1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18/*
19===============================================================================
20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21Arithmetic Package, Release 2a.
22
23Written by John R. Hauser.  This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704.  Funding was partially provided by the
26National Science Foundation under grant MIP-9311980.  The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31arithmetic/SoftFloat.html'.
32
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39Derivative works are acceptable, even for commercial purposes, so long as
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
43
44===============================================================================
45*/
46
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82/*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86static inline bool no_signaling_nans(float_status *status)
87{
88#if defined(TARGET_XTENSA)
89    return status->no_signaling_nans;
90#else
91    return false;
92#endif
93}
94
95/* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero.  MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102static inline bool snan_bit_is_one(float_status *status)
103{
104#if defined(TARGET_MIPS)
105    return status->snan_bit_is_one;
106#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107    return 1;
108#else
109    return 0;
110#endif
111}
112
113/*----------------------------------------------------------------------------
114| For the deconstructed floating-point with fraction FRAC, return true
115| if the fraction represents a signalling NaN; otherwise false.
116*----------------------------------------------------------------------------*/
117
118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119{
120    if (no_signaling_nans(status)) {
121        return false;
122    } else {
123        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124        return msb == snan_bit_is_one(status);
125    }
126}
127
128/*----------------------------------------------------------------------------
129| The pattern for a default generated deconstructed floating-point NaN.
130*----------------------------------------------------------------------------*/
131
132static FloatParts parts_default_nan(float_status *status)
133{
134    bool sign = 0;
135    uint64_t frac;
136
137#if defined(TARGET_SPARC) || defined(TARGET_M68K)
138    /* !snan_bit_is_one, set all bits */
139    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141    || defined(TARGET_MICROBLAZE)
142    /* !snan_bit_is_one, set sign and msb */
143    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144    sign = 1;
145#elif defined(TARGET_HPPA)
146    /* snan_bit_is_one, set msb-1.  */
147    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148#elif defined(TARGET_HEXAGON)
149    sign = 1;
150    frac = ~0ULL;
151#else
152    /*
153     * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154     * S390, SH4, TriCore, and Xtensa.  Our other supported targets,
155     * CRIS, Nios2, and Tile, do not have floating-point.
156     */
157    if (snan_bit_is_one(status)) {
158        /* set all bits other than msb */
159        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160    } else {
161        /* set msb */
162        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163    }
164#endif
165
166    return (FloatParts) {
167        .cls = float_class_qnan,
168        .sign = sign,
169        .exp = INT_MAX,
170        .frac = frac
171    };
172}
173
174/*----------------------------------------------------------------------------
175| Returns a quiet NaN from a signalling NaN for the deconstructed
176| floating-point parts.
177*----------------------------------------------------------------------------*/
178
179static FloatParts parts_silence_nan(FloatParts a, float_status *status)
180{
181    g_assert(!no_signaling_nans(status));
182#if defined(TARGET_HPPA)
183    a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
184    a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
185#else
186    if (snan_bit_is_one(status)) {
187        return parts_default_nan(status);
188    } else {
189        a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
190    }
191#endif
192    a.cls = float_class_qnan;
193    return a;
194}
195
196/*----------------------------------------------------------------------------
197| The pattern for a default generated extended double-precision NaN.
198*----------------------------------------------------------------------------*/
199floatx80 floatx80_default_nan(float_status *status)
200{
201    floatx80 r;
202
203    /* None of the targets that have snan_bit_is_one use floatx80.  */
204    assert(!snan_bit_is_one(status));
205#if defined(TARGET_M68K)
206    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
207    r.high = 0x7FFF;
208#else
209    /* X86 */
210    r.low = UINT64_C(0xC000000000000000);
211    r.high = 0xFFFF;
212#endif
213    return r;
214}
215
216/*----------------------------------------------------------------------------
217| The pattern for a default generated extended double-precision inf.
218*----------------------------------------------------------------------------*/
219
220#define floatx80_infinity_high 0x7FFF
221#if defined(TARGET_M68K)
222#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
223#else
224#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
225#endif
226
227const floatx80 floatx80_infinity
228    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
229
230/*----------------------------------------------------------------------------
231| Raises the exceptions specified by `flags'.  Floating-point traps can be
232| defined here if desired.  It is currently not possible for such a trap
233| to substitute a result value.  If traps are not implemented, this routine
234| should be simply `float_exception_flags |= flags;'.
235*----------------------------------------------------------------------------*/
236
237void float_raise(uint8_t flags, float_status *status)
238{
239    status->float_exception_flags |= flags;
240}
241
242/*----------------------------------------------------------------------------
243| Internal canonical NaN format.
244*----------------------------------------------------------------------------*/
245typedef struct {
246    bool sign;
247    uint64_t high, low;
248} commonNaNT;
249
250/*----------------------------------------------------------------------------
251| Returns 1 if the half-precision floating-point value `a' is a quiet
252| NaN; otherwise returns 0.
253*----------------------------------------------------------------------------*/
254
255bool float16_is_quiet_nan(float16 a_, float_status *status)
256{
257    if (no_signaling_nans(status)) {
258        return float16_is_any_nan(a_);
259    } else {
260        uint16_t a = float16_val(a_);
261        if (snan_bit_is_one(status)) {
262            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
263        } else {
264
265            return ((a >> 9) & 0x3F) == 0x3F;
266        }
267    }
268}
269
270/*----------------------------------------------------------------------------
271| Returns 1 if the bfloat16 value `a' is a quiet
272| NaN; otherwise returns 0.
273*----------------------------------------------------------------------------*/
274
275bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
276{
277    if (no_signaling_nans(status)) {
278        return bfloat16_is_any_nan(a_);
279    } else {
280        uint16_t a = a_;
281        if (snan_bit_is_one(status)) {
282            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
283        } else {
284            return ((a >> 6) & 0x1FF) == 0x1FF;
285        }
286    }
287}
288
289/*----------------------------------------------------------------------------
290| Returns 1 if the half-precision floating-point value `a' is a signaling
291| NaN; otherwise returns 0.
292*----------------------------------------------------------------------------*/
293
294bool float16_is_signaling_nan(float16 a_, float_status *status)
295{
296    if (no_signaling_nans(status)) {
297        return 0;
298    } else {
299        uint16_t a = float16_val(a_);
300        if (snan_bit_is_one(status)) {
301            return ((a >> 9) & 0x3F) == 0x3F;
302        } else {
303            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
304        }
305    }
306}
307
308/*----------------------------------------------------------------------------
309| Returns 1 if the bfloat16 value `a' is a signaling
310| NaN; otherwise returns 0.
311*----------------------------------------------------------------------------*/
312
313bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
314{
315    if (no_signaling_nans(status)) {
316        return 0;
317    } else {
318        uint16_t a = a_;
319        if (snan_bit_is_one(status)) {
320            return ((a >> 6) & 0x1FF) == 0x1FF;
321        } else {
322            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
323        }
324    }
325}
326
327/*----------------------------------------------------------------------------
328| Returns 1 if the single-precision floating-point value `a' is a quiet
329| NaN; otherwise returns 0.
330*----------------------------------------------------------------------------*/
331
332bool float32_is_quiet_nan(float32 a_, float_status *status)
333{
334    if (no_signaling_nans(status)) {
335        return float32_is_any_nan(a_);
336    } else {
337        uint32_t a = float32_val(a_);
338        if (snan_bit_is_one(status)) {
339            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
340        } else {
341            return ((uint32_t)(a << 1) >= 0xFF800000);
342        }
343    }
344}
345
346/*----------------------------------------------------------------------------
347| Returns 1 if the single-precision floating-point value `a' is a signaling
348| NaN; otherwise returns 0.
349*----------------------------------------------------------------------------*/
350
351bool float32_is_signaling_nan(float32 a_, float_status *status)
352{
353    if (no_signaling_nans(status)) {
354        return 0;
355    } else {
356        uint32_t a = float32_val(a_);
357        if (snan_bit_is_one(status)) {
358            return ((uint32_t)(a << 1) >= 0xFF800000);
359        } else {
360            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
361        }
362    }
363}
364
365/*----------------------------------------------------------------------------
366| Returns the result of converting the single-precision floating-point NaN
367| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
368| exception is raised.
369*----------------------------------------------------------------------------*/
370
371static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
372{
373    commonNaNT z;
374
375    if (float32_is_signaling_nan(a, status)) {
376        float_raise(float_flag_invalid, status);
377    }
378    z.sign = float32_val(a) >> 31;
379    z.low = 0;
380    z.high = ((uint64_t)float32_val(a)) << 41;
381    return z;
382}
383
384/*----------------------------------------------------------------------------
385| Returns the result of converting the canonical NaN `a' to the single-
386| precision floating-point format.
387*----------------------------------------------------------------------------*/
388
389static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
390{
391    uint32_t mantissa = a.high >> 41;
392
393    if (status->default_nan_mode) {
394        return float32_default_nan(status);
395    }
396
397    if (mantissa) {
398        return make_float32(
399            (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
400    } else {
401        return float32_default_nan(status);
402    }
403}
404
405/*----------------------------------------------------------------------------
406| Select which NaN to propagate for a two-input operation.
407| IEEE754 doesn't specify all the details of this, so the
408| algorithm is target-specific.
409| The routine is passed various bits of information about the
410| two NaNs and should return 0 to select NaN a and 1 for NaN b.
411| Note that signalling NaNs are always squashed to quiet NaNs
412| by the caller, by calling floatXX_silence_nan() before
413| returning them.
414|
415| aIsLargerSignificand is only valid if both a and b are NaNs
416| of some kind, and is true if a has the larger significand,
417| or if both a and b have the same significand but a is
418| positive but b is negative. It is only needed for the x87
419| tie-break rule.
420*----------------------------------------------------------------------------*/
421
422static int pickNaN(FloatClass a_cls, FloatClass b_cls,
423                   bool aIsLargerSignificand, float_status *status)
424{
425#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
426    /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
427     * the first of:
428     *  1. A if it is signaling
429     *  2. B if it is signaling
430     *  3. A (quiet)
431     *  4. B (quiet)
432     * A signaling NaN is always quietened before returning it.
433     */
434    /* According to MIPS specifications, if one of the two operands is
435     * a sNaN, a new qNaN has to be generated. This is done in
436     * floatXX_silence_nan(). For qNaN inputs the specifications
437     * says: "When possible, this QNaN result is one of the operand QNaN
438     * values." In practice it seems that most implementations choose
439     * the first operand if both operands are qNaN. In short this gives
440     * the following rules:
441     *  1. A if it is signaling
442     *  2. B if it is signaling
443     *  3. A (quiet)
444     *  4. B (quiet)
445     * A signaling NaN is always silenced before returning it.
446     */
447    if (is_snan(a_cls)) {
448        return 0;
449    } else if (is_snan(b_cls)) {
450        return 1;
451    } else if (is_qnan(a_cls)) {
452        return 0;
453    } else {
454        return 1;
455    }
456#elif defined(TARGET_PPC) || defined(TARGET_M68K)
457    /* PowerPC propagation rules:
458     *  1. A if it sNaN or qNaN
459     *  2. B if it sNaN or qNaN
460     * A signaling NaN is always silenced before returning it.
461     */
462    /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
463     * 3.4 FLOATING-POINT INSTRUCTION DETAILS
464     * If either operand, but not both operands, of an operation is a
465     * nonsignaling NaN, then that NaN is returned as the result. If both
466     * operands are nonsignaling NaNs, then the destination operand
467     * nonsignaling NaN is returned as the result.
468     * If either operand to an operation is a signaling NaN (SNaN), then the
469     * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
470     * is set in the FPCR ENABLE byte, then the exception is taken and the
471     * destination is not modified. If the SNaN exception enable bit is not
472     * set, setting the SNaN bit in the operand to a one converts the SNaN to
473     * a nonsignaling NaN. The operation then continues as described in the
474     * preceding paragraph for nonsignaling NaNs.
475     */
476    if (is_nan(a_cls)) {
477        return 0;
478    } else {
479        return 1;
480    }
481#elif defined(TARGET_XTENSA)
482    /*
483     * Xtensa has two NaN propagation modes.
484     * Which one is active is controlled by float_status::use_first_nan.
485     */
486    if (status->use_first_nan) {
487        if (is_nan(a_cls)) {
488            return 0;
489        } else {
490            return 1;
491        }
492    } else {
493        if (is_nan(b_cls)) {
494            return 1;
495        } else {
496            return 0;
497        }
498    }
499#else
500    /* This implements x87 NaN propagation rules:
501     * SNaN + QNaN => return the QNaN
502     * two SNaNs => return the one with the larger significand, silenced
503     * two QNaNs => return the one with the larger significand
504     * SNaN and a non-NaN => return the SNaN, silenced
505     * QNaN and a non-NaN => return the QNaN
506     *
507     * If we get down to comparing significands and they are the same,
508     * return the NaN with the positive sign bit (if any).
509     */
510    if (is_snan(a_cls)) {
511        if (is_snan(b_cls)) {
512            return aIsLargerSignificand ? 0 : 1;
513        }
514        return is_qnan(b_cls) ? 1 : 0;
515    } else if (is_qnan(a_cls)) {
516        if (is_snan(b_cls) || !is_qnan(b_cls)) {
517            return 0;
518        } else {
519            return aIsLargerSignificand ? 0 : 1;
520        }
521    } else {
522        return 1;
523    }
524#endif
525}
526
527/*----------------------------------------------------------------------------
528| Select which NaN to propagate for a three-input operation.
529| For the moment we assume that no CPU needs the 'larger significand'
530| information.
531| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
532*----------------------------------------------------------------------------*/
533static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
534                         bool infzero, float_status *status)
535{
536#if defined(TARGET_ARM)
537    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
538     * the default NaN
539     */
540    if (infzero && is_qnan(c_cls)) {
541        float_raise(float_flag_invalid, status);
542        return 3;
543    }
544
545    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
546     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
547     */
548    if (is_snan(c_cls)) {
549        return 2;
550    } else if (is_snan(a_cls)) {
551        return 0;
552    } else if (is_snan(b_cls)) {
553        return 1;
554    } else if (is_qnan(c_cls)) {
555        return 2;
556    } else if (is_qnan(a_cls)) {
557        return 0;
558    } else {
559        return 1;
560    }
561#elif defined(TARGET_MIPS)
562    if (snan_bit_is_one(status)) {
563        /*
564         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
565         * case sets InvalidOp and returns the default NaN
566         */
567        if (infzero) {
568            float_raise(float_flag_invalid, status);
569            return 3;
570        }
571        /* Prefer sNaN over qNaN, in the a, b, c order. */
572        if (is_snan(a_cls)) {
573            return 0;
574        } else if (is_snan(b_cls)) {
575            return 1;
576        } else if (is_snan(c_cls)) {
577            return 2;
578        } else if (is_qnan(a_cls)) {
579            return 0;
580        } else if (is_qnan(b_cls)) {
581            return 1;
582        } else {
583            return 2;
584        }
585    } else {
586        /*
587         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
588         * case sets InvalidOp and returns the input value 'c'
589         */
590        if (infzero) {
591            float_raise(float_flag_invalid, status);
592            return 2;
593        }
594        /* Prefer sNaN over qNaN, in the c, a, b order. */
595        if (is_snan(c_cls)) {
596            return 2;
597        } else if (is_snan(a_cls)) {
598            return 0;
599        } else if (is_snan(b_cls)) {
600            return 1;
601        } else if (is_qnan(c_cls)) {
602            return 2;
603        } else if (is_qnan(a_cls)) {
604            return 0;
605        } else {
606            return 1;
607        }
608    }
609#elif defined(TARGET_PPC)
610    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
611     * to return an input NaN if we have one (ie c) rather than generating
612     * a default NaN
613     */
614    if (infzero) {
615        float_raise(float_flag_invalid, status);
616        return 2;
617    }
618
619    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
620     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
621     */
622    if (is_nan(a_cls)) {
623        return 0;
624    } else if (is_nan(c_cls)) {
625        return 2;
626    } else {
627        return 1;
628    }
629#elif defined(TARGET_RISCV)
630    /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
631    if (infzero) {
632        float_raise(float_flag_invalid, status);
633    }
634    return 3; /* default NaN */
635#elif defined(TARGET_XTENSA)
636    /*
637     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
638     * an input NaN if we have one (ie c).
639     */
640    if (infzero) {
641        float_raise(float_flag_invalid, status);
642        return 2;
643    }
644    if (status->use_first_nan) {
645        if (is_nan(a_cls)) {
646            return 0;
647        } else if (is_nan(b_cls)) {
648            return 1;
649        } else {
650            return 2;
651        }
652    } else {
653        if (is_nan(c_cls)) {
654            return 2;
655        } else if (is_nan(b_cls)) {
656            return 1;
657        } else {
658            return 0;
659        }
660    }
661#else
662    /* A default implementation: prefer a to b to c.
663     * This is unlikely to actually match any real implementation.
664     */
665    if (is_nan(a_cls)) {
666        return 0;
667    } else if (is_nan(b_cls)) {
668        return 1;
669    } else {
670        return 2;
671    }
672#endif
673}
674
675/*----------------------------------------------------------------------------
676| Takes two single-precision floating-point values `a' and `b', one of which
677| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
678| signaling NaN, the invalid exception is raised.
679*----------------------------------------------------------------------------*/
680
681static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
682{
683    bool aIsLargerSignificand;
684    uint32_t av, bv;
685    FloatClass a_cls, b_cls;
686
687    /* This is not complete, but is good enough for pickNaN.  */
688    a_cls = (!float32_is_any_nan(a)
689             ? float_class_normal
690             : float32_is_signaling_nan(a, status)
691             ? float_class_snan
692             : float_class_qnan);
693    b_cls = (!float32_is_any_nan(b)
694             ? float_class_normal
695             : float32_is_signaling_nan(b, status)
696             ? float_class_snan
697             : float_class_qnan);
698
699    av = float32_val(a);
700    bv = float32_val(b);
701
702    if (is_snan(a_cls) || is_snan(b_cls)) {
703        float_raise(float_flag_invalid, status);
704    }
705
706    if (status->default_nan_mode) {
707        return float32_default_nan(status);
708    }
709
710    if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
711        aIsLargerSignificand = 0;
712    } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
713        aIsLargerSignificand = 1;
714    } else {
715        aIsLargerSignificand = (av < bv) ? 1 : 0;
716    }
717
718    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
719        if (is_snan(b_cls)) {
720            return float32_silence_nan(b, status);
721        }
722        return b;
723    } else {
724        if (is_snan(a_cls)) {
725            return float32_silence_nan(a, status);
726        }
727        return a;
728    }
729}
730
731/*----------------------------------------------------------------------------
732| Returns 1 if the double-precision floating-point value `a' is a quiet
733| NaN; otherwise returns 0.
734*----------------------------------------------------------------------------*/
735
736bool float64_is_quiet_nan(float64 a_, float_status *status)
737{
738    if (no_signaling_nans(status)) {
739        return float64_is_any_nan(a_);
740    } else {
741        uint64_t a = float64_val(a_);
742        if (snan_bit_is_one(status)) {
743            return (((a >> 51) & 0xFFF) == 0xFFE)
744                && (a & 0x0007FFFFFFFFFFFFULL);
745        } else {
746            return ((a << 1) >= 0xFFF0000000000000ULL);
747        }
748    }
749}
750
751/*----------------------------------------------------------------------------
752| Returns 1 if the double-precision floating-point value `a' is a signaling
753| NaN; otherwise returns 0.
754*----------------------------------------------------------------------------*/
755
756bool float64_is_signaling_nan(float64 a_, float_status *status)
757{
758    if (no_signaling_nans(status)) {
759        return 0;
760    } else {
761        uint64_t a = float64_val(a_);
762        if (snan_bit_is_one(status)) {
763            return ((a << 1) >= 0xFFF0000000000000ULL);
764        } else {
765            return (((a >> 51) & 0xFFF) == 0xFFE)
766                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
767        }
768    }
769}
770
771/*----------------------------------------------------------------------------
772| Returns the result of converting the double-precision floating-point NaN
773| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
774| exception is raised.
775*----------------------------------------------------------------------------*/
776
777static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
778{
779    commonNaNT z;
780
781    if (float64_is_signaling_nan(a, status)) {
782        float_raise(float_flag_invalid, status);
783    }
784    z.sign = float64_val(a) >> 63;
785    z.low = 0;
786    z.high = float64_val(a) << 12;
787    return z;
788}
789
790/*----------------------------------------------------------------------------
791| Returns the result of converting the canonical NaN `a' to the double-
792| precision floating-point format.
793*----------------------------------------------------------------------------*/
794
795static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
796{
797    uint64_t mantissa = a.high >> 12;
798
799    if (status->default_nan_mode) {
800        return float64_default_nan(status);
801    }
802
803    if (mantissa) {
804        return make_float64(
805              (((uint64_t) a.sign) << 63)
806            | UINT64_C(0x7FF0000000000000)
807            | (a.high >> 12));
808    } else {
809        return float64_default_nan(status);
810    }
811}
812
813/*----------------------------------------------------------------------------
814| Takes two double-precision floating-point values `a' and `b', one of which
815| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
816| signaling NaN, the invalid exception is raised.
817*----------------------------------------------------------------------------*/
818
819static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
820{
821    bool aIsLargerSignificand;
822    uint64_t av, bv;
823    FloatClass a_cls, b_cls;
824
825    /* This is not complete, but is good enough for pickNaN.  */
826    a_cls = (!float64_is_any_nan(a)
827             ? float_class_normal
828             : float64_is_signaling_nan(a, status)
829             ? float_class_snan
830             : float_class_qnan);
831    b_cls = (!float64_is_any_nan(b)
832             ? float_class_normal
833             : float64_is_signaling_nan(b, status)
834             ? float_class_snan
835             : float_class_qnan);
836
837    av = float64_val(a);
838    bv = float64_val(b);
839
840    if (is_snan(a_cls) || is_snan(b_cls)) {
841        float_raise(float_flag_invalid, status);
842    }
843
844    if (status->default_nan_mode) {
845        return float64_default_nan(status);
846    }
847
848    if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
849        aIsLargerSignificand = 0;
850    } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
851        aIsLargerSignificand = 1;
852    } else {
853        aIsLargerSignificand = (av < bv) ? 1 : 0;
854    }
855
856    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
857        if (is_snan(b_cls)) {
858            return float64_silence_nan(b, status);
859        }
860        return b;
861    } else {
862        if (is_snan(a_cls)) {
863            return float64_silence_nan(a, status);
864        }
865        return a;
866    }
867}
868
869/*----------------------------------------------------------------------------
870| Returns 1 if the extended double-precision floating-point value `a' is a
871| quiet NaN; otherwise returns 0. This slightly differs from the same
872| function for other types as floatx80 has an explicit bit.
873*----------------------------------------------------------------------------*/
874
875int floatx80_is_quiet_nan(floatx80 a, float_status *status)
876{
877    if (no_signaling_nans(status)) {
878        return floatx80_is_any_nan(a);
879    } else {
880        if (snan_bit_is_one(status)) {
881            uint64_t aLow;
882
883            aLow = a.low & ~0x4000000000000000ULL;
884            return ((a.high & 0x7FFF) == 0x7FFF)
885                && (aLow << 1)
886                && (a.low == aLow);
887        } else {
888            return ((a.high & 0x7FFF) == 0x7FFF)
889                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
890        }
891    }
892}
893
894/*----------------------------------------------------------------------------
895| Returns 1 if the extended double-precision floating-point value `a' is a
896| signaling NaN; otherwise returns 0. This slightly differs from the same
897| function for other types as floatx80 has an explicit bit.
898*----------------------------------------------------------------------------*/
899
900int floatx80_is_signaling_nan(floatx80 a, float_status *status)
901{
902    if (no_signaling_nans(status)) {
903        return 0;
904    } else {
905        if (snan_bit_is_one(status)) {
906            return ((a.high & 0x7FFF) == 0x7FFF)
907                && ((a.low << 1) >= 0x8000000000000000ULL);
908        } else {
909            uint64_t aLow;
910
911            aLow = a.low & ~UINT64_C(0x4000000000000000);
912            return ((a.high & 0x7FFF) == 0x7FFF)
913                && (uint64_t)(aLow << 1)
914                && (a.low == aLow);
915        }
916    }
917}
918
919/*----------------------------------------------------------------------------
920| Returns a quiet NaN from a signalling NaN for the extended double-precision
921| floating point value `a'.
922*----------------------------------------------------------------------------*/
923
924floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
925{
926    /* None of the targets that have snan_bit_is_one use floatx80.  */
927    assert(!snan_bit_is_one(status));
928    a.low |= UINT64_C(0xC000000000000000);
929    return a;
930}
931
932/*----------------------------------------------------------------------------
933| Returns the result of converting the extended double-precision floating-
934| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
935| invalid exception is raised.
936*----------------------------------------------------------------------------*/
937
938static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
939{
940    floatx80 dflt;
941    commonNaNT z;
942
943    if (floatx80_is_signaling_nan(a, status)) {
944        float_raise(float_flag_invalid, status);
945    }
946    if (a.low >> 63) {
947        z.sign = a.high >> 15;
948        z.low = 0;
949        z.high = a.low << 1;
950    } else {
951        dflt = floatx80_default_nan(status);
952        z.sign = dflt.high >> 15;
953        z.low = 0;
954        z.high = dflt.low << 1;
955    }
956    return z;
957}
958
959/*----------------------------------------------------------------------------
960| Returns the result of converting the canonical NaN `a' to the extended
961| double-precision floating-point format.
962*----------------------------------------------------------------------------*/
963
964static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
965{
966    floatx80 z;
967
968    if (status->default_nan_mode) {
969        return floatx80_default_nan(status);
970    }
971
972    if (a.high >> 1) {
973        z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
974        z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
975    } else {
976        z = floatx80_default_nan(status);
977    }
978    return z;
979}
980
981/*----------------------------------------------------------------------------
982| Takes two extended double-precision floating-point values `a' and `b', one
983| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
984| `b' is a signaling NaN, the invalid exception is raised.
985*----------------------------------------------------------------------------*/
986
987floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
988{
989    bool aIsLargerSignificand;
990    FloatClass a_cls, b_cls;
991
992    /* This is not complete, but is good enough for pickNaN.  */
993    a_cls = (!floatx80_is_any_nan(a)
994             ? float_class_normal
995             : floatx80_is_signaling_nan(a, status)
996             ? float_class_snan
997             : float_class_qnan);
998    b_cls = (!floatx80_is_any_nan(b)
999             ? float_class_normal
1000             : floatx80_is_signaling_nan(b, status)
1001             ? float_class_snan
1002             : float_class_qnan);
1003
1004    if (is_snan(a_cls) || is_snan(b_cls)) {
1005        float_raise(float_flag_invalid, status);
1006    }
1007
1008    if (status->default_nan_mode) {
1009        return floatx80_default_nan(status);
1010    }
1011
1012    if (a.low < b.low) {
1013        aIsLargerSignificand = 0;
1014    } else if (b.low < a.low) {
1015        aIsLargerSignificand = 1;
1016    } else {
1017        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1018    }
1019
1020    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1021        if (is_snan(b_cls)) {
1022            return floatx80_silence_nan(b, status);
1023        }
1024        return b;
1025    } else {
1026        if (is_snan(a_cls)) {
1027            return floatx80_silence_nan(a, status);
1028        }
1029        return a;
1030    }
1031}
1032
1033/*----------------------------------------------------------------------------
1034| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1035| NaN; otherwise returns 0.
1036*----------------------------------------------------------------------------*/
1037
1038bool float128_is_quiet_nan(float128 a, float_status *status)
1039{
1040    if (no_signaling_nans(status)) {
1041        return float128_is_any_nan(a);
1042    } else {
1043        if (snan_bit_is_one(status)) {
1044            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1045                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1046        } else {
1047            return ((a.high << 1) >= 0xFFFF000000000000ULL)
1048                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1049        }
1050    }
1051}
1052
1053/*----------------------------------------------------------------------------
1054| Returns 1 if the quadruple-precision floating-point value `a' is a
1055| signaling NaN; otherwise returns 0.
1056*----------------------------------------------------------------------------*/
1057
1058bool float128_is_signaling_nan(float128 a, float_status *status)
1059{
1060    if (no_signaling_nans(status)) {
1061        return 0;
1062    } else {
1063        if (snan_bit_is_one(status)) {
1064            return ((a.high << 1) >= 0xFFFF000000000000ULL)
1065                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1066        } else {
1067            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1068                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
1069        }
1070    }
1071}
1072
1073/*----------------------------------------------------------------------------
1074| Returns a quiet NaN from a signalling NaN for the quadruple-precision
1075| floating point value `a'.
1076*----------------------------------------------------------------------------*/
1077
1078float128 float128_silence_nan(float128 a, float_status *status)
1079{
1080    if (no_signaling_nans(status)) {
1081        g_assert_not_reached();
1082    } else {
1083        if (snan_bit_is_one(status)) {
1084            return float128_default_nan(status);
1085        } else {
1086            a.high |= UINT64_C(0x0000800000000000);
1087            return a;
1088        }
1089    }
1090}
1091
1092/*----------------------------------------------------------------------------
1093| Returns the result of converting the quadruple-precision floating-point NaN
1094| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
1095| exception is raised.
1096*----------------------------------------------------------------------------*/
1097
1098static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1099{
1100    commonNaNT z;
1101
1102    if (float128_is_signaling_nan(a, status)) {
1103        float_raise(float_flag_invalid, status);
1104    }
1105    z.sign = a.high >> 63;
1106    shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1107    return z;
1108}
1109
1110/*----------------------------------------------------------------------------
1111| Returns the result of converting the canonical NaN `a' to the quadruple-
1112| precision floating-point format.
1113*----------------------------------------------------------------------------*/
1114
1115static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1116{
1117    float128 z;
1118
1119    if (status->default_nan_mode) {
1120        return float128_default_nan(status);
1121    }
1122
1123    shift128Right(a.high, a.low, 16, &z.high, &z.low);
1124    z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
1125    return z;
1126}
1127
1128/*----------------------------------------------------------------------------
1129| Takes two quadruple-precision floating-point values `a' and `b', one of
1130| which is a NaN, and returns the appropriate NaN result.  If either `a' or
1131| `b' is a signaling NaN, the invalid exception is raised.
1132*----------------------------------------------------------------------------*/
1133
1134static float128 propagateFloat128NaN(float128 a, float128 b,
1135                                     float_status *status)
1136{
1137    bool aIsLargerSignificand;
1138    FloatClass a_cls, b_cls;
1139
1140    /* This is not complete, but is good enough for pickNaN.  */
1141    a_cls = (!float128_is_any_nan(a)
1142             ? float_class_normal
1143             : float128_is_signaling_nan(a, status)
1144             ? float_class_snan
1145             : float_class_qnan);
1146    b_cls = (!float128_is_any_nan(b)
1147             ? float_class_normal
1148             : float128_is_signaling_nan(b, status)
1149             ? float_class_snan
1150             : float_class_qnan);
1151
1152    if (is_snan(a_cls) || is_snan(b_cls)) {
1153        float_raise(float_flag_invalid, status);
1154    }
1155
1156    if (status->default_nan_mode) {
1157        return float128_default_nan(status);
1158    }
1159
1160    if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1161        aIsLargerSignificand = 0;
1162    } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1163        aIsLargerSignificand = 1;
1164    } else {
1165        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1166    }
1167
1168    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
1169        if (is_snan(b_cls)) {
1170            return float128_silence_nan(b, status);
1171        }
1172        return b;
1173    } else {
1174        if (is_snan(a_cls)) {
1175            return float128_silence_nan(a, status);
1176        }
1177        return a;
1178    }
1179}
1180