1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18/*
19===============================================================================
20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21Arithmetic Package, Release 2a.
22
23Written by John R. Hauser.  This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704.  Funding was partially provided by the
26National Science Foundation under grant MIP-9311980.  The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31arithmetic/SoftFloat.html'.
32
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39Derivative works are acceptable, even for commercial purposes, so long as
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
43
44===============================================================================
45*/
46
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82/*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86static inline bool no_signaling_nans(float_status *status)
87{
88#if defined(TARGET_XTENSA)
89    return status->no_signaling_nans;
90#else
91    return false;
92#endif
93}
94
95/* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero.  MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102static inline bool snan_bit_is_one(float_status *status)
103{
104#if defined(TARGET_MIPS)
105    return status->snan_bit_is_one;
106#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107    return 1;
108#else
109    return 0;
110#endif
111}
112
113/*----------------------------------------------------------------------------
114| For the deconstructed floating-point with fraction FRAC, return true
115| if the fraction represents a signalling NaN; otherwise false.
116*----------------------------------------------------------------------------*/
117
118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119{
120    if (no_signaling_nans(status)) {
121        return false;
122    } else {
123        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124        return msb == snan_bit_is_one(status);
125    }
126}
127
128/*----------------------------------------------------------------------------
129| The pattern for a default generated deconstructed floating-point NaN.
130*----------------------------------------------------------------------------*/
131
132static void parts64_default_nan(FloatParts64 *p, float_status *status)
133{
134    bool sign = 0;
135    uint64_t frac;
136
137#if defined(TARGET_SPARC) || defined(TARGET_M68K)
138    /* !snan_bit_is_one, set all bits */
139    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
140#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141    || defined(TARGET_MICROBLAZE)
142    /* !snan_bit_is_one, set sign and msb */
143    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
144    sign = 1;
145#elif defined(TARGET_HPPA)
146    /* snan_bit_is_one, set msb-1.  */
147    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
148#elif defined(TARGET_HEXAGON)
149    sign = 1;
150    frac = ~0ULL;
151#else
152    /*
153     * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154     * S390, SH4, TriCore, and Xtensa.  Our other supported targets
155     * do not have floating-point.
156     */
157    if (snan_bit_is_one(status)) {
158        /* set all bits other than msb */
159        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160    } else {
161        /* set msb */
162        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
163    }
164#endif
165
166    *p = (FloatParts64) {
167        .cls = float_class_qnan,
168        .sign = sign,
169        .exp = INT_MAX,
170        .frac = frac
171    };
172}
173
174static void parts128_default_nan(FloatParts128 *p, float_status *status)
175{
176    /*
177     * Extrapolate from the choices made by parts64_default_nan to fill
178     * in the quad-floating format.  If the low bit is set, assume we
179     * want to set all non-snan bits.
180     */
181    FloatParts64 p64;
182    parts64_default_nan(&p64, status);
183
184    *p = (FloatParts128) {
185        .cls = float_class_qnan,
186        .sign = p64.sign,
187        .exp = INT_MAX,
188        .frac_hi = p64.frac,
189        .frac_lo = -(p64.frac & 1)
190    };
191}
192
193/*----------------------------------------------------------------------------
194| Returns a quiet NaN from a signalling NaN for the deconstructed
195| floating-point parts.
196*----------------------------------------------------------------------------*/
197
198static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
199{
200    g_assert(!no_signaling_nans(status));
201
202    /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
203    if (snan_bit_is_one(status)) {
204        frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
205        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
206    } else {
207        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
208    }
209    return frac;
210}
211
212static void parts64_silence_nan(FloatParts64 *p, float_status *status)
213{
214    p->frac = parts_silence_nan_frac(p->frac, status);
215    p->cls = float_class_qnan;
216}
217
218static void parts128_silence_nan(FloatParts128 *p, float_status *status)
219{
220    p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
221    p->cls = float_class_qnan;
222}
223
224/*----------------------------------------------------------------------------
225| The pattern for a default generated extended double-precision NaN.
226*----------------------------------------------------------------------------*/
227floatx80 floatx80_default_nan(float_status *status)
228{
229    floatx80 r;
230
231    /* None of the targets that have snan_bit_is_one use floatx80.  */
232    assert(!snan_bit_is_one(status));
233#if defined(TARGET_M68K)
234    r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
235    r.high = 0x7FFF;
236#else
237    /* X86 */
238    r.low = UINT64_C(0xC000000000000000);
239    r.high = 0xFFFF;
240#endif
241    return r;
242}
243
244/*----------------------------------------------------------------------------
245| The pattern for a default generated extended double-precision inf.
246*----------------------------------------------------------------------------*/
247
248#define floatx80_infinity_high 0x7FFF
249#if defined(TARGET_M68K)
250#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
251#else
252#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
253#endif
254
255const floatx80 floatx80_infinity
256    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
257
258/*----------------------------------------------------------------------------
259| Returns 1 if the half-precision floating-point value `a' is a quiet
260| NaN; otherwise returns 0.
261*----------------------------------------------------------------------------*/
262
263bool float16_is_quiet_nan(float16 a_, float_status *status)
264{
265    if (no_signaling_nans(status)) {
266        return float16_is_any_nan(a_);
267    } else {
268        uint16_t a = float16_val(a_);
269        if (snan_bit_is_one(status)) {
270            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
271        } else {
272
273            return ((a >> 9) & 0x3F) == 0x3F;
274        }
275    }
276}
277
278/*----------------------------------------------------------------------------
279| Returns 1 if the bfloat16 value `a' is a quiet
280| NaN; otherwise returns 0.
281*----------------------------------------------------------------------------*/
282
283bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
284{
285    if (no_signaling_nans(status)) {
286        return bfloat16_is_any_nan(a_);
287    } else {
288        uint16_t a = a_;
289        if (snan_bit_is_one(status)) {
290            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
291        } else {
292            return ((a >> 6) & 0x1FF) == 0x1FF;
293        }
294    }
295}
296
297/*----------------------------------------------------------------------------
298| Returns 1 if the half-precision floating-point value `a' is a signaling
299| NaN; otherwise returns 0.
300*----------------------------------------------------------------------------*/
301
302bool float16_is_signaling_nan(float16 a_, float_status *status)
303{
304    if (no_signaling_nans(status)) {
305        return 0;
306    } else {
307        uint16_t a = float16_val(a_);
308        if (snan_bit_is_one(status)) {
309            return ((a >> 9) & 0x3F) == 0x3F;
310        } else {
311            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
312        }
313    }
314}
315
316/*----------------------------------------------------------------------------
317| Returns 1 if the bfloat16 value `a' is a signaling
318| NaN; otherwise returns 0.
319*----------------------------------------------------------------------------*/
320
321bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
322{
323    if (no_signaling_nans(status)) {
324        return 0;
325    } else {
326        uint16_t a = a_;
327        if (snan_bit_is_one(status)) {
328            return ((a >> 6) & 0x1FF) == 0x1FF;
329        } else {
330            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
331        }
332    }
333}
334
335/*----------------------------------------------------------------------------
336| Returns 1 if the single-precision floating-point value `a' is a quiet
337| NaN; otherwise returns 0.
338*----------------------------------------------------------------------------*/
339
340bool float32_is_quiet_nan(float32 a_, float_status *status)
341{
342    if (no_signaling_nans(status)) {
343        return float32_is_any_nan(a_);
344    } else {
345        uint32_t a = float32_val(a_);
346        if (snan_bit_is_one(status)) {
347            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
348        } else {
349            return ((uint32_t)(a << 1) >= 0xFF800000);
350        }
351    }
352}
353
354/*----------------------------------------------------------------------------
355| Returns 1 if the single-precision floating-point value `a' is a signaling
356| NaN; otherwise returns 0.
357*----------------------------------------------------------------------------*/
358
359bool float32_is_signaling_nan(float32 a_, float_status *status)
360{
361    if (no_signaling_nans(status)) {
362        return 0;
363    } else {
364        uint32_t a = float32_val(a_);
365        if (snan_bit_is_one(status)) {
366            return ((uint32_t)(a << 1) >= 0xFF800000);
367        } else {
368            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
369        }
370    }
371}
372
373/*----------------------------------------------------------------------------
374| Select which NaN to propagate for a two-input operation.
375| IEEE754 doesn't specify all the details of this, so the
376| algorithm is target-specific.
377| The routine is passed various bits of information about the
378| two NaNs and should return 0 to select NaN a and 1 for NaN b.
379| Note that signalling NaNs are always squashed to quiet NaNs
380| by the caller, by calling floatXX_silence_nan() before
381| returning them.
382|
383| aIsLargerSignificand is only valid if both a and b are NaNs
384| of some kind, and is true if a has the larger significand,
385| or if both a and b have the same significand but a is
386| positive but b is negative. It is only needed for the x87
387| tie-break rule.
388*----------------------------------------------------------------------------*/
389
390static int pickNaN(FloatClass a_cls, FloatClass b_cls,
391                   bool aIsLargerSignificand, float_status *status)
392{
393#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA) || \
394    defined(TARGET_LOONGARCH64) || defined(TARGET_S390X)
395    /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
396     * the first of:
397     *  1. A if it is signaling
398     *  2. B if it is signaling
399     *  3. A (quiet)
400     *  4. B (quiet)
401     * A signaling NaN is always quietened before returning it.
402     */
403    /* According to MIPS specifications, if one of the two operands is
404     * a sNaN, a new qNaN has to be generated. This is done in
405     * floatXX_silence_nan(). For qNaN inputs the specifications
406     * says: "When possible, this QNaN result is one of the operand QNaN
407     * values." In practice it seems that most implementations choose
408     * the first operand if both operands are qNaN. In short this gives
409     * the following rules:
410     *  1. A if it is signaling
411     *  2. B if it is signaling
412     *  3. A (quiet)
413     *  4. B (quiet)
414     * A signaling NaN is always silenced before returning it.
415     */
416    if (is_snan(a_cls)) {
417        return 0;
418    } else if (is_snan(b_cls)) {
419        return 1;
420    } else if (is_qnan(a_cls)) {
421        return 0;
422    } else {
423        return 1;
424    }
425#elif defined(TARGET_PPC) || defined(TARGET_M68K)
426    /* PowerPC propagation rules:
427     *  1. A if it sNaN or qNaN
428     *  2. B if it sNaN or qNaN
429     * A signaling NaN is always silenced before returning it.
430     */
431    /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
432     * 3.4 FLOATING-POINT INSTRUCTION DETAILS
433     * If either operand, but not both operands, of an operation is a
434     * nonsignaling NaN, then that NaN is returned as the result. If both
435     * operands are nonsignaling NaNs, then the destination operand
436     * nonsignaling NaN is returned as the result.
437     * If either operand to an operation is a signaling NaN (SNaN), then the
438     * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
439     * is set in the FPCR ENABLE byte, then the exception is taken and the
440     * destination is not modified. If the SNaN exception enable bit is not
441     * set, setting the SNaN bit in the operand to a one converts the SNaN to
442     * a nonsignaling NaN. The operation then continues as described in the
443     * preceding paragraph for nonsignaling NaNs.
444     */
445    if (is_nan(a_cls)) {
446        return 0;
447    } else {
448        return 1;
449    }
450#elif defined(TARGET_SPARC)
451    /* Prefer SNaN over QNaN, order B then A. */
452    if (is_snan(b_cls)) {
453        return 1;
454    } else if (is_snan(a_cls)) {
455        return 0;
456    } else if (is_qnan(b_cls)) {
457        return 1;
458    } else {
459        return 0;
460    }
461#elif defined(TARGET_XTENSA)
462    /*
463     * Xtensa has two NaN propagation modes.
464     * Which one is active is controlled by float_status::use_first_nan.
465     */
466    if (status->use_first_nan) {
467        if (is_nan(a_cls)) {
468            return 0;
469        } else {
470            return 1;
471        }
472    } else {
473        if (is_nan(b_cls)) {
474            return 1;
475        } else {
476            return 0;
477        }
478    }
479#else
480    /* This implements x87 NaN propagation rules:
481     * SNaN + QNaN => return the QNaN
482     * two SNaNs => return the one with the larger significand, silenced
483     * two QNaNs => return the one with the larger significand
484     * SNaN and a non-NaN => return the SNaN, silenced
485     * QNaN and a non-NaN => return the QNaN
486     *
487     * If we get down to comparing significands and they are the same,
488     * return the NaN with the positive sign bit (if any).
489     */
490    if (is_snan(a_cls)) {
491        if (is_snan(b_cls)) {
492            return aIsLargerSignificand ? 0 : 1;
493        }
494        return is_qnan(b_cls) ? 1 : 0;
495    } else if (is_qnan(a_cls)) {
496        if (is_snan(b_cls) || !is_qnan(b_cls)) {
497            return 0;
498        } else {
499            return aIsLargerSignificand ? 0 : 1;
500        }
501    } else {
502        return 1;
503    }
504#endif
505}
506
507/*----------------------------------------------------------------------------
508| Select which NaN to propagate for a three-input operation.
509| For the moment we assume that no CPU needs the 'larger significand'
510| information.
511| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
512*----------------------------------------------------------------------------*/
513static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
514                         bool infzero, float_status *status)
515{
516#if defined(TARGET_ARM)
517    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
518     * the default NaN
519     */
520    if (infzero && is_qnan(c_cls)) {
521        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
522        return 3;
523    }
524
525    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
526     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
527     */
528    if (is_snan(c_cls)) {
529        return 2;
530    } else if (is_snan(a_cls)) {
531        return 0;
532    } else if (is_snan(b_cls)) {
533        return 1;
534    } else if (is_qnan(c_cls)) {
535        return 2;
536    } else if (is_qnan(a_cls)) {
537        return 0;
538    } else {
539        return 1;
540    }
541#elif defined(TARGET_MIPS)
542    if (snan_bit_is_one(status)) {
543        /*
544         * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
545         * case sets InvalidOp and returns the default NaN
546         */
547        if (infzero) {
548            float_raise(float_flag_invalid | float_flag_invalid_imz, status);
549            return 3;
550        }
551        /* Prefer sNaN over qNaN, in the a, b, c order. */
552        if (is_snan(a_cls)) {
553            return 0;
554        } else if (is_snan(b_cls)) {
555            return 1;
556        } else if (is_snan(c_cls)) {
557            return 2;
558        } else if (is_qnan(a_cls)) {
559            return 0;
560        } else if (is_qnan(b_cls)) {
561            return 1;
562        } else {
563            return 2;
564        }
565    } else {
566        /*
567         * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
568         * case sets InvalidOp and returns the input value 'c'
569         */
570        if (infzero) {
571            float_raise(float_flag_invalid | float_flag_invalid_imz, status);
572            return 2;
573        }
574        /* Prefer sNaN over qNaN, in the c, a, b order. */
575        if (is_snan(c_cls)) {
576            return 2;
577        } else if (is_snan(a_cls)) {
578            return 0;
579        } else if (is_snan(b_cls)) {
580            return 1;
581        } else if (is_qnan(c_cls)) {
582            return 2;
583        } else if (is_qnan(a_cls)) {
584            return 0;
585        } else {
586            return 1;
587        }
588    }
589#elif defined(TARGET_LOONGARCH64)
590    /*
591     * For LoongArch systems that conform to IEEE754-2008, the (inf,zero,nan)
592     * case sets InvalidOp and returns the input value 'c'
593     */
594    if (infzero) {
595        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
596        return 2;
597    }
598    /* Prefer sNaN over qNaN, in the c, a, b order. */
599    if (is_snan(c_cls)) {
600        return 2;
601    } else if (is_snan(a_cls)) {
602        return 0;
603    } else if (is_snan(b_cls)) {
604        return 1;
605    } else if (is_qnan(c_cls)) {
606        return 2;
607    } else if (is_qnan(a_cls)) {
608        return 0;
609    } else {
610        return 1;
611    }
612#elif defined(TARGET_PPC)
613    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
614     * to return an input NaN if we have one (ie c) rather than generating
615     * a default NaN
616     */
617    if (infzero) {
618        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
619        return 2;
620    }
621
622    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
623     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
624     */
625    if (is_nan(a_cls)) {
626        return 0;
627    } else if (is_nan(c_cls)) {
628        return 2;
629    } else {
630        return 1;
631    }
632#elif defined(TARGET_RISCV)
633    /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
634    if (infzero) {
635        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
636    }
637    return 3; /* default NaN */
638#elif defined(TARGET_SPARC)
639    /* For (inf,0,nan) return c. */
640    if (infzero) {
641        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
642        return 2;
643    }
644    /* Prefer SNaN over QNaN, order C, B, A. */
645    if (is_snan(c_cls)) {
646        return 2;
647    } else if (is_snan(b_cls)) {
648        return 1;
649    } else if (is_snan(a_cls)) {
650        return 0;
651    } else if (is_qnan(c_cls)) {
652        return 2;
653    } else if (is_qnan(b_cls)) {
654        return 1;
655    } else {
656        return 0;
657    }
658#elif defined(TARGET_XTENSA)
659    /*
660     * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
661     * an input NaN if we have one (ie c).
662     */
663    if (infzero) {
664        float_raise(float_flag_invalid | float_flag_invalid_imz, status);
665        return 2;
666    }
667    if (status->use_first_nan) {
668        if (is_nan(a_cls)) {
669            return 0;
670        } else if (is_nan(b_cls)) {
671            return 1;
672        } else {
673            return 2;
674        }
675    } else {
676        if (is_nan(c_cls)) {
677            return 2;
678        } else if (is_nan(b_cls)) {
679            return 1;
680        } else {
681            return 0;
682        }
683    }
684#else
685    /* A default implementation: prefer a to b to c.
686     * This is unlikely to actually match any real implementation.
687     */
688    if (is_nan(a_cls)) {
689        return 0;
690    } else if (is_nan(b_cls)) {
691        return 1;
692    } else {
693        return 2;
694    }
695#endif
696}
697
698/*----------------------------------------------------------------------------
699| Returns 1 if the double-precision floating-point value `a' is a quiet
700| NaN; otherwise returns 0.
701*----------------------------------------------------------------------------*/
702
703bool float64_is_quiet_nan(float64 a_, float_status *status)
704{
705    if (no_signaling_nans(status)) {
706        return float64_is_any_nan(a_);
707    } else {
708        uint64_t a = float64_val(a_);
709        if (snan_bit_is_one(status)) {
710            return (((a >> 51) & 0xFFF) == 0xFFE)
711                && (a & 0x0007FFFFFFFFFFFFULL);
712        } else {
713            return ((a << 1) >= 0xFFF0000000000000ULL);
714        }
715    }
716}
717
718/*----------------------------------------------------------------------------
719| Returns 1 if the double-precision floating-point value `a' is a signaling
720| NaN; otherwise returns 0.
721*----------------------------------------------------------------------------*/
722
723bool float64_is_signaling_nan(float64 a_, float_status *status)
724{
725    if (no_signaling_nans(status)) {
726        return 0;
727    } else {
728        uint64_t a = float64_val(a_);
729        if (snan_bit_is_one(status)) {
730            return ((a << 1) >= 0xFFF0000000000000ULL);
731        } else {
732            return (((a >> 51) & 0xFFF) == 0xFFE)
733                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
734        }
735    }
736}
737
738/*----------------------------------------------------------------------------
739| Returns 1 if the extended double-precision floating-point value `a' is a
740| quiet NaN; otherwise returns 0. This slightly differs from the same
741| function for other types as floatx80 has an explicit bit.
742*----------------------------------------------------------------------------*/
743
744int floatx80_is_quiet_nan(floatx80 a, float_status *status)
745{
746    if (no_signaling_nans(status)) {
747        return floatx80_is_any_nan(a);
748    } else {
749        if (snan_bit_is_one(status)) {
750            uint64_t aLow;
751
752            aLow = a.low & ~0x4000000000000000ULL;
753            return ((a.high & 0x7FFF) == 0x7FFF)
754                && (aLow << 1)
755                && (a.low == aLow);
756        } else {
757            return ((a.high & 0x7FFF) == 0x7FFF)
758                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
759        }
760    }
761}
762
763/*----------------------------------------------------------------------------
764| Returns 1 if the extended double-precision floating-point value `a' is a
765| signaling NaN; otherwise returns 0. This slightly differs from the same
766| function for other types as floatx80 has an explicit bit.
767*----------------------------------------------------------------------------*/
768
769int floatx80_is_signaling_nan(floatx80 a, float_status *status)
770{
771    if (no_signaling_nans(status)) {
772        return 0;
773    } else {
774        if (snan_bit_is_one(status)) {
775            return ((a.high & 0x7FFF) == 0x7FFF)
776                && ((a.low << 1) >= 0x8000000000000000ULL);
777        } else {
778            uint64_t aLow;
779
780            aLow = a.low & ~UINT64_C(0x4000000000000000);
781            return ((a.high & 0x7FFF) == 0x7FFF)
782                && (uint64_t)(aLow << 1)
783                && (a.low == aLow);
784        }
785    }
786}
787
788/*----------------------------------------------------------------------------
789| Returns a quiet NaN from a signalling NaN for the extended double-precision
790| floating point value `a'.
791*----------------------------------------------------------------------------*/
792
793floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
794{
795    /* None of the targets that have snan_bit_is_one use floatx80.  */
796    assert(!snan_bit_is_one(status));
797    a.low |= UINT64_C(0xC000000000000000);
798    return a;
799}
800
801/*----------------------------------------------------------------------------
802| Takes two extended double-precision floating-point values `a' and `b', one
803| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
804| `b' is a signaling NaN, the invalid exception is raised.
805*----------------------------------------------------------------------------*/
806
807floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
808{
809    bool aIsLargerSignificand;
810    FloatClass a_cls, b_cls;
811
812    /* This is not complete, but is good enough for pickNaN.  */
813    a_cls = (!floatx80_is_any_nan(a)
814             ? float_class_normal
815             : floatx80_is_signaling_nan(a, status)
816             ? float_class_snan
817             : float_class_qnan);
818    b_cls = (!floatx80_is_any_nan(b)
819             ? float_class_normal
820             : floatx80_is_signaling_nan(b, status)
821             ? float_class_snan
822             : float_class_qnan);
823
824    if (is_snan(a_cls) || is_snan(b_cls)) {
825        float_raise(float_flag_invalid, status);
826    }
827
828    if (status->default_nan_mode) {
829        return floatx80_default_nan(status);
830    }
831
832    if (a.low < b.low) {
833        aIsLargerSignificand = 0;
834    } else if (b.low < a.low) {
835        aIsLargerSignificand = 1;
836    } else {
837        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
838    }
839
840    if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
841        if (is_snan(b_cls)) {
842            return floatx80_silence_nan(b, status);
843        }
844        return b;
845    } else {
846        if (is_snan(a_cls)) {
847            return floatx80_silence_nan(a, status);
848        }
849        return a;
850    }
851}
852
853/*----------------------------------------------------------------------------
854| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
855| NaN; otherwise returns 0.
856*----------------------------------------------------------------------------*/
857
858bool float128_is_quiet_nan(float128 a, float_status *status)
859{
860    if (no_signaling_nans(status)) {
861        return float128_is_any_nan(a);
862    } else {
863        if (snan_bit_is_one(status)) {
864            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
865                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
866        } else {
867            return ((a.high << 1) >= 0xFFFF000000000000ULL)
868                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
869        }
870    }
871}
872
873/*----------------------------------------------------------------------------
874| Returns 1 if the quadruple-precision floating-point value `a' is a
875| signaling NaN; otherwise returns 0.
876*----------------------------------------------------------------------------*/
877
878bool float128_is_signaling_nan(float128 a, float_status *status)
879{
880    if (no_signaling_nans(status)) {
881        return 0;
882    } else {
883        if (snan_bit_is_one(status)) {
884            return ((a.high << 1) >= 0xFFFF000000000000ULL)
885                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
886        } else {
887            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
888                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
889        }
890    }
891}
892