1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18/*
19===============================================================================
20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21Arithmetic Package, Release 2a.
22
23Written by John R. Hauser.  This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704.  Funding was partially provided by the
26National Science Foundation under grant MIP-9311980.  The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31arithmetic/SoftFloat.html'.
32
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39Derivative works are acceptable, even for commercial purposes, so long as
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
43
44===============================================================================
45*/
46
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82/*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86static inline bool no_signaling_nans(float_status *status)
87{
88#if defined(TARGET_XTENSA)
89    return status->no_signaling_nans;
90#else
91    return false;
92#endif
93}
94
95/* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero.  MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102static inline bool snan_bit_is_one(float_status *status)
103{
104#if defined(TARGET_MIPS)
105    return status->snan_bit_is_one;
106#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107    return 1;
108#else
109    return 0;
110#endif
111}
112
113/*----------------------------------------------------------------------------
114| For the deconstructed floating-point with fraction FRAC, return true
115| if the fraction represents a signalling NaN; otherwise false.
116*----------------------------------------------------------------------------*/
117
118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119{
120    if (no_signaling_nans(status)) {
121        return false;
122    } else {
123        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124        return msb == snan_bit_is_one(status);
125    }
126}
127
128/*----------------------------------------------------------------------------
129| The pattern for a default generated deconstructed floating-point NaN.
130*----------------------------------------------------------------------------*/
131
132static void parts64_default_nan(FloatParts64 *p, float_status *status)
133{
134    bool sign = 0;
135    uint64_t frac;
136
137#if defined(TARGET_SPARC) || defined(TARGET_M68K)
138    /* !snan_bit_is_one, set all bits */
139    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141    || defined(TARGET_MICROBLAZE)
142    /* !snan_bit_is_one, set sign and msb */
143    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144    sign = 1;
145#elif defined(TARGET_HPPA)
146    /* snan_bit_is_one, set msb-1.  */
147    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148#elif defined(TARGET_HEXAGON)
149    sign = 1;
150    frac = ~0ULL;
151#else
152    /*
153     * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154     * S390, SH4, TriCore, and Xtensa.  Our other supported targets,
155     * CRIS, Nios2, and Tile, do not have floating-point.
156     */
157    if (snan_bit_is_one(status)) {
158        /* set all bits other than msb */
159        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160    } else {
161        /* set msb */
162        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163    }
164#endif
165
166    *p = (FloatParts64) {
167        .cls = float_class_qnan,
168        .sign = sign,
169        .exp = INT_MAX,
170        .frac = frac
171    };
172}
173
174static void parts128_default_nan(FloatParts128 *p, float_status *status)
175{
176    /*
177     * Extrapolate from the choices made by parts64_default_nan to fill
178     * in the quad-floating format.  If the low bit is set, assume we
179     * want to set all non-snan bits.
180     */
181    FloatParts64 p64;
182    parts64_default_nan(&p64, status);
183
184    *p = (FloatParts128) {
185        .cls = float_class_qnan,
186        .sign = p64.sign,
187        .exp = INT_MAX,
188        .frac_hi = p64.frac,
189        .frac_lo = -(p64.frac & 1)
190    };
191}
192
193/*----------------------------------------------------------------------------
194| Returns a quiet NaN from a signalling NaN for the deconstructed
195| floating-point parts.
196*----------------------------------------------------------------------------*/
197
198static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
199{
200    g_assert(!no_signaling_nans(status));
201    g_assert(!status->default_nan_mode);
202
203    /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
204    if (snan_bit_is_one(status)) {
205        frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
206        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
207    } else {
208        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
209    }
210    return frac;
211}
212
213static void parts64_silence_nan(FloatParts64 *p, float_status *status)
214{
215    p->frac = parts_silence_nan_frac(p->frac, status);
216    p->cls = float_class_qnan;
217}
218
219static void parts128_silence_nan(FloatParts128 *p, float_status *status)
220{
221    p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
222    p->cls = float_class_qnan;
223}
224
225/*----------------------------------------------------------------------------
226| The pattern for a default generated extended double-precision NaN.
227*----------------------------------------------------------------------------*/
228floatx80 floatx80_default_nan(float_status *status)
229{
230    floatx80 r;
231
232    /* None of the targets that have snan_bit_is_one use floatx80.  */
233    assert(!snan_bit_is_one(status));
234#if defined(TARGET_M68K)
235    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
236    r.high = 0x7FFF;
237#else
238    /* X86 */
239    r.low = UINT64_C(0xC000000000000000);
240    r.high = 0xFFFF;
241#endif
242    return r;
243}
244
245/*----------------------------------------------------------------------------
246| The pattern for a default generated extended double-precision inf.
247*----------------------------------------------------------------------------*/
248
249#define floatx80_infinity_high 0x7FFF
250#if defined(TARGET_M68K)
251#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
252#else
253#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
254#endif
255
256const floatx80 floatx80_infinity
257    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
258
259/*----------------------------------------------------------------------------
260| Internal canonical NaN format.
261*----------------------------------------------------------------------------*/
262typedef struct {
263    bool sign;
264    uint64_t high, low;
265} commonNaNT;
266
267/*----------------------------------------------------------------------------
268| Returns 1 if the half-precision floating-point value `a' is a quiet
269| NaN; otherwise returns 0.
270*----------------------------------------------------------------------------*/
271
272bool float16_is_quiet_nan(float16 a_, float_status *status)
273{
274    if (no_signaling_nans(status)) {
275        return float16_is_any_nan(a_);
276    } else {
277        uint16_t a = float16_val(a_);
278        if (snan_bit_is_one(status)) {
279            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
280        } else {
281
282            return ((a >> 9) & 0x3F) == 0x3F;
283        }
284    }
285}
286
287/*----------------------------------------------------------------------------
288| Returns 1 if the bfloat16 value `a' is a quiet
289| NaN; otherwise returns 0.
290*----------------------------------------------------------------------------*/
291
292bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
293{
294    if (no_signaling_nans(status)) {
295        return bfloat16_is_any_nan(a_);
296    } else {
297        uint16_t a = a_;
298        if (snan_bit_is_one(status)) {
299            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
300        } else {
301            return ((a >> 6) & 0x1FF) == 0x1FF;
302        }
303    }
304}
305
306/*----------------------------------------------------------------------------
307| Returns 1 if the half-precision floating-point value `a' is a signaling
308| NaN; otherwise returns 0.
309*----------------------------------------------------------------------------*/
310
311bool float16_is_signaling_nan(float16 a_, float_status *status)
312{
313    if (no_signaling_nans(status)) {
314        return 0;
315    } else {
316        uint16_t a = float16_val(a_);
317        if (snan_bit_is_one(status)) {
318            return ((a >> 9) & 0x3F) == 0x3F;
319        } else {
320            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
321        }
322    }
323}
324
325/*----------------------------------------------------------------------------
326| Returns 1 if the bfloat16 value `a' is a signaling
327| NaN; otherwise returns 0.
328*----------------------------------------------------------------------------*/
329
330bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
331{
332    if (no_signaling_nans(status)) {
333        return 0;
334    } else {
335        uint16_t a = a_;
336        if (snan_bit_is_one(status)) {
337            return ((a >> 6) & 0x1FF) == 0x1FF;
338        } else {
339            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
340        }
341    }
342}
343
344/*----------------------------------------------------------------------------
345| Returns 1 if the single-precision floating-point value `a' is a quiet
346| NaN; otherwise returns 0.
347*----------------------------------------------------------------------------*/
348
349bool float32_is_quiet_nan(float32 a_, float_status *status)
350{
351    if (no_signaling_nans(status)) {
352        return float32_is_any_nan(a_);
353    } else {
354        uint32_t a = float32_val(a_);
355        if (snan_bit_is_one(status)) {
356            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
357        } else {
358            return ((uint32_t)(a << 1) >= 0xFF800000);
359        }
360    }
361}
362
363/*----------------------------------------------------------------------------
364| Returns 1 if the single-precision floating-point value `a' is a signaling
365| NaN; otherwise returns 0.
366*----------------------------------------------------------------------------*/
367
368bool float32_is_signaling_nan(float32 a_, float_status *status)
369{
370    if (no_signaling_nans(status)) {
371        return 0;
372    } else {
373        uint32_t a = float32_val(a_);
374        if (snan_bit_is_one(status)) {
375            return ((uint32_t)(a << 1) >= 0xFF800000);
376        } else {
377            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
378        }
379    }
380}
381
382/*----------------------------------------------------------------------------
383| Returns the result of converting the single-precision floating-point NaN
384| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
385| exception is raised.
386*----------------------------------------------------------------------------*/
387
388static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
389{
390    commonNaNT z;
391
392    if (float32_is_signaling_nan(a, status)) {
393        float_raise(float_flag_invalid, status);
394    }
395    z.sign = float32_val(a) >> 31;
396    z.low = 0;
397    z.high = ((uint64_t)float32_val(a)) << 41;
398    return z;
399}
400
401/*----------------------------------------------------------------------------
402| Returns the result of converting the canonical NaN `a' to the single-
403| precision floating-point format.
404*----------------------------------------------------------------------------*/
405
406static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
407{
408    uint32_t mantissa = a.high >> 41;
409
410    if (status->default_nan_mode) {
411        return float32_default_nan(status);
412    }
413
414    if (mantissa) {
415        return make_float32(
416            (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
417    } else {
418        return float32_default_nan(status);
419    }
420}
421
422/*----------------------------------------------------------------------------
423| Select which NaN to propagate for a two-input operation.
424| IEEE754 doesn't specify all the details of this, so the
425| algorithm is target-specific.
426| The routine is passed various bits of information about the
427| two NaNs and should return 0 to select NaN a and 1 for NaN b.
428| Note that signalling NaNs are always squashed to quiet NaNs
429| by the caller, by calling floatXX_silence_nan() before
430| returning them.
431|
432| aIsLargerSignificand is only valid if both a and b are NaNs
433| of some kind, and is true if a has the larger significand,
434| or if both a and b have the same significand but a is
435| positive but b is negative. It is only needed for the x87
436| tie-break rule.
437*----------------------------------------------------------------------------*/
438
439static int pickNaN(FloatClass a_cls, FloatClass b_cls,
440                   bool aIsLargerSignificand, float_status *status)
441{
442#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
443    /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
444     * the first of:
445     *  1. A if it is signaling
446     *  2. B if it is signaling
447     *  3. A (quiet)
448     *  4. B (quiet)
449     * A signaling NaN is always quietened before returning it.
450     */
451    /* According to MIPS specifications, if one of the two operands is
452     * a sNaN, a new qNaN has to be generated. This is done in
453     * floatXX_silence_nan(). For qNaN inputs the specifications
454     * says: "When possible, this QNaN result is one of the operand QNaN
455     * values." In practice it seems that most implementations choose
456     * the first operand if both operands are qNaN. In short this gives
457     * the following rules:
458     *  1. A if it is signaling
459     *  2. B if it is signaling
460     *  3. A (quiet)
461     *  4. B (quiet)
462     * A signaling NaN is always silenced before returning it.
463     */
464    if (is_snan(a_cls)) {
465        return 0;
466    } else if (is_snan(b_cls)) {
467        return 1;
468    } else if (is_qnan(a_cls)) {
469        return 0;
470    } else {
471        return 1;
472    }
473#elif defined(TARGET_PPC) || defined(TARGET_M68K)
474    /* PowerPC propagation rules:
475     *  1. A if it sNaN or qNaN
476     *  2. B if it sNaN or qNaN
477     * A signaling NaN is always silenced before returning it.
478     */
479    /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
480     * 3.4 FLOATING-POINT INSTRUCTION DETAILS
481     * If either operand, but not both operands, of an operation is a
482     * nonsignaling NaN, then that NaN is returned as the result. If both
483     * operands are nonsignaling NaNs, then the destination operand
484     * nonsignaling NaN is returned as the result.
485     * If either operand to an operation is a signaling NaN (SNaN), then the
486     * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
487     * is set in the FPCR ENABLE byte, then the exception is taken and the
488     * destination is not modified. If the SNaN exception enable bit is not
489     * set, setting the SNaN bit in the operand to a one converts the SNaN to
490     * a nonsignaling NaN. The operation then continues as described in the
491     * preceding paragraph for nonsignaling NaNs.
492     */
493    if (is_nan(a_cls)) {
494        return 0;
495    } else {
496        return 1;
497    }
498#elif defined(TARGET_XTENSA)
499    /*
500     * Xtensa has two NaN propagation modes.
501     * Which one is active is controlled by float_status::use_first_nan.
502     */
503    if (status->use_first_nan) {
504        if (is_nan(a_cls)) {
505            return 0;
506        } else {
507            return 1;
508        }
509    } else {
510        if (is_nan(b_cls)) {
511            return 1;
512        } else {
513            return 0;
514        }
515    }
516#else
517    /* This implements x87 NaN propagation rules:
518     * SNaN + QNaN => return the QNaN
519     * two SNaNs => return the one with the larger significand, silenced
520     * two QNaNs => return the one with the larger significand
521     * SNaN and a non-NaN => return the SNaN, silenced
522     * QNaN and a non-NaN => return the QNaN
523     *
524     * If we get down to comparing significands and they are the same,
525     * return the NaN with the positive sign bit (if any).
526     */
527    if (is_snan(a_cls)) {
528        if (is_snan(b_cls)) {
529            return aIsLargerSignificand ? 0 : 1;
530        }
531        return is_qnan(b_cls) ? 1 : 0;
532    } else if (is_qnan(a_cls)) {
533        if (is_snan(b_cls) || !is_qnan(b_cls)) {
534            return 0;
535        } else {
536            return aIsLargerSignificand ? 0 : 1;
537        }
538    } else {
539        return 1;
540    }
541#endif
542}
543
544/*----------------------------------------------------------------------------
545| Select which NaN to propagate for a three-input operation.
546| For the moment we assume that no CPU needs the 'larger significand'
547| information.
548| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
549*----------------------------------------------------------------------------*/
550static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
551                         bool infzero, float_status *status)
552{
553#if defined(TARGET_ARM)
554    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
555     * the default NaN
556     */
557    if (infzero && is_qnan(c_cls)) {
558        float_raise(float_flag_invalid, status);
559        return 3;
560    }
561
562    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
563     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
564     */
565    if (is_snan(c_cls)) {
566        return 2;
567    } else if (is_snan(a_cls)) {
568        return 0;
569    } else if (is_snan(b_cls)) {
570        return 1;
571    } else if (is_qnan(c_cls)) {
572        return 2;
573    } else if (is_qnan(a_cls)) {
574        return 0;
575    } else {
576        return 1;
577    }
578#elif defined(TARGET_MIPS)
579    if (snan_bit_is_one(status)) {
580        /*
581         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
582         * case sets InvalidOp and returns the default NaN
583         */
584        if (infzero) {
585            float_raise(float_flag_invalid, status);
586            return 3;
587        }
588        /* Prefer sNaN over qNaN, in the a, b, c order. */
589        if (is_snan(a_cls)) {
590            return 0;
591        } else if (is_snan(b_cls)) {
592            return 1;
593        } else if (is_snan(c_cls)) {
594            return 2;
595        } else if (is_qnan(a_cls)) {
596            return 0;
597        } else if (is_qnan(b_cls)) {
598            return 1;
599        } else {
600            return 2;
601        }
602    } else {
603        /*
604         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
605         * case sets InvalidOp and returns the input value 'c'
606         */
607        if (infzero) {
608            float_raise(float_flag_invalid, status);
609            return 2;
610        }
611        /* Prefer sNaN over qNaN, in the c, a, b order. */
612        if (is_snan(c_cls)) {
613            return 2;
614        } else if (is_snan(a_cls)) {
615            return 0;
616        } else if (is_snan(b_cls)) {
617            return 1;
618        } else if (is_qnan(c_cls)) {
619            return 2;
620        } else if (is_qnan(a_cls)) {
621            return 0;
622        } else {
623            return 1;
624        }
625    }
626#elif defined(TARGET_PPC)
627    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
628     * to return an input NaN if we have one (ie c) rather than generating
629     * a default NaN
630     */
631    if (infzero) {
632        float_raise(float_flag_invalid, status);
633        return 2;
634    }
635
636    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
637     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
638     */
639    if (is_nan(a_cls)) {
640        return 0;
641    } else if (is_nan(c_cls)) {
642        return 2;
643    } else {
644        return 1;
645    }
646#elif defined(TARGET_RISCV)
647    /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
648    if (infzero) {
649        float_raise(float_flag_invalid, status);
650    }
651    return 3; /* default NaN */
652#elif defined(TARGET_XTENSA)
653    /*
654     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
655     * an input NaN if we have one (ie c).
656     */
657    if (infzero) {
658        float_raise(float_flag_invalid, status);
659        return 2;
660    }
661    if (status->use_first_nan) {
662        if (is_nan(a_cls)) {
663            return 0;
664        } else if (is_nan(b_cls)) {
665            return 1;
666        } else {
667            return 2;
668        }
669    } else {
670        if (is_nan(c_cls)) {
671            return 2;
672        } else if (is_nan(b_cls)) {
673            return 1;
674        } else {
675            return 0;
676        }
677    }
678#else
679    /* A default implementation: prefer a to b to c.
680     * This is unlikely to actually match any real implementation.
681     */
682    if (is_nan(a_cls)) {
683        return 0;
684    } else if (is_nan(b_cls)) {
685        return 1;
686    } else {
687        return 2;
688    }
689#endif
690}
691
692/*----------------------------------------------------------------------------
693| Takes two single-precision floating-point values `a' and `b', one of which
694| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
695| signaling NaN, the invalid exception is raised.
696*----------------------------------------------------------------------------*/
697
698static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
699{
700    bool aIsLargerSignificand;
701    uint32_t av, bv;
702    FloatClass a_cls, b_cls;
703
704    /* This is not complete, but is good enough for pickNaN.  */
705    a_cls = (!float32_is_any_nan(a)
706             ? float_class_normal
707             : float32_is_signaling_nan(a, status)
708             ? float_class_snan
709             : float_class_qnan);
710    b_cls = (!float32_is_any_nan(b)
711             ? float_class_normal
712             : float32_is_signaling_nan(b, status)
713             ? float_class_snan
714             : float_class_qnan);
715
716    av = float32_val(a);
717    bv = float32_val(b);
718
719    if (is_snan(a_cls) || is_snan(b_cls)) {
720        float_raise(float_flag_invalid, status);
721    }
722
723    if (status->default_nan_mode) {
724        return float32_default_nan(status);
725    }
726
727    if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
728        aIsLargerSignificand = 0;
729    } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
730        aIsLargerSignificand = 1;
731    } else {
732        aIsLargerSignificand = (av < bv) ? 1 : 0;
733    }
734
735    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
736        if (is_snan(b_cls)) {
737            return float32_silence_nan(b, status);
738        }
739        return b;
740    } else {
741        if (is_snan(a_cls)) {
742            return float32_silence_nan(a, status);
743        }
744        return a;
745    }
746}
747
748/*----------------------------------------------------------------------------
749| Returns 1 if the double-precision floating-point value `a' is a quiet
750| NaN; otherwise returns 0.
751*----------------------------------------------------------------------------*/
752
753bool float64_is_quiet_nan(float64 a_, float_status *status)
754{
755    if (no_signaling_nans(status)) {
756        return float64_is_any_nan(a_);
757    } else {
758        uint64_t a = float64_val(a_);
759        if (snan_bit_is_one(status)) {
760            return (((a >> 51) & 0xFFF) == 0xFFE)
761                && (a & 0x0007FFFFFFFFFFFFULL);
762        } else {
763            return ((a << 1) >= 0xFFF0000000000000ULL);
764        }
765    }
766}
767
768/*----------------------------------------------------------------------------
769| Returns 1 if the double-precision floating-point value `a' is a signaling
770| NaN; otherwise returns 0.
771*----------------------------------------------------------------------------*/
772
773bool float64_is_signaling_nan(float64 a_, float_status *status)
774{
775    if (no_signaling_nans(status)) {
776        return 0;
777    } else {
778        uint64_t a = float64_val(a_);
779        if (snan_bit_is_one(status)) {
780            return ((a << 1) >= 0xFFF0000000000000ULL);
781        } else {
782            return (((a >> 51) & 0xFFF) == 0xFFE)
783                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
784        }
785    }
786}
787
788/*----------------------------------------------------------------------------
789| Returns the result of converting the double-precision floating-point NaN
790| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
791| exception is raised.
792*----------------------------------------------------------------------------*/
793
794static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
795{
796    commonNaNT z;
797
798    if (float64_is_signaling_nan(a, status)) {
799        float_raise(float_flag_invalid, status);
800    }
801    z.sign = float64_val(a) >> 63;
802    z.low = 0;
803    z.high = float64_val(a) << 12;
804    return z;
805}
806
807/*----------------------------------------------------------------------------
808| Returns the result of converting the canonical NaN `a' to the double-
809| precision floating-point format.
810*----------------------------------------------------------------------------*/
811
812static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
813{
814    uint64_t mantissa = a.high >> 12;
815
816    if (status->default_nan_mode) {
817        return float64_default_nan(status);
818    }
819
820    if (mantissa) {
821        return make_float64(
822              (((uint64_t) a.sign) << 63)
823            | UINT64_C(0x7FF0000000000000)
824            | (a.high >> 12));
825    } else {
826        return float64_default_nan(status);
827    }
828}
829
830/*----------------------------------------------------------------------------
831| Takes two double-precision floating-point values `a' and `b', one of which
832| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
833| signaling NaN, the invalid exception is raised.
834*----------------------------------------------------------------------------*/
835
836static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
837{
838    bool aIsLargerSignificand;
839    uint64_t av, bv;
840    FloatClass a_cls, b_cls;
841
842    /* This is not complete, but is good enough for pickNaN.  */
843    a_cls = (!float64_is_any_nan(a)
844             ? float_class_normal
845             : float64_is_signaling_nan(a, status)
846             ? float_class_snan
847             : float_class_qnan);
848    b_cls = (!float64_is_any_nan(b)
849             ? float_class_normal
850             : float64_is_signaling_nan(b, status)
851             ? float_class_snan
852             : float_class_qnan);
853
854    av = float64_val(a);
855    bv = float64_val(b);
856
857    if (is_snan(a_cls) || is_snan(b_cls)) {
858        float_raise(float_flag_invalid, status);
859    }
860
861    if (status->default_nan_mode) {
862        return float64_default_nan(status);
863    }
864
865    if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
866        aIsLargerSignificand = 0;
867    } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
868        aIsLargerSignificand = 1;
869    } else {
870        aIsLargerSignificand = (av < bv) ? 1 : 0;
871    }
872
873    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
874        if (is_snan(b_cls)) {
875            return float64_silence_nan(b, status);
876        }
877        return b;
878    } else {
879        if (is_snan(a_cls)) {
880            return float64_silence_nan(a, status);
881        }
882        return a;
883    }
884}
885
886/*----------------------------------------------------------------------------
887| Returns 1 if the extended double-precision floating-point value `a' is a
888| quiet NaN; otherwise returns 0. This slightly differs from the same
889| function for other types as floatx80 has an explicit bit.
890*----------------------------------------------------------------------------*/
891
892int floatx80_is_quiet_nan(floatx80 a, float_status *status)
893{
894    if (no_signaling_nans(status)) {
895        return floatx80_is_any_nan(a);
896    } else {
897        if (snan_bit_is_one(status)) {
898            uint64_t aLow;
899
900            aLow = a.low & ~0x4000000000000000ULL;
901            return ((a.high & 0x7FFF) == 0x7FFF)
902                && (aLow << 1)
903                && (a.low == aLow);
904        } else {
905            return ((a.high & 0x7FFF) == 0x7FFF)
906                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
907        }
908    }
909}
910
911/*----------------------------------------------------------------------------
912| Returns 1 if the extended double-precision floating-point value `a' is a
913| signaling NaN; otherwise returns 0. This slightly differs from the same
914| function for other types as floatx80 has an explicit bit.
915*----------------------------------------------------------------------------*/
916
917int floatx80_is_signaling_nan(floatx80 a, float_status *status)
918{
919    if (no_signaling_nans(status)) {
920        return 0;
921    } else {
922        if (snan_bit_is_one(status)) {
923            return ((a.high & 0x7FFF) == 0x7FFF)
924                && ((a.low << 1) >= 0x8000000000000000ULL);
925        } else {
926            uint64_t aLow;
927
928            aLow = a.low & ~UINT64_C(0x4000000000000000);
929            return ((a.high & 0x7FFF) == 0x7FFF)
930                && (uint64_t)(aLow << 1)
931                && (a.low == aLow);
932        }
933    }
934}
935
936/*----------------------------------------------------------------------------
937| Returns a quiet NaN from a signalling NaN for the extended double-precision
938| floating point value `a'.
939*----------------------------------------------------------------------------*/
940
941floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
942{
943    /* None of the targets that have snan_bit_is_one use floatx80.  */
944    assert(!snan_bit_is_one(status));
945    a.low |= UINT64_C(0xC000000000000000);
946    return a;
947}
948
949/*----------------------------------------------------------------------------
950| Returns the result of converting the extended double-precision floating-
951| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
952| invalid exception is raised.
953*----------------------------------------------------------------------------*/
954
955static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
956{
957    floatx80 dflt;
958    commonNaNT z;
959
960    if (floatx80_is_signaling_nan(a, status)) {
961        float_raise(float_flag_invalid, status);
962    }
963    if (a.low >> 63) {
964        z.sign = a.high >> 15;
965        z.low = 0;
966        z.high = a.low << 1;
967    } else {
968        dflt = floatx80_default_nan(status);
969        z.sign = dflt.high >> 15;
970        z.low = 0;
971        z.high = dflt.low << 1;
972    }
973    return z;
974}
975
976/*----------------------------------------------------------------------------
977| Returns the result of converting the canonical NaN `a' to the extended
978| double-precision floating-point format.
979*----------------------------------------------------------------------------*/
980
981static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
982{
983    floatx80 z;
984
985    if (status->default_nan_mode) {
986        return floatx80_default_nan(status);
987    }
988
989    if (a.high >> 1) {
990        z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
991        z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
992    } else {
993        z = floatx80_default_nan(status);
994    }
995    return z;
996}
997
998/*----------------------------------------------------------------------------
999| Takes two extended double-precision floating-point values `a' and `b', one
1000| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
1001| `b' is a signaling NaN, the invalid exception is raised.
1002*----------------------------------------------------------------------------*/
1003
1004floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
1005{
1006    bool aIsLargerSignificand;
1007    FloatClass a_cls, b_cls;
1008
1009    /* This is not complete, but is good enough for pickNaN.  */
1010    a_cls = (!floatx80_is_any_nan(a)
1011             ? float_class_normal
1012             : floatx80_is_signaling_nan(a, status)
1013             ? float_class_snan
1014             : float_class_qnan);
1015    b_cls = (!floatx80_is_any_nan(b)
1016             ? float_class_normal
1017             : floatx80_is_signaling_nan(b, status)
1018             ? float_class_snan
1019             : float_class_qnan);
1020
1021    if (is_snan(a_cls) || is_snan(b_cls)) {
1022        float_raise(float_flag_invalid, status);
1023    }
1024
1025    if (status->default_nan_mode) {
1026        return floatx80_default_nan(status);
1027    }
1028
1029    if (a.low < b.low) {
1030        aIsLargerSignificand = 0;
1031    } else if (b.low < a.low) {
1032        aIsLargerSignificand = 1;
1033    } else {
1034        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1035    }
1036
1037    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1038        if (is_snan(b_cls)) {
1039            return floatx80_silence_nan(b, status);
1040        }
1041        return b;
1042    } else {
1043        if (is_snan(a_cls)) {
1044            return floatx80_silence_nan(a, status);
1045        }
1046        return a;
1047    }
1048}
1049
1050/*----------------------------------------------------------------------------
1051| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1052| NaN; otherwise returns 0.
1053*----------------------------------------------------------------------------*/
1054
1055bool float128_is_quiet_nan(float128 a, float_status *status)
1056{
1057    if (no_signaling_nans(status)) {
1058        return float128_is_any_nan(a);
1059    } else {
1060        if (snan_bit_is_one(status)) {
1061            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1062                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1063        } else {
1064            return ((a.high << 1) >= 0xFFFF000000000000ULL)
1065                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1066        }
1067    }
1068}
1069
1070/*----------------------------------------------------------------------------
1071| Returns 1 if the quadruple-precision floating-point value `a' is a
1072| signaling NaN; otherwise returns 0.
1073*----------------------------------------------------------------------------*/
1074
1075bool float128_is_signaling_nan(float128 a, float_status *status)
1076{
1077    if (no_signaling_nans(status)) {
1078        return 0;
1079    } else {
1080        if (snan_bit_is_one(status)) {
1081            return ((a.high << 1) >= 0xFFFF000000000000ULL)
1082                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1083        } else {
1084            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1085                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
1086        }
1087    }
1088}
1089
1090/*----------------------------------------------------------------------------
1091| Returns the result of converting the quadruple-precision floating-point NaN
1092| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
1093| exception is raised.
1094*----------------------------------------------------------------------------*/
1095
1096static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1097{
1098    commonNaNT z;
1099
1100    if (float128_is_signaling_nan(a, status)) {
1101        float_raise(float_flag_invalid, status);
1102    }
1103    z.sign = a.high >> 63;
1104    shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1105    return z;
1106}
1107
1108/*----------------------------------------------------------------------------
1109| Returns the result of converting the canonical NaN `a' to the quadruple-
1110| precision floating-point format.
1111*----------------------------------------------------------------------------*/
1112
1113static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1114{
1115    float128 z;
1116
1117    if (status->default_nan_mode) {
1118        return float128_default_nan(status);
1119    }
1120
1121    shift128Right(a.high, a.low, 16, &z.high, &z.low);
1122    z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1123    return z;
1124}
1125
1126/*----------------------------------------------------------------------------
1127| Takes two quadruple-precision floating-point values `a' and `b', one of
1128| which is a NaN, and returns the appropriate NaN result.  If either `a' or
1129| `b' is a signaling NaN, the invalid exception is raised.
1130*----------------------------------------------------------------------------*/
1131
1132static float128 propagateFloat128NaN(float128 a, float128 b,
1133                                     float_status *status)
1134{
1135    bool aIsLargerSignificand;
1136    FloatClass a_cls, b_cls;
1137
1138    /* This is not complete, but is good enough for pickNaN.  */
1139    a_cls = (!float128_is_any_nan(a)
1140             ? float_class_normal
1141             : float128_is_signaling_nan(a, status)
1142             ? float_class_snan
1143             : float_class_qnan);
1144    b_cls = (!float128_is_any_nan(b)
1145             ? float_class_normal
1146             : float128_is_signaling_nan(b, status)
1147             ? float_class_snan
1148             : float_class_qnan);
1149
1150    if (is_snan(a_cls) || is_snan(b_cls)) {
1151        float_raise(float_flag_invalid, status);
1152    }
1153
1154    if (status->default_nan_mode) {
1155        return float128_default_nan(status);
1156    }
1157
1158    if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1159        aIsLargerSignificand = 0;
1160    } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1161        aIsLargerSignificand = 1;
1162    } else {
1163        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1164    }
1165
1166    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1167        if (is_snan(b_cls)) {
1168            return float128_silence_nan(b, status);
1169        }
1170        return b;
1171    } else {
1172        if (is_snan(a_cls)) {
1173            return float128_silence_nan(a, status);
1174        }
1175        return a;
1176    }
1177}
1178