1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18/*
19===============================================================================
20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21Arithmetic Package, Release 2a.
22
23Written by John R. Hauser.  This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704.  Funding was partially provided by the
26National Science Foundation under grant MIP-9311980.  The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31arithmetic/SoftFloat.html'.
32
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39Derivative works are acceptable, even for commercial purposes, so long as
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
43
44===============================================================================
45*/
46
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82/*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86static inline bool no_signaling_nans(float_status *status)
87{
88#if defined(TARGET_XTENSA)
89    return status->no_signaling_nans;
90#else
91    return false;
92#endif
93}
94
95/* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero.  MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102static inline bool snan_bit_is_one(float_status *status)
103{
104#if defined(TARGET_MIPS)
105    return status->snan_bit_is_one;
106#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107    return 1;
108#else
109    return 0;
110#endif
111}
112
113/*----------------------------------------------------------------------------
114| For the deconstructed floating-point with fraction FRAC, return true
115| if the fraction represents a signalling NaN; otherwise false.
116*----------------------------------------------------------------------------*/
117
118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119{
120    if (no_signaling_nans(status)) {
121        return false;
122    } else {
123        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124        return msb == snan_bit_is_one(status);
125    }
126}
127
128/*----------------------------------------------------------------------------
129| The pattern for a default generated deconstructed floating-point NaN.
130*----------------------------------------------------------------------------*/
131
132static void parts64_default_nan(FloatParts64 *p, float_status *status)
133{
134    bool sign = 0;
135    uint64_t frac;
136
137#if defined(TARGET_SPARC) || defined(TARGET_M68K)
138    /* !snan_bit_is_one, set all bits */
139    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141    || defined(TARGET_MICROBLAZE)
142    /* !snan_bit_is_one, set sign and msb */
143    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144    sign = 1;
145#elif defined(TARGET_HPPA)
146    /* snan_bit_is_one, set msb-1.  */
147    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148#elif defined(TARGET_HEXAGON)
149    sign = 1;
150    frac = ~0ULL;
151#else
152    /*
153     * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154     * S390, SH4, TriCore, and Xtensa.  Our other supported targets
155     * do not have floating-point.
156     */
157    if (snan_bit_is_one(status)) {
158        /* set all bits other than msb */
159        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160    } else {
161        /* set msb */
162        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163    }
164#endif
165
166    *p = (FloatParts64) {
167        .cls = float_class_qnan,
168        .sign = sign,
169        .exp = INT_MAX,
170        .frac = frac
171    };
172}
173
174static void parts128_default_nan(FloatParts128 *p, float_status *status)
175{
176    /*
177     * Extrapolate from the choices made by parts64_default_nan to fill
178     * in the quad-floating format.  If the low bit is set, assume we
179     * want to set all non-snan bits.
180     */
181    FloatParts64 p64;
182    parts64_default_nan(&p64, status);
183
184    *p = (FloatParts128) {
185        .cls = float_class_qnan,
186        .sign = p64.sign,
187        .exp = INT_MAX,
188        .frac_hi = p64.frac,
189        .frac_lo = -(p64.frac & 1)
190    };
191}
192
193/*----------------------------------------------------------------------------
194| Returns a quiet NaN from a signalling NaN for the deconstructed
195| floating-point parts.
196*----------------------------------------------------------------------------*/
197
198static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
199{
200    g_assert(!no_signaling_nans(status));
201
202    /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
203    if (snan_bit_is_one(status)) {
204        frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
205        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
206    } else {
207        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
208    }
209    return frac;
210}
211
212static void parts64_silence_nan(FloatParts64 *p, float_status *status)
213{
214    p->frac = parts_silence_nan_frac(p->frac, status);
215    p->cls = float_class_qnan;
216}
217
218static void parts128_silence_nan(FloatParts128 *p, float_status *status)
219{
220    p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
221    p->cls = float_class_qnan;
222}
223
224/*----------------------------------------------------------------------------
225| The pattern for a default generated extended double-precision NaN.
226*----------------------------------------------------------------------------*/
227floatx80 floatx80_default_nan(float_status *status)
228{
229    floatx80 r;
230
231    /* None of the targets that have snan_bit_is_one use floatx80.  */
232    assert(!snan_bit_is_one(status));
233#if defined(TARGET_M68K)
234    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
235    r.high = 0x7FFF;
236#else
237    /* X86 */
238    r.low = UINT64_C(0xC000000000000000);
239    r.high = 0xFFFF;
240#endif
241    return r;
242}
243
244/*----------------------------------------------------------------------------
245| The pattern for a default generated extended double-precision inf.
246*----------------------------------------------------------------------------*/
247
248#define floatx80_infinity_high 0x7FFF
249#if defined(TARGET_M68K)
250#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
251#else
252#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
253#endif
254
255const floatx80 floatx80_infinity
256    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
257
258/*----------------------------------------------------------------------------
259| Returns 1 if the half-precision floating-point value `a' is a quiet
260| NaN; otherwise returns 0.
261*----------------------------------------------------------------------------*/
262
263bool float16_is_quiet_nan(float16 a_, float_status *status)
264{
265    if (no_signaling_nans(status)) {
266        return float16_is_any_nan(a_);
267    } else {
268        uint16_t a = float16_val(a_);
269        if (snan_bit_is_one(status)) {
270            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
271        } else {
272
273            return ((a >> 9) & 0x3F) == 0x3F;
274        }
275    }
276}
277
278/*----------------------------------------------------------------------------
279| Returns 1 if the bfloat16 value `a' is a quiet
280| NaN; otherwise returns 0.
281*----------------------------------------------------------------------------*/
282
283bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
284{
285    if (no_signaling_nans(status)) {
286        return bfloat16_is_any_nan(a_);
287    } else {
288        uint16_t a = a_;
289        if (snan_bit_is_one(status)) {
290            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
291        } else {
292            return ((a >> 6) & 0x1FF) == 0x1FF;
293        }
294    }
295}
296
297/*----------------------------------------------------------------------------
298| Returns 1 if the half-precision floating-point value `a' is a signaling
299| NaN; otherwise returns 0.
300*----------------------------------------------------------------------------*/
301
302bool float16_is_signaling_nan(float16 a_, float_status *status)
303{
304    if (no_signaling_nans(status)) {
305        return 0;
306    } else {
307        uint16_t a = float16_val(a_);
308        if (snan_bit_is_one(status)) {
309            return ((a >> 9) & 0x3F) == 0x3F;
310        } else {
311            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
312        }
313    }
314}
315
316/*----------------------------------------------------------------------------
317| Returns 1 if the bfloat16 value `a' is a signaling
318| NaN; otherwise returns 0.
319*----------------------------------------------------------------------------*/
320
321bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
322{
323    if (no_signaling_nans(status)) {
324        return 0;
325    } else {
326        uint16_t a = a_;
327        if (snan_bit_is_one(status)) {
328            return ((a >> 6) & 0x1FF) == 0x1FF;
329        } else {
330            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
331        }
332    }
333}
334
335/*----------------------------------------------------------------------------
336| Returns 1 if the single-precision floating-point value `a' is a quiet
337| NaN; otherwise returns 0.
338*----------------------------------------------------------------------------*/
339
340bool float32_is_quiet_nan(float32 a_, float_status *status)
341{
342    if (no_signaling_nans(status)) {
343        return float32_is_any_nan(a_);
344    } else {
345        uint32_t a = float32_val(a_);
346        if (snan_bit_is_one(status)) {
347            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
348        } else {
349            return ((uint32_t)(a << 1) >= 0xFF800000);
350        }
351    }
352}
353
354/*----------------------------------------------------------------------------
355| Returns 1 if the single-precision floating-point value `a' is a signaling
356| NaN; otherwise returns 0.
357*----------------------------------------------------------------------------*/
358
359bool float32_is_signaling_nan(float32 a_, float_status *status)
360{
361    if (no_signaling_nans(status)) {
362        return 0;
363    } else {
364        uint32_t a = float32_val(a_);
365        if (snan_bit_is_one(status)) {
366            return ((uint32_t)(a << 1) >= 0xFF800000);
367        } else {
368            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
369        }
370    }
371}
372
373/*----------------------------------------------------------------------------
374| Select which NaN to propagate for a two-input operation.
375| IEEE754 doesn't specify all the details of this, so the
376| algorithm is target-specific.
377| The routine is passed various bits of information about the
378| two NaNs and should return 0 to select NaN a and 1 for NaN b.
379| Note that signalling NaNs are always squashed to quiet NaNs
380| by the caller, by calling floatXX_silence_nan() before
381| returning them.
382|
383| aIsLargerSignificand is only valid if both a and b are NaNs
384| of some kind, and is true if a has the larger significand,
385| or if both a and b have the same significand but a is
386| positive but b is negative. It is only needed for the x87
387| tie-break rule.
388*----------------------------------------------------------------------------*/
389
390static int pickNaN(FloatClass a_cls, FloatClass b_cls,
391                   bool aIsLargerSignificand, float_status *status)
392{
393    /*
394     * We guarantee not to require the target to tell us how to
395     * pick a NaN if we're always returning the default NaN.
396     * But if we're not in default-NaN mode then the target must
397     * specify via set_float_2nan_prop_rule().
398     */
399    assert(!status->default_nan_mode);
400
401    switch (status->float_2nan_prop_rule) {
402    case float_2nan_prop_s_ab:
403        if (is_snan(a_cls)) {
404            return 0;
405        } else if (is_snan(b_cls)) {
406            return 1;
407        } else if (is_qnan(a_cls)) {
408            return 0;
409        } else {
410            return 1;
411        }
412        break;
413    case float_2nan_prop_s_ba:
414        if (is_snan(b_cls)) {
415            return 1;
416        } else if (is_snan(a_cls)) {
417            return 0;
418        } else if (is_qnan(b_cls)) {
419            return 1;
420        } else {
421            return 0;
422        }
423        break;
424    case float_2nan_prop_ab:
425        if (is_nan(a_cls)) {
426            return 0;
427        } else {
428            return 1;
429        }
430        break;
431    case float_2nan_prop_ba:
432        if (is_nan(b_cls)) {
433            return 1;
434        } else {
435            return 0;
436        }
437        break;
438    case float_2nan_prop_x87:
439        /*
440         * This implements x87 NaN propagation rules:
441         * SNaN + QNaN => return the QNaN
442         * two SNaNs => return the one with the larger significand, silenced
443         * two QNaNs => return the one with the larger significand
444         * SNaN and a non-NaN => return the SNaN, silenced
445         * QNaN and a non-NaN => return the QNaN
446         *
447         * If we get down to comparing significands and they are the same,
448         * return the NaN with the positive sign bit (if any).
449         */
450        if (is_snan(a_cls)) {
451            if (is_snan(b_cls)) {
452                return aIsLargerSignificand ? 0 : 1;
453            }
454            return is_qnan(b_cls) ? 1 : 0;
455        } else if (is_qnan(a_cls)) {
456            if (is_snan(b_cls) || !is_qnan(b_cls)) {
457                return 0;
458            } else {
459                return aIsLargerSignificand ? 0 : 1;
460            }
461        } else {
462            return 1;
463        }
464    default:
465        g_assert_not_reached();
466    }
467}
468
469/*----------------------------------------------------------------------------
470| Select which NaN to propagate for a three-input operation.
471| For the moment we assume that no CPU needs the 'larger significand'
472| information.
473| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
474*----------------------------------------------------------------------------*/
475static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
476                         bool infzero, float_status *status)
477{
478#if defined(TARGET_ARM)
479    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
480     * the default NaN
481     */
482    if (infzero && is_qnan(c_cls)) {
483        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
484        return 3;
485    }
486
487    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
488     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
489     */
490    if (is_snan(c_cls)) {
491        return 2;
492    } else if (is_snan(a_cls)) {
493        return 0;
494    } else if (is_snan(b_cls)) {
495        return 1;
496    } else if (is_qnan(c_cls)) {
497        return 2;
498    } else if (is_qnan(a_cls)) {
499        return 0;
500    } else {
501        return 1;
502    }
503#elif defined(TARGET_MIPS)
504    if (snan_bit_is_one(status)) {
505        /*
506         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
507         * case sets InvalidOp and returns the default NaN
508         */
509        if (infzero) {
510            float_raise(float_flag_invalid | float_flag_invalid_imz, status);
511            return 3;
512        }
513        /* Prefer sNaN over qNaN, in the a, b, c order. */
514        if (is_snan(a_cls)) {
515            return 0;
516        } else if (is_snan(b_cls)) {
517            return 1;
518        } else if (is_snan(c_cls)) {
519            return 2;
520        } else if (is_qnan(a_cls)) {
521            return 0;
522        } else if (is_qnan(b_cls)) {
523            return 1;
524        } else {
525            return 2;
526        }
527    } else {
528        /*
529         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
530         * case sets InvalidOp and returns the input value 'c'
531         */
532        if (infzero) {
533            float_raise(float_flag_invalid | float_flag_invalid_imz, status);
534            return 2;
535        }
536        /* Prefer sNaN over qNaN, in the c, a, b order. */
537        if (is_snan(c_cls)) {
538            return 2;
539        } else if (is_snan(a_cls)) {
540            return 0;
541        } else if (is_snan(b_cls)) {
542            return 1;
543        } else if (is_qnan(c_cls)) {
544            return 2;
545        } else if (is_qnan(a_cls)) {
546            return 0;
547        } else {
548            return 1;
549        }
550    }
551#elif defined(TARGET_LOONGARCH64)
552    /*
553     * For LoongArch systems that conform to IEEE754-2008, the (inf,zero,nan)
554     * case sets InvalidOp and returns the input value 'c'
555     */
556    if (infzero) {
557        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
558        return 2;
559    }
560    /* Prefer sNaN over qNaN, in the c, a, b order. */
561    if (is_snan(c_cls)) {
562        return 2;
563    } else if (is_snan(a_cls)) {
564        return 0;
565    } else if (is_snan(b_cls)) {
566        return 1;
567    } else if (is_qnan(c_cls)) {
568        return 2;
569    } else if (is_qnan(a_cls)) {
570        return 0;
571    } else {
572        return 1;
573    }
574#elif defined(TARGET_PPC)
575    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
576     * to return an input NaN if we have one (ie c) rather than generating
577     * a default NaN
578     */
579    if (infzero) {
580        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
581        return 2;
582    }
583
584    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
585     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
586     */
587    if (is_nan(a_cls)) {
588        return 0;
589    } else if (is_nan(c_cls)) {
590        return 2;
591    } else {
592        return 1;
593    }
594#elif defined(TARGET_RISCV)
595    /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
596    if (infzero) {
597        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
598    }
599    return 3; /* default NaN */
600#elif defined(TARGET_S390X)
601    if (infzero) {
602        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
603        return 3;
604    }
605
606    if (is_snan(a_cls)) {
607        return 0;
608    } else if (is_snan(b_cls)) {
609        return 1;
610    } else if (is_snan(c_cls)) {
611        return 2;
612    } else if (is_qnan(a_cls)) {
613        return 0;
614    } else if (is_qnan(b_cls)) {
615        return 1;
616    } else {
617        return 2;
618    }
619#elif defined(TARGET_SPARC)
620    /* For (inf,0,nan) return c. */
621    if (infzero) {
622        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
623        return 2;
624    }
625    /* Prefer SNaN over QNaN, order C, B, A. */
626    if (is_snan(c_cls)) {
627        return 2;
628    } else if (is_snan(b_cls)) {
629        return 1;
630    } else if (is_snan(a_cls)) {
631        return 0;
632    } else if (is_qnan(c_cls)) {
633        return 2;
634    } else if (is_qnan(b_cls)) {
635        return 1;
636    } else {
637        return 0;
638    }
639#elif defined(TARGET_XTENSA)
640    /*
641     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
642     * an input NaN if we have one (ie c).
643     */
644    if (infzero) {
645        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
646        return 2;
647    }
648    if (status->use_first_nan) {
649        if (is_nan(a_cls)) {
650            return 0;
651        } else if (is_nan(b_cls)) {
652            return 1;
653        } else {
654            return 2;
655        }
656    } else {
657        if (is_nan(c_cls)) {
658            return 2;
659        } else if (is_nan(b_cls)) {
660            return 1;
661        } else {
662            return 0;
663        }
664    }
665#else
666    /* A default implementation: prefer a to b to c.
667     * This is unlikely to actually match any real implementation.
668     */
669    if (is_nan(a_cls)) {
670        return 0;
671    } else if (is_nan(b_cls)) {
672        return 1;
673    } else {
674        return 2;
675    }
676#endif
677}
678
679/*----------------------------------------------------------------------------
680| Returns 1 if the double-precision floating-point value `a' is a quiet
681| NaN; otherwise returns 0.
682*----------------------------------------------------------------------------*/
683
684bool float64_is_quiet_nan(float64 a_, float_status *status)
685{
686    if (no_signaling_nans(status)) {
687        return float64_is_any_nan(a_);
688    } else {
689        uint64_t a = float64_val(a_);
690        if (snan_bit_is_one(status)) {
691            return (((a >> 51) & 0xFFF) == 0xFFE)
692                && (a & 0x0007FFFFFFFFFFFFULL);
693        } else {
694            return ((a << 1) >= 0xFFF0000000000000ULL);
695        }
696    }
697}
698
699/*----------------------------------------------------------------------------
700| Returns 1 if the double-precision floating-point value `a' is a signaling
701| NaN; otherwise returns 0.
702*----------------------------------------------------------------------------*/
703
704bool float64_is_signaling_nan(float64 a_, float_status *status)
705{
706    if (no_signaling_nans(status)) {
707        return 0;
708    } else {
709        uint64_t a = float64_val(a_);
710        if (snan_bit_is_one(status)) {
711            return ((a << 1) >= 0xFFF0000000000000ULL);
712        } else {
713            return (((a >> 51) & 0xFFF) == 0xFFE)
714                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
715        }
716    }
717}
718
719/*----------------------------------------------------------------------------
720| Returns 1 if the extended double-precision floating-point value `a' is a
721| quiet NaN; otherwise returns 0. This slightly differs from the same
722| function for other types as floatx80 has an explicit bit.
723*----------------------------------------------------------------------------*/
724
725int floatx80_is_quiet_nan(floatx80 a, float_status *status)
726{
727    if (no_signaling_nans(status)) {
728        return floatx80_is_any_nan(a);
729    } else {
730        if (snan_bit_is_one(status)) {
731            uint64_t aLow;
732
733            aLow = a.low & ~0x4000000000000000ULL;
734            return ((a.high & 0x7FFF) == 0x7FFF)
735                && (aLow << 1)
736                && (a.low == aLow);
737        } else {
738            return ((a.high & 0x7FFF) == 0x7FFF)
739                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
740        }
741    }
742}
743
744/*----------------------------------------------------------------------------
745| Returns 1 if the extended double-precision floating-point value `a' is a
746| signaling NaN; otherwise returns 0. This slightly differs from the same
747| function for other types as floatx80 has an explicit bit.
748*----------------------------------------------------------------------------*/
749
750int floatx80_is_signaling_nan(floatx80 a, float_status *status)
751{
752    if (no_signaling_nans(status)) {
753        return 0;
754    } else {
755        if (snan_bit_is_one(status)) {
756            return ((a.high & 0x7FFF) == 0x7FFF)
757                && ((a.low << 1) >= 0x8000000000000000ULL);
758        } else {
759            uint64_t aLow;
760
761            aLow = a.low & ~UINT64_C(0x4000000000000000);
762            return ((a.high & 0x7FFF) == 0x7FFF)
763                && (uint64_t)(aLow << 1)
764                && (a.low == aLow);
765        }
766    }
767}
768
769/*----------------------------------------------------------------------------
770| Returns a quiet NaN from a signalling NaN for the extended double-precision
771| floating point value `a'.
772*----------------------------------------------------------------------------*/
773
774floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
775{
776    /* None of the targets that have snan_bit_is_one use floatx80.  */
777    assert(!snan_bit_is_one(status));
778    a.low |= UINT64_C(0xC000000000000000);
779    return a;
780}
781
782/*----------------------------------------------------------------------------
783| Takes two extended double-precision floating-point values `a' and `b', one
784| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
785| `b' is a signaling NaN, the invalid exception is raised.
786*----------------------------------------------------------------------------*/
787
788floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
789{
790    bool aIsLargerSignificand;
791    FloatClass a_cls, b_cls;
792
793    /* This is not complete, but is good enough for pickNaN.  */
794    a_cls = (!floatx80_is_any_nan(a)
795             ? float_class_normal
796             : floatx80_is_signaling_nan(a, status)
797             ? float_class_snan
798             : float_class_qnan);
799    b_cls = (!floatx80_is_any_nan(b)
800             ? float_class_normal
801             : floatx80_is_signaling_nan(b, status)
802             ? float_class_snan
803             : float_class_qnan);
804
805    if (is_snan(a_cls) || is_snan(b_cls)) {
806        float_raise(float_flag_invalid, status);
807    }
808
809    if (status->default_nan_mode) {
810        return floatx80_default_nan(status);
811    }
812
813    if (a.low < b.low) {
814        aIsLargerSignificand = 0;
815    } else if (b.low < a.low) {
816        aIsLargerSignificand = 1;
817    } else {
818        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
819    }
820
821    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
822        if (is_snan(b_cls)) {
823            return floatx80_silence_nan(b, status);
824        }
825        return b;
826    } else {
827        if (is_snan(a_cls)) {
828            return floatx80_silence_nan(a, status);
829        }
830        return a;
831    }
832}
833
834/*----------------------------------------------------------------------------
835| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
836| NaN; otherwise returns 0.
837*----------------------------------------------------------------------------*/
838
839bool float128_is_quiet_nan(float128 a, float_status *status)
840{
841    if (no_signaling_nans(status)) {
842        return float128_is_any_nan(a);
843    } else {
844        if (snan_bit_is_one(status)) {
845            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
846                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
847        } else {
848            return ((a.high << 1) >= 0xFFFF000000000000ULL)
849                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
850        }
851    }
852}
853
854/*----------------------------------------------------------------------------
855| Returns 1 if the quadruple-precision floating-point value `a' is a
856| signaling NaN; otherwise returns 0.
857*----------------------------------------------------------------------------*/
858
859bool float128_is_signaling_nan(float128 a, float_status *status)
860{
861    if (no_signaling_nans(status)) {
862        return 0;
863    } else {
864        if (snan_bit_is_one(status)) {
865            return ((a.high << 1) >= 0xFFFF000000000000ULL)
866                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
867        } else {
868            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
869                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
870        }
871    }
872}
873