1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18/*
19===============================================================================
20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21Arithmetic Package, Release 2a.
22
23Written by John R. Hauser.  This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704.  Funding was partially provided by the
26National Science Foundation under grant MIP-9311980.  The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31arithmetic/SoftFloat.html'.
32
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39Derivative works are acceptable, even for commercial purposes, so long as
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
43
44===============================================================================
45*/
46
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82/* Define for architectures which deviate from IEEE in not supporting
83 * signaling NaNs (so all NaNs are treated as quiet).
84 */
85#if defined(TARGET_XTENSA)
86#define NO_SIGNALING_NANS 1
87#endif
88
89/* Define how the architecture discriminates signaling NaNs.
90 * This done with the most significant bit of the fraction.
91 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
92 * the msb must be zero.  MIPS is (so far) unique in supporting both the
93 * 2008 revision and backward compatibility with their original choice.
94 * Thus for MIPS we must make the choice at runtime.
95 */
96static inline bool snan_bit_is_one(float_status *status)
97{
98#if defined(TARGET_MIPS)
99    return status->snan_bit_is_one;
100#elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
101    return 1;
102#else
103    return 0;
104#endif
105}
106
107/*----------------------------------------------------------------------------
108| For the deconstructed floating-point with fraction FRAC, return true
109| if the fraction represents a signalling NaN; otherwise false.
110*----------------------------------------------------------------------------*/
111
112static bool parts_is_snan_frac(uint64_t frac, float_status *status)
113{
114#ifdef NO_SIGNALING_NANS
115    return false;
116#else
117    bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
118    return msb == snan_bit_is_one(status);
119#endif
120}
121
122/*----------------------------------------------------------------------------
123| The pattern for a default generated deconstructed floating-point NaN.
124*----------------------------------------------------------------------------*/
125
126static FloatParts parts_default_nan(float_status *status)
127{
128    bool sign = 0;
129    uint64_t frac;
130
131#if defined(TARGET_SPARC) || defined(TARGET_M68K)
132    /* !snan_bit_is_one, set all bits */
133    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
134#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
135    || defined(TARGET_MICROBLAZE)
136    /* !snan_bit_is_one, set sign and msb */
137    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
138    sign = 1;
139#elif defined(TARGET_HPPA)
140    /* snan_bit_is_one, set msb-1.  */
141    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
142#else
143    /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
144     * S390, SH4, TriCore, and Xtensa.  I cannot find documentation
145     * for Unicore32; the choice from the original commit is unchanged.
146     * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
147     * do not have floating-point.
148     */
149    if (snan_bit_is_one(status)) {
150        /* set all bits other than msb */
151        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
152    } else {
153        /* set msb */
154        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
155    }
156#endif
157
158    return (FloatParts) {
159        .cls = float_class_qnan,
160        .sign = sign,
161        .exp = INT_MAX,
162        .frac = frac
163    };
164}
165
166/*----------------------------------------------------------------------------
167| Returns a quiet NaN from a signalling NaN for the deconstructed
168| floating-point parts.
169*----------------------------------------------------------------------------*/
170
171static FloatParts parts_silence_nan(FloatParts a, float_status *status)
172{
173#ifdef NO_SIGNALING_NANS
174    g_assert_not_reached();
175#elif defined(TARGET_HPPA)
176    a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
177    a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
178#else
179    if (snan_bit_is_one(status)) {
180        return parts_default_nan(status);
181    } else {
182        a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
183    }
184#endif
185    a.cls = float_class_qnan;
186    return a;
187}
188
189/*----------------------------------------------------------------------------
190| The pattern for a default generated extended double-precision NaN.
191*----------------------------------------------------------------------------*/
192floatx80 floatx80_default_nan(float_status *status)
193{
194    floatx80 r;
195
196    /* None of the targets that have snan_bit_is_one use floatx80.  */
197    assert(!snan_bit_is_one(status));
198#if defined(TARGET_M68K)
199    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
200    r.high = 0x7FFF;
201#else
202    /* X86 */
203    r.low = UINT64_C(0xC000000000000000);
204    r.high = 0xFFFF;
205#endif
206    return r;
207}
208
209/*----------------------------------------------------------------------------
210| The pattern for a default generated extended double-precision inf.
211*----------------------------------------------------------------------------*/
212
213#define floatx80_infinity_high 0x7FFF
214#if defined(TARGET_M68K)
215#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
216#else
217#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
218#endif
219
220const floatx80 floatx80_infinity
221    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
222
223/*----------------------------------------------------------------------------
224| Raises the exceptions specified by `flags'.  Floating-point traps can be
225| defined here if desired.  It is currently not possible for such a trap
226| to substitute a result value.  If traps are not implemented, this routine
227| should be simply `float_exception_flags |= flags;'.
228*----------------------------------------------------------------------------*/
229
230void float_raise(uint8_t flags, float_status *status)
231{
232    status->float_exception_flags |= flags;
233}
234
235/*----------------------------------------------------------------------------
236| Internal canonical NaN format.
237*----------------------------------------------------------------------------*/
238typedef struct {
239    bool sign;
240    uint64_t high, low;
241} commonNaNT;
242
243/*----------------------------------------------------------------------------
244| Returns 1 if the half-precision floating-point value `a' is a quiet
245| NaN; otherwise returns 0.
246*----------------------------------------------------------------------------*/
247
248bool float16_is_quiet_nan(float16 a_, float_status *status)
249{
250#ifdef NO_SIGNALING_NANS
251    return float16_is_any_nan(a_);
252#else
253    uint16_t a = float16_val(a_);
254    if (snan_bit_is_one(status)) {
255        return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
256    } else {
257        return ((a >> 9) & 0x3F) == 0x3F;
258    }
259#endif
260}
261
262/*----------------------------------------------------------------------------
263| Returns 1 if the half-precision floating-point value `a' is a signaling
264| NaN; otherwise returns 0.
265*----------------------------------------------------------------------------*/
266
267bool float16_is_signaling_nan(float16 a_, float_status *status)
268{
269#ifdef NO_SIGNALING_NANS
270    return 0;
271#else
272    uint16_t a = float16_val(a_);
273    if (snan_bit_is_one(status)) {
274        return ((a >> 9) & 0x3F) == 0x3F;
275    } else {
276        return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
277    }
278#endif
279}
280
281/*----------------------------------------------------------------------------
282| Returns 1 if the single-precision floating-point value `a' is a quiet
283| NaN; otherwise returns 0.
284*----------------------------------------------------------------------------*/
285
286bool float32_is_quiet_nan(float32 a_, float_status *status)
287{
288#ifdef NO_SIGNALING_NANS
289    return float32_is_any_nan(a_);
290#else
291    uint32_t a = float32_val(a_);
292    if (snan_bit_is_one(status)) {
293        return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
294    } else {
295        return ((uint32_t)(a << 1) >= 0xFF800000);
296    }
297#endif
298}
299
300/*----------------------------------------------------------------------------
301| Returns 1 if the single-precision floating-point value `a' is a signaling
302| NaN; otherwise returns 0.
303*----------------------------------------------------------------------------*/
304
305bool float32_is_signaling_nan(float32 a_, float_status *status)
306{
307#ifdef NO_SIGNALING_NANS
308    return 0;
309#else
310    uint32_t a = float32_val(a_);
311    if (snan_bit_is_one(status)) {
312        return ((uint32_t)(a << 1) >= 0xFF800000);
313    } else {
314        return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
315    }
316#endif
317}
318
319/*----------------------------------------------------------------------------
320| Returns the result of converting the single-precision floating-point NaN
321| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
322| exception is raised.
323*----------------------------------------------------------------------------*/
324
325static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
326{
327    commonNaNT z;
328
329    if (float32_is_signaling_nan(a, status)) {
330        float_raise(float_flag_invalid, status);
331    }
332    z.sign = float32_val(a) >> 31;
333    z.low = 0;
334    z.high = ((uint64_t)float32_val(a)) << 41;
335    return z;
336}
337
338/*----------------------------------------------------------------------------
339| Returns the result of converting the canonical NaN `a' to the single-
340| precision floating-point format.
341*----------------------------------------------------------------------------*/
342
343static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
344{
345    uint32_t mantissa = a.high >> 41;
346
347    if (status->default_nan_mode) {
348        return float32_default_nan(status);
349    }
350
351    if (mantissa) {
352        return make_float32(
353            (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
354    } else {
355        return float32_default_nan(status);
356    }
357}
358
359/*----------------------------------------------------------------------------
360| Select which NaN to propagate for a two-input operation.
361| IEEE754 doesn't specify all the details of this, so the
362| algorithm is target-specific.
363| The routine is passed various bits of information about the
364| two NaNs and should return 0 to select NaN a and 1 for NaN b.
365| Note that signalling NaNs are always squashed to quiet NaNs
366| by the caller, by calling floatXX_silence_nan() before
367| returning them.
368|
369| aIsLargerSignificand is only valid if both a and b are NaNs
370| of some kind, and is true if a has the larger significand,
371| or if both a and b have the same significand but a is
372| positive but b is negative. It is only needed for the x87
373| tie-break rule.
374*----------------------------------------------------------------------------*/
375
376static int pickNaN(FloatClass a_cls, FloatClass b_cls,
377                   bool aIsLargerSignificand)
378{
379#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
380    /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
381     * the first of:
382     *  1. A if it is signaling
383     *  2. B if it is signaling
384     *  3. A (quiet)
385     *  4. B (quiet)
386     * A signaling NaN is always quietened before returning it.
387     */
388    /* According to MIPS specifications, if one of the two operands is
389     * a sNaN, a new qNaN has to be generated. This is done in
390     * floatXX_silence_nan(). For qNaN inputs the specifications
391     * says: "When possible, this QNaN result is one of the operand QNaN
392     * values." In practice it seems that most implementations choose
393     * the first operand if both operands are qNaN. In short this gives
394     * the following rules:
395     *  1. A if it is signaling
396     *  2. B if it is signaling
397     *  3. A (quiet)
398     *  4. B (quiet)
399     * A signaling NaN is always silenced before returning it.
400     */
401    if (is_snan(a_cls)) {
402        return 0;
403    } else if (is_snan(b_cls)) {
404        return 1;
405    } else if (is_qnan(a_cls)) {
406        return 0;
407    } else {
408        return 1;
409    }
410#elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K)
411    /* PowerPC propagation rules:
412     *  1. A if it sNaN or qNaN
413     *  2. B if it sNaN or qNaN
414     * A signaling NaN is always silenced before returning it.
415     */
416    /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
417     * 3.4 FLOATING-POINT INSTRUCTION DETAILS
418     * If either operand, but not both operands, of an operation is a
419     * nonsignaling NaN, then that NaN is returned as the result. If both
420     * operands are nonsignaling NaNs, then the destination operand
421     * nonsignaling NaN is returned as the result.
422     * If either operand to an operation is a signaling NaN (SNaN), then the
423     * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
424     * is set in the FPCR ENABLE byte, then the exception is taken and the
425     * destination is not modified. If the SNaN exception enable bit is not
426     * set, setting the SNaN bit in the operand to a one converts the SNaN to
427     * a nonsignaling NaN. The operation then continues as described in the
428     * preceding paragraph for nonsignaling NaNs.
429     */
430    if (is_nan(a_cls)) {
431        return 0;
432    } else {
433        return 1;
434    }
435#else
436    /* This implements x87 NaN propagation rules:
437     * SNaN + QNaN => return the QNaN
438     * two SNaNs => return the one with the larger significand, silenced
439     * two QNaNs => return the one with the larger significand
440     * SNaN and a non-NaN => return the SNaN, silenced
441     * QNaN and a non-NaN => return the QNaN
442     *
443     * If we get down to comparing significands and they are the same,
444     * return the NaN with the positive sign bit (if any).
445     */
446    if (is_snan(a_cls)) {
447        if (is_snan(b_cls)) {
448            return aIsLargerSignificand ? 0 : 1;
449        }
450        return is_qnan(b_cls) ? 1 : 0;
451    } else if (is_qnan(a_cls)) {
452        if (is_snan(b_cls) || !is_qnan(b_cls)) {
453            return 0;
454        } else {
455            return aIsLargerSignificand ? 0 : 1;
456        }
457    } else {
458        return 1;
459    }
460#endif
461}
462
463/*----------------------------------------------------------------------------
464| Select which NaN to propagate for a three-input operation.
465| For the moment we assume that no CPU needs the 'larger significand'
466| information.
467| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
468*----------------------------------------------------------------------------*/
469static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
470                         bool infzero, float_status *status)
471{
472#if defined(TARGET_ARM)
473    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
474     * the default NaN
475     */
476    if (infzero && is_qnan(c_cls)) {
477        float_raise(float_flag_invalid, status);
478        return 3;
479    }
480
481    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
482     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
483     */
484    if (is_snan(c_cls)) {
485        return 2;
486    } else if (is_snan(a_cls)) {
487        return 0;
488    } else if (is_snan(b_cls)) {
489        return 1;
490    } else if (is_qnan(c_cls)) {
491        return 2;
492    } else if (is_qnan(a_cls)) {
493        return 0;
494    } else {
495        return 1;
496    }
497#elif defined(TARGET_MIPS)
498    if (snan_bit_is_one(status)) {
499        /*
500         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
501         * case sets InvalidOp and returns the default NaN
502         */
503        if (infzero) {
504            float_raise(float_flag_invalid, status);
505            return 3;
506        }
507        /* Prefer sNaN over qNaN, in the a, b, c order. */
508        if (is_snan(a_cls)) {
509            return 0;
510        } else if (is_snan(b_cls)) {
511            return 1;
512        } else if (is_snan(c_cls)) {
513            return 2;
514        } else if (is_qnan(a_cls)) {
515            return 0;
516        } else if (is_qnan(b_cls)) {
517            return 1;
518        } else {
519            return 2;
520        }
521    } else {
522        /*
523         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
524         * case sets InvalidOp and returns the input value 'c'
525         */
526        if (infzero) {
527            float_raise(float_flag_invalid, status);
528            return 2;
529        }
530        /* Prefer sNaN over qNaN, in the c, a, b order. */
531        if (is_snan(c_cls)) {
532            return 2;
533        } else if (is_snan(a_cls)) {
534            return 0;
535        } else if (is_snan(b_cls)) {
536            return 1;
537        } else if (is_qnan(c_cls)) {
538            return 2;
539        } else if (is_qnan(a_cls)) {
540            return 0;
541        } else {
542            return 1;
543        }
544    }
545#elif defined(TARGET_PPC)
546    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
547     * to return an input NaN if we have one (ie c) rather than generating
548     * a default NaN
549     */
550    if (infzero) {
551        float_raise(float_flag_invalid, status);
552        return 2;
553    }
554
555    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
556     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
557     */
558    if (is_nan(a_cls)) {
559        return 0;
560    } else if (is_nan(c_cls)) {
561        return 2;
562    } else {
563        return 1;
564    }
565#else
566    /* A default implementation: prefer a to b to c.
567     * This is unlikely to actually match any real implementation.
568     */
569    if (is_nan(a_cls)) {
570        return 0;
571    } else if (is_nan(b_cls)) {
572        return 1;
573    } else {
574        return 2;
575    }
576#endif
577}
578
579/*----------------------------------------------------------------------------
580| Takes two single-precision floating-point values `a' and `b', one of which
581| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
582| signaling NaN, the invalid exception is raised.
583*----------------------------------------------------------------------------*/
584
585static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
586{
587    bool aIsLargerSignificand;
588    uint32_t av, bv;
589    FloatClass a_cls, b_cls;
590
591    /* This is not complete, but is good enough for pickNaN.  */
592    a_cls = (!float32_is_any_nan(a)
593             ? float_class_normal
594             : float32_is_signaling_nan(a, status)
595             ? float_class_snan
596             : float_class_qnan);
597    b_cls = (!float32_is_any_nan(b)
598             ? float_class_normal
599             : float32_is_signaling_nan(b, status)
600             ? float_class_snan
601             : float_class_qnan);
602
603    av = float32_val(a);
604    bv = float32_val(b);
605
606    if (is_snan(a_cls) || is_snan(b_cls)) {
607        float_raise(float_flag_invalid, status);
608    }
609
610    if (status->default_nan_mode) {
611        return float32_default_nan(status);
612    }
613
614    if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
615        aIsLargerSignificand = 0;
616    } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
617        aIsLargerSignificand = 1;
618    } else {
619        aIsLargerSignificand = (av < bv) ? 1 : 0;
620    }
621
622    if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
623        if (is_snan(b_cls)) {
624            return float32_silence_nan(b, status);
625        }
626        return b;
627    } else {
628        if (is_snan(a_cls)) {
629            return float32_silence_nan(a, status);
630        }
631        return a;
632    }
633}
634
635/*----------------------------------------------------------------------------
636| Returns 1 if the double-precision floating-point value `a' is a quiet
637| NaN; otherwise returns 0.
638*----------------------------------------------------------------------------*/
639
640bool float64_is_quiet_nan(float64 a_, float_status *status)
641{
642#ifdef NO_SIGNALING_NANS
643    return float64_is_any_nan(a_);
644#else
645    uint64_t a = float64_val(a_);
646    if (snan_bit_is_one(status)) {
647        return (((a >> 51) & 0xFFF) == 0xFFE)
648            && (a & 0x0007FFFFFFFFFFFFULL);
649    } else {
650        return ((a << 1) >= 0xFFF0000000000000ULL);
651    }
652#endif
653}
654
655/*----------------------------------------------------------------------------
656| Returns 1 if the double-precision floating-point value `a' is a signaling
657| NaN; otherwise returns 0.
658*----------------------------------------------------------------------------*/
659
660bool float64_is_signaling_nan(float64 a_, float_status *status)
661{
662#ifdef NO_SIGNALING_NANS
663    return 0;
664#else
665    uint64_t a = float64_val(a_);
666    if (snan_bit_is_one(status)) {
667        return ((a << 1) >= 0xFFF0000000000000ULL);
668    } else {
669        return (((a >> 51) & 0xFFF) == 0xFFE)
670            && (a & UINT64_C(0x0007FFFFFFFFFFFF));
671    }
672#endif
673}
674
675/*----------------------------------------------------------------------------
676| Returns the result of converting the double-precision floating-point NaN
677| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
678| exception is raised.
679*----------------------------------------------------------------------------*/
680
681static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
682{
683    commonNaNT z;
684
685    if (float64_is_signaling_nan(a, status)) {
686        float_raise(float_flag_invalid, status);
687    }
688    z.sign = float64_val(a) >> 63;
689    z.low = 0;
690    z.high = float64_val(a) << 12;
691    return z;
692}
693
694/*----------------------------------------------------------------------------
695| Returns the result of converting the canonical NaN `a' to the double-
696| precision floating-point format.
697*----------------------------------------------------------------------------*/
698
699static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
700{
701    uint64_t mantissa = a.high >> 12;
702
703    if (status->default_nan_mode) {
704        return float64_default_nan(status);
705    }
706
707    if (mantissa) {
708        return make_float64(
709              (((uint64_t) a.sign) << 63)
710            | UINT64_C(0x7FF0000000000000)
711            | (a.high >> 12));
712    } else {
713        return float64_default_nan(status);
714    }
715}
716
717/*----------------------------------------------------------------------------
718| Takes two double-precision floating-point values `a' and `b', one of which
719| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
720| signaling NaN, the invalid exception is raised.
721*----------------------------------------------------------------------------*/
722
723static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
724{
725    bool aIsLargerSignificand;
726    uint64_t av, bv;
727    FloatClass a_cls, b_cls;
728
729    /* This is not complete, but is good enough for pickNaN.  */
730    a_cls = (!float64_is_any_nan(a)
731             ? float_class_normal
732             : float64_is_signaling_nan(a, status)
733             ? float_class_snan
734             : float_class_qnan);
735    b_cls = (!float64_is_any_nan(b)
736             ? float_class_normal
737             : float64_is_signaling_nan(b, status)
738             ? float_class_snan
739             : float_class_qnan);
740
741    av = float64_val(a);
742    bv = float64_val(b);
743
744    if (is_snan(a_cls) || is_snan(b_cls)) {
745        float_raise(float_flag_invalid, status);
746    }
747
748    if (status->default_nan_mode) {
749        return float64_default_nan(status);
750    }
751
752    if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
753        aIsLargerSignificand = 0;
754    } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
755        aIsLargerSignificand = 1;
756    } else {
757        aIsLargerSignificand = (av < bv) ? 1 : 0;
758    }
759
760    if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
761        if (is_snan(b_cls)) {
762            return float64_silence_nan(b, status);
763        }
764        return b;
765    } else {
766        if (is_snan(a_cls)) {
767            return float64_silence_nan(a, status);
768        }
769        return a;
770    }
771}
772
773/*----------------------------------------------------------------------------
774| Returns 1 if the extended double-precision floating-point value `a' is a
775| quiet NaN; otherwise returns 0. This slightly differs from the same
776| function for other types as floatx80 has an explicit bit.
777*----------------------------------------------------------------------------*/
778
779int floatx80_is_quiet_nan(floatx80 a, float_status *status)
780{
781#ifdef NO_SIGNALING_NANS
782    return floatx80_is_any_nan(a);
783#else
784    if (snan_bit_is_one(status)) {
785        uint64_t aLow;
786
787        aLow = a.low & ~0x4000000000000000ULL;
788        return ((a.high & 0x7FFF) == 0x7FFF)
789            && (aLow << 1)
790            && (a.low == aLow);
791    } else {
792        return ((a.high & 0x7FFF) == 0x7FFF)
793            && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
794    }
795#endif
796}
797
798/*----------------------------------------------------------------------------
799| Returns 1 if the extended double-precision floating-point value `a' is a
800| signaling NaN; otherwise returns 0. This slightly differs from the same
801| function for other types as floatx80 has an explicit bit.
802*----------------------------------------------------------------------------*/
803
804int floatx80_is_signaling_nan(floatx80 a, float_status *status)
805{
806#ifdef NO_SIGNALING_NANS
807    return 0;
808#else
809    if (snan_bit_is_one(status)) {
810        return ((a.high & 0x7FFF) == 0x7FFF)
811            && ((a.low << 1) >= 0x8000000000000000ULL);
812    } else {
813        uint64_t aLow;
814
815        aLow = a.low & ~UINT64_C(0x4000000000000000);
816        return ((a.high & 0x7FFF) == 0x7FFF)
817            && (uint64_t)(aLow << 1)
818            && (a.low == aLow);
819    }
820#endif
821}
822
823/*----------------------------------------------------------------------------
824| Returns a quiet NaN from a signalling NaN for the extended double-precision
825| floating point value `a'.
826*----------------------------------------------------------------------------*/
827
828floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
829{
830    /* None of the targets that have snan_bit_is_one use floatx80.  */
831    assert(!snan_bit_is_one(status));
832    a.low |= UINT64_C(0xC000000000000000);
833    return a;
834}
835
836/*----------------------------------------------------------------------------
837| Returns the result of converting the extended double-precision floating-
838| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
839| invalid exception is raised.
840*----------------------------------------------------------------------------*/
841
842static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
843{
844    floatx80 dflt;
845    commonNaNT z;
846
847    if (floatx80_is_signaling_nan(a, status)) {
848        float_raise(float_flag_invalid, status);
849    }
850    if (a.low >> 63) {
851        z.sign = a.high >> 15;
852        z.low = 0;
853        z.high = a.low << 1;
854    } else {
855        dflt = floatx80_default_nan(status);
856        z.sign = dflt.high >> 15;
857        z.low = 0;
858        z.high = dflt.low << 1;
859    }
860    return z;
861}
862
863/*----------------------------------------------------------------------------
864| Returns the result of converting the canonical NaN `a' to the extended
865| double-precision floating-point format.
866*----------------------------------------------------------------------------*/
867
868static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
869{
870    floatx80 z;
871
872    if (status->default_nan_mode) {
873        return floatx80_default_nan(status);
874    }
875
876    if (a.high >> 1) {
877        z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
878        z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
879    } else {
880        z = floatx80_default_nan(status);
881    }
882    return z;
883}
884
885/*----------------------------------------------------------------------------
886| Takes two extended double-precision floating-point values `a' and `b', one
887| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
888| `b' is a signaling NaN, the invalid exception is raised.
889*----------------------------------------------------------------------------*/
890
891floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
892{
893    bool aIsLargerSignificand;
894    FloatClass a_cls, b_cls;
895
896    /* This is not complete, but is good enough for pickNaN.  */
897    a_cls = (!floatx80_is_any_nan(a)
898             ? float_class_normal
899             : floatx80_is_signaling_nan(a, status)
900             ? float_class_snan
901             : float_class_qnan);
902    b_cls = (!floatx80_is_any_nan(b)
903             ? float_class_normal
904             : floatx80_is_signaling_nan(b, status)
905             ? float_class_snan
906             : float_class_qnan);
907
908    if (is_snan(a_cls) || is_snan(b_cls)) {
909        float_raise(float_flag_invalid, status);
910    }
911
912    if (status->default_nan_mode) {
913        return floatx80_default_nan(status);
914    }
915
916    if (a.low < b.low) {
917        aIsLargerSignificand = 0;
918    } else if (b.low < a.low) {
919        aIsLargerSignificand = 1;
920    } else {
921        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
922    }
923
924    if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
925        if (is_snan(b_cls)) {
926            return floatx80_silence_nan(b, status);
927        }
928        return b;
929    } else {
930        if (is_snan(a_cls)) {
931            return floatx80_silence_nan(a, status);
932        }
933        return a;
934    }
935}
936
937/*----------------------------------------------------------------------------
938| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
939| NaN; otherwise returns 0.
940*----------------------------------------------------------------------------*/
941
942bool float128_is_quiet_nan(float128 a, float_status *status)
943{
944#ifdef NO_SIGNALING_NANS
945    return float128_is_any_nan(a);
946#else
947    if (snan_bit_is_one(status)) {
948        return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
949            && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
950    } else {
951        return ((a.high << 1) >= 0xFFFF000000000000ULL)
952            && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
953    }
954#endif
955}
956
957/*----------------------------------------------------------------------------
958| Returns 1 if the quadruple-precision floating-point value `a' is a
959| signaling NaN; otherwise returns 0.
960*----------------------------------------------------------------------------*/
961
962bool float128_is_signaling_nan(float128 a, float_status *status)
963{
964#ifdef NO_SIGNALING_NANS
965    return 0;
966#else
967    if (snan_bit_is_one(status)) {
968        return ((a.high << 1) >= 0xFFFF000000000000ULL)
969            && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
970    } else {
971        return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
972            && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
973    }
974#endif
975}
976
977/*----------------------------------------------------------------------------
978| Returns a quiet NaN from a signalling NaN for the quadruple-precision
979| floating point value `a'.
980*----------------------------------------------------------------------------*/
981
982float128 float128_silence_nan(float128 a, float_status *status)
983{
984#ifdef NO_SIGNALING_NANS
985    g_assert_not_reached();
986#else
987    if (snan_bit_is_one(status)) {
988        return float128_default_nan(status);
989    } else {
990        a.high |= UINT64_C(0x0000800000000000);
991        return a;
992    }
993#endif
994}
995
996/*----------------------------------------------------------------------------
997| Returns the result of converting the quadruple-precision floating-point NaN
998| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
999| exception is raised.
1000*----------------------------------------------------------------------------*/
1001
1002static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1003{
1004    commonNaNT z;
1005
1006    if (float128_is_signaling_nan(a, status)) {
1007        float_raise(float_flag_invalid, status);
1008    }
1009    z.sign = a.high >> 63;
1010    shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1011    return z;
1012}
1013
1014/*----------------------------------------------------------------------------
1015| Returns the result of converting the canonical NaN `a' to the quadruple-
1016| precision floating-point format.
1017*----------------------------------------------------------------------------*/
1018
1019static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1020{
1021    float128 z;
1022
1023    if (status->default_nan_mode) {
1024        return float128_default_nan(status);
1025    }
1026
1027    shift128Right(a.high, a.low, 16, &z.high, &z.low);
1028    z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1029    return z;
1030}
1031
1032/*----------------------------------------------------------------------------
1033| Takes two quadruple-precision floating-point values `a' and `b', one of
1034| which is a NaN, and returns the appropriate NaN result.  If either `a' or
1035| `b' is a signaling NaN, the invalid exception is raised.
1036*----------------------------------------------------------------------------*/
1037
1038static float128 propagateFloat128NaN(float128 a, float128 b,
1039                                     float_status *status)
1040{
1041    bool aIsLargerSignificand;
1042    FloatClass a_cls, b_cls;
1043
1044    /* This is not complete, but is good enough for pickNaN.  */
1045    a_cls = (!float128_is_any_nan(a)
1046             ? float_class_normal
1047             : float128_is_signaling_nan(a, status)
1048             ? float_class_snan
1049             : float_class_qnan);
1050    b_cls = (!float128_is_any_nan(b)
1051             ? float_class_normal
1052             : float128_is_signaling_nan(b, status)
1053             ? float_class_snan
1054             : float_class_qnan);
1055
1056    if (is_snan(a_cls) || is_snan(b_cls)) {
1057        float_raise(float_flag_invalid, status);
1058    }
1059
1060    if (status->default_nan_mode) {
1061        return float128_default_nan(status);
1062    }
1063
1064    if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1065        aIsLargerSignificand = 0;
1066    } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1067        aIsLargerSignificand = 1;
1068    } else {
1069        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1070    }
1071
1072    if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
1073        if (is_snan(b_cls)) {
1074            return float128_silence_nan(b, status);
1075        }
1076        return b;
1077    } else {
1078        if (is_snan(a_cls)) {
1079            return float128_silence_nan(a, status);
1080        }
1081        return a;
1082    }
1083}
1084