xref: /openbmc/qemu/fpu/softfloat-parts.c.inc (revision bead3c9b)
1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18static void partsN(return_nan)(FloatPartsN *a, float_status *s)
19{
20    switch (a->cls) {
21    case float_class_snan:
22        float_raise(float_flag_invalid, s);
23        if (s->default_nan_mode) {
24            parts_default_nan(a, s);
25        } else {
26            parts_silence_nan(a, s);
27        }
28        break;
29    case float_class_qnan:
30        if (s->default_nan_mode) {
31            parts_default_nan(a, s);
32        }
33        break;
34    default:
35        g_assert_not_reached();
36    }
37}
38
39static FloatPartsN *partsN(pick_nan)(FloatPartsN *a, FloatPartsN *b,
40                                     float_status *s)
41{
42    if (is_snan(a->cls) || is_snan(b->cls)) {
43        float_raise(float_flag_invalid, s);
44    }
45
46    if (s->default_nan_mode) {
47        parts_default_nan(a, s);
48    } else {
49        int cmp = frac_cmp(a, b);
50        if (cmp == 0) {
51            cmp = a->sign < b->sign;
52        }
53
54        if (pickNaN(a->cls, b->cls, cmp > 0, s)) {
55            a = b;
56        }
57        if (is_snan(a->cls)) {
58            parts_silence_nan(a, s);
59        }
60    }
61    return a;
62}
63
64static FloatPartsN *partsN(pick_nan_muladd)(FloatPartsN *a, FloatPartsN *b,
65                                            FloatPartsN *c, float_status *s,
66                                            int ab_mask, int abc_mask)
67{
68    int which;
69
70    if (unlikely(abc_mask & float_cmask_snan)) {
71        float_raise(float_flag_invalid, s);
72    }
73
74    which = pickNaNMulAdd(a->cls, b->cls, c->cls,
75                          ab_mask == float_cmask_infzero, s);
76
77    if (s->default_nan_mode || which == 3) {
78        /*
79         * Note that this check is after pickNaNMulAdd so that function
80         * has an opportunity to set the Invalid flag for infzero.
81         */
82        parts_default_nan(a, s);
83        return a;
84    }
85
86    switch (which) {
87    case 0:
88        break;
89    case 1:
90        a = b;
91        break;
92    case 2:
93        a = c;
94        break;
95    default:
96        g_assert_not_reached();
97    }
98    if (is_snan(a->cls)) {
99        parts_silence_nan(a, s);
100    }
101    return a;
102}
103
104/*
105 * Canonicalize the FloatParts structure.  Determine the class,
106 * unbias the exponent, and normalize the fraction.
107 */
108static void partsN(canonicalize)(FloatPartsN *p, float_status *status,
109                                 const FloatFmt *fmt)
110{
111    if (unlikely(p->exp == 0)) {
112        if (likely(frac_eqz(p))) {
113            p->cls = float_class_zero;
114        } else if (status->flush_inputs_to_zero) {
115            float_raise(float_flag_input_denormal, status);
116            p->cls = float_class_zero;
117            frac_clear(p);
118        } else {
119            int shift = frac_normalize(p);
120            p->cls = float_class_normal;
121            p->exp = fmt->frac_shift - fmt->exp_bias - shift + 1;
122        }
123    } else if (likely(p->exp < fmt->exp_max) || fmt->arm_althp) {
124        p->cls = float_class_normal;
125        p->exp -= fmt->exp_bias;
126        frac_shl(p, fmt->frac_shift);
127        p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
128    } else if (likely(frac_eqz(p))) {
129        p->cls = float_class_inf;
130    } else {
131        frac_shl(p, fmt->frac_shift);
132        p->cls = (parts_is_snan_frac(p->frac_hi, status)
133                  ? float_class_snan : float_class_qnan);
134    }
135}
136
137/*
138 * Round and uncanonicalize a floating-point number by parts. There
139 * are FRAC_SHIFT bits that may require rounding at the bottom of the
140 * fraction; these bits will be removed. The exponent will be biased
141 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
142 */
143static void partsN(uncanon_normal)(FloatPartsN *p, float_status *s,
144                                   const FloatFmt *fmt)
145{
146    const int exp_max = fmt->exp_max;
147    const int frac_shift = fmt->frac_shift;
148    const uint64_t round_mask = fmt->round_mask;
149    const uint64_t frac_lsb = round_mask + 1;
150    const uint64_t frac_lsbm1 = round_mask ^ (round_mask >> 1);
151    const uint64_t roundeven_mask = round_mask | frac_lsb;
152    uint64_t inc;
153    bool overflow_norm = false;
154    int exp, flags = 0;
155
156    switch (s->float_rounding_mode) {
157    case float_round_nearest_even:
158        if (N > 64 && frac_lsb == 0) {
159            inc = ((p->frac_hi & 1) || (p->frac_lo & round_mask) != frac_lsbm1
160                   ? frac_lsbm1 : 0);
161        } else {
162            inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1
163                   ? frac_lsbm1 : 0);
164        }
165        break;
166    case float_round_ties_away:
167        inc = frac_lsbm1;
168        break;
169    case float_round_to_zero:
170        overflow_norm = true;
171        inc = 0;
172        break;
173    case float_round_up:
174        inc = p->sign ? 0 : round_mask;
175        overflow_norm = p->sign;
176        break;
177    case float_round_down:
178        inc = p->sign ? round_mask : 0;
179        overflow_norm = !p->sign;
180        break;
181    case float_round_to_odd:
182        overflow_norm = true;
183        /* fall through */
184    case float_round_to_odd_inf:
185        if (N > 64 && frac_lsb == 0) {
186            inc = p->frac_hi & 1 ? 0 : round_mask;
187        } else {
188            inc = p->frac_lo & frac_lsb ? 0 : round_mask;
189        }
190        break;
191    default:
192        g_assert_not_reached();
193    }
194
195    exp = p->exp + fmt->exp_bias;
196    if (likely(exp > 0)) {
197        if (p->frac_lo & round_mask) {
198            flags |= float_flag_inexact;
199            if (frac_addi(p, p, inc)) {
200                frac_shr(p, 1);
201                p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
202                exp++;
203            }
204            p->frac_lo &= ~round_mask;
205        }
206
207        if (fmt->arm_althp) {
208            /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
209            if (unlikely(exp > exp_max)) {
210                /* Overflow.  Return the maximum normal.  */
211                flags = float_flag_invalid;
212                exp = exp_max;
213                frac_allones(p);
214                p->frac_lo &= ~round_mask;
215            }
216        } else if (unlikely(exp >= exp_max)) {
217            flags |= float_flag_overflow | float_flag_inexact;
218            if (overflow_norm) {
219                exp = exp_max - 1;
220                frac_allones(p);
221                p->frac_lo &= ~round_mask;
222            } else {
223                p->cls = float_class_inf;
224                exp = exp_max;
225                frac_clear(p);
226            }
227        }
228        frac_shr(p, frac_shift);
229    } else if (s->flush_to_zero) {
230        flags |= float_flag_output_denormal;
231        p->cls = float_class_zero;
232        exp = 0;
233        frac_clear(p);
234    } else {
235        bool is_tiny = s->tininess_before_rounding || exp < 0;
236
237        if (!is_tiny) {
238            FloatPartsN discard;
239            is_tiny = !frac_addi(&discard, p, inc);
240        }
241
242        frac_shrjam(p, 1 - exp);
243
244        if (p->frac_lo & round_mask) {
245            /* Need to recompute round-to-even/round-to-odd. */
246            switch (s->float_rounding_mode) {
247            case float_round_nearest_even:
248                if (N > 64 && frac_lsb == 0) {
249                    inc = ((p->frac_hi & 1) ||
250                           (p->frac_lo & round_mask) != frac_lsbm1
251                           ? frac_lsbm1 : 0);
252                } else {
253                    inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1
254                           ? frac_lsbm1 : 0);
255                }
256                break;
257            case float_round_to_odd:
258            case float_round_to_odd_inf:
259                if (N > 64 && frac_lsb == 0) {
260                    inc = p->frac_hi & 1 ? 0 : round_mask;
261                } else {
262                    inc = p->frac_lo & frac_lsb ? 0 : round_mask;
263                }
264                break;
265            default:
266                break;
267            }
268            flags |= float_flag_inexact;
269            frac_addi(p, p, inc);
270            p->frac_lo &= ~round_mask;
271        }
272
273        exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) != 0;
274        frac_shr(p, frac_shift);
275
276        if (is_tiny && (flags & float_flag_inexact)) {
277            flags |= float_flag_underflow;
278        }
279        if (exp == 0 && frac_eqz(p)) {
280            p->cls = float_class_zero;
281        }
282    }
283    p->exp = exp;
284    float_raise(flags, s);
285}
286
287static void partsN(uncanon)(FloatPartsN *p, float_status *s,
288                            const FloatFmt *fmt)
289{
290    if (likely(p->cls == float_class_normal)) {
291        parts_uncanon_normal(p, s, fmt);
292    } else {
293        switch (p->cls) {
294        case float_class_zero:
295            p->exp = 0;
296            frac_clear(p);
297            return;
298        case float_class_inf:
299            g_assert(!fmt->arm_althp);
300            p->exp = fmt->exp_max;
301            frac_clear(p);
302            return;
303        case float_class_qnan:
304        case float_class_snan:
305            g_assert(!fmt->arm_althp);
306            p->exp = fmt->exp_max;
307            frac_shr(p, fmt->frac_shift);
308            return;
309        default:
310            break;
311        }
312        g_assert_not_reached();
313    }
314}
315
316/*
317 * Returns the result of adding or subtracting the values of the
318 * floating-point values `a' and `b'. The operation is performed
319 * according to the IEC/IEEE Standard for Binary Floating-Point
320 * Arithmetic.
321 */
322static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b,
323                                   float_status *s, bool subtract)
324{
325    bool b_sign = b->sign ^ subtract;
326    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
327
328    if (a->sign != b_sign) {
329        /* Subtraction */
330        if (likely(ab_mask == float_cmask_normal)) {
331            if (parts_sub_normal(a, b)) {
332                return a;
333            }
334            /* Subtract was exact, fall through to set sign. */
335            ab_mask = float_cmask_zero;
336        }
337
338        if (ab_mask == float_cmask_zero) {
339            a->sign = s->float_rounding_mode == float_round_down;
340            return a;
341        }
342
343        if (unlikely(ab_mask & float_cmask_anynan)) {
344            goto p_nan;
345        }
346
347        if (ab_mask & float_cmask_inf) {
348            if (a->cls != float_class_inf) {
349                /* N - Inf */
350                goto return_b;
351            }
352            if (b->cls != float_class_inf) {
353                /* Inf - N */
354                return a;
355            }
356            /* Inf - Inf */
357            float_raise(float_flag_invalid | float_flag_invalid_isi, s);
358            parts_default_nan(a, s);
359            return a;
360        }
361    } else {
362        /* Addition */
363        if (likely(ab_mask == float_cmask_normal)) {
364            parts_add_normal(a, b);
365            return a;
366        }
367
368        if (ab_mask == float_cmask_zero) {
369            return a;
370        }
371
372        if (unlikely(ab_mask & float_cmask_anynan)) {
373            goto p_nan;
374        }
375
376        if (ab_mask & float_cmask_inf) {
377            a->cls = float_class_inf;
378            return a;
379        }
380    }
381
382    if (b->cls == float_class_zero) {
383        g_assert(a->cls == float_class_normal);
384        return a;
385    }
386
387    g_assert(a->cls == float_class_zero);
388    g_assert(b->cls == float_class_normal);
389 return_b:
390    b->sign = b_sign;
391    return b;
392
393 p_nan:
394    return parts_pick_nan(a, b, s);
395}
396
397/*
398 * Returns the result of multiplying the floating-point values `a' and
399 * `b'. The operation is performed according to the IEC/IEEE Standard
400 * for Binary Floating-Point Arithmetic.
401 */
402static FloatPartsN *partsN(mul)(FloatPartsN *a, FloatPartsN *b,
403                                float_status *s)
404{
405    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
406    bool sign = a->sign ^ b->sign;
407
408    if (likely(ab_mask == float_cmask_normal)) {
409        FloatPartsW tmp;
410
411        frac_mulw(&tmp, a, b);
412        frac_truncjam(a, &tmp);
413
414        a->exp += b->exp + 1;
415        if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
416            frac_add(a, a, a);
417            a->exp -= 1;
418        }
419
420        a->sign = sign;
421        return a;
422    }
423
424    /* Inf * Zero == NaN */
425    if (unlikely(ab_mask == float_cmask_infzero)) {
426        float_raise(float_flag_invalid | float_flag_invalid_imz, s);
427        parts_default_nan(a, s);
428        return a;
429    }
430
431    if (unlikely(ab_mask & float_cmask_anynan)) {
432        return parts_pick_nan(a, b, s);
433    }
434
435    /* Multiply by 0 or Inf */
436    if (ab_mask & float_cmask_inf) {
437        a->cls = float_class_inf;
438        a->sign = sign;
439        return a;
440    }
441
442    g_assert(ab_mask & float_cmask_zero);
443    a->cls = float_class_zero;
444    a->sign = sign;
445    return a;
446}
447
448/*
449 * Returns the result of multiplying the floating-point values `a' and
450 * `b' then adding 'c', with no intermediate rounding step after the
451 * multiplication. The operation is performed according to the
452 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
453 * The flags argument allows the caller to select negation of the
454 * addend, the intermediate product, or the final result. (The
455 * difference between this and having the caller do a separate
456 * negation is that negating externally will flip the sign bit on NaNs.)
457 *
458 * Requires A and C extracted into a double-sized structure to provide the
459 * extra space for the widening multiply.
460 */
461static FloatPartsN *partsN(muladd)(FloatPartsN *a, FloatPartsN *b,
462                                   FloatPartsN *c, int flags, float_status *s)
463{
464    int ab_mask, abc_mask;
465    FloatPartsW p_widen, c_widen;
466
467    ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
468    abc_mask = float_cmask(c->cls) | ab_mask;
469
470    /*
471     * It is implementation-defined whether the cases of (0,inf,qnan)
472     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
473     * they return if they do), so we have to hand this information
474     * off to the target-specific pick-a-NaN routine.
475     */
476    if (unlikely(abc_mask & float_cmask_anynan)) {
477        return parts_pick_nan_muladd(a, b, c, s, ab_mask, abc_mask);
478    }
479
480    if (flags & float_muladd_negate_c) {
481        c->sign ^= 1;
482    }
483
484    /* Compute the sign of the product into A. */
485    a->sign ^= b->sign;
486    if (flags & float_muladd_negate_product) {
487        a->sign ^= 1;
488    }
489
490    if (unlikely(ab_mask != float_cmask_normal)) {
491        if (unlikely(ab_mask == float_cmask_infzero)) {
492            float_raise(float_flag_invalid | float_flag_invalid_imz, s);
493            goto d_nan;
494        }
495
496        if (ab_mask & float_cmask_inf) {
497            if (c->cls == float_class_inf && a->sign != c->sign) {
498                float_raise(float_flag_invalid | float_flag_invalid_isi, s);
499                goto d_nan;
500            }
501            goto return_inf;
502        }
503
504        g_assert(ab_mask & float_cmask_zero);
505        if (c->cls == float_class_normal) {
506            *a = *c;
507            goto return_normal;
508        }
509        if (c->cls == float_class_zero) {
510            if (a->sign != c->sign) {
511                goto return_sub_zero;
512            }
513            goto return_zero;
514        }
515        g_assert(c->cls == float_class_inf);
516    }
517
518    if (unlikely(c->cls == float_class_inf)) {
519        a->sign = c->sign;
520        goto return_inf;
521    }
522
523    /* Perform the multiplication step. */
524    p_widen.sign = a->sign;
525    p_widen.exp = a->exp + b->exp + 1;
526    frac_mulw(&p_widen, a, b);
527    if (!(p_widen.frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
528        frac_add(&p_widen, &p_widen, &p_widen);
529        p_widen.exp -= 1;
530    }
531
532    /* Perform the addition step. */
533    if (c->cls != float_class_zero) {
534        /* Zero-extend C to less significant bits. */
535        frac_widen(&c_widen, c);
536        c_widen.exp = c->exp;
537
538        if (a->sign == c->sign) {
539            parts_add_normal(&p_widen, &c_widen);
540        } else if (!parts_sub_normal(&p_widen, &c_widen)) {
541            goto return_sub_zero;
542        }
543    }
544
545    /* Narrow with sticky bit, for proper rounding later. */
546    frac_truncjam(a, &p_widen);
547    a->sign = p_widen.sign;
548    a->exp = p_widen.exp;
549
550 return_normal:
551    if (flags & float_muladd_halve_result) {
552        a->exp -= 1;
553    }
554 finish_sign:
555    if (flags & float_muladd_negate_result) {
556        a->sign ^= 1;
557    }
558    return a;
559
560 return_sub_zero:
561    a->sign = s->float_rounding_mode == float_round_down;
562 return_zero:
563    a->cls = float_class_zero;
564    goto finish_sign;
565
566 return_inf:
567    a->cls = float_class_inf;
568    goto finish_sign;
569
570 d_nan:
571    parts_default_nan(a, s);
572    return a;
573}
574
575/*
576 * Returns the result of dividing the floating-point value `a' by the
577 * corresponding value `b'. The operation is performed according to
578 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
579 */
580static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b,
581                                float_status *s)
582{
583    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
584    bool sign = a->sign ^ b->sign;
585
586    if (likely(ab_mask == float_cmask_normal)) {
587        a->sign = sign;
588        a->exp -= b->exp + frac_div(a, b);
589        return a;
590    }
591
592    /* 0/0 or Inf/Inf => NaN */
593    if (unlikely(ab_mask == float_cmask_zero) ||
594        unlikely(ab_mask == float_cmask_inf)) {
595        float_raise(float_flag_invalid, s);
596        parts_default_nan(a, s);
597        return a;
598    }
599
600    /* All the NaN cases */
601    if (unlikely(ab_mask & float_cmask_anynan)) {
602        return parts_pick_nan(a, b, s);
603    }
604
605    a->sign = sign;
606
607    /* Inf / X */
608    if (a->cls == float_class_inf) {
609        return a;
610    }
611
612    /* 0 / X */
613    if (a->cls == float_class_zero) {
614        return a;
615    }
616
617    /* X / Inf */
618    if (b->cls == float_class_inf) {
619        a->cls = float_class_zero;
620        return a;
621    }
622
623    /* X / 0 => Inf */
624    g_assert(b->cls == float_class_zero);
625    float_raise(float_flag_divbyzero, s);
626    a->cls = float_class_inf;
627    return a;
628}
629
630/*
631 * Floating point remainder, per IEC/IEEE, or modulus.
632 */
633static FloatPartsN *partsN(modrem)(FloatPartsN *a, FloatPartsN *b,
634                                   uint64_t *mod_quot, float_status *s)
635{
636    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
637
638    if (likely(ab_mask == float_cmask_normal)) {
639        frac_modrem(a, b, mod_quot);
640        return a;
641    }
642
643    if (mod_quot) {
644        *mod_quot = 0;
645    }
646
647    /* All the NaN cases */
648    if (unlikely(ab_mask & float_cmask_anynan)) {
649        return parts_pick_nan(a, b, s);
650    }
651
652    /* Inf % N; N % 0 */
653    if (a->cls == float_class_inf || b->cls == float_class_zero) {
654        float_raise(float_flag_invalid, s);
655        parts_default_nan(a, s);
656        return a;
657    }
658
659    /* N % Inf; 0 % N */
660    g_assert(b->cls == float_class_inf || a->cls == float_class_zero);
661    return a;
662}
663
664/*
665 * Square Root
666 *
667 * The base algorithm is lifted from
668 * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c
669 * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c
670 * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c
671 * and is thus MIT licenced.
672 */
673static void partsN(sqrt)(FloatPartsN *a, float_status *status,
674                         const FloatFmt *fmt)
675{
676    const uint32_t three32 = 3u << 30;
677    const uint64_t three64 = 3ull << 62;
678    uint32_t d32, m32, r32, s32, u32;            /* 32-bit computation */
679    uint64_t d64, m64, r64, s64, u64;            /* 64-bit computation */
680    uint64_t dh, dl, rh, rl, sh, sl, uh, ul;     /* 128-bit computation */
681    uint64_t d0h, d0l, d1h, d1l, d2h, d2l;
682    uint64_t discard;
683    bool exp_odd;
684    size_t index;
685
686    if (unlikely(a->cls != float_class_normal)) {
687        switch (a->cls) {
688        case float_class_snan:
689        case float_class_qnan:
690            parts_return_nan(a, status);
691            return;
692        case float_class_zero:
693            return;
694        case float_class_inf:
695            if (unlikely(a->sign)) {
696                goto d_nan;
697            }
698            return;
699        default:
700            g_assert_not_reached();
701        }
702    }
703
704    if (unlikely(a->sign)) {
705        goto d_nan;
706    }
707
708    /*
709     * Argument reduction.
710     * x = 4^e frac; with integer e, and frac in [1, 4)
711     * m = frac fixed point at bit 62, since we're in base 4.
712     * If base-2 exponent is odd, exchange that for multiply by 2,
713     * which results in no shift.
714     */
715    exp_odd = a->exp & 1;
716    index = extract64(a->frac_hi, 57, 6) | (!exp_odd << 6);
717    if (!exp_odd) {
718        frac_shr(a, 1);
719    }
720
721    /*
722     * Approximate r ~= 1/sqrt(m) and s ~= sqrt(m) when m in [1, 4).
723     *
724     * Initial estimate:
725     * 7-bit lookup table (1-bit exponent and 6-bit significand).
726     *
727     * The relative error (e = r0*sqrt(m)-1) of a linear estimate
728     * (r0 = a*m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best;
729     * a table lookup is faster and needs one less iteration.
730     * The 7-bit table gives |e| < 0x1.fdp-9.
731     *
732     * A Newton-Raphson iteration for r is
733     *   s = m*r
734     *   d = s*r
735     *   u = 3 - d
736     *   r = r*u/2
737     *
738     * Fixed point representations:
739     *   m, s, d, u, three are all 2.30; r is 0.32
740     */
741    m64 = a->frac_hi;
742    m32 = m64 >> 32;
743
744    r32 = rsqrt_tab[index] << 16;
745    /* |r*sqrt(m) - 1| < 0x1.FDp-9 */
746
747    s32 = ((uint64_t)m32 * r32) >> 32;
748    d32 = ((uint64_t)s32 * r32) >> 32;
749    u32 = three32 - d32;
750
751    if (N == 64) {
752        /* float64 or smaller */
753
754        r32 = ((uint64_t)r32 * u32) >> 31;
755        /* |r*sqrt(m) - 1| < 0x1.7Bp-16 */
756
757        s32 = ((uint64_t)m32 * r32) >> 32;
758        d32 = ((uint64_t)s32 * r32) >> 32;
759        u32 = three32 - d32;
760
761        if (fmt->frac_size <= 23) {
762            /* float32 or smaller */
763
764            s32 = ((uint64_t)s32 * u32) >> 32;  /* 3.29 */
765            s32 = (s32 - 1) >> 6;               /* 9.23 */
766            /* s < sqrt(m) < s + 0x1.08p-23 */
767
768            /* compute nearest rounded result to 2.23 bits */
769            uint32_t d0 = (m32 << 16) - s32 * s32;
770            uint32_t d1 = s32 - d0;
771            uint32_t d2 = d1 + s32 + 1;
772            s32 += d1 >> 31;
773            a->frac_hi = (uint64_t)s32 << (64 - 25);
774
775            /* increment or decrement for inexact */
776            if (d2 != 0) {
777                a->frac_hi += ((int32_t)(d1 ^ d2) < 0 ? -1 : 1);
778            }
779            goto done;
780        }
781
782        /* float64 */
783
784        r64 = (uint64_t)r32 * u32 * 2;
785        /* |r*sqrt(m) - 1| < 0x1.37-p29; convert to 64-bit arithmetic */
786        mul64To128(m64, r64, &s64, &discard);
787        mul64To128(s64, r64, &d64, &discard);
788        u64 = three64 - d64;
789
790        mul64To128(s64, u64, &s64, &discard);  /* 3.61 */
791        s64 = (s64 - 2) >> 9;                  /* 12.52 */
792
793        /* Compute nearest rounded result */
794        uint64_t d0 = (m64 << 42) - s64 * s64;
795        uint64_t d1 = s64 - d0;
796        uint64_t d2 = d1 + s64 + 1;
797        s64 += d1 >> 63;
798        a->frac_hi = s64 << (64 - 54);
799
800        /* increment or decrement for inexact */
801        if (d2 != 0) {
802            a->frac_hi += ((int64_t)(d1 ^ d2) < 0 ? -1 : 1);
803        }
804        goto done;
805    }
806
807    r64 = (uint64_t)r32 * u32 * 2;
808    /* |r*sqrt(m) - 1| < 0x1.7Bp-16; convert to 64-bit arithmetic */
809
810    mul64To128(m64, r64, &s64, &discard);
811    mul64To128(s64, r64, &d64, &discard);
812    u64 = three64 - d64;
813    mul64To128(u64, r64, &r64, &discard);
814    r64 <<= 1;
815    /* |r*sqrt(m) - 1| < 0x1.a5p-31 */
816
817    mul64To128(m64, r64, &s64, &discard);
818    mul64To128(s64, r64, &d64, &discard);
819    u64 = three64 - d64;
820    mul64To128(u64, r64, &rh, &rl);
821    add128(rh, rl, rh, rl, &rh, &rl);
822    /* |r*sqrt(m) - 1| < 0x1.c001p-59; change to 128-bit arithmetic */
823
824    mul128To256(a->frac_hi, a->frac_lo, rh, rl, &sh, &sl, &discard, &discard);
825    mul128To256(sh, sl, rh, rl, &dh, &dl, &discard, &discard);
826    sub128(three64, 0, dh, dl, &uh, &ul);
827    mul128To256(uh, ul, sh, sl, &sh, &sl, &discard, &discard);  /* 3.125 */
828    /* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */
829
830    sub128(sh, sl, 0, 4, &sh, &sl);
831    shift128Right(sh, sl, 13, &sh, &sl);  /* 16.112 */
832    /* s < sqrt(m) < s + 1ulp */
833
834    /* Compute nearest rounded result */
835    mul64To128(sl, sl, &d0h, &d0l);
836    d0h += 2 * sh * sl;
837    sub128(a->frac_lo << 34, 0, d0h, d0l, &d0h, &d0l);
838    sub128(sh, sl, d0h, d0l, &d1h, &d1l);
839    add128(sh, sl, 0, 1, &d2h, &d2l);
840    add128(d2h, d2l, d1h, d1l, &d2h, &d2l);
841    add128(sh, sl, 0, d1h >> 63, &sh, &sl);
842    shift128Left(sh, sl, 128 - 114, &sh, &sl);
843
844    /* increment or decrement for inexact */
845    if (d2h | d2l) {
846        if ((int64_t)(d1h ^ d2h) < 0) {
847            sub128(sh, sl, 0, 1, &sh, &sl);
848        } else {
849            add128(sh, sl, 0, 1, &sh, &sl);
850        }
851    }
852    a->frac_lo = sl;
853    a->frac_hi = sh;
854
855 done:
856    /* Convert back from base 4 to base 2. */
857    a->exp >>= 1;
858    if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
859        frac_add(a, a, a);
860    } else {
861        a->exp += 1;
862    }
863    return;
864
865 d_nan:
866    float_raise(float_flag_invalid, status);
867    parts_default_nan(a, status);
868}
869
870/*
871 * Rounds the floating-point value `a' to an integer, and returns the
872 * result as a floating-point value. The operation is performed
873 * according to the IEC/IEEE Standard for Binary Floating-Point
874 * Arithmetic.
875 *
876 * parts_round_to_int_normal is an internal helper function for
877 * normal numbers only, returning true for inexact but not directly
878 * raising float_flag_inexact.
879 */
880static bool partsN(round_to_int_normal)(FloatPartsN *a, FloatRoundMode rmode,
881                                        int scale, int frac_size)
882{
883    uint64_t frac_lsb, frac_lsbm1, rnd_even_mask, rnd_mask, inc;
884    int shift_adj;
885
886    scale = MIN(MAX(scale, -0x10000), 0x10000);
887    a->exp += scale;
888
889    if (a->exp < 0) {
890        bool one;
891
892        /* All fractional */
893        switch (rmode) {
894        case float_round_nearest_even:
895            one = false;
896            if (a->exp == -1) {
897                FloatPartsN tmp;
898                /* Shift left one, discarding DECOMPOSED_IMPLICIT_BIT */
899                frac_add(&tmp, a, a);
900                /* Anything remaining means frac > 0.5. */
901                one = !frac_eqz(&tmp);
902            }
903            break;
904        case float_round_ties_away:
905            one = a->exp == -1;
906            break;
907        case float_round_to_zero:
908            one = false;
909            break;
910        case float_round_up:
911            one = !a->sign;
912            break;
913        case float_round_down:
914            one = a->sign;
915            break;
916        case float_round_to_odd:
917            one = true;
918            break;
919        default:
920            g_assert_not_reached();
921        }
922
923        frac_clear(a);
924        a->exp = 0;
925        if (one) {
926            a->frac_hi = DECOMPOSED_IMPLICIT_BIT;
927        } else {
928            a->cls = float_class_zero;
929        }
930        return true;
931    }
932
933    if (a->exp >= frac_size) {
934        /* All integral */
935        return false;
936    }
937
938    if (N > 64 && a->exp < N - 64) {
939        /*
940         * Rounding is not in the low word -- shift lsb to bit 2,
941         * which leaves room for sticky and rounding bit.
942         */
943        shift_adj = (N - 1) - (a->exp + 2);
944        frac_shrjam(a, shift_adj);
945        frac_lsb = 1 << 2;
946    } else {
947        shift_adj = 0;
948        frac_lsb = DECOMPOSED_IMPLICIT_BIT >> (a->exp & 63);
949    }
950
951    frac_lsbm1 = frac_lsb >> 1;
952    rnd_mask = frac_lsb - 1;
953    rnd_even_mask = rnd_mask | frac_lsb;
954
955    if (!(a->frac_lo & rnd_mask)) {
956        /* Fractional bits already clear, undo the shift above. */
957        frac_shl(a, shift_adj);
958        return false;
959    }
960
961    switch (rmode) {
962    case float_round_nearest_even:
963        inc = ((a->frac_lo & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
964        break;
965    case float_round_ties_away:
966        inc = frac_lsbm1;
967        break;
968    case float_round_to_zero:
969        inc = 0;
970        break;
971    case float_round_up:
972        inc = a->sign ? 0 : rnd_mask;
973        break;
974    case float_round_down:
975        inc = a->sign ? rnd_mask : 0;
976        break;
977    case float_round_to_odd:
978        inc = a->frac_lo & frac_lsb ? 0 : rnd_mask;
979        break;
980    default:
981        g_assert_not_reached();
982    }
983
984    if (shift_adj == 0) {
985        if (frac_addi(a, a, inc)) {
986            frac_shr(a, 1);
987            a->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
988            a->exp++;
989        }
990        a->frac_lo &= ~rnd_mask;
991    } else {
992        frac_addi(a, a, inc);
993        a->frac_lo &= ~rnd_mask;
994        /* Be careful shifting back, not to overflow */
995        frac_shl(a, shift_adj - 1);
996        if (a->frac_hi & DECOMPOSED_IMPLICIT_BIT) {
997            a->exp++;
998        } else {
999            frac_add(a, a, a);
1000        }
1001    }
1002    return true;
1003}
1004
1005static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode,
1006                                 int scale, float_status *s,
1007                                 const FloatFmt *fmt)
1008{
1009    switch (a->cls) {
1010    case float_class_qnan:
1011    case float_class_snan:
1012        parts_return_nan(a, s);
1013        break;
1014    case float_class_zero:
1015    case float_class_inf:
1016        break;
1017    case float_class_normal:
1018        if (parts_round_to_int_normal(a, rmode, scale, fmt->frac_size)) {
1019            float_raise(float_flag_inexact, s);
1020        }
1021        break;
1022    default:
1023        g_assert_not_reached();
1024    }
1025}
1026
1027/*
1028 * Returns the result of converting the floating-point value `a' to
1029 * the two's complement integer format. The conversion is performed
1030 * according to the IEC/IEEE Standard for Binary Floating-Point
1031 * Arithmetic---which means in particular that the conversion is
1032 * rounded according to the current rounding mode. If `a' is a NaN,
1033 * the largest positive integer is returned. Otherwise, if the
1034 * conversion overflows, the largest integer with the same sign as `a'
1035 * is returned.
1036 */
1037static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode,
1038                                     int scale, int64_t min, int64_t max,
1039                                     float_status *s)
1040{
1041    int flags = 0;
1042    uint64_t r;
1043
1044    switch (p->cls) {
1045    case float_class_snan:
1046    case float_class_qnan:
1047        flags = float_flag_invalid;
1048        r = max;
1049        break;
1050
1051    case float_class_inf:
1052        flags = float_flag_invalid;
1053        r = p->sign ? min : max;
1054        break;
1055
1056    case float_class_zero:
1057        return 0;
1058
1059    case float_class_normal:
1060        /* TODO: N - 2 is frac_size for rounding; could use input fmt. */
1061        if (parts_round_to_int_normal(p, rmode, scale, N - 2)) {
1062            flags = float_flag_inexact;
1063        }
1064
1065        if (p->exp <= DECOMPOSED_BINARY_POINT) {
1066            r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
1067        } else {
1068            r = UINT64_MAX;
1069        }
1070        if (p->sign) {
1071            if (r <= -(uint64_t)min) {
1072                r = -r;
1073            } else {
1074                flags = float_flag_invalid;
1075                r = min;
1076            }
1077        } else if (r > max) {
1078            flags = float_flag_invalid;
1079            r = max;
1080        }
1081        break;
1082
1083    default:
1084        g_assert_not_reached();
1085    }
1086
1087    float_raise(flags, s);
1088    return r;
1089}
1090
1091/*
1092 *  Returns the result of converting the floating-point value `a' to
1093 *  the unsigned integer format. The conversion is performed according
1094 *  to the IEC/IEEE Standard for Binary Floating-Point
1095 *  Arithmetic---which means in particular that the conversion is
1096 *  rounded according to the current rounding mode. If `a' is a NaN,
1097 *  the largest unsigned integer is returned. Otherwise, if the
1098 *  conversion overflows, the largest unsigned integer is returned. If
1099 *  the 'a' is negative, the result is rounded and zero is returned;
1100 *  values that do not round to zero will raise the inexact exception
1101 *  flag.
1102 */
1103static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode,
1104                                      int scale, uint64_t max, float_status *s)
1105{
1106    int flags = 0;
1107    uint64_t r;
1108
1109    switch (p->cls) {
1110    case float_class_snan:
1111    case float_class_qnan:
1112        flags = float_flag_invalid;
1113        r = max;
1114        break;
1115
1116    case float_class_inf:
1117        flags = float_flag_invalid;
1118        r = p->sign ? 0 : max;
1119        break;
1120
1121    case float_class_zero:
1122        return 0;
1123
1124    case float_class_normal:
1125        /* TODO: N - 2 is frac_size for rounding; could use input fmt. */
1126        if (parts_round_to_int_normal(p, rmode, scale, N - 2)) {
1127            flags = float_flag_inexact;
1128            if (p->cls == float_class_zero) {
1129                r = 0;
1130                break;
1131            }
1132        }
1133
1134        if (p->sign) {
1135            flags = float_flag_invalid;
1136            r = 0;
1137        } else if (p->exp > DECOMPOSED_BINARY_POINT) {
1138            flags = float_flag_invalid;
1139            r = max;
1140        } else {
1141            r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
1142            if (r > max) {
1143                flags = float_flag_invalid;
1144                r = max;
1145            }
1146        }
1147        break;
1148
1149    default:
1150        g_assert_not_reached();
1151    }
1152
1153    float_raise(flags, s);
1154    return r;
1155}
1156
1157/*
1158 * Integer to float conversions
1159 *
1160 * Returns the result of converting the two's complement integer `a'
1161 * to the floating-point format. The conversion is performed according
1162 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1163 */
1164static void partsN(sint_to_float)(FloatPartsN *p, int64_t a,
1165                                  int scale, float_status *s)
1166{
1167    uint64_t f = a;
1168    int shift;
1169
1170    memset(p, 0, sizeof(*p));
1171
1172    if (a == 0) {
1173        p->cls = float_class_zero;
1174        return;
1175    }
1176
1177    p->cls = float_class_normal;
1178    if (a < 0) {
1179        f = -f;
1180        p->sign = true;
1181    }
1182    shift = clz64(f);
1183    scale = MIN(MAX(scale, -0x10000), 0x10000);
1184
1185    p->exp = DECOMPOSED_BINARY_POINT - shift + scale;
1186    p->frac_hi = f << shift;
1187}
1188
1189/*
1190 * Unsigned Integer to float conversions
1191 *
1192 * Returns the result of converting the unsigned integer `a' to the
1193 * floating-point format. The conversion is performed according to the
1194 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1195 */
1196static void partsN(uint_to_float)(FloatPartsN *p, uint64_t a,
1197                                  int scale, float_status *status)
1198{
1199    memset(p, 0, sizeof(*p));
1200
1201    if (a == 0) {
1202        p->cls = float_class_zero;
1203    } else {
1204        int shift = clz64(a);
1205        scale = MIN(MAX(scale, -0x10000), 0x10000);
1206        p->cls = float_class_normal;
1207        p->exp = DECOMPOSED_BINARY_POINT - shift + scale;
1208        p->frac_hi = a << shift;
1209    }
1210}
1211
1212/*
1213 * Float min/max.
1214 */
1215static FloatPartsN *partsN(minmax)(FloatPartsN *a, FloatPartsN *b,
1216                                   float_status *s, int flags)
1217{
1218    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
1219    int a_exp, b_exp, cmp;
1220
1221    if (unlikely(ab_mask & float_cmask_anynan)) {
1222        /*
1223         * For minNum/maxNum (IEEE 754-2008)
1224         * or minimumNumber/maximumNumber (IEEE 754-2019),
1225         * if one operand is a QNaN, and the other
1226         * operand is numerical, then return numerical argument.
1227         */
1228        if ((flags & (minmax_isnum | minmax_isnumber))
1229            && !(ab_mask & float_cmask_snan)
1230            && (ab_mask & ~float_cmask_qnan)) {
1231            return is_nan(a->cls) ? b : a;
1232        }
1233
1234        /*
1235         * In IEEE 754-2019, minNum, maxNum, minNumMag and maxNumMag
1236         * are removed and replaced with minimum, minimumNumber, maximum
1237         * and maximumNumber.
1238         * minimumNumber/maximumNumber behavior for SNaN is changed to:
1239         *   If both operands are NaNs, a QNaN is returned.
1240         *   If either operand is a SNaN,
1241         *   an invalid operation exception is signaled,
1242         *   but unless both operands are NaNs,
1243         *   the SNaN is otherwise ignored and not converted to a QNaN.
1244         */
1245        if ((flags & minmax_isnumber)
1246            && (ab_mask & float_cmask_snan)
1247            && (ab_mask & ~float_cmask_anynan)) {
1248            float_raise(float_flag_invalid, s);
1249            return is_nan(a->cls) ? b : a;
1250        }
1251
1252        return parts_pick_nan(a, b, s);
1253    }
1254
1255    a_exp = a->exp;
1256    b_exp = b->exp;
1257
1258    if (unlikely(ab_mask != float_cmask_normal)) {
1259        switch (a->cls) {
1260        case float_class_normal:
1261            break;
1262        case float_class_inf:
1263            a_exp = INT16_MAX;
1264            break;
1265        case float_class_zero:
1266            a_exp = INT16_MIN;
1267            break;
1268        default:
1269            g_assert_not_reached();
1270            break;
1271        }
1272        switch (b->cls) {
1273        case float_class_normal:
1274            break;
1275        case float_class_inf:
1276            b_exp = INT16_MAX;
1277            break;
1278        case float_class_zero:
1279            b_exp = INT16_MIN;
1280            break;
1281        default:
1282            g_assert_not_reached();
1283            break;
1284        }
1285    }
1286
1287    /* Compare magnitudes. */
1288    cmp = a_exp - b_exp;
1289    if (cmp == 0) {
1290        cmp = frac_cmp(a, b);
1291    }
1292
1293    /*
1294     * Take the sign into account.
1295     * For ismag, only do this if the magnitudes are equal.
1296     */
1297    if (!(flags & minmax_ismag) || cmp == 0) {
1298        if (a->sign != b->sign) {
1299            /* For differing signs, the negative operand is less. */
1300            cmp = a->sign ? -1 : 1;
1301        } else if (a->sign) {
1302            /* For two negative operands, invert the magnitude comparison. */
1303            cmp = -cmp;
1304        }
1305    }
1306
1307    if (flags & minmax_ismin) {
1308        cmp = -cmp;
1309    }
1310    return cmp < 0 ? b : a;
1311}
1312
1313/*
1314 * Floating point compare
1315 */
1316static FloatRelation partsN(compare)(FloatPartsN *a, FloatPartsN *b,
1317                                     float_status *s, bool is_quiet)
1318{
1319    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
1320    int cmp;
1321
1322    if (likely(ab_mask == float_cmask_normal)) {
1323        if (a->sign != b->sign) {
1324            goto a_sign;
1325        }
1326        if (a->exp != b->exp) {
1327            cmp = a->exp < b->exp ? -1 : 1;
1328        } else {
1329            cmp = frac_cmp(a, b);
1330        }
1331        if (a->sign) {
1332            cmp = -cmp;
1333        }
1334        return cmp;
1335    }
1336
1337    if (unlikely(ab_mask & float_cmask_anynan)) {
1338        if (!is_quiet || (ab_mask & float_cmask_snan)) {
1339            float_raise(float_flag_invalid, s);
1340        }
1341        return float_relation_unordered;
1342    }
1343
1344    if (ab_mask & float_cmask_zero) {
1345        if (ab_mask == float_cmask_zero) {
1346            return float_relation_equal;
1347        } else if (a->cls == float_class_zero) {
1348            goto b_sign;
1349        } else {
1350            goto a_sign;
1351        }
1352    }
1353
1354    if (ab_mask == float_cmask_inf) {
1355        if (a->sign == b->sign) {
1356            return float_relation_equal;
1357        }
1358    } else if (b->cls == float_class_inf) {
1359        goto b_sign;
1360    } else {
1361        g_assert(a->cls == float_class_inf);
1362    }
1363
1364 a_sign:
1365    return a->sign ? float_relation_less : float_relation_greater;
1366 b_sign:
1367    return b->sign ? float_relation_greater : float_relation_less;
1368}
1369
1370/*
1371 * Multiply A by 2 raised to the power N.
1372 */
1373static void partsN(scalbn)(FloatPartsN *a, int n, float_status *s)
1374{
1375    switch (a->cls) {
1376    case float_class_snan:
1377    case float_class_qnan:
1378        parts_return_nan(a, s);
1379        break;
1380    case float_class_zero:
1381    case float_class_inf:
1382        break;
1383    case float_class_normal:
1384        a->exp += MIN(MAX(n, -0x10000), 0x10000);
1385        break;
1386    default:
1387        g_assert_not_reached();
1388    }
1389}
1390
1391/*
1392 * Return log2(A)
1393 */
1394static void partsN(log2)(FloatPartsN *a, float_status *s, const FloatFmt *fmt)
1395{
1396    uint64_t a0, a1, r, t, ign;
1397    FloatPartsN f;
1398    int i, n, a_exp, f_exp;
1399
1400    if (unlikely(a->cls != float_class_normal)) {
1401        switch (a->cls) {
1402        case float_class_snan:
1403        case float_class_qnan:
1404            parts_return_nan(a, s);
1405            return;
1406        case float_class_zero:
1407            /* log2(0) = -inf */
1408            a->cls = float_class_inf;
1409            a->sign = 1;
1410            return;
1411        case float_class_inf:
1412            if (unlikely(a->sign)) {
1413                goto d_nan;
1414            }
1415            return;
1416        default:
1417            break;
1418        }
1419        g_assert_not_reached();
1420    }
1421    if (unlikely(a->sign)) {
1422        goto d_nan;
1423    }
1424
1425    /* TODO: This algorithm looses bits too quickly for float128. */
1426    g_assert(N == 64);
1427
1428    a_exp = a->exp;
1429    f_exp = -1;
1430
1431    r = 0;
1432    t = DECOMPOSED_IMPLICIT_BIT;
1433    a0 = a->frac_hi;
1434    a1 = 0;
1435
1436    n = fmt->frac_size + 2;
1437    if (unlikely(a_exp == -1)) {
1438        /*
1439         * When a_exp == -1, we're computing the log2 of a value [0.5,1.0).
1440         * When the value is very close to 1.0, there are lots of 1's in
1441         * the msb parts of the fraction.  At the end, when we subtract
1442         * this value from -1.0, we can see a catastrophic loss of precision,
1443         * as 0x800..000 - 0x7ff..ffx becomes 0x000..00y, leaving only the
1444         * bits of y in the final result.  To minimize this, compute as many
1445         * digits as we can.
1446         * ??? This case needs another algorithm to avoid this.
1447         */
1448        n = fmt->frac_size * 2 + 2;
1449        /* Don't compute a value overlapping the sticky bit */
1450        n = MIN(n, 62);
1451    }
1452
1453    for (i = 0; i < n; i++) {
1454        if (a1) {
1455            mul128To256(a0, a1, a0, a1, &a0, &a1, &ign, &ign);
1456        } else if (a0 & 0xffffffffull) {
1457            mul64To128(a0, a0, &a0, &a1);
1458        } else if (a0 & ~DECOMPOSED_IMPLICIT_BIT) {
1459            a0 >>= 32;
1460            a0 *= a0;
1461        } else {
1462            goto exact;
1463        }
1464
1465        if (a0 & DECOMPOSED_IMPLICIT_BIT) {
1466            if (unlikely(a_exp == 0 && r == 0)) {
1467                /*
1468                 * When a_exp == 0, we're computing the log2 of a value
1469                 * [1.0,2.0).  When the value is very close to 1.0, there
1470                 * are lots of 0's in the msb parts of the fraction.
1471                 * We need to compute more digits to produce a correct
1472                 * result -- restart at the top of the fraction.
1473                 * ??? This is likely to lose precision quickly, as for
1474                 * float128; we may need another method.
1475                 */
1476                f_exp -= i;
1477                t = r = DECOMPOSED_IMPLICIT_BIT;
1478                i = 0;
1479            } else {
1480                r |= t;
1481            }
1482        } else {
1483            add128(a0, a1, a0, a1, &a0, &a1);
1484        }
1485        t >>= 1;
1486    }
1487
1488    /* Set sticky for inexact. */
1489    r |= (a1 || a0 & ~DECOMPOSED_IMPLICIT_BIT);
1490
1491 exact:
1492    parts_sint_to_float(a, a_exp, 0, s);
1493    if (r == 0) {
1494        return;
1495    }
1496
1497    memset(&f, 0, sizeof(f));
1498    f.cls = float_class_normal;
1499    f.frac_hi = r;
1500    f.exp = f_exp - frac_normalize(&f);
1501
1502    if (a_exp < 0) {
1503        parts_sub_normal(a, &f);
1504    } else if (a_exp > 0) {
1505        parts_add_normal(a, &f);
1506    } else {
1507        *a = f;
1508    }
1509    return;
1510
1511 d_nan:
1512    float_raise(float_flag_invalid, s);
1513    parts_default_nan(a, s);
1514}
1515