714 extractFloatx80Frac(a), 0, status); 5715 } 5716 5717 /*---------------------------------------------------------------------------- 5718 | Rounds the extended double-precision floating-point value `a' to an integer, 5719 | and returns the result as an extended quadruple-precision floating-point 5720 | value. The operation is performed according to the IEC/IEEE Standard for 5721 | Binary Floating-Point Arithmetic. 5722 *----------------------------------------------------------------------------*/ 5723 5724 floatx80 floatx80_round_to_int(floatx80 a, float_status *status) 5725 { 5726 flag aSign; 5727 int32_t aExp; 5728 uint64_t lastBitMask, roundBitsMask; 5729 floatx80 z; 5730 5731 if (floatx80_invalid_encoding(a)) { 5732 float_raise(float_flag_invalid, status); 5733 return floatx80_default_nan(status); 5734 } 5735 aExp = extractFloatx80Exp( a ); 5736 if ( 0x403E <= aExp ) { 5737 if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { 5738 return propagateFloatx80NaN(a, a, status); 5739 } 5740 return a; 5741 } 5742 if ( aExp < 0x3FFF ) { 5743 if ( ( aExp == 0 ) 5744 && ( (uint64_t) ( extractFloatx80Frac( a ) ) == 0 ) ) { 5745 return a; 5746 } 5747 status->float_exception_flags |= float_flag_inexact; 5748 aSign = extractFloatx80Sign( a ); 5749 switch (status->float_rounding_mode) { 5750 case float_round_nearest_even: 5751 if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) 5752 ) { 5753 return 5754 packFloatx80( aSign, 0x3FFF, UINT64_C(0x8000000000000000)); 5755 } 5756 break; 5757 case float_round_ties_away: 5758 if (aExp == 0x3FFE) { 5759 return packFloatx80(aSign, 0x3FFF, UINT64_C(0x8000000000000000)); 5760 } 5761 break; 5762 case float_round_down: 5763 return 5764 aSign ? 5765 packFloatx80( 1, 0x3FFF, UINT64_C(0x8000000000000000)) 5766 : packFloatx80( 0, 0, 0 ); 5767 case float_round_up: 5768 return 5769 aSign ? packFloatx80( 1, 0, 0 ) 5770 : packFloatx80( 0, 0x3FFF, UINT64_C(0x8000000000000000)); 5771 } 5772 return packFloatx80( aSign, 0, 0 ); 5773 } 5774 lastBitMask = 1; 5775 lastBitMask <<= 0x403E - aExp; 5776 roundBitsMask = lastBitMask - 1; 5777 z = a; 5778 switch (status->float_rounding_mode) { 5779 case float_round_nearest_even: 5780 z.low += lastBitMask>>1; 5781 if ((z.low & roundBitsMask) == 0) { 5782 z.low &= ~lastBitMask; 5783 } 5784 break; 5785 case float_round_ties_away: 5786 z.low += lastBitMask >> 1; 5787 break; 5788 case float_round_to_zero: 5789 break; 5790 case float_round_up: 5791 if (!extractFloatx80Sign(z)) { 5792 z.low += roundBitsMask; 5793 } 5794 break; 5795 case float_round_down: 5796 if (extractFloatx80Sign(z)) { 5797 z.low += roundBitsMask; 5798 } 5799 break; 5800 default: 5801 abort(); 5802 } 5803 z.low &= ~ roundBitsMask; 5804 if ( z.low == 0 ) { 5805 ++z.high; 5806 z.low = UINT64_C(0x8000000000000000); 5807 } 5808 if (z.low != a.low) { 5809 status->float_exception_flags |= float_flag_inexact; 5810 } 5811 return z; 5812 5813 } 5814 5815 /*---------------------------------------------------------------------------- 5816 | Returns the result of adding the absolute values of the extended double- 5817 | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is 5818 | negated before being returned. `zSign' is ignored if the result is a NaN. 5819 | The addition is performed according to the IEC/IEEE Standard for Binary 5820 | Floating-Point Arithmetic. 5821 *----------------------------------------------------------------------------*/ 5822 5823 static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, 5824 float_status *status) 5825 { 5826 int32_t aExp, bExp, zExp; 5827 uint64_t aSig, bSig, zSig0, zSig1; 5828 int32_t expDiff; 5829 5830 aSig = extractFloatx80Frac( a ); 5831 aExp = extractFloatx80Exp( a ); 5832 bSig = extractFloatx80Frac( b ); 5833 bExp = extractFloatx80Exp( b ); 5834 expDiff = aExp - bExp; 5835 if ( 0 < expDiff ) { 5836 if ( aExp == 0x7FFF ) { 5837 if ((uint64_t)(aSig << 1)) { 5838 return propagateFloatx80NaN(a, b, status); 5839 } 5840 return a; 5841 } 5842 if ( bExp == 0 ) --expDiff; 5843 shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); 5844 zExp = aExp; 5845 } 5846 else if ( expDiff < 0 ) { 5847 if ( bExp == 0x7FFF ) { 5848 if ((uint64_t)(bSig << 1)) { 5849 return propagateFloatx80NaN(a, b, status); 5850 } 5851 return packFloatx80(zSign, 5852 floatx80_infinity_high, 5853 floatx80_infinity_low); 5854 } 5855 if ( aExp == 0 ) ++expDiff; 5856 shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); 5857 zExp = bExp; 5858 } 5859 else { 5860 if ( aExp == 0x7FFF ) { 5861 if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { 5862 return propagateFloatx80NaN(a, b, status); 5863 } 5864 return a; 5865 } 5866 zSig1 = 0; 5867 zSig0 = aSig + bSig; 5868 if ( aExp == 0 ) { 5869 if ((aSig | bSig) & UINT64_C(0x8000000000000000) && zSig0 < aSig) { 5870 /* At least one of the values is a pseudo-denormal, 5871 * and there is a carry out of the result. */ 5872 zExp = 1; 5873 goto shiftRight1; 5874 } 5875 if (zSig0 == 0) { 5876 return packFloatx80(zSign, 0, 0); 5877 } 5878 normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); 5879 goto roundAndPack; 5880 } 5881 zExp = aExp; 5882 goto shiftRight1; 5883 } 5884 zSig0 = aSig + bSig; 5885 if ( (int64_t) zSig0 < 0 ) goto roundAndPack; 5886 shiftRight1: 5887 shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); 5888 zSig0 |= UINT64_C(0x8000000000000000); 5889 ++zExp; 5890 roundAndPack: 5891 return roundAndPackFloatx80(status->floatx80_rounding_precision, 5892 zSign, zExp, zSig0, zSig1, status); 5893 } 5894 5895 /*---------------------------------------------------------------------------- 5896 | Returns the result of subtracting the absolute values of the extended 5897 | double-precision floating-point values `a' and `b'. If `zSign' is 1, the 5898 | difference is negated before being returned. `zSign' is ignored if the 5899 | result is a NaN. The subtraction is performed according to the IEC/IEEE 5900 | Standard for Binary Floating-Point Arithmetic. 5901 *----------------------------------------------------------------------------*/ 5902 5903 static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign, 5904 float_status *status) 5905 { 5906 int32_t aExp, bExp, zExp; 5907 uint64_t aSig, bSig, zSig0, zSig1; 5908 int32_t expDiff; 5909 5910 aSig = extractFloatx80Frac( a ); 5911 aExp = extractFloatx80Exp( a ); 5912 bSig = extractFloatx80Frac( b ); 5913 bExp = extractFloatx80Exp( b ); 5914 expDiff = aExp - bExp; 5915 if ( 0 < expDiff ) goto aExpBigger; 5916 if ( expDiff < 0 ) goto bExpBigger; 5917 if ( aExp == 0x7FFF ) { 5918 if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { 5919 return propagateFloatx80NaN(a, b, status); 5920 } 5921 float_raise(float_flag_invalid, status); 5922 return floatx80_default_nan(status); 5923 } 5924 if ( aExp == 0 ) { 5925 aExp = 1; 5926 bExp = 1; 5927 } 5928 zSig1 = 0; 5929 if ( bSig < aSig ) goto aBigger; 5930 if ( aSig < bSig ) goto bBigger; 5931 return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); 5932 bExpBigger: 5933 if ( bExp == 0x7FFF ) { 5934 if ((uint64_t)(bSig << 1)) { 5935 return propagateFloatx80NaN(a, b, status); 5936 } 5937 return packFloatx80(zSign ^ 1, floatx80_infinity_high, 5938 floatx80_infinity_low); 5939 } 5940 if ( aExp == 0 ) ++expDiff; 5941 shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); 5942 bBigger: 5943 sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); 5944 zExp = bExp; 5945 zSign ^= 1; 5946 goto normalizeRoundAndPack; 5947 aExpBigger: 5948 if ( aExp == 0x7FFF ) { 5949 if ((uint64_t)(aSig << 1)) { 5950 return propagateFloatx80NaN(a, b, status); 5951 } 5952 return a; 5953 } 5954 if ( bExp == 0 ) --expDiff; 5955 shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); 5956 aBigger: 5957 sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); 5958 zExp = aExp; 5959 normalizeRoundAndPack: 5960 return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, 5961 zSign, zExp, zSig0, zSig1, status); 5962 } 5963 5964 /*---------------------------------------------------------------------------- 5965 | Returns the result of adding the extended double-precision floating-point 5966 | values `a' and `b'. The operation is performed according to the IEC/IEEE 5967 | Standard for Binary Floating-Point Arithmetic. 5968 *----------------------------------------------------------------------------*/ 5969 5970 floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) 5971 { 5972 flag aSign, bSign; 5973 5974 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 5975 float_raise(float_flag_invalid, status); 5976 return floatx80_default_nan(status); 5977 } 5978 aSign = extractFloatx80Sign( a ); 5979 bSign = extractFloatx80Sign( b ); 5980 if ( aSign == bSign ) { 5981 return addFloatx80Sigs(a, b, aSign, status); 5982 } 5983 else { 5984 return subFloatx80Sigs(a, b, aSign, status); 5985 } 5986 5987 } 5988 5989 /*---------------------------------------------------------------------------- 5990 | Returns the result of subtracting the extended double-precision floating- 5991 | point values `a' and `b'. The operation is performed according to the 5992 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 5993 *----------------------------------------------------------------------------*/ 5994 5995 floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) 5996 { 5997 flag aSign, bSign; 5998 5999 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 6000 float_raise(float_flag_invalid, status); 6001 return floatx80_default_nan(status); 6002 } 6003 aSign = extractFloatx80Sign( a ); 6004 bSign = extractFloatx80Sign( b ); 6005 if ( aSign == bSign ) { 6006 return subFloatx80Sigs(a, b, aSign, status); 6007 } 6008 else { 6009 return addFloatx80Sigs(a, b, aSign, status); 6010 } 6011 6012 } 6013 6014 /*---------------------------------------------------------------------------- 6015 | Returns the result of multiplying the extended double-precision floating- 6016 | point values `a' and `b'. The operation is performed according to the 6017 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6018 *----------------------------------------------------------------------------*/ 6019 6020 floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) 6021 { 6022 flag aSign, bSign, zSign; 6023 int32_t aExp, bExp, zExp; 6024 uint64_t aSig, bSig, zSig0, zSig1; 6025 6026 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 6027 float_raise(float_flag_invalid, status); 6028 return floatx80_default_nan(status); 6029 } 6030 aSig = extractFloatx80Frac( a ); 6031 aExp = extractFloatx80Exp( a ); 6032 aSign = extractFloatx80Sign( a ); 6033 bSig = extractFloatx80Frac( b ); 6034 bExp = extractFloatx80Exp( b ); 6035 bSign = extractFloatx80Sign( b ); 6036 zSign = aSign ^ bSign; 6037 if ( aExp == 0x7FFF ) { 6038 if ( (uint64_t) ( aSig<<1 ) 6039 || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { 6040 return propagateFloatx80NaN(a, b, status); 6041 } 6042 if ( ( bExp | bSig ) == 0 ) goto invalid; 6043 return packFloatx80(zSign, floatx80_infinity_high, 6044 floatx80_infinity_low); 6045 } 6046 if ( bExp == 0x7FFF ) { 6047 if ((uint64_t)(bSig << 1)) { 6048 return propagateFloatx80NaN(a, b, status); 6049 } 6050 if ( ( aExp | aSig ) == 0 ) { 6051 invalid: 6052 float_raise(float_flag_invalid, status); 6053 return floatx80_default_nan(status); 6054 } 6055 return packFloatx80(zSign, floatx80_infinity_high, 6056 floatx80_infinity_low); 6057 } 6058 if ( aExp == 0 ) { 6059 if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); 6060 normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); 6061 } 6062 if ( bExp == 0 ) { 6063 if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); 6064 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 6065 } 6066 zExp = aExp + bExp - 0x3FFE; 6067 mul64To128( aSig, bSig, &zSig0, &zSig1 ); 6068 if ( 0 < (int64_t) zSig0 ) { 6069 shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); 6070 --zExp; 6071 } 6072 return roundAndPackFloatx80(status->floatx80_rounding_precision, 6073 zSign, zExp, zSig0, zSig1, status); 6074 } 6075 6076 /*---------------------------------------------------------------------------- 6077 | Returns the result of dividing the extended double-precision floating-point 6078 | value `a' by the corresponding value `b'. The operation is performed 6079 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6080 *----------------------------------------------------------------------------*/ 6081 6082 floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) 6083 { 6084 flag aSign, bSign, zSign; 6085 int32_t aExp, bExp, zExp; 6086 uint64_t aSig, bSig, zSig0, zSig1; 6087 uint64_t rem0, rem1, rem2, term0, term1, term2; 6088 6089 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 6090 float_raise(float_flag_invalid, status); 6091 return floatx80_default_nan(status); 6092 } 6093 aSig = extractFloatx80Frac( a ); 6094 aExp = extractFloatx80Exp( a ); 6095 aSign = extractFloatx80Sign( a ); 6096 bSig = extractFloatx80Frac( b ); 6097 bExp = extractFloatx80Exp( b ); 6098 bSign = extractFloatx80Sign( b ); 6099 zSign = aSign ^ bSign; 6100 if ( aExp == 0x7FFF ) { 6101 if ((uint64_t)(aSig << 1)) { 6102 return propagateFloatx80NaN(a, b, status); 6103 } 6104 if ( bExp == 0x7FFF ) { 6105 if ((uint64_t)(bSig << 1)) { 6106 return propagateFloatx80NaN(a, b, status); 6107 } 6108 goto invalid; 6109 } 6110 return packFloatx80(zSign, floatx80_infinity_high, 6111 floatx80_infinity_low); 6112 } 6113 if ( bExp == 0x7FFF ) { 6114 if ((uint64_t)(bSig << 1)) { 6115 return propagateFloatx80NaN(a, b, status); 6116 } 6117 return packFloatx80( zSign, 0, 0 ); 6118 } 6119 if ( bExp == 0 ) { 6120 if ( bSig == 0 ) { 6121 if ( ( aExp | aSig ) == 0 ) { 6122 invalid: 6123 float_raise(float_flag_invalid, status); 6124 return floatx80_default_nan(status); 6125 } 6126 float_raise(float_flag_divbyzero, status); 6127 return packFloatx80(zSign, floatx80_infinity_high, 6128 floatx80_infinity_low); 6129 } 6130 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 6131 } 6132 if ( aExp == 0 ) { 6133 if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); 6134 normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); 6135 } 6136 zExp = aExp - bExp + 0x3FFE; 6137 rem1 = 0; 6138 if ( bSig <= aSig ) { 6139 shift128Right( aSig, 0, 1, &aSig, &rem1 ); 6140 ++zExp; 6141 } 6142 zSig0 = estimateDiv128To64( aSig, rem1, bSig ); 6143 mul64To128( bSig, zSig0, &term0, &term1 ); 6144 sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); 6145 while ( (int64_t) rem0 < 0 ) { 6146 --zSig0; 6147 add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); 6148 } 6149 zSig1 = estimateDiv128To64( rem1, 0, bSig ); 6150 if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { 6151 mul64To128( bSig, zSig1, &term1, &term2 ); 6152 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 6153 while ( (int64_t) rem1 < 0 ) { 6154 --zSig1; 6155 add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); 6156 } 6157 zSig1 |= ( ( rem1 | rem2 ) != 0 ); 6158 } 6159 return roundAndPackFloatx80(status->floatx80_rounding_precision, 6160 zSign, zExp, zSig0, zSig1, status); 6161 } 6162 6163 /*---------------------------------------------------------------------------- 6164 | Returns the remainder of the extended double-precision floating-point value 6165 | `a' with respect to the corresponding value `b'. The operation is performed 6166 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6167 *----------------------------------------------------------------------------*/ 6168 6169 floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) 6170 { 6171 flag aSign, zSign; 6172 int32_t aExp, bExp, expDiff; 6173 uint64_t aSig0, aSig1, bSig; 6174 uint64_t q, term0, term1, alternateASig0, alternateASig1; 6175 6176 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 6177 float_raise(float_flag_invalid, status); 6178 return floatx80_default_nan(status); 6179 } 6180 aSig0 = extractFloatx80Frac( a ); 6181 aExp = extractFloatx80Exp( a ); 6182 aSign = extractFloatx80Sign( a ); 6183 bSig = extractFloatx80Frac( b ); 6184 bExp = extractFloatx80Exp( b ); 6185 if ( aExp == 0x7FFF ) { 6186 if ( (uint64_t) ( aSig0<<1 ) 6187 || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { 6188 return propagateFloatx80NaN(a, b, status); 6189 } 6190 goto invalid; 6191 } 6192 if ( bExp == 0x7FFF ) { 6193 if ((uint64_t)(bSig << 1)) { 6194 return propagateFloatx80NaN(a, b, status); 6195 } 6196 return a; 6197 } 6198 if ( bExp == 0 ) { 6199 if ( bSig == 0 ) { 6200 invalid: 6201 float_raise(float_flag_invalid, status); 6202 return floatx80_default_nan(status); 6203 } 6204 normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); 6205 } 6206 if ( aExp == 0 ) { 6207 if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a; 6208 normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); 6209 } 6210 bSig |= UINT64_C(0x8000000000000000); 6211 zSign = aSign; 6212 expDiff = aExp - bExp; 6213 aSig1 = 0; 6214 if ( expDiff < 0 ) { 6215 if ( expDiff < -1 ) return a; 6216 shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); 6217 expDiff = 0; 6218 } 6219 q = ( bSig <= aSig0 ); 6220 if ( q ) aSig0 -= bSig; 6221 expDiff -= 64; 6222 while ( 0 < expDiff ) { 6223 q = estimateDiv128To64( aSig0, aSig1, bSig ); 6224 q = ( 2 < q ) ? q - 2 : 0; 6225 mul64To128( bSig, q, &term0, &term1 ); 6226 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 6227 shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); 6228 expDiff -= 62; 6229 } 6230 expDiff += 64; 6231 if ( 0 < expDiff ) { 6232 q = estimateDiv128To64( aSig0, aSig1, bSig ); 6233 q = ( 2 < q ) ? q - 2 : 0; 6234 q >>= 64 - expDiff; 6235 mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); 6236 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 6237 shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); 6238 while ( le128( term0, term1, aSig0, aSig1 ) ) { 6239 ++q; 6240 sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); 6241 } 6242 } 6243 else { 6244 term1 = 0; 6245 term0 = bSig; 6246 } 6247 sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); 6248 if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) 6249 || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) 6250 && ( q & 1 ) ) 6251 ) { 6252 aSig0 = alternateASig0; 6253 aSig1 = alternateASig1; 6254 zSign = ! zSign; 6255 } 6256 return 6257 normalizeRoundAndPackFloatx80( 6258 80, zSign, bExp + expDiff, aSig0, aSig1, status); 6259 6260 } 6261 6262 /*---------------------------------------------------------------------------- 6263 | Returns the square root of the extended double-precision floating-point 6264 | value `a'. The operation is performed according to the IEC/IEEE Standard 6265 | for Binary Floating-Point Arithmetic. 6266 *----------------------------------------------------------------------------*/ 6267 6268 floatx80 floatx80_sqrt(floatx80 a, float_status *status) 6269 { 6270 flag aSign; 6271 int32_t aExp, zExp; 6272 uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; 6273 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 6274 6275 if (floatx80_invalid_encoding(a)) { 6276 float_raise(float_flag_invalid, status); 6277 return floatx80_default_nan(status); 6278 } 6279 aSig0 = extractFloatx80Frac( a ); 6280 aExp = extractFloatx80Exp( a ); 6281 aSign = extractFloatx80Sign( a ); 6282 if ( aExp == 0x7FFF ) { 6283 if ((uint64_t)(aSig0 << 1)) { 6284 return propagateFloatx80NaN(a, a, status); 6285 } 6286 if ( ! aSign ) return a; 6287 goto invalid; 6288 } 6289 if ( aSign ) { 6290 if ( ( aExp | aSig0 ) == 0 ) return a; 6291 invalid: 6292 float_raise(float_flag_invalid, status); 6293 return floatx80_default_nan(status); 6294 } 6295 if ( aExp == 0 ) { 6296 if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); 6297 normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); 6298 } 6299 zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; 6300 zSig0 = estimateSqrt32( aExp, aSig0>>32 ); 6301 shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); 6302 zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); 6303 doubleZSig0 = zSig0<<1; 6304 mul64To128( zSig0, zSig0, &term0, &term1 ); 6305 sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); 6306 while ( (int64_t) rem0 < 0 ) { 6307 --zSig0; 6308 doubleZSig0 -= 2; 6309 add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); 6310 } 6311 zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); 6312 if ( ( zSig1 & UINT64_C(0x3FFFFFFFFFFFFFFF) ) <= 5 ) { 6313 if ( zSig1 == 0 ) zSig1 = 1; 6314 mul64To128( doubleZSig0, zSig1, &term1, &term2 ); 6315 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 6316 mul64To128( zSig1, zSig1, &term2, &term3 ); 6317 sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); 6318 while ( (int64_t) rem1 < 0 ) { 6319 --zSig1; 6320 shortShift128Left( 0, zSig1, 1, &term2, &term3 ); 6321 term3 |= 1; 6322 term2 |= doubleZSig0; 6323 add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); 6324 } 6325 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 6326 } 6327 shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); 6328 zSig0 |= doubleZSig0; 6329 return roundAndPackFloatx80(status->floatx80_rounding_precision, 6330 0, zExp, zSig0, zSig1, status); 6331 } 6332 6333 /*---------------------------------------------------------------------------- 6334 | Returns 1 if the extended double-precision floating-point value `a' is equal 6335 | to the corresponding value `b', and 0 otherwise. The invalid exception is 6336 | raised if either operand is a NaN. Otherwise, the comparison is performed 6337 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6338 *----------------------------------------------------------------------------*/ 6339 6340 int floatx80_eq(floatx80 a, floatx80 b, float_status *status) 6341 { 6342 6343 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) 6344 || (extractFloatx80Exp(a) == 0x7FFF 6345 && (uint64_t) (extractFloatx80Frac(a) << 1)) 6346 || (extractFloatx80Exp(b) == 0x7FFF 6347 && (uint64_t) (extractFloatx80Frac(b) << 1)) 6348 ) { 6349 float_raise(float_flag_invalid, status); 6350 return 0; 6351 } 6352 return 6353 ( a.low == b.low ) 6354 && ( ( a.high == b.high ) 6355 || ( ( a.low == 0 ) 6356 && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 6357 ); 6358 6359 } 6360 6361 /*---------------------------------------------------------------------------- 6362 | Returns 1 if the extended double-precision floating-point value `a' is 6363 | less than or equal to the corresponding value `b', and 0 otherwise. The 6364 | invalid exception is raised if either operand is a NaN. The comparison is 6365 | performed according to the IEC/IEEE Standard for Binary Floating-Point 6366 | Arithmetic. 6367 *----------------------------------------------------------------------------*/ 6368 6369 int floatx80_le(floatx80 a, floatx80 b, float_status *status) 6370 { 6371 flag aSign, bSign; 6372 6373 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) 6374 || (extractFloatx80Exp(a) == 0x7FFF 6375 && (uint64_t) (extractFloatx80Frac(a) << 1)) 6376 || (extractFloatx80Exp(b) == 0x7FFF 6377 && (uint64_t) (extractFloatx80Frac(b) << 1)) 6378 ) { 6379 float_raise(float_flag_invalid, status); 6380 return 0; 6381 } 6382 aSign = extractFloatx80Sign( a ); 6383 bSign = extractFloatx80Sign( b ); 6384 if ( aSign != bSign ) { 6385 return 6386 aSign 6387 || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6388 == 0 ); 6389 } 6390 return 6391 aSign ? le128( b.high, b.low, a.high, a.low ) 6392 : le128( a.high, a.low, b.high, b.low ); 6393 6394 } 6395 6396 /*---------------------------------------------------------------------------- 6397 | Returns 1 if the extended double-precision floating-point value `a' is 6398 | less than the corresponding value `b', and 0 otherwise. The invalid 6399 | exception is raised if either operand is a NaN. The comparison is performed 6400 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6401 *----------------------------------------------------------------------------*/ 6402 6403 int floatx80_lt(floatx80 a, floatx80 b, float_status *status) 6404 { 6405 flag aSign, bSign; 6406 6407 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) 6408 || (extractFloatx80Exp(a) == 0x7FFF 6409 && (uint64_t) (extractFloatx80Frac(a) << 1)) 6410 || (extractFloatx80Exp(b) == 0x7FFF 6411 && (uint64_t) (extractFloatx80Frac(b) << 1)) 6412 ) { 6413 float_raise(float_flag_invalid, status); 6414 return 0; 6415 } 6416 aSign = extractFloatx80Sign( a ); 6417 bSign = extractFloatx80Sign( b ); 6418 if ( aSign != bSign ) { 6419 return 6420 aSign 6421 && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6422 != 0 ); 6423 } 6424 return 6425 aSign ? lt128( b.high, b.low, a.high, a.low ) 6426 : lt128( a.high, a.low, b.high, b.low ); 6427 6428 } 6429 6430 /*---------------------------------------------------------------------------- 6431 | Returns 1 if the extended double-precision floating-point values `a' and `b' 6432 | cannot be compared, and 0 otherwise. The invalid exception is raised if 6433 | either operand is a NaN. The comparison is performed according to the 6434 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6435 *----------------------------------------------------------------------------*/ 6436 int floatx80_unordered(floatx80 a, floatx80 b, float_status *status) 6437 { 6438 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b) 6439 || (extractFloatx80Exp(a) == 0x7FFF 6440 && (uint64_t) (extractFloatx80Frac(a) << 1)) 6441 || (extractFloatx80Exp(b) == 0x7FFF 6442 && (uint64_t) (extractFloatx80Frac(b) << 1)) 6443 ) { 6444 float_raise(float_flag_invalid, status); 6445 return 1; 6446 } 6447 return 0; 6448 } 6449 6450 /*---------------------------------------------------------------------------- 6451 | Returns 1 if the extended double-precision floating-point value `a' is 6452 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 6453 | cause an exception. The comparison is performed according to the IEC/IEEE 6454 | Standard for Binary Floating-Point Arithmetic. 6455 *----------------------------------------------------------------------------*/ 6456 6457 int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status) 6458 { 6459 6460 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 6461 float_raise(float_flag_invalid, status); 6462 return 0; 6463 } 6464 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 6465 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 6466 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 6467 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 6468 ) { 6469 if (floatx80_is_signaling_nan(a, status) 6470 || floatx80_is_signaling_nan(b, status)) { 6471 float_raise(float_flag_invalid, status); 6472 } 6473 return 0; 6474 } 6475 return 6476 ( a.low == b.low ) 6477 && ( ( a.high == b.high ) 6478 || ( ( a.low == 0 ) 6479 && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 6480 ); 6481 6482 } 6483 6484 /*---------------------------------------------------------------------------- 6485 | Returns 1 if the extended double-precision floating-point value `a' is less 6486 | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs 6487 | do not cause an exception. Otherwise, the comparison is performed according 6488 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6489 *----------------------------------------------------------------------------*/ 6490 6491 int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status) 6492 { 6493 flag aSign, bSign; 6494 6495 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 6496 float_raise(float_flag_invalid, status); 6497 return 0; 6498 } 6499 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 6500 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 6501 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 6502 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 6503 ) { 6504 if (floatx80_is_signaling_nan(a, status) 6505 || floatx80_is_signaling_nan(b, status)) { 6506 float_raise(float_flag_invalid, status); 6507 } 6508 return 0; 6509 } 6510 aSign = extractFloatx80Sign( a ); 6511 bSign = extractFloatx80Sign( b ); 6512 if ( aSign != bSign ) { 6513 return 6514 aSign 6515 || ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6516 == 0 ); 6517 } 6518 return 6519 aSign ? le128( b.high, b.low, a.high, a.low ) 6520 : le128( a.high, a.low, b.high, b.low ); 6521 6522 } 6523 6524 /*---------------------------------------------------------------------------- 6525 | Returns 1 if the extended double-precision floating-point value `a' is less 6526 | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause 6527 | an exception. Otherwise, the comparison is performed according to the 6528 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 6529 *----------------------------------------------------------------------------*/ 6530 6531 int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status) 6532 { 6533 flag aSign, bSign; 6534 6535 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 6536 float_raise(float_flag_invalid, status); 6537 return 0; 6538 } 6539 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 6540 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 6541 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 6542 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 6543 ) { 6544 if (floatx80_is_signaling_nan(a, status) 6545 || floatx80_is_signaling_nan(b, status)) { 6546 float_raise(float_flag_invalid, status); 6547 } 6548 return 0; 6549 } 6550 aSign = extractFloatx80Sign( a ); 6551 bSign = extractFloatx80Sign( b ); 6552 if ( aSign != bSign ) { 6553 return 6554 aSign 6555 && ( ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 6556 != 0 ); 6557 } 6558 return 6559 aSign ? lt128( b.high, b.low, a.high, a.low ) 6560 : lt128( a.high, a.low, b.high, b.low ); 6561 6562 } 6563 6564 /*---------------------------------------------------------------------------- 6565 | Returns 1 if the extended double-precision floating-point values `a' and `b' 6566 | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception. 6567 | The comparison is performed according to the IEC/IEEE Standard for Binary 6568 | Floating-Point Arithmetic. 6569 *----------------------------------------------------------------------------*/ 6570 int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status) 6571 { 6572 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 6573 float_raise(float_flag_invalid, status); 6574 return 1; 6575 } 6576 if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) 6577 && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) 6578 || ( ( extractFloatx80Exp( b ) == 0x7FFF ) 6579 && (uint64_t) ( extractFloatx80Frac( b )<<1 ) ) 6580 ) { 6581 if (floatx80_is_signaling_nan(a, status) 6582 || floatx80_is_signaling_nan(b, status)) { 6583 float_raise(float_flag_invalid, status); 6584 } 6585 return 1; 6586 } 6587 return 0; 6588 } 6589 6590 /*---------------------------------------------------------------------------- 6591 | Returns the result of converting the quadruple-precision floating-point 6592 | value `a' to the 32-bit two's complement integer format. The conversion 6593 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6594 | Arithmetic---which means in particular that the conversion is rounded 6595 | according to the current rounding mode. If `a' is a NaN, the largest 6596 | positive integer is returned. Otherwise, if the conversion overflows, the 6597 | largest integer with the same sign as `a' is returned. 6598 *----------------------------------------------------------------------------*/ 6599 6600 int32_t float128_to_int32(float128 a, float_status *status) 6601 { 6602 flag aSign; 6603 int32_t aExp, shiftCount; 6604 uint64_t aSig0, aSig1; 6605 6606 aSig1 = extractFloat128Frac1( a ); 6607 aSig0 = extractFloat128Frac0( a ); 6608 aExp = extractFloat128Exp( a ); 6609 aSign = extractFloat128Sign( a ); 6610 if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; 6611 if ( aExp ) aSig0 |= UINT64_C(0x0001000000000000); 6612 aSig0 |= ( aSig1 != 0 ); 6613 shiftCount = 0x4028 - aExp; 6614 if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); 6615 return roundAndPackInt32(aSign, aSig0, status); 6616 6617 } 6618 6619 /*---------------------------------------------------------------------------- 6620 | Returns the result of converting the quadruple-precision floating-point 6621 | value `a' to the 32-bit two's complement integer format. The conversion 6622 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6623 | Arithmetic, except that the conversion is always rounded toward zero. If 6624 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the 6625 | conversion overflows, the largest integer with the same sign as `a' is 6626 | returned. 6627 *----------------------------------------------------------------------------*/ 6628 6629 int32_t float128_to_int32_round_to_zero(float128 a, float_status *status) 6630 { 6631 flag aSign; 6632 int32_t aExp, shiftCount; 6633 uint64_t aSig0, aSig1, savedASig; 6634 int32_t z; 6635 6636 aSig1 = extractFloat128Frac1( a ); 6637 aSig0 = extractFloat128Frac0( a ); 6638 aExp = extractFloat128Exp( a ); 6639 aSign = extractFloat128Sign( a ); 6640 aSig0 |= ( aSig1 != 0 ); 6641 if ( 0x401E < aExp ) { 6642 if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; 6643 goto invalid; 6644 } 6645 else if ( aExp < 0x3FFF ) { 6646 if (aExp || aSig0) { 6647 status->float_exception_flags |= float_flag_inexact; 6648 } 6649 return 0; 6650 } 6651 aSig0 |= UINT64_C(0x0001000000000000); 6652 shiftCount = 0x402F - aExp; 6653 savedASig = aSig0; 6654 aSig0 >>= shiftCount; 6655 z = aSig0; 6656 if ( aSign ) z = - z; 6657 if ( ( z < 0 ) ^ aSign ) { 6658 invalid: 6659 float_raise(float_flag_invalid, status); 6660 return aSign ? INT32_MIN : INT32_MAX; 6661 } 6662 if ( ( aSig0<<shiftCount ) != savedASig ) { 6663 status->float_exception_flags |= float_flag_inexact; 6664 } 6665 return z; 6666 6667 } 6668 6669 /*---------------------------------------------------------------------------- 6670 | Returns the result of converting the quadruple-precision floating-point 6671 | value `a' to the 64-bit two's complement integer format. The conversion 6672 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6673 | Arithmetic---which means in particular that the conversion is rounded 6674 | according to the current rounding mode. If `a' is a NaN, the largest 6675 | positive integer is returned. Otherwise, if the conversion overflows, the 6676 | largest integer with the same sign as `a' is returned. 6677 *----------------------------------------------------------------------------*/ 6678 6679 int64_t float128_to_int64(float128 a, float_status *status) 6680 { 6681 flag aSign; 6682 int32_t aExp, shiftCount; 6683 uint64_t aSig0, aSig1; 6684 6685 aSig1 = extractFloat128Frac1( a ); 6686 aSig0 = extractFloat128Frac0( a ); 6687 aExp = extractFloat128Exp( a ); 6688 aSign = extractFloat128Sign( a ); 6689 if ( aExp ) aSig0 |= UINT64_C(0x0001000000000000); 6690 shiftCount = 0x402F - aExp; 6691 if ( shiftCount <= 0 ) { 6692 if ( 0x403E < aExp ) { 6693 float_raise(float_flag_invalid, status); 6694 if ( ! aSign 6695 || ( ( aExp == 0x7FFF ) 6696 && ( aSig1 || ( aSig0 != UINT64_C(0x0001000000000000) ) ) 6697 ) 6698 ) { 6699 return INT64_MAX; 6700 } 6701 return INT64_MIN; 6702 } 6703 shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); 6704 } 6705 else { 6706 shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); 6707 } 6708 return roundAndPackInt64(aSign, aSig0, aSig1, status); 6709 6710 } 6711 6712 /*---------------------------------------------------------------------------- 6713 | Returns the result of converting the quadruple-precision floating-point 6714 | value `a' to the 64-bit two's complement integer format. The conversion 6715 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6716 | Arithmetic, except that the conversion is always rounded toward zero. 6717 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if 6718 | the conversion overflows, the largest integer with the same sign as `a' is 6719 | returned. 6720 *----------------------------------------------------------------------------*/ 6721 6722 int64_t float128_to_int64_round_to_zero(float128 a, float_status *status) 6723 { 6724 flag aSign; 6725 int32_t aExp, shiftCount; 6726 uint64_t aSig0, aSig1; 6727 int64_t z; 6728 6729 aSig1 = extractFloat128Frac1( a ); 6730 aSig0 = extractFloat128Frac0( a ); 6731 aExp = extractFloat128Exp( a ); 6732 aSign = extractFloat128Sign( a ); 6733 if ( aExp ) aSig0 |= UINT64_C(0x0001000000000000); 6734 shiftCount = aExp - 0x402F; 6735 if ( 0 < shiftCount ) { 6736 if ( 0x403E <= aExp ) { 6737 aSig0 &= UINT64_C(0x0000FFFFFFFFFFFF); 6738 if ( ( a.high == UINT64_C(0xC03E000000000000) ) 6739 && ( aSig1 < UINT64_C(0x0002000000000000) ) ) { 6740 if (aSig1) { 6741 status->float_exception_flags |= float_flag_inexact; 6742 } 6743 } 6744 else { 6745 float_raise(float_flag_invalid, status); 6746 if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { 6747 return INT64_MAX; 6748 } 6749 } 6750 return INT64_MIN; 6751 } 6752 z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); 6753 if ( (uint64_t) ( aSig1<<shiftCount ) ) { 6754 status->float_exception_flags |= float_flag_inexact; 6755 } 6756 } 6757 else { 6758 if ( aExp < 0x3FFF ) { 6759 if ( aExp | aSig0 | aSig1 ) { 6760 status->float_exception_flags |= float_flag_inexact; 6761 } 6762 return 0; 6763 } 6764 z = aSig0>>( - shiftCount ); 6765 if ( aSig1 6766 || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) { 6767 status->float_exception_flags |= float_flag_inexact; 6768 } 6769 } 6770 if ( aSign ) z = - z; 6771 return z; 6772 6773 } 6774 6775 /*---------------------------------------------------------------------------- 6776 | Returns the result of converting the quadruple-precision floating-point value 6777 | `a' to the 64-bit unsigned integer format. The conversion is 6778 | performed according to the IEC/IEEE Standard for Binary Floating-Point 6779 | Arithmetic---which means in particular that the conversion is rounded 6780 | according to the current rounding mode. If `a' is a NaN, the largest 6781 | positive integer is returned. If the conversion overflows, the 6782 | largest unsigned integer is returned. If 'a' is negative, the value is 6783 | rounded and zero is returned; negative values that do not round to zero 6784 | will raise the inexact exception. 6785 *----------------------------------------------------------------------------*/ 6786 6787 uint64_t float128_to_uint64(float128 a, float_status *status) 6788 { 6789 flag aSign; 6790 int aExp; 6791 int shiftCount; 6792 uint64_t aSig0, aSig1; 6793 6794 aSig0 = extractFloat128Frac0(a); 6795 aSig1 = extractFloat128Frac1(a); 6796 aExp = extractFloat128Exp(a); 6797 aSign = extractFloat128Sign(a); 6798 if (aSign && (aExp > 0x3FFE)) { 6799 float_raise(float_flag_invalid, status); 6800 if (float128_is_any_nan(a)) { 6801 return UINT64_MAX; 6802 } else { 6803 return 0; 6804 } 6805 } 6806 if (aExp) { 6807 aSig0 |= UINT64_C(0x0001000000000000); 6808 } 6809 shiftCount = 0x402F - aExp; 6810 if (shiftCount <= 0) { 6811 if (0x403E < aExp) { 6812 float_raise(float_flag_invalid, status); 6813 return UINT64_MAX; 6814 } 6815 shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1); 6816 } else { 6817 shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1); 6818 } 6819 return roundAndPackUint64(aSign, aSig0, aSig1, status); 6820 } 6821 6822 uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status) 6823 { 6824 uint64_t v; 6825 signed char current_rounding_mode = status->float_rounding_mode; 6826 6827 set_float_rounding_mode(float_round_to_zero, status); 6828 v = float128_to_uint64(a, status); 6829 set_float_rounding_mode(current_rounding_mode, status); 6830 6831 return v; 6832 } 6833 6834 /*---------------------------------------------------------------------------- 6835 | Returns the result of converting the quadruple-precision floating-point 6836 | value `a' to the 32-bit unsigned integer format. The conversion 6837 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6838 | Arithmetic except that the conversion is always rounded toward zero. 6839 | If `a' is a NaN, the largest positive integer is returned. Otherwise, 6840 | if the conversion overflows, the largest unsigned integer is returned. 6841 | If 'a' is negative, the value is rounded and zero is returned; negative 6842 | values that do not round to zero will raise the inexact exception. 6843 *----------------------------------------------------------------------------*/ 6844 6845 uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status) 6846 { 6847 uint64_t v; 6848 uint32_t res; 6849 int old_exc_flags = get_float_exception_flags(status); 6850 6851 v = float128_to_uint64_round_to_zero(a, status); 6852 if (v > 0xffffffff) { 6853 res = 0xffffffff; 6854 } else { 6855 return v; 6856 } 6857 set_float_exception_flags(old_exc_flags, status); 6858 float_raise(float_flag_invalid, status); 6859 return res; 6860 } 6861 6862 /*---------------------------------------------------------------------------- 6863 | Returns the result of converting the quadruple-precision floating-point value 6864 | `a' to the 32-bit unsigned integer format. The conversion is 6865 | performed according to the IEC/IEEE Standard for Binary Floating-Point 6866 | Arithmetic---which means in particular that the conversion is rounded 6867 | according to the current rounding mode. If `a' is a NaN, the largest 6868 | positive integer is returned. If the conversion overflows, the 6869 | largest unsigned integer is returned. If 'a' is negative, the value is 6870 | rounded and zero is returned; negative values that do not round to zero 6871 | will raise the inexact exception. 6872 *----------------------------------------------------------------------------*/ 6873 6874 uint32_t float128_to_uint32(float128 a, float_status *status) 6875 { 6876 uint64_t v; 6877 uint32_t res; 6878 int old_exc_flags = get_float_exception_flags(status); 6879 6880 v = float128_to_uint64(a, status); 6881 if (v > 0xffffffff) { 6882 res = 0xffffffff; 6883 } else { 6884 return v; 6885 } 6886 set_float_exception_flags(old_exc_flags, status); 6887 float_raise(float_flag_invalid, status); 6888 return res; 6889 } 6890 6891 /*---------------------------------------------------------------------------- 6892 | Returns the result of converting the quadruple-precision floating-point 6893 | value `a' to the single-precision floating-point format. The conversion 6894 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6895 | Arithmetic. 6896 *----------------------------------------------------------------------------*/ 6897 6898 float32 float128_to_float32(float128 a, float_status *status) 6899 { 6900 flag aSign; 6901 int32_t aExp; 6902 uint64_t aSig0, aSig1; 6903 uint32_t zSig; 6904 6905 aSig1 = extractFloat128Frac1( a ); 6906 aSig0 = extractFloat128Frac0( a ); 6907 aExp = extractFloat128Exp( a ); 6908 aSign = extractFloat128Sign( a ); 6909 if ( aExp == 0x7FFF ) { 6910 if ( aSig0 | aSig1 ) { 6911 return commonNaNToFloat32(float128ToCommonNaN(a, status), status); 6912 } 6913 return packFloat32( aSign, 0xFF, 0 ); 6914 } 6915 aSig0 |= ( aSig1 != 0 ); 6916 shift64RightJamming( aSig0, 18, &aSig0 ); 6917 zSig = aSig0; 6918 if ( aExp || zSig ) { 6919 zSig |= 0x40000000; 6920 aExp -= 0x3F81; 6921 } 6922 return roundAndPackFloat32(aSign, aExp, zSig, status); 6923 6924 } 6925 6926 /*---------------------------------------------------------------------------- 6927 | Returns the result of converting the quadruple-precision floating-point 6928 | value `a' to the double-precision floating-point format. The conversion 6929 | is performed according to the IEC/IEEE Standard for Binary Floating-Point 6930 | Arithmetic. 6931 *----------------------------------------------------------------------------*/ 6932 6933 float64 float128_to_float64(float128 a, float_status *status) 6934 { 6935 flag aSign; 6936 int32_t aExp; 6937 uint64_t aSig0, aSig1; 6938 6939 aSig1 = extractFloat128Frac1( a ); 6940 aSig0 = extractFloat128Frac0( a ); 6941 aExp = extractFloat128Exp( a ); 6942 aSign = extractFloat128Sign( a ); 6943 if ( aExp == 0x7FFF ) { 6944 if ( aSig0 | aSig1 ) { 6945 return commonNaNToFloat64(float128ToCommonNaN(a, status), status); 6946 } 6947 return packFloat64( aSign, 0x7FF, 0 ); 6948 } 6949 shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); 6950 aSig0 |= ( aSig1 != 0 ); 6951 if ( aExp || aSig0 ) { 6952 aSig0 |= UINT64_C(0x4000000000000000); 6953 aExp -= 0x3C01; 6954 } 6955 return roundAndPackFloat64(aSign, aExp, aSig0, status); 6956 6957 } 6958 6959 /*---------------------------------------------------------------------------- 6960 | Returns the result of converting the quadruple-precision floating-point 6961 | value `a' to the extended double-precision floating-point format. The 6962 | conversion is performed according to the IEC/IEEE Standard for Binary 6963 | Floating-Point Arithmetic. 6964 *----------------------------------------------------------------------------*/ 6965 6966 floatx80 float128_to_floatx80(float128 a, float_status *status) 6967 { 6968 flag aSign; 6969 int32_t aExp; 6970 uint64_t aSig0, aSig1; 6971 6972 aSig1 = extractFloat128Frac1( a ); 6973 aSig0 = extractFloat128Frac0( a ); 6974 aExp = extractFloat128Exp( a ); 6975 aSign = extractFloat128Sign( a ); 6976 if ( aExp == 0x7FFF ) { 6977 if ( aSig0 | aSig1 ) { 6978 floatx80 res = commonNaNToFloatx80(float128ToCommonNaN(a, status), 6979 status); 6980 return floatx80_silence_nan(res, status); 6981 } 6982 return packFloatx80(aSign, floatx80_infinity_high, 6983 floatx80_infinity_low); 6984 } 6985 if ( aExp == 0 ) { 6986 if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); 6987 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 6988 } 6989 else { 6990 aSig0 |= UINT64_C(0x0001000000000000); 6991 } 6992 shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); 6993 return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); 6994 6995 } 6996 6997 /*---------------------------------------------------------------------------- 6998 | Rounds the quadruple-precision floating-point value `a' to an integer, and 6999 | returns the result as a quadruple-precision floating-point value. The 7000 | operation is performed according to the IEC/IEEE Standard for Binary 7001 | Floating-Point Arithmetic. 7002 *----------------------------------------------------------------------------*/ 7003 7004 float128 float128_round_to_int(float128 a, float_status *status) 7005 { 7006 flag aSign; 7007 int32_t aExp; 7008 uint64_t lastBitMask, roundBitsMask; 7009 float128 z; 7010 7011 aExp = extractFloat128Exp( a ); 7012 if ( 0x402F <= aExp ) { 7013 if ( 0x406F <= aExp ) { 7014 if ( ( aExp == 0x7FFF ) 7015 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) 7016 ) { 7017 return propagateFloat128NaN(a, a, status); 7018 } 7019 return a; 7020 } 7021 lastBitMask = 1; 7022 lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; 7023 roundBitsMask = lastBitMask - 1; 7024 z = a; 7025 switch (status->float_rounding_mode) { 7026 case float_round_nearest_even: 7027 if ( lastBitMask ) { 7028 add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); 7029 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; 7030 } 7031 else { 7032 if ( (int64_t) z.low < 0 ) { 7033 ++z.high; 7034 if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1; 7035 } 7036 } 7037 break; 7038 case float_round_ties_away: 7039 if (lastBitMask) { 7040 add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low); 7041 } else { 7042 if ((int64_t) z.low < 0) { 7043 ++z.high; 7044 } 7045 } 7046 break; 7047 case float_round_to_zero: 7048 break; 7049 case float_round_up: 7050 if (!extractFloat128Sign(z)) { 7051 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); 7052 } 7053 break; 7054 case float_round_down: 7055 if (extractFloat128Sign(z)) { 7056 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); 7057 } 7058 break; 7059 case float_round_to_odd: 7060 /* 7061 * Note that if lastBitMask == 0, the last bit is the lsb 7062 * of high, and roundBitsMask == -1. 7063 */ 7064 if ((lastBitMask ? z.low & lastBitMask : z.high & 1) == 0) { 7065 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low); 7066 } 7067 break; 7068 default: 7069 abort(); 7070 } 7071 z.low &= ~ roundBitsMask; 7072 } 7073 else { 7074 if ( aExp < 0x3FFF ) { 7075 if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a; 7076 status->float_exception_flags |= float_flag_inexact; 7077 aSign = extractFloat128Sign( a ); 7078 switch (status->float_rounding_mode) { 7079 case float_round_nearest_even: 7080 if ( ( aExp == 0x3FFE ) 7081 && ( extractFloat128Frac0( a ) 7082 | extractFloat128Frac1( a ) ) 7083 ) { 7084 return packFloat128( aSign, 0x3FFF, 0, 0 ); 7085 } 7086 break; 7087 case float_round_ties_away: 7088 if (aExp == 0x3FFE) { 7089 return packFloat128(aSign, 0x3FFF, 0, 0); 7090 } 7091 break; 7092 case float_round_down: 7093 return 7094 aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) 7095 : packFloat128( 0, 0, 0, 0 ); 7096 case float_round_up: 7097 return 7098 aSign ? packFloat128( 1, 0, 0, 0 ) 7099 : packFloat128( 0, 0x3FFF, 0, 0 ); 7100 7101 case float_round_to_odd: 7102 return packFloat128(aSign, 0x3FFF, 0, 0); 7103 } 7104 return packFloat128( aSign, 0, 0, 0 ); 7105 } 7106 lastBitMask = 1; 7107 lastBitMask <<= 0x402F - aExp; 7108 roundBitsMask = lastBitMask - 1; 7109 z.low = 0; 7110 z.high = a.high; 7111 switch (status->float_rounding_mode) { 7112 case float_round_nearest_even: 7113 z.high += lastBitMask>>1; 7114 if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { 7115 z.high &= ~ lastBitMask; 7116 } 7117 break; 7118 case float_round_ties_away: 7119 z.high += lastBitMask>>1; 7120 break; 7121 case float_round_to_zero: 7122 break; 7123 case float_round_up: 7124 if (!extractFloat128Sign(z)) { 7125 z.high |= ( a.low != 0 ); 7126 z.high += roundBitsMask; 7127 } 7128 break; 7129 case float_round_down: 7130 if (extractFloat128Sign(z)) { 7131 z.high |= (a.low != 0); 7132 z.high += roundBitsMask; 7133 } 7134 break; 7135 case float_round_to_odd: 7136 if ((z.high & lastBitMask) == 0) { 7137 z.high |= (a.low != 0); 7138 z.high += roundBitsMask; 7139 } 7140 break; 7141 default: 7142 abort(); 7143 } 7144 z.high &= ~ roundBitsMask; 7145 } 7146 if ( ( z.low != a.low ) || ( z.high != a.high ) ) { 7147 status->float_exception_flags |= float_flag_inexact; 7148 } 7149 return z; 7150 7151 } 7152 7153 /*---------------------------------------------------------------------------- 7154 | Returns the result of adding the absolute values of the quadruple-precision 7155 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated 7156 | before being returned. `zSign' is ignored if the result is a NaN. 7157 | The addition is performed according to the IEC/IEEE Standard for Binary 7158 | Floating-Point Arithmetic. 7159 *----------------------------------------------------------------------------*/ 7160 7161 static float128 addFloat128Sigs(float128 a, float128 b, flag zSign, 7162 float_status *status) 7163 { 7164 int32_t aExp, bExp, zExp; 7165 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; 7166 int32_t expDiff; 7167 7168 aSig1 = extractFloat128Frac1( a ); 7169 aSig0 = extractFloat128Frac0( a ); 7170 aExp = extractFloat128Exp( a ); 7171 bSig1 = extractFloat128Frac1( b ); 7172 bSig0 = extractFloat128Frac0( b ); 7173 bExp = extractFloat128Exp( b ); 7174 expDiff = aExp - bExp; 7175 if ( 0 < expDiff ) { 7176 if ( aExp == 0x7FFF ) { 7177 if (aSig0 | aSig1) { 7178 return propagateFloat128NaN(a, b, status); 7179 } 7180 return a; 7181 } 7182 if ( bExp == 0 ) { 7183 --expDiff; 7184 } 7185 else { 7186 bSig0 |= UINT64_C(0x0001000000000000); 7187 } 7188 shift128ExtraRightJamming( 7189 bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); 7190 zExp = aExp; 7191 } 7192 else if ( expDiff < 0 ) { 7193 if ( bExp == 0x7FFF ) { 7194 if (bSig0 | bSig1) { 7195 return propagateFloat128NaN(a, b, status); 7196 } 7197 return packFloat128( zSign, 0x7FFF, 0, 0 ); 7198 } 7199 if ( aExp == 0 ) { 7200 ++expDiff; 7201 } 7202 else { 7203 aSig0 |= UINT64_C(0x0001000000000000); 7204 } 7205 shift128ExtraRightJamming( 7206 aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); 7207 zExp = bExp; 7208 } 7209 else { 7210 if ( aExp == 0x7FFF ) { 7211 if ( aSig0 | aSig1 | bSig0 | bSig1 ) { 7212 return propagateFloat128NaN(a, b, status); 7213 } 7214 return a; 7215 } 7216 add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 7217 if ( aExp == 0 ) { 7218 if (status->flush_to_zero) { 7219 if (zSig0 | zSig1) { 7220 float_raise(float_flag_output_denormal, status); 7221 } 7222 return packFloat128(zSign, 0, 0, 0); 7223 } 7224 return packFloat128( zSign, 0, zSig0, zSig1 ); 7225 } 7226 zSig2 = 0; 7227 zSig0 |= UINT64_C(0x0002000000000000); 7228 zExp = aExp; 7229 goto shiftRight1; 7230 } 7231 aSig0 |= UINT64_C(0x0001000000000000); 7232 add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 7233 --zExp; 7234 if ( zSig0 < UINT64_C(0x0002000000000000) ) goto roundAndPack; 7235 ++zExp; 7236 shiftRight1: 7237 shift128ExtraRightJamming( 7238 zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); 7239 roundAndPack: 7240 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); 7241 7242 } 7243 7244 /*---------------------------------------------------------------------------- 7245 | Returns the result of subtracting the absolute values of the quadruple- 7246 | precision floating-point values `a' and `b'. If `zSign' is 1, the 7247 | difference is negated before being returned. `zSign' is ignored if the 7248 | result is a NaN. The subtraction is performed according to the IEC/IEEE 7249 | Standard for Binary Floating-Point Arithmetic. 7250 *----------------------------------------------------------------------------*/ 7251 7252 static float128 subFloat128Sigs(float128 a, float128 b, flag zSign, 7253 float_status *status) 7254 { 7255 int32_t aExp, bExp, zExp; 7256 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; 7257 int32_t expDiff; 7258 7259 aSig1 = extractFloat128Frac1( a ); 7260 aSig0 = extractFloat128Frac0( a ); 7261 aExp = extractFloat128Exp( a ); 7262 bSig1 = extractFloat128Frac1( b ); 7263 bSig0 = extractFloat128Frac0( b ); 7264 bExp = extractFloat128Exp( b ); 7265 expDiff = aExp - bExp; 7266 shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); 7267 shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); 7268 if ( 0 < expDiff ) goto aExpBigger; 7269 if ( expDiff < 0 ) goto bExpBigger; 7270 if ( aExp == 0x7FFF ) { 7271 if ( aSig0 | aSig1 | bSig0 | bSig1 ) { 7272 return propagateFloat128NaN(a, b, status); 7273 } 7274 float_raise(float_flag_invalid, status); 7275 return float128_default_nan(status); 7276 } 7277 if ( aExp == 0 ) { 7278 aExp = 1; 7279 bExp = 1; 7280 } 7281 if ( bSig0 < aSig0 ) goto aBigger; 7282 if ( aSig0 < bSig0 ) goto bBigger; 7283 if ( bSig1 < aSig1 ) goto aBigger; 7284 if ( aSig1 < bSig1 ) goto bBigger; 7285 return packFloat128(status->float_rounding_mode == float_round_down, 7286 0, 0, 0); 7287 bExpBigger: 7288 if ( bExp == 0x7FFF ) { 7289 if (bSig0 | bSig1) { 7290 return propagateFloat128NaN(a, b, status); 7291 } 7292 return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); 7293 } 7294 if ( aExp == 0 ) { 7295 ++expDiff; 7296 } 7297 else { 7298 aSig0 |= UINT64_C(0x4000000000000000); 7299 } 7300 shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); 7301 bSig0 |= UINT64_C(0x4000000000000000); 7302 bBigger: 7303 sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); 7304 zExp = bExp; 7305 zSign ^= 1; 7306 goto normalizeRoundAndPack; 7307 aExpBigger: 7308 if ( aExp == 0x7FFF ) { 7309 if (aSig0 | aSig1) { 7310 return propagateFloat128NaN(a, b, status); 7311 } 7312 return a; 7313 } 7314 if ( bExp == 0 ) { 7315 --expDiff; 7316 } 7317 else { 7318 bSig0 |= UINT64_C(0x4000000000000000); 7319 } 7320 shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); 7321 aSig0 |= UINT64_C(0x4000000000000000); 7322 aBigger: 7323 sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); 7324 zExp = aExp; 7325 normalizeRoundAndPack: 7326 --zExp; 7327 return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1, 7328 status); 7329 7330 } 7331 7332 /*---------------------------------------------------------------------------- 7333 | Returns the result of adding the quadruple-precision floating-point values 7334 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard 7335 | for Binary Floating-Point Arithmetic. 7336 *----------------------------------------------------------------------------*/ 7337 7338 float128 float128_add(float128 a, float128 b, float_status *status) 7339 { 7340 flag aSign, bSign; 7341 7342 aSign = extractFloat128Sign( a ); 7343 bSign = extractFloat128Sign( b ); 7344 if ( aSign == bSign ) { 7345 return addFloat128Sigs(a, b, aSign, status); 7346 } 7347 else { 7348 return subFloat128Sigs(a, b, aSign, status); 7349 } 7350 7351 } 7352 7353 /*---------------------------------------------------------------------------- 7354 | Returns the result of subtracting the quadruple-precision floating-point 7355 | values `a' and `b'. The operation is performed according to the IEC/IEEE 7356 | Standard for Binary Floating-Point Arithmetic. 7357 *----------------------------------------------------------------------------*/ 7358 7359 float128 float128_sub(float128 a, float128 b, float_status *status) 7360 { 7361 flag aSign, bSign; 7362 7363 aSign = extractFloat128Sign( a ); 7364 bSign = extractFloat128Sign( b ); 7365 if ( aSign == bSign ) { 7366 return subFloat128Sigs(a, b, aSign, status); 7367 } 7368 else { 7369 return addFloat128Sigs(a, b, aSign, status); 7370 } 7371 7372 } 7373 7374 /*---------------------------------------------------------------------------- 7375 | Returns the result of multiplying the quadruple-precision floating-point 7376 | values `a' and `b'. The operation is performed according to the IEC/IEEE 7377 | Standard for Binary Floating-Point Arithmetic. 7378 *----------------------------------------------------------------------------*/ 7379 7380 float128 float128_mul(float128 a, float128 b, float_status *status) 7381 { 7382 flag aSign, bSign, zSign; 7383 int32_t aExp, bExp, zExp; 7384 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; 7385 7386 aSig1 = extractFloat128Frac1( a ); 7387 aSig0 = extractFloat128Frac0( a ); 7388 aExp = extractFloat128Exp( a ); 7389 aSign = extractFloat128Sign( a ); 7390 bSig1 = extractFloat128Frac1( b ); 7391 bSig0 = extractFloat128Frac0( b ); 7392 bExp = extractFloat128Exp( b ); 7393 bSign = extractFloat128Sign( b ); 7394 zSign = aSign ^ bSign; 7395 if ( aExp == 0x7FFF ) { 7396 if ( ( aSig0 | aSig1 ) 7397 || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { 7398 return propagateFloat128NaN(a, b, status); 7399 } 7400 if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; 7401 return packFloat128( zSign, 0x7FFF, 0, 0 ); 7402 } 7403 if ( bExp == 0x7FFF ) { 7404 if (bSig0 | bSig1) { 7405 return propagateFloat128NaN(a, b, status); 7406 } 7407 if ( ( aExp | aSig0 | aSig1 ) == 0 ) { 7408 invalid: 7409 float_raise(float_flag_invalid, status); 7410 return float128_default_nan(status); 7411 } 7412 return packFloat128( zSign, 0x7FFF, 0, 0 ); 7413 } 7414 if ( aExp == 0 ) { 7415 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 7416 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 7417 } 7418 if ( bExp == 0 ) { 7419 if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 7420 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 7421 } 7422 zExp = aExp + bExp - 0x4000; 7423 aSig0 |= UINT64_C(0x0001000000000000); 7424 shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); 7425 mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); 7426 add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); 7427 zSig2 |= ( zSig3 != 0 ); 7428 if (UINT64_C( 0x0002000000000000) <= zSig0 ) { 7429 shift128ExtraRightJamming( 7430 zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); 7431 ++zExp; 7432 } 7433 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); 7434 7435 } 7436 7437 /*---------------------------------------------------------------------------- 7438 | Returns the result of dividing the quadruple-precision floating-point value 7439 | `a' by the corresponding value `b'. The operation is performed according to 7440 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 7441 *----------------------------------------------------------------------------*/ 7442 7443 float128 float128_div(float128 a, float128 b, float_status *status) 7444 { 7445 flag aSign, bSign, zSign; 7446 int32_t aExp, bExp, zExp; 7447 uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; 7448 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 7449 7450 aSig1 = extractFloat128Frac1( a ); 7451 aSig0 = extractFloat128Frac0( a ); 7452 aExp = extractFloat128Exp( a ); 7453 aSign = extractFloat128Sign( a ); 7454 bSig1 = extractFloat128Frac1( b ); 7455 bSig0 = extractFloat128Frac0( b ); 7456 bExp = extractFloat128Exp( b ); 7457 bSign = extractFloat128Sign( b ); 7458 zSign = aSign ^ bSign; 7459 if ( aExp == 0x7FFF ) { 7460 if (aSig0 | aSig1) { 7461 return propagateFloat128NaN(a, b, status); 7462 } 7463 if ( bExp == 0x7FFF ) { 7464 if (bSig0 | bSig1) { 7465 return propagateFloat128NaN(a, b, status); 7466 } 7467 goto invalid; 7468 } 7469 return packFloat128( zSign, 0x7FFF, 0, 0 ); 7470 } 7471 if ( bExp == 0x7FFF ) { 7472 if (bSig0 | bSig1) { 7473 return propagateFloat128NaN(a, b, status); 7474 } 7475 return packFloat128( zSign, 0, 0, 0 ); 7476 } 7477 if ( bExp == 0 ) { 7478 if ( ( bSig0 | bSig1 ) == 0 ) { 7479 if ( ( aExp | aSig0 | aSig1 ) == 0 ) { 7480 invalid: 7481 float_raise(float_flag_invalid, status); 7482 return float128_default_nan(status); 7483 } 7484 float_raise(float_flag_divbyzero, status); 7485 return packFloat128( zSign, 0x7FFF, 0, 0 ); 7486 } 7487 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 7488 } 7489 if ( aExp == 0 ) { 7490 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); 7491 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 7492 } 7493 zExp = aExp - bExp + 0x3FFD; 7494 shortShift128Left( 7495 aSig0 | UINT64_C(0x0001000000000000), aSig1, 15, &aSig0, &aSig1 ); 7496 shortShift128Left( 7497 bSig0 | UINT64_C(0x0001000000000000), bSig1, 15, &bSig0, &bSig1 ); 7498 if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { 7499 shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); 7500 ++zExp; 7501 } 7502 zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); 7503 mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); 7504 sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); 7505 while ( (int64_t) rem0 < 0 ) { 7506 --zSig0; 7507 add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); 7508 } 7509 zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); 7510 if ( ( zSig1 & 0x3FFF ) <= 4 ) { 7511 mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); 7512 sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); 7513 while ( (int64_t) rem1 < 0 ) { 7514 --zSig1; 7515 add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); 7516 } 7517 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 7518 } 7519 shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); 7520 return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); 7521 7522 } 7523 7524 /*---------------------------------------------------------------------------- 7525 | Returns the remainder of the quadruple-precision floating-point value `a' 7526 | with respect to the corresponding value `b'. The operation is performed 7527 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 7528 *----------------------------------------------------------------------------*/ 7529 7530 float128 float128_rem(float128 a, float128 b, float_status *status) 7531 { 7532 flag aSign, zSign; 7533 int32_t aExp, bExp, expDiff; 7534 uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; 7535 uint64_t allZero, alternateASig0, alternateASig1, sigMean1; 7536 int64_t sigMean0; 7537 7538 aSig1 = extractFloat128Frac1( a ); 7539 aSig0 = extractFloat128Frac0( a ); 7540 aExp = extractFloat128Exp( a ); 7541 aSign = extractFloat128Sign( a ); 7542 bSig1 = extractFloat128Frac1( b ); 7543 bSig0 = extractFloat128Frac0( b ); 7544 bExp = extractFloat128Exp( b ); 7545 if ( aExp == 0x7FFF ) { 7546 if ( ( aSig0 | aSig1 ) 7547 || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { 7548 return propagateFloat128NaN(a, b, status); 7549 } 7550 goto invalid; 7551 } 7552 if ( bExp == 0x7FFF ) { 7553 if (bSig0 | bSig1) { 7554 return propagateFloat128NaN(a, b, status); 7555 } 7556 return a; 7557 } 7558 if ( bExp == 0 ) { 7559 if ( ( bSig0 | bSig1 ) == 0 ) { 7560 invalid: 7561 float_raise(float_flag_invalid, status); 7562 return float128_default_nan(status); 7563 } 7564 normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); 7565 } 7566 if ( aExp == 0 ) { 7567 if ( ( aSig0 | aSig1 ) == 0 ) return a; 7568 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 7569 } 7570 expDiff = aExp - bExp; 7571 if ( expDiff < -1 ) return a; 7572 shortShift128Left( 7573 aSig0 | UINT64_C(0x0001000000000000), 7574 aSig1, 7575 15 - ( expDiff < 0 ), 7576 &aSig0, 7577 &aSig1 7578 ); 7579 shortShift128Left( 7580 bSig0 | UINT64_C(0x0001000000000000), bSig1, 15, &bSig0, &bSig1 ); 7581 q = le128( bSig0, bSig1, aSig0, aSig1 ); 7582 if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); 7583 expDiff -= 64; 7584 while ( 0 < expDiff ) { 7585 q = estimateDiv128To64( aSig0, aSig1, bSig0 ); 7586 q = ( 4 < q ) ? q - 4 : 0; 7587 mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); 7588 shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); 7589 shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); 7590 sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); 7591 expDiff -= 61; 7592 } 7593 if ( -64 < expDiff ) { 7594 q = estimateDiv128To64( aSig0, aSig1, bSig0 ); 7595 q = ( 4 < q ) ? q - 4 : 0; 7596 q >>= - expDiff; 7597 shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); 7598 expDiff += 52; 7599 if ( expDiff < 0 ) { 7600 shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); 7601 } 7602 else { 7603 shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); 7604 } 7605 mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); 7606 sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); 7607 } 7608 else { 7609 shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); 7610 shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); 7611 } 7612 do { 7613 alternateASig0 = aSig0; 7614 alternateASig1 = aSig1; 7615 ++q; 7616 sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); 7617 } while ( 0 <= (int64_t) aSig0 ); 7618 add128( 7619 aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); 7620 if ( ( sigMean0 < 0 ) 7621 || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { 7622 aSig0 = alternateASig0; 7623 aSig1 = alternateASig1; 7624 } 7625 zSign = ( (int64_t) aSig0 < 0 ); 7626 if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); 7627 return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, 7628 status); 7629 } 7630 7631 /*---------------------------------------------------------------------------- 7632 | Returns the square root of the quadruple-precision floating-point value `a'. 7633 | The operation is performed according to the IEC/IEEE Standard for Binary 7634 | Floating-Point Arithmetic. 7635 *----------------------------------------------------------------------------*/ 7636 7637 float128 float128_sqrt(float128 a, float_status *status) 7638 { 7639 flag aSign; 7640 int32_t aExp, zExp; 7641 uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; 7642 uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; 7643 7644 aSig1 = extractFloat128Frac1( a ); 7645 aSig0 = extractFloat128Frac0( a ); 7646 aExp = extractFloat128Exp( a ); 7647 aSign = extractFloat128Sign( a ); 7648 if ( aExp == 0x7FFF ) { 7649 if (aSig0 | aSig1) { 7650 return propagateFloat128NaN(a, a, status); 7651 } 7652 if ( ! aSign ) return a; 7653 goto invalid; 7654 } 7655 if ( aSign ) { 7656 if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; 7657 invalid: 7658 float_raise(float_flag_invalid, status); 7659 return float128_default_nan(status); 7660 } 7661 if ( aExp == 0 ) { 7662 if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); 7663 normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); 7664 } 7665 zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; 7666 aSig0 |= UINT64_C(0x0001000000000000); 7667 zSig0 = estimateSqrt32( aExp, aSig0>>17 ); 7668 shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); 7669 zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); 7670 doubleZSig0 = zSig0<<1; 7671 mul64To128( zSig0, zSig0, &term0, &term1 ); 7672 sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); 7673 while ( (int64_t) rem0 < 0 ) { 7674 --zSig0; 7675 doubleZSig0 -= 2; 7676 add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); 7677 } 7678 zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); 7679 if ( ( zSig1 & 0x1FFF ) <= 5 ) { 7680 if ( zSig1 == 0 ) zSig1 = 1; 7681 mul64To128( doubleZSig0, zSig1, &term1, &term2 ); 7682 sub128( rem1, 0, term1, term2, &rem1, &rem2 ); 7683 mul64To128( zSig1, zSig1, &term2, &term3 ); 7684 sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); 7685 while ( (int64_t) rem1 < 0 ) { 7686 --zSig1; 7687 shortShift128Left( 0, zSig1, 1, &term2, &term3 ); 7688 term3 |= 1; 7689 term2 |= doubleZSig0; 7690 add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); 7691 } 7692 zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); 7693 } 7694 shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); 7695 return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); 7696 7697 } 7698 7699 /*---------------------------------------------------------------------------- 7700 | Returns 1 if the quadruple-precision floating-point value `a' is equal to 7701 | the corresponding value `b', and 0 otherwise. The invalid exception is 7702 | raised if either operand is a NaN. Otherwise, the comparison is performed 7703 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 7704 *----------------------------------------------------------------------------*/ 7705 7706 int float128_eq(float128 a, float128 b, float_status *status) 7707 { 7708 7709 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7710 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7711 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7712 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7713 ) { 7714 float_raise(float_flag_invalid, status); 7715 return 0; 7716 } 7717 return 7718 ( a.low == b.low ) 7719 && ( ( a.high == b.high ) 7720 || ( ( a.low == 0 ) 7721 && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 7722 ); 7723 7724 } 7725 7726 /*---------------------------------------------------------------------------- 7727 | Returns 1 if the quadruple-precision floating-point value `a' is less than 7728 | or equal to the corresponding value `b', and 0 otherwise. The invalid 7729 | exception is raised if either operand is a NaN. The comparison is performed 7730 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 7731 *----------------------------------------------------------------------------*/ 7732 7733 int float128_le(float128 a, float128 b, float_status *status) 7734 { 7735 flag aSign, bSign; 7736 7737 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7738 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7739 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7740 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7741 ) { 7742 float_raise(float_flag_invalid, status); 7743 return 0; 7744 } 7745 aSign = extractFloat128Sign( a ); 7746 bSign = extractFloat128Sign( b ); 7747 if ( aSign != bSign ) { 7748 return 7749 aSign 7750 || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 7751 == 0 ); 7752 } 7753 return 7754 aSign ? le128( b.high, b.low, a.high, a.low ) 7755 : le128( a.high, a.low, b.high, b.low ); 7756 7757 } 7758 7759 /*---------------------------------------------------------------------------- 7760 | Returns 1 if the quadruple-precision floating-point value `a' is less than 7761 | the corresponding value `b', and 0 otherwise. The invalid exception is 7762 | raised if either operand is a NaN. The comparison is performed according 7763 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 7764 *----------------------------------------------------------------------------*/ 7765 7766 int float128_lt(float128 a, float128 b, float_status *status) 7767 { 7768 flag aSign, bSign; 7769 7770 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7771 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7772 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7773 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7774 ) { 7775 float_raise(float_flag_invalid, status); 7776 return 0; 7777 } 7778 aSign = extractFloat128Sign( a ); 7779 bSign = extractFloat128Sign( b ); 7780 if ( aSign != bSign ) { 7781 return 7782 aSign 7783 && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 7784 != 0 ); 7785 } 7786 return 7787 aSign ? lt128( b.high, b.low, a.high, a.low ) 7788 : lt128( a.high, a.low, b.high, b.low ); 7789 7790 } 7791 7792 /*---------------------------------------------------------------------------- 7793 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot 7794 | be compared, and 0 otherwise. The invalid exception is raised if either 7795 | operand is a NaN. The comparison is performed according to the IEC/IEEE 7796 | Standard for Binary Floating-Point Arithmetic. 7797 *----------------------------------------------------------------------------*/ 7798 7799 int float128_unordered(float128 a, float128 b, float_status *status) 7800 { 7801 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7802 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7803 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7804 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7805 ) { 7806 float_raise(float_flag_invalid, status); 7807 return 1; 7808 } 7809 return 0; 7810 } 7811 7812 /*---------------------------------------------------------------------------- 7813 | Returns 1 if the quadruple-precision floating-point value `a' is equal to 7814 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 7815 | exception. The comparison is performed according to the IEC/IEEE Standard 7816 | for Binary Floating-Point Arithmetic. 7817 *----------------------------------------------------------------------------*/ 7818 7819 int float128_eq_quiet(float128 a, float128 b, float_status *status) 7820 { 7821 7822 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7823 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7824 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7825 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7826 ) { 7827 if (float128_is_signaling_nan(a, status) 7828 || float128_is_signaling_nan(b, status)) { 7829 float_raise(float_flag_invalid, status); 7830 } 7831 return 0; 7832 } 7833 return 7834 ( a.low == b.low ) 7835 && ( ( a.high == b.high ) 7836 || ( ( a.low == 0 ) 7837 && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) ) 7838 ); 7839 7840 } 7841 7842 /*---------------------------------------------------------------------------- 7843 | Returns 1 if the quadruple-precision floating-point value `a' is less than 7844 | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not 7845 | cause an exception. Otherwise, the comparison is performed according to the 7846 | IEC/IEEE Standard for Binary Floating-Point Arithmetic. 7847 *----------------------------------------------------------------------------*/ 7848 7849 int float128_le_quiet(float128 a, float128 b, float_status *status) 7850 { 7851 flag aSign, bSign; 7852 7853 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7854 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7855 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7856 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7857 ) { 7858 if (float128_is_signaling_nan(a, status) 7859 || float128_is_signaling_nan(b, status)) { 7860 float_raise(float_flag_invalid, status); 7861 } 7862 return 0; 7863 } 7864 aSign = extractFloat128Sign( a ); 7865 bSign = extractFloat128Sign( b ); 7866 if ( aSign != bSign ) { 7867 return 7868 aSign 7869 || ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 7870 == 0 ); 7871 } 7872 return 7873 aSign ? le128( b.high, b.low, a.high, a.low ) 7874 : le128( a.high, a.low, b.high, b.low ); 7875 7876 } 7877 7878 /*---------------------------------------------------------------------------- 7879 | Returns 1 if the quadruple-precision floating-point value `a' is less than 7880 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an 7881 | exception. Otherwise, the comparison is performed according to the IEC/IEEE 7882 | Standard for Binary Floating-Point Arithmetic. 7883 *----------------------------------------------------------------------------*/ 7884 7885 int float128_lt_quiet(float128 a, float128 b, float_status *status) 7886 { 7887 flag aSign, bSign; 7888 7889 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7890 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7891 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7892 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7893 ) { 7894 if (float128_is_signaling_nan(a, status) 7895 || float128_is_signaling_nan(b, status)) { 7896 float_raise(float_flag_invalid, status); 7897 } 7898 return 0; 7899 } 7900 aSign = extractFloat128Sign( a ); 7901 bSign = extractFloat128Sign( b ); 7902 if ( aSign != bSign ) { 7903 return 7904 aSign 7905 && ( ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) 7906 != 0 ); 7907 } 7908 return 7909 aSign ? lt128( b.high, b.low, a.high, a.low ) 7910 : lt128( a.high, a.low, b.high, b.low ); 7911 7912 } 7913 7914 /*---------------------------------------------------------------------------- 7915 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot 7916 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The 7917 | comparison is performed according to the IEC/IEEE Standard for Binary 7918 | Floating-Point Arithmetic. 7919 *----------------------------------------------------------------------------*/ 7920 7921 int float128_unordered_quiet(float128 a, float128 b, float_status *status) 7922 { 7923 if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) 7924 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) 7925 || ( ( extractFloat128Exp( b ) == 0x7FFF ) 7926 && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) 7927 ) { 7928 if (float128_is_signaling_nan(a, status) 7929 || float128_is_signaling_nan(b, status)) { 7930 float_raise(float_flag_invalid, status); 7931 } 7932 return 1; 7933 } 7934 return 0; 7935 } 7936 7937 static inline int floatx80_compare_internal(floatx80 a, floatx80 b, 7938 int is_quiet, float_status *status) 7939 { 7940 flag aSign, bSign; 7941 7942 if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { 7943 float_raise(float_flag_invalid, status); 7944 return float_relation_unordered; 7945 } 7946 if (( ( extractFloatx80Exp( a ) == 0x7fff ) && 7947 ( extractFloatx80Frac( a )<<1 ) ) || 7948 ( ( extractFloatx80Exp( b ) == 0x7fff ) && 7949 ( extractFloatx80Frac( b )<<1 ) )) { 7950 if (!is_quiet || 7951 floatx80_is_signaling_nan(a, status) || 7952 floatx80_is_signaling_nan(b, status)) { 7953 float_raise(float_flag_invalid, status); 7954 } 7955 return float_relation_unordered; 7956 } 7957 aSign = extractFloatx80Sign( a ); 7958 bSign = extractFloatx80Sign( b ); 7959 if ( aSign != bSign ) { 7960 7961 if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && 7962 ( ( a.low | b.low ) == 0 ) ) { 7963 /* zero case */ 7964 return float_relation_equal; 7965 } else { 7966 return 1 - (2 * aSign); 7967 } 7968 } else { 7969 /* Normalize pseudo-denormals before comparison. */ 7970 if ((a.high & 0x7fff) == 0 && a.low & UINT64_C(0x8000000000000000)) { 7971 ++a.high; 7972 } 7973 if ((b.high & 0x7fff) == 0 && b.low & UINT64_C(0x8000000000000000)) { 7974 ++b.high; 7975 } 7976 if (a.low == b.low && a.high == b.high) { 7977 return float_relation_equal; 7978 } else { 7979 return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); 7980 } 7981 } 7982 } 7983 7984 int floatx80_compare(floatx80 a, floatx80 b, float_status *status) 7985 { 7986 return floatx80_compare_internal(a, b, 0, status); 7987 } 7988 7989 int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status) 7990 { 7991 return floatx80_compare_internal(a, b, 1, status); 7992 } 7993 7994 static inline int float128_compare_internal(float128 a, float128 b, 7995 int is_quiet, float_status *status) 7996 { 7997 flag aSign, bSign; 7998 7999 if (( ( extractFloat128Exp( a ) == 0x7fff ) && 8000 ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || 8001 ( ( extractFloat128Exp( b ) == 0x7fff ) && 8002 ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { 8003 if (!is_quiet || 8004 float128_is_signaling_nan(a, status) || 8005 float128_is_signaling_nan(b, status)) { 8006 float_raise(float_flag_invalid, status); 8007 } 8008 return float_relation_unordered; 8009 } 8010 aSign = extractFloat128Sign( a ); 8011 bSign = extractFloat128Sign( b ); 8012 if ( aSign != bSign ) { 8013 if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { 8014 /* zero case */ 8015 return float_relation_equal; 8016 } else { 8017 return 1 - (2 * aSign); 8018 } 8019 } else { 8020 if (a.low == b.low && a.high == b.high) { 8021 return float_relation_equal; 8022 } else { 8023 return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); 8024 } 8025 } 8026 } 8027 8028 int float128_compare(float128 a, float128 b, float_status *status) 8029 { 8030 return float128_compare_internal(a, b, 0, status); 8031 } 8032 8033 int float128_compare_quiet(float128 a, float128 b, float_status *status) 8034 { 8035 return float128_compare_internal(a, b, 1, status); 8036 } 8037 8038 floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) 8039 { 8040 flag aSign; 8041 int32_t aExp; 8042 uint64_t aSig; 8043 8044 if (floatx80_invalid_encoding(a)) { 8045 float_raise(float_flag_invalid, status); 8046 return floatx80_default_nan(status); 8047 } 8048 aSig = extractFloatx80Frac( a ); 8049 aExp = extractFloatx80Exp( a ); 8050 aSign = extractFloatx80Sign( a ); 8051 8052 if ( aExp == 0x7FFF ) { 8053 if ( aSig<<1 ) { 8054 return propagateFloatx80NaN(a, a, status); 8055 } 8056 return a; 8057 } 8058 8059 if (aExp == 0) { 8060 if (aSig == 0) { 8061 return a; 8062 } 8063 aExp++; 8064 } 8065 8066 if (n > 0x10000) { 8067 n = 0x10000; 8068 } else if (n < -0x10000) { 8069 n = -0x10000; 8070 } 8071 8072 aExp += n; 8073 return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, 8074 aSign, aExp, aSig, 0, status); 8075 } 8076 8077 float128 float128_scalbn(float128 a, int n, float_status *status) 8078 { 8079 flag aSign; 8080 int32_t aExp; 8081 uint64_t aSig0, aSig1; 8082 8083 aSig1 = extractFloat128Frac1( a ); 8084 aSig0 = extractFloat128Frac0( a ); 8085 aExp = extractFloat128Exp( a ); 8086 aSign = extractFloat128Sign( a ); 8087 if ( aExp == 0x7FFF ) { 8088 if ( aSig0 | aSig1 ) { 8089 return propagateFloat128NaN(a, a, status); 8090 } 8091 return a; 8092 } 8093 if (aExp != 0) { 8094 aSig0 |= UINT64_C(0x0001000000000000); 8095 } else if (aSig0 == 0 && aSig1 == 0) { 8096 return a; 8097 } else { 8098 aExp++; 8099 } 8100 8101 if (n > 0x10000) { 8102 n = 0x10000; 8103 } else if (n < -0x10000) { 8104 n = -0x10000; 8105 } 8106 8107 aExp += n - 1; 8108 return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 8109 , status); 8110 8111 } 8112 8113 static void __attribute__((constructor)) softfloat_init(void) 8114 { 8115 union_float64 ua, ub, uc, ur; 8116 8117 if (QEMU_NO_HARDFLOAT) { 8118 return; 8119 } 8120 /* 8121 * Test that the host's FMA is not obviously broken. For example, 8122 * glibc < 2.23 can perform an incorrect FMA on certain hosts; see 8123 * https://sourceware.org/bugzilla/show_bug.cgi?id=13304 8124 */ 8125 ua.s = 0x0020000000000001ULL; 8126 ub.s = 0x3ca0000000000000ULL; 8127 uc.s = 0x0020000000000000ULL; 8128 ur.h = fma(ua.h, ub.h, uc.h); 8129 if (ur.s != 0x0020000000000001ULL) { 8130 force_soft_fma = true; 8131 } 8132 } 8133