xref: /openbmc/qemu/fpu/softfloat-specialize.c.inc (revision 196fd15f31d986e5a9c5da84988fa4597f30623b)
1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18/*
19===============================================================================
20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21Arithmetic Package, Release 2a.
22
23Written by John R. Hauser.  This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704.  Funding was partially provided by the
26National Science Foundation under grant MIP-9311980.  The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31arithmetic/SoftFloat.html'.
32
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39Derivative works are acceptable, even for commercial purposes, so long as
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
43
44===============================================================================
45*/
46
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
82/*
83 * Define whether architecture deviates from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86static inline bool no_signaling_nans(float_status *status)
87{
88#if defined(TARGET_XTENSA)
89    return status->no_signaling_nans;
90#else
91    return false;
92#endif
93}
94
95/* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero.  MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
102static inline bool snan_bit_is_one(float_status *status)
103{
104#if defined(TARGET_MIPS)
105    return status->snan_bit_is_one;
106#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
107    return 1;
108#else
109    return 0;
110#endif
111}
112
113/*----------------------------------------------------------------------------
114| For the deconstructed floating-point with fraction FRAC, return true
115| if the fraction represents a signalling NaN; otherwise false.
116*----------------------------------------------------------------------------*/
117
118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119{
120    if (no_signaling_nans(status)) {
121        return false;
122    } else {
123        bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124        return msb == snan_bit_is_one(status);
125    }
126}
127
128/*----------------------------------------------------------------------------
129| The pattern for a default generated deconstructed floating-point NaN.
130*----------------------------------------------------------------------------*/
131
132static void parts64_default_nan(FloatParts64 *p, float_status *status)
133{
134    bool sign = 0;
135    uint64_t frac;
136    uint8_t dnan_pattern = status->default_nan_pattern;
137
138    assert(dnan_pattern != 0);
139
140    sign = dnan_pattern >> 7;
141    /*
142     * Place default_nan_pattern [6:0] into bits [62:56],
143     * and replecate bit [0] down into [55:0]
144     */
145    frac = deposit64(0, DECOMPOSED_BINARY_POINT - 7, 7, dnan_pattern);
146    frac = deposit64(frac, 0, DECOMPOSED_BINARY_POINT - 7, -(dnan_pattern & 1));
147
148    *p = (FloatParts64) {
149        .cls = float_class_qnan,
150        .sign = sign,
151        .exp = INT_MAX,
152        .frac = frac
153    };
154}
155
156static void parts128_default_nan(FloatParts128 *p, float_status *status)
157{
158    /*
159     * Extrapolate from the choices made by parts64_default_nan to fill
160     * in the quad-floating format.  If the low bit is set, assume we
161     * want to set all non-snan bits.
162     */
163    FloatParts64 p64;
164    parts64_default_nan(&p64, status);
165
166    *p = (FloatParts128) {
167        .cls = float_class_qnan,
168        .sign = p64.sign,
169        .exp = INT_MAX,
170        .frac_hi = p64.frac,
171        .frac_lo = -(p64.frac & 1)
172    };
173}
174
175/*----------------------------------------------------------------------------
176| Returns a quiet NaN from a signalling NaN for the deconstructed
177| floating-point parts.
178*----------------------------------------------------------------------------*/
179
180static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
181{
182    g_assert(!no_signaling_nans(status));
183
184    /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
185    if (snan_bit_is_one(status)) {
186        frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
187        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
188    } else {
189        frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
190    }
191    return frac;
192}
193
194static void parts64_silence_nan(FloatParts64 *p, float_status *status)
195{
196    p->frac = parts_silence_nan_frac(p->frac, status);
197    p->cls = float_class_qnan;
198}
199
200static void parts128_silence_nan(FloatParts128 *p, float_status *status)
201{
202    p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
203    p->cls = float_class_qnan;
204}
205
206/*----------------------------------------------------------------------------
207| The pattern for a default generated extended double-precision NaN.
208*----------------------------------------------------------------------------*/
209floatx80 floatx80_default_nan(float_status *status)
210{
211    floatx80 r;
212    /*
213     * Extrapolate from the choices made by parts64_default_nan to fill
214     * in the floatx80 format. We assume that floatx80's explicit
215     * integer bit is always set (this is true for i386 and m68k,
216     * which are the only real users of this format).
217     */
218    FloatParts64 p64;
219    parts64_default_nan(&p64, status);
220
221    r.high = 0x7FFF | (p64.sign << 15);
222    r.low = (1ULL << DECOMPOSED_BINARY_POINT) | p64.frac;
223    return r;
224}
225
226/*----------------------------------------------------------------------------
227| The pattern for a default generated extended double-precision inf.
228*----------------------------------------------------------------------------*/
229
230#define floatx80_infinity_high 0x7FFF
231#if defined(TARGET_M68K)
232#define floatx80_infinity_low  UINT64_C(0x0000000000000000)
233#else
234#define floatx80_infinity_low  UINT64_C(0x8000000000000000)
235#endif
236
237const floatx80 floatx80_infinity
238    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
239
240/*----------------------------------------------------------------------------
241| Returns 1 if the half-precision floating-point value `a' is a quiet
242| NaN; otherwise returns 0.
243*----------------------------------------------------------------------------*/
244
245bool float16_is_quiet_nan(float16 a_, float_status *status)
246{
247    if (no_signaling_nans(status)) {
248        return float16_is_any_nan(a_);
249    } else {
250        uint16_t a = float16_val(a_);
251        if (snan_bit_is_one(status)) {
252            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
253        } else {
254
255            return ((a >> 9) & 0x3F) == 0x3F;
256        }
257    }
258}
259
260/*----------------------------------------------------------------------------
261| Returns 1 if the bfloat16 value `a' is a quiet
262| NaN; otherwise returns 0.
263*----------------------------------------------------------------------------*/
264
265bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
266{
267    if (no_signaling_nans(status)) {
268        return bfloat16_is_any_nan(a_);
269    } else {
270        uint16_t a = a_;
271        if (snan_bit_is_one(status)) {
272            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
273        } else {
274            return ((a >> 6) & 0x1FF) == 0x1FF;
275        }
276    }
277}
278
279/*----------------------------------------------------------------------------
280| Returns 1 if the half-precision floating-point value `a' is a signaling
281| NaN; otherwise returns 0.
282*----------------------------------------------------------------------------*/
283
284bool float16_is_signaling_nan(float16 a_, float_status *status)
285{
286    if (no_signaling_nans(status)) {
287        return 0;
288    } else {
289        uint16_t a = float16_val(a_);
290        if (snan_bit_is_one(status)) {
291            return ((a >> 9) & 0x3F) == 0x3F;
292        } else {
293            return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
294        }
295    }
296}
297
298/*----------------------------------------------------------------------------
299| Returns 1 if the bfloat16 value `a' is a signaling
300| NaN; otherwise returns 0.
301*----------------------------------------------------------------------------*/
302
303bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
304{
305    if (no_signaling_nans(status)) {
306        return 0;
307    } else {
308        uint16_t a = a_;
309        if (snan_bit_is_one(status)) {
310            return ((a >> 6) & 0x1FF) == 0x1FF;
311        } else {
312            return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
313        }
314    }
315}
316
317/*----------------------------------------------------------------------------
318| Returns 1 if the single-precision floating-point value `a' is a quiet
319| NaN; otherwise returns 0.
320*----------------------------------------------------------------------------*/
321
322bool float32_is_quiet_nan(float32 a_, float_status *status)
323{
324    if (no_signaling_nans(status)) {
325        return float32_is_any_nan(a_);
326    } else {
327        uint32_t a = float32_val(a_);
328        if (snan_bit_is_one(status)) {
329            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
330        } else {
331            return ((uint32_t)(a << 1) >= 0xFF800000);
332        }
333    }
334}
335
336/*----------------------------------------------------------------------------
337| Returns 1 if the single-precision floating-point value `a' is a signaling
338| NaN; otherwise returns 0.
339*----------------------------------------------------------------------------*/
340
341bool float32_is_signaling_nan(float32 a_, float_status *status)
342{
343    if (no_signaling_nans(status)) {
344        return 0;
345    } else {
346        uint32_t a = float32_val(a_);
347        if (snan_bit_is_one(status)) {
348            return ((uint32_t)(a << 1) >= 0xFF800000);
349        } else {
350            return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
351        }
352    }
353}
354
355/*----------------------------------------------------------------------------
356| Returns 1 if the double-precision floating-point value `a' is a quiet
357| NaN; otherwise returns 0.
358*----------------------------------------------------------------------------*/
359
360bool float64_is_quiet_nan(float64 a_, float_status *status)
361{
362    if (no_signaling_nans(status)) {
363        return float64_is_any_nan(a_);
364    } else {
365        uint64_t a = float64_val(a_);
366        if (snan_bit_is_one(status)) {
367            return (((a >> 51) & 0xFFF) == 0xFFE)
368                && (a & 0x0007FFFFFFFFFFFFULL);
369        } else {
370            return ((a << 1) >= 0xFFF0000000000000ULL);
371        }
372    }
373}
374
375/*----------------------------------------------------------------------------
376| Returns 1 if the double-precision floating-point value `a' is a signaling
377| NaN; otherwise returns 0.
378*----------------------------------------------------------------------------*/
379
380bool float64_is_signaling_nan(float64 a_, float_status *status)
381{
382    if (no_signaling_nans(status)) {
383        return 0;
384    } else {
385        uint64_t a = float64_val(a_);
386        if (snan_bit_is_one(status)) {
387            return ((a << 1) >= 0xFFF0000000000000ULL);
388        } else {
389            return (((a >> 51) & 0xFFF) == 0xFFE)
390                && (a & UINT64_C(0x0007FFFFFFFFFFFF));
391        }
392    }
393}
394
395/*----------------------------------------------------------------------------
396| Returns 1 if the extended double-precision floating-point value `a' is a
397| quiet NaN; otherwise returns 0. This slightly differs from the same
398| function for other types as floatx80 has an explicit bit.
399*----------------------------------------------------------------------------*/
400
401int floatx80_is_quiet_nan(floatx80 a, float_status *status)
402{
403    if (no_signaling_nans(status)) {
404        return floatx80_is_any_nan(a);
405    } else {
406        if (snan_bit_is_one(status)) {
407            uint64_t aLow;
408
409            aLow = a.low & ~0x4000000000000000ULL;
410            return ((a.high & 0x7FFF) == 0x7FFF)
411                && (aLow << 1)
412                && (a.low == aLow);
413        } else {
414            return ((a.high & 0x7FFF) == 0x7FFF)
415                && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
416        }
417    }
418}
419
420/*----------------------------------------------------------------------------
421| Returns 1 if the extended double-precision floating-point value `a' is a
422| signaling NaN; otherwise returns 0. This slightly differs from the same
423| function for other types as floatx80 has an explicit bit.
424*----------------------------------------------------------------------------*/
425
426int floatx80_is_signaling_nan(floatx80 a, float_status *status)
427{
428    if (no_signaling_nans(status)) {
429        return 0;
430    } else {
431        if (snan_bit_is_one(status)) {
432            return ((a.high & 0x7FFF) == 0x7FFF)
433                && ((a.low << 1) >= 0x8000000000000000ULL);
434        } else {
435            uint64_t aLow;
436
437            aLow = a.low & ~UINT64_C(0x4000000000000000);
438            return ((a.high & 0x7FFF) == 0x7FFF)
439                && (uint64_t)(aLow << 1)
440                && (a.low == aLow);
441        }
442    }
443}
444
445/*----------------------------------------------------------------------------
446| Returns a quiet NaN from a signalling NaN for the extended double-precision
447| floating point value `a'.
448*----------------------------------------------------------------------------*/
449
450floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
451{
452    /* None of the targets that have snan_bit_is_one use floatx80.  */
453    assert(!snan_bit_is_one(status));
454    a.low |= UINT64_C(0xC000000000000000);
455    return a;
456}
457
458/*----------------------------------------------------------------------------
459| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
460| NaN; otherwise returns 0.
461*----------------------------------------------------------------------------*/
462
463bool float128_is_quiet_nan(float128 a, float_status *status)
464{
465    if (no_signaling_nans(status)) {
466        return float128_is_any_nan(a);
467    } else {
468        if (snan_bit_is_one(status)) {
469            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
470                && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
471        } else {
472            return ((a.high << 1) >= 0xFFFF000000000000ULL)
473                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
474        }
475    }
476}
477
478/*----------------------------------------------------------------------------
479| Returns 1 if the quadruple-precision floating-point value `a' is a
480| signaling NaN; otherwise returns 0.
481*----------------------------------------------------------------------------*/
482
483bool float128_is_signaling_nan(float128 a, float_status *status)
484{
485    if (no_signaling_nans(status)) {
486        return 0;
487    } else {
488        if (snan_bit_is_one(status)) {
489            return ((a.high << 1) >= 0xFFFF000000000000ULL)
490                && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
491        } else {
492            return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
493                && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
494        }
495    }
496}
497