1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18/*
19===============================================================================
20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21Arithmetic Package, Release 2a.
22
23Written by John R. Hauser.  This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704.  Funding was partially provided by the
26National Science Foundation under grant MIP-9311980.  The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31arithmetic/SoftFloat.html'.
32
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39Derivative works are acceptable, even for commercial purposes, so long as
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
43
44===============================================================================
45*/
46
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82/*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86static inline bool no_signaling_nans(float_status *status)
87{
88#if defined(TARGET_XTENSA)
89    return status->no_signaling_nans;
90#else
91    return false;
92#endif
93}
94
95/* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero.  MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102static inline bool snan_bit_is_one(float_status *status)
103{
104#if defined(TARGET_MIPS)
105    return status->snan_bit_is_one;
106#elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
107    return 1;
108#else
109    return 0;
110#endif
111}
112
113/*----------------------------------------------------------------------------
114| For the deconstructed floating-point with fraction FRAC, return true
115| if the fraction represents a signalling NaN; otherwise false.
116*----------------------------------------------------------------------------*/
117
118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119{
120    if (no_signaling_nans(status)) {
121        return false;
122    } else {
123        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124        return msb == snan_bit_is_one(status);
125    }
126}
127
128/*----------------------------------------------------------------------------
129| The pattern for a default generated deconstructed floating-point NaN.
130*----------------------------------------------------------------------------*/
131
132static FloatParts parts_default_nan(float_status *status)
133{
134    bool sign = 0;
135    uint64_t frac;
136
137#if defined(TARGET_SPARC) || defined(TARGET_M68K)
138    /* !snan_bit_is_one, set all bits */
139    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141    || defined(TARGET_MICROBLAZE)
142    /* !snan_bit_is_one, set sign and msb */
143    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144    sign = 1;
145#elif defined(TARGET_HPPA)
146    /* snan_bit_is_one, set msb-1.  */
147    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148#else
149    /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
150     * S390, SH4, TriCore, and Xtensa.  I cannot find documentation
151     * for Unicore32; the choice from the original commit is unchanged.
152     * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
153     * do not have floating-point.
154     */
155    if (snan_bit_is_one(status)) {
156        /* set all bits other than msb */
157        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
158    } else {
159        /* set msb */
160        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
161    }
162#endif
163
164    return (FloatParts) {
165        .cls = float_class_qnan,
166        .sign = sign,
167        .exp = INT_MAX,
168        .frac = frac
169    };
170}
171
172/*----------------------------------------------------------------------------
173| Returns a quiet NaN from a signalling NaN for the deconstructed
174| floating-point parts.
175*----------------------------------------------------------------------------*/
176
177static FloatParts parts_silence_nan(FloatParts a, float_status *status)
178{
179    g_assert(!no_signaling_nans(status));
180#if defined(TARGET_HPPA)
181    a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
182    a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
183#else
184    if (snan_bit_is_one(status)) {
185        return parts_default_nan(status);
186    } else {
187        a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
188    }
189#endif
190    a.cls = float_class_qnan;
191    return a;
192}
193
194/*----------------------------------------------------------------------------
195| The pattern for a default generated extended double-precision NaN.
196*----------------------------------------------------------------------------*/
197floatx80 floatx80_default_nan(float_status *status)
198{
199    floatx80 r;
200
201    /* None of the targets that have snan_bit_is_one use floatx80.  */
202    assert(!snan_bit_is_one(status));
203#if defined(TARGET_M68K)
204    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
205    r.high = 0x7FFF;
206#else
207    /* X86 */
208    r.low = UINT64_C(0xC000000000000000);
209    r.high = 0xFFFF;
210#endif
211    return r;
212}
213
214/*----------------------------------------------------------------------------
215| The pattern for a default generated extended double-precision inf.
216*----------------------------------------------------------------------------*/
217
218#define floatx80_infinity_high 0x7FFF
219#if defined(TARGET_M68K)
220#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
221#else
222#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
223#endif
224
225const floatx80 floatx80_infinity
226    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
227
228/*----------------------------------------------------------------------------
229| Raises the exceptions specified by `flags'.  Floating-point traps can be
230| defined here if desired.  It is currently not possible for such a trap
231| to substitute a result value.  If traps are not implemented, this routine
232| should be simply `float_exception_flags |= flags;'.
233*----------------------------------------------------------------------------*/
234
235void float_raise(uint8_t flags, float_status *status)
236{
237    status->float_exception_flags |= flags;
238}
239
240/*----------------------------------------------------------------------------
241| Internal canonical NaN format.
242*----------------------------------------------------------------------------*/
243typedef struct {
244    bool sign;
245    uint64_t high, low;
246} commonNaNT;
247
248/*----------------------------------------------------------------------------
249| Returns 1 if the half-precision floating-point value `a' is a quiet
250| NaN; otherwise returns 0.
251*----------------------------------------------------------------------------*/
252
253bool float16_is_quiet_nan(float16 a_, float_status *status)
254{
255    if (no_signaling_nans(status)) {
256        return float16_is_any_nan(a_);
257    } else {
258        uint16_t a = float16_val(a_);
259        if (snan_bit_is_one(status)) {
260            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
261        } else {
262
263            return ((a >> 9) & 0x3F) == 0x3F;
264        }
265    }
266}
267
268/*----------------------------------------------------------------------------
269| Returns 1 if the half-precision floating-point value `a' is a signaling
270| NaN; otherwise returns 0.
271*----------------------------------------------------------------------------*/
272
273bool float16_is_signaling_nan(float16 a_, float_status *status)
274{
275    if (no_signaling_nans(status)) {
276        return 0;
277    } else {
278        uint16_t a = float16_val(a_);
279        if (snan_bit_is_one(status)) {
280            return ((a >> 9) & 0x3F) == 0x3F;
281        } else {
282            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
283        }
284    }
285}
286
287/*----------------------------------------------------------------------------
288| Returns 1 if the single-precision floating-point value `a' is a quiet
289| NaN; otherwise returns 0.
290*----------------------------------------------------------------------------*/
291
292bool float32_is_quiet_nan(float32 a_, float_status *status)
293{
294    if (no_signaling_nans(status)) {
295        return float32_is_any_nan(a_);
296    } else {
297        uint32_t a = float32_val(a_);
298        if (snan_bit_is_one(status)) {
299            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
300        } else {
301            return ((uint32_t)(a << 1) >= 0xFF800000);
302        }
303    }
304}
305
306/*----------------------------------------------------------------------------
307| Returns 1 if the single-precision floating-point value `a' is a signaling
308| NaN; otherwise returns 0.
309*----------------------------------------------------------------------------*/
310
311bool float32_is_signaling_nan(float32 a_, float_status *status)
312{
313    if (no_signaling_nans(status)) {
314        return 0;
315    } else {
316        uint32_t a = float32_val(a_);
317        if (snan_bit_is_one(status)) {
318            return ((uint32_t)(a << 1) >= 0xFF800000);
319        } else {
320            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
321        }
322    }
323}
324
325/*----------------------------------------------------------------------------
326| Returns the result of converting the single-precision floating-point NaN
327| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
328| exception is raised.
329*----------------------------------------------------------------------------*/
330
331static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
332{
333    commonNaNT z;
334
335    if (float32_is_signaling_nan(a, status)) {
336        float_raise(float_flag_invalid, status);
337    }
338    z.sign = float32_val(a) >> 31;
339    z.low = 0;
340    z.high = ((uint64_t)float32_val(a)) << 41;
341    return z;
342}
343
344/*----------------------------------------------------------------------------
345| Returns the result of converting the canonical NaN `a' to the single-
346| precision floating-point format.
347*----------------------------------------------------------------------------*/
348
349static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
350{
351    uint32_t mantissa = a.high >> 41;
352
353    if (status->default_nan_mode) {
354        return float32_default_nan(status);
355    }
356
357    if (mantissa) {
358        return make_float32(
359            (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
360    } else {
361        return float32_default_nan(status);
362    }
363}
364
365/*----------------------------------------------------------------------------
366| Select which NaN to propagate for a two-input operation.
367| IEEE754 doesn't specify all the details of this, so the
368| algorithm is target-specific.
369| The routine is passed various bits of information about the
370| two NaNs and should return 0 to select NaN a and 1 for NaN b.
371| Note that signalling NaNs are always squashed to quiet NaNs
372| by the caller, by calling floatXX_silence_nan() before
373| returning them.
374|
375| aIsLargerSignificand is only valid if both a and b are NaNs
376| of some kind, and is true if a has the larger significand,
377| or if both a and b have the same significand but a is
378| positive but b is negative. It is only needed for the x87
379| tie-break rule.
380*----------------------------------------------------------------------------*/
381
382static int pickNaN(FloatClass a_cls, FloatClass b_cls,
383                   bool aIsLargerSignificand, float_status *status)
384{
385#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
386    /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
387     * the first of:
388     *  1. A if it is signaling
389     *  2. B if it is signaling
390     *  3. A (quiet)
391     *  4. B (quiet)
392     * A signaling NaN is always quietened before returning it.
393     */
394    /* According to MIPS specifications, if one of the two operands is
395     * a sNaN, a new qNaN has to be generated. This is done in
396     * floatXX_silence_nan(). For qNaN inputs the specifications
397     * says: "When possible, this QNaN result is one of the operand QNaN
398     * values." In practice it seems that most implementations choose
399     * the first operand if both operands are qNaN. In short this gives
400     * the following rules:
401     *  1. A if it is signaling
402     *  2. B if it is signaling
403     *  3. A (quiet)
404     *  4. B (quiet)
405     * A signaling NaN is always silenced before returning it.
406     */
407    if (is_snan(a_cls)) {
408        return 0;
409    } else if (is_snan(b_cls)) {
410        return 1;
411    } else if (is_qnan(a_cls)) {
412        return 0;
413    } else {
414        return 1;
415    }
416#elif defined(TARGET_PPC) || defined(TARGET_M68K)
417    /* PowerPC propagation rules:
418     *  1. A if it sNaN or qNaN
419     *  2. B if it sNaN or qNaN
420     * A signaling NaN is always silenced before returning it.
421     */
422    /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
423     * 3.4 FLOATING-POINT INSTRUCTION DETAILS
424     * If either operand, but not both operands, of an operation is a
425     * nonsignaling NaN, then that NaN is returned as the result. If both
426     * operands are nonsignaling NaNs, then the destination operand
427     * nonsignaling NaN is returned as the result.
428     * If either operand to an operation is a signaling NaN (SNaN), then the
429     * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
430     * is set in the FPCR ENABLE byte, then the exception is taken and the
431     * destination is not modified. If the SNaN exception enable bit is not
432     * set, setting the SNaN bit in the operand to a one converts the SNaN to
433     * a nonsignaling NaN. The operation then continues as described in the
434     * preceding paragraph for nonsignaling NaNs.
435     */
436    if (is_nan(a_cls)) {
437        return 0;
438    } else {
439        return 1;
440    }
441#elif defined(TARGET_XTENSA)
442    /*
443     * Xtensa has two NaN propagation modes.
444     * Which one is active is controlled by float_status::use_first_nan.
445     */
446    if (status->use_first_nan) {
447        if (is_nan(a_cls)) {
448            return 0;
449        } else {
450            return 1;
451        }
452    } else {
453        if (is_nan(b_cls)) {
454            return 1;
455        } else {
456            return 0;
457        }
458    }
459#else
460    /* This implements x87 NaN propagation rules:
461     * SNaN + QNaN => return the QNaN
462     * two SNaNs => return the one with the larger significand, silenced
463     * two QNaNs => return the one with the larger significand
464     * SNaN and a non-NaN => return the SNaN, silenced
465     * QNaN and a non-NaN => return the QNaN
466     *
467     * If we get down to comparing significands and they are the same,
468     * return the NaN with the positive sign bit (if any).
469     */
470    if (is_snan(a_cls)) {
471        if (is_snan(b_cls)) {
472            return aIsLargerSignificand ? 0 : 1;
473        }
474        return is_qnan(b_cls) ? 1 : 0;
475    } else if (is_qnan(a_cls)) {
476        if (is_snan(b_cls) || !is_qnan(b_cls)) {
477            return 0;
478        } else {
479            return aIsLargerSignificand ? 0 : 1;
480        }
481    } else {
482        return 1;
483    }
484#endif
485}
486
487/*----------------------------------------------------------------------------
488| Select which NaN to propagate for a three-input operation.
489| For the moment we assume that no CPU needs the 'larger significand'
490| information.
491| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
492*----------------------------------------------------------------------------*/
493static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
494                         bool infzero, float_status *status)
495{
496#if defined(TARGET_ARM)
497    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
498     * the default NaN
499     */
500    if (infzero && is_qnan(c_cls)) {
501        float_raise(float_flag_invalid, status);
502        return 3;
503    }
504
505    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
506     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
507     */
508    if (is_snan(c_cls)) {
509        return 2;
510    } else if (is_snan(a_cls)) {
511        return 0;
512    } else if (is_snan(b_cls)) {
513        return 1;
514    } else if (is_qnan(c_cls)) {
515        return 2;
516    } else if (is_qnan(a_cls)) {
517        return 0;
518    } else {
519        return 1;
520    }
521#elif defined(TARGET_MIPS)
522    if (snan_bit_is_one(status)) {
523        /*
524         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
525         * case sets InvalidOp and returns the default NaN
526         */
527        if (infzero) {
528            float_raise(float_flag_invalid, status);
529            return 3;
530        }
531        /* Prefer sNaN over qNaN, in the a, b, c order. */
532        if (is_snan(a_cls)) {
533            return 0;
534        } else if (is_snan(b_cls)) {
535            return 1;
536        } else if (is_snan(c_cls)) {
537            return 2;
538        } else if (is_qnan(a_cls)) {
539            return 0;
540        } else if (is_qnan(b_cls)) {
541            return 1;
542        } else {
543            return 2;
544        }
545    } else {
546        /*
547         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
548         * case sets InvalidOp and returns the input value 'c'
549         */
550        if (infzero) {
551            float_raise(float_flag_invalid, status);
552            return 2;
553        }
554        /* Prefer sNaN over qNaN, in the c, a, b order. */
555        if (is_snan(c_cls)) {
556            return 2;
557        } else if (is_snan(a_cls)) {
558            return 0;
559        } else if (is_snan(b_cls)) {
560            return 1;
561        } else if (is_qnan(c_cls)) {
562            return 2;
563        } else if (is_qnan(a_cls)) {
564            return 0;
565        } else {
566            return 1;
567        }
568    }
569#elif defined(TARGET_PPC)
570    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
571     * to return an input NaN if we have one (ie c) rather than generating
572     * a default NaN
573     */
574    if (infzero) {
575        float_raise(float_flag_invalid, status);
576        return 2;
577    }
578
579    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
580     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
581     */
582    if (is_nan(a_cls)) {
583        return 0;
584    } else if (is_nan(c_cls)) {
585        return 2;
586    } else {
587        return 1;
588    }
589#elif defined(TARGET_XTENSA)
590    /*
591     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
592     * an input NaN if we have one (ie c).
593     */
594    if (infzero) {
595        float_raise(float_flag_invalid, status);
596        return 2;
597    }
598    if (status->use_first_nan) {
599        if (is_nan(a_cls)) {
600            return 0;
601        } else if (is_nan(b_cls)) {
602            return 1;
603        } else {
604            return 2;
605        }
606    } else {
607        if (is_nan(c_cls)) {
608            return 2;
609        } else if (is_nan(b_cls)) {
610            return 1;
611        } else {
612            return 0;
613        }
614    }
615#else
616    /* A default implementation: prefer a to b to c.
617     * This is unlikely to actually match any real implementation.
618     */
619    if (is_nan(a_cls)) {
620        return 0;
621    } else if (is_nan(b_cls)) {
622        return 1;
623    } else {
624        return 2;
625    }
626#endif
627}
628
629/*----------------------------------------------------------------------------
630| Takes two single-precision floating-point values `a' and `b', one of which
631| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
632| signaling NaN, the invalid exception is raised.
633*----------------------------------------------------------------------------*/
634
635static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
636{
637    bool aIsLargerSignificand;
638    uint32_t av, bv;
639    FloatClass a_cls, b_cls;
640
641    /* This is not complete, but is good enough for pickNaN.  */
642    a_cls = (!float32_is_any_nan(a)
643             ? float_class_normal
644             : float32_is_signaling_nan(a, status)
645             ? float_class_snan
646             : float_class_qnan);
647    b_cls = (!float32_is_any_nan(b)
648             ? float_class_normal
649             : float32_is_signaling_nan(b, status)
650             ? float_class_snan
651             : float_class_qnan);
652
653    av = float32_val(a);
654    bv = float32_val(b);
655
656    if (is_snan(a_cls) || is_snan(b_cls)) {
657        float_raise(float_flag_invalid, status);
658    }
659
660    if (status->default_nan_mode) {
661        return float32_default_nan(status);
662    }
663
664    if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
665        aIsLargerSignificand = 0;
666    } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
667        aIsLargerSignificand = 1;
668    } else {
669        aIsLargerSignificand = (av < bv) ? 1 : 0;
670    }
671
672    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
673        if (is_snan(b_cls)) {
674            return float32_silence_nan(b, status);
675        }
676        return b;
677    } else {
678        if (is_snan(a_cls)) {
679            return float32_silence_nan(a, status);
680        }
681        return a;
682    }
683}
684
685/*----------------------------------------------------------------------------
686| Returns 1 if the double-precision floating-point value `a' is a quiet
687| NaN; otherwise returns 0.
688*----------------------------------------------------------------------------*/
689
690bool float64_is_quiet_nan(float64 a_, float_status *status)
691{
692    if (no_signaling_nans(status)) {
693        return float64_is_any_nan(a_);
694    } else {
695        uint64_t a = float64_val(a_);
696        if (snan_bit_is_one(status)) {
697            return (((a >> 51) & 0xFFF) == 0xFFE)
698                && (a & 0x0007FFFFFFFFFFFFULL);
699        } else {
700            return ((a << 1) >= 0xFFF0000000000000ULL);
701        }
702    }
703}
704
705/*----------------------------------------------------------------------------
706| Returns 1 if the double-precision floating-point value `a' is a signaling
707| NaN; otherwise returns 0.
708*----------------------------------------------------------------------------*/
709
710bool float64_is_signaling_nan(float64 a_, float_status *status)
711{
712    if (no_signaling_nans(status)) {
713        return 0;
714    } else {
715        uint64_t a = float64_val(a_);
716        if (snan_bit_is_one(status)) {
717            return ((a << 1) >= 0xFFF0000000000000ULL);
718        } else {
719            return (((a >> 51) & 0xFFF) == 0xFFE)
720                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
721        }
722    }
723}
724
725/*----------------------------------------------------------------------------
726| Returns the result of converting the double-precision floating-point NaN
727| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
728| exception is raised.
729*----------------------------------------------------------------------------*/
730
731static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
732{
733    commonNaNT z;
734
735    if (float64_is_signaling_nan(a, status)) {
736        float_raise(float_flag_invalid, status);
737    }
738    z.sign = float64_val(a) >> 63;
739    z.low = 0;
740    z.high = float64_val(a) << 12;
741    return z;
742}
743
744/*----------------------------------------------------------------------------
745| Returns the result of converting the canonical NaN `a' to the double-
746| precision floating-point format.
747*----------------------------------------------------------------------------*/
748
749static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
750{
751    uint64_t mantissa = a.high >> 12;
752
753    if (status->default_nan_mode) {
754        return float64_default_nan(status);
755    }
756
757    if (mantissa) {
758        return make_float64(
759              (((uint64_t) a.sign) << 63)
760            | UINT64_C(0x7FF0000000000000)
761            | (a.high >> 12));
762    } else {
763        return float64_default_nan(status);
764    }
765}
766
767/*----------------------------------------------------------------------------
768| Takes two double-precision floating-point values `a' and `b', one of which
769| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
770| signaling NaN, the invalid exception is raised.
771*----------------------------------------------------------------------------*/
772
773static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
774{
775    bool aIsLargerSignificand;
776    uint64_t av, bv;
777    FloatClass a_cls, b_cls;
778
779    /* This is not complete, but is good enough for pickNaN.  */
780    a_cls = (!float64_is_any_nan(a)
781             ? float_class_normal
782             : float64_is_signaling_nan(a, status)
783             ? float_class_snan
784             : float_class_qnan);
785    b_cls = (!float64_is_any_nan(b)
786             ? float_class_normal
787             : float64_is_signaling_nan(b, status)
788             ? float_class_snan
789             : float_class_qnan);
790
791    av = float64_val(a);
792    bv = float64_val(b);
793
794    if (is_snan(a_cls) || is_snan(b_cls)) {
795        float_raise(float_flag_invalid, status);
796    }
797
798    if (status->default_nan_mode) {
799        return float64_default_nan(status);
800    }
801
802    if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
803        aIsLargerSignificand = 0;
804    } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
805        aIsLargerSignificand = 1;
806    } else {
807        aIsLargerSignificand = (av < bv) ? 1 : 0;
808    }
809
810    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
811        if (is_snan(b_cls)) {
812            return float64_silence_nan(b, status);
813        }
814        return b;
815    } else {
816        if (is_snan(a_cls)) {
817            return float64_silence_nan(a, status);
818        }
819        return a;
820    }
821}
822
823/*----------------------------------------------------------------------------
824| Returns 1 if the extended double-precision floating-point value `a' is a
825| quiet NaN; otherwise returns 0. This slightly differs from the same
826| function for other types as floatx80 has an explicit bit.
827*----------------------------------------------------------------------------*/
828
829int floatx80_is_quiet_nan(floatx80 a, float_status *status)
830{
831    if (no_signaling_nans(status)) {
832        return floatx80_is_any_nan(a);
833    } else {
834        if (snan_bit_is_one(status)) {
835            uint64_t aLow;
836
837            aLow = a.low & ~0x4000000000000000ULL;
838            return ((a.high & 0x7FFF) == 0x7FFF)
839                && (aLow << 1)
840                && (a.low == aLow);
841        } else {
842            return ((a.high & 0x7FFF) == 0x7FFF)
843                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
844        }
845    }
846}
847
848/*----------------------------------------------------------------------------
849| Returns 1 if the extended double-precision floating-point value `a' is a
850| signaling NaN; otherwise returns 0. This slightly differs from the same
851| function for other types as floatx80 has an explicit bit.
852*----------------------------------------------------------------------------*/
853
854int floatx80_is_signaling_nan(floatx80 a, float_status *status)
855{
856    if (no_signaling_nans(status)) {
857        return 0;
858    } else {
859        if (snan_bit_is_one(status)) {
860            return ((a.high & 0x7FFF) == 0x7FFF)
861                && ((a.low << 1) >= 0x8000000000000000ULL);
862        } else {
863            uint64_t aLow;
864
865            aLow = a.low & ~UINT64_C(0x4000000000000000);
866            return ((a.high & 0x7FFF) == 0x7FFF)
867                && (uint64_t)(aLow << 1)
868                && (a.low == aLow);
869        }
870    }
871}
872
873/*----------------------------------------------------------------------------
874| Returns a quiet NaN from a signalling NaN for the extended double-precision
875| floating point value `a'.
876*----------------------------------------------------------------------------*/
877
878floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
879{
880    /* None of the targets that have snan_bit_is_one use floatx80.  */
881    assert(!snan_bit_is_one(status));
882    a.low |= UINT64_C(0xC000000000000000);
883    return a;
884}
885
886/*----------------------------------------------------------------------------
887| Returns the result of converting the extended double-precision floating-
888| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
889| invalid exception is raised.
890*----------------------------------------------------------------------------*/
891
892static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
893{
894    floatx80 dflt;
895    commonNaNT z;
896
897    if (floatx80_is_signaling_nan(a, status)) {
898        float_raise(float_flag_invalid, status);
899    }
900    if (a.low >> 63) {
901        z.sign = a.high >> 15;
902        z.low = 0;
903        z.high = a.low << 1;
904    } else {
905        dflt = floatx80_default_nan(status);
906        z.sign = dflt.high >> 15;
907        z.low = 0;
908        z.high = dflt.low << 1;
909    }
910    return z;
911}
912
913/*----------------------------------------------------------------------------
914| Returns the result of converting the canonical NaN `a' to the extended
915| double-precision floating-point format.
916*----------------------------------------------------------------------------*/
917
918static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
919{
920    floatx80 z;
921
922    if (status->default_nan_mode) {
923        return floatx80_default_nan(status);
924    }
925
926    if (a.high >> 1) {
927        z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
928        z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
929    } else {
930        z = floatx80_default_nan(status);
931    }
932    return z;
933}
934
935/*----------------------------------------------------------------------------
936| Takes two extended double-precision floating-point values `a' and `b', one
937| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
938| `b' is a signaling NaN, the invalid exception is raised.
939*----------------------------------------------------------------------------*/
940
941floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
942{
943    bool aIsLargerSignificand;
944    FloatClass a_cls, b_cls;
945
946    /* This is not complete, but is good enough for pickNaN.  */
947    a_cls = (!floatx80_is_any_nan(a)
948             ? float_class_normal
949             : floatx80_is_signaling_nan(a, status)
950             ? float_class_snan
951             : float_class_qnan);
952    b_cls = (!floatx80_is_any_nan(b)
953             ? float_class_normal
954             : floatx80_is_signaling_nan(b, status)
955             ? float_class_snan
956             : float_class_qnan);
957
958    if (is_snan(a_cls) || is_snan(b_cls)) {
959        float_raise(float_flag_invalid, status);
960    }
961
962    if (status->default_nan_mode) {
963        return floatx80_default_nan(status);
964    }
965
966    if (a.low < b.low) {
967        aIsLargerSignificand = 0;
968    } else if (b.low < a.low) {
969        aIsLargerSignificand = 1;
970    } else {
971        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
972    }
973
974    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
975        if (is_snan(b_cls)) {
976            return floatx80_silence_nan(b, status);
977        }
978        return b;
979    } else {
980        if (is_snan(a_cls)) {
981            return floatx80_silence_nan(a, status);
982        }
983        return a;
984    }
985}
986
987/*----------------------------------------------------------------------------
988| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
989| NaN; otherwise returns 0.
990*----------------------------------------------------------------------------*/
991
992bool float128_is_quiet_nan(float128 a, float_status *status)
993{
994    if (no_signaling_nans(status)) {
995        return float128_is_any_nan(a);
996    } else {
997        if (snan_bit_is_one(status)) {
998            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
999                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1000        } else {
1001            return ((a.high << 1) >= 0xFFFF000000000000ULL)
1002                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1003        }
1004    }
1005}
1006
1007/*----------------------------------------------------------------------------
1008| Returns 1 if the quadruple-precision floating-point value `a' is a
1009| signaling NaN; otherwise returns 0.
1010*----------------------------------------------------------------------------*/
1011
1012bool float128_is_signaling_nan(float128 a, float_status *status)
1013{
1014    if (no_signaling_nans(status)) {
1015        return 0;
1016    } else {
1017        if (snan_bit_is_one(status)) {
1018            return ((a.high << 1) >= 0xFFFF000000000000ULL)
1019                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1020        } else {
1021            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1022                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
1023        }
1024    }
1025}
1026
1027/*----------------------------------------------------------------------------
1028| Returns a quiet NaN from a signalling NaN for the quadruple-precision
1029| floating point value `a'.
1030*----------------------------------------------------------------------------*/
1031
1032float128 float128_silence_nan(float128 a, float_status *status)
1033{
1034    if (no_signaling_nans(status)) {
1035        g_assert_not_reached();
1036    } else {
1037        if (snan_bit_is_one(status)) {
1038            return float128_default_nan(status);
1039        } else {
1040            a.high |= UINT64_C(0x0000800000000000);
1041            return a;
1042        }
1043    }
1044}
1045
1046/*----------------------------------------------------------------------------
1047| Returns the result of converting the quadruple-precision floating-point NaN
1048| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
1049| exception is raised.
1050*----------------------------------------------------------------------------*/
1051
1052static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1053{
1054    commonNaNT z;
1055
1056    if (float128_is_signaling_nan(a, status)) {
1057        float_raise(float_flag_invalid, status);
1058    }
1059    z.sign = a.high >> 63;
1060    shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1061    return z;
1062}
1063
1064/*----------------------------------------------------------------------------
1065| Returns the result of converting the canonical NaN `a' to the quadruple-
1066| precision floating-point format.
1067*----------------------------------------------------------------------------*/
1068
1069static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1070{
1071    float128 z;
1072
1073    if (status->default_nan_mode) {
1074        return float128_default_nan(status);
1075    }
1076
1077    shift128Right(a.high, a.low, 16, &z.high, &z.low);
1078    z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1079    return z;
1080}
1081
1082/*----------------------------------------------------------------------------
1083| Takes two quadruple-precision floating-point values `a' and `b', one of
1084| which is a NaN, and returns the appropriate NaN result.  If either `a' or
1085| `b' is a signaling NaN, the invalid exception is raised.
1086*----------------------------------------------------------------------------*/
1087
1088static float128 propagateFloat128NaN(float128 a, float128 b,
1089                                     float_status *status)
1090{
1091    bool aIsLargerSignificand;
1092    FloatClass a_cls, b_cls;
1093
1094    /* This is not complete, but is good enough for pickNaN.  */
1095    a_cls = (!float128_is_any_nan(a)
1096             ? float_class_normal
1097             : float128_is_signaling_nan(a, status)
1098             ? float_class_snan
1099             : float_class_qnan);
1100    b_cls = (!float128_is_any_nan(b)
1101             ? float_class_normal
1102             : float128_is_signaling_nan(b, status)
1103             ? float_class_snan
1104             : float_class_qnan);
1105
1106    if (is_snan(a_cls) || is_snan(b_cls)) {
1107        float_raise(float_flag_invalid, status);
1108    }
1109
1110    if (status->default_nan_mode) {
1111        return float128_default_nan(status);
1112    }
1113
1114    if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1115        aIsLargerSignificand = 0;
1116    } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1117        aIsLargerSignificand = 1;
1118    } else {
1119        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1120    }
1121
1122    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1123        if (is_snan(b_cls)) {
1124            return float128_silence_nan(b, status);
1125        }
1126        return b;
1127    } else {
1128        if (is_snan(a_cls)) {
1129            return float128_silence_nan(a, status);
1130        }
1131        return a;
1132    }
1133}
1134