1/* 2 * QEMU float support 3 * 4 * The code in this source file is derived from release 2a of the SoftFloat 5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and 6 * some later contributions) are provided under that license, as detailed below. 7 * It has subsequently been modified by contributors to the QEMU Project, 8 * so some portions are provided under: 9 * the SoftFloat-2a license 10 * the BSD license 11 * GPL-v2-or-later 12 * 13 * Any future contributions to this file after December 1st 2014 will be 14 * taken to be licensed under the Softfloat-2a license unless specifically 15 * indicated otherwise. 16 */ 17 18static void partsN(return_nan)(FloatPartsN *a, float_status *s) 19{ 20 switch (a->cls) { 21 case float_class_snan: 22 float_raise(float_flag_invalid, s); 23 if (s->default_nan_mode) { 24 parts_default_nan(a, s); 25 } else { 26 parts_silence_nan(a, s); 27 } 28 break; 29 case float_class_qnan: 30 if (s->default_nan_mode) { 31 parts_default_nan(a, s); 32 } 33 break; 34 default: 35 g_assert_not_reached(); 36 } 37} 38 39static FloatPartsN *partsN(pick_nan)(FloatPartsN *a, FloatPartsN *b, 40 float_status *s) 41{ 42 if (is_snan(a->cls) || is_snan(b->cls)) { 43 float_raise(float_flag_invalid, s); 44 } 45 46 if (s->default_nan_mode) { 47 parts_default_nan(a, s); 48 } else { 49 int cmp = frac_cmp(a, b); 50 if (cmp == 0) { 51 cmp = a->sign < b->sign; 52 } 53 54 if (pickNaN(a->cls, b->cls, cmp > 0, s)) { 55 a = b; 56 } 57 if (is_snan(a->cls)) { 58 parts_silence_nan(a, s); 59 } 60 } 61 return a; 62} 63 64static FloatPartsN *partsN(pick_nan_muladd)(FloatPartsN *a, FloatPartsN *b, 65 FloatPartsN *c, float_status *s, 66 int ab_mask, int abc_mask) 67{ 68 int which; 69 70 if (unlikely(abc_mask & float_cmask_snan)) { 71 float_raise(float_flag_invalid, s); 72 } 73 74 which = pickNaNMulAdd(a->cls, b->cls, c->cls, 75 ab_mask == float_cmask_infzero, s); 76 77 if (s->default_nan_mode || which == 3) { 78 /* 79 * Note that this check is after pickNaNMulAdd so that function 80 * has an opportunity to set the Invalid flag for infzero. 81 */ 82 parts_default_nan(a, s); 83 return a; 84 } 85 86 switch (which) { 87 case 0: 88 break; 89 case 1: 90 a = b; 91 break; 92 case 2: 93 a = c; 94 break; 95 default: 96 g_assert_not_reached(); 97 } 98 if (is_snan(a->cls)) { 99 parts_silence_nan(a, s); 100 } 101 return a; 102} 103 104/* 105 * Canonicalize the FloatParts structure. Determine the class, 106 * unbias the exponent, and normalize the fraction. 107 */ 108static void partsN(canonicalize)(FloatPartsN *p, float_status *status, 109 const FloatFmt *fmt) 110{ 111 if (unlikely(p->exp == 0)) { 112 if (likely(frac_eqz(p))) { 113 p->cls = float_class_zero; 114 } else if (status->flush_inputs_to_zero) { 115 float_raise(float_flag_input_denormal, status); 116 p->cls = float_class_zero; 117 frac_clear(p); 118 } else { 119 int shift = frac_normalize(p); 120 p->cls = float_class_normal; 121 p->exp = fmt->frac_shift - fmt->exp_bias - shift + 1; 122 } 123 } else if (likely(p->exp < fmt->exp_max) || fmt->arm_althp) { 124 p->cls = float_class_normal; 125 p->exp -= fmt->exp_bias; 126 frac_shl(p, fmt->frac_shift); 127 p->frac_hi |= DECOMPOSED_IMPLICIT_BIT; 128 } else if (likely(frac_eqz(p))) { 129 p->cls = float_class_inf; 130 } else { 131 frac_shl(p, fmt->frac_shift); 132 p->cls = (parts_is_snan_frac(p->frac_hi, status) 133 ? float_class_snan : float_class_qnan); 134 } 135} 136 137/* 138 * Round and uncanonicalize a floating-point number by parts. There 139 * are FRAC_SHIFT bits that may require rounding at the bottom of the 140 * fraction; these bits will be removed. The exponent will be biased 141 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. 142 */ 143static void partsN(uncanon)(FloatPartsN *p, float_status *s, 144 const FloatFmt *fmt) 145{ 146 const int exp_max = fmt->exp_max; 147 const int frac_shift = fmt->frac_shift; 148 const uint64_t frac_lsb = fmt->frac_lsb; 149 const uint64_t frac_lsbm1 = fmt->frac_lsbm1; 150 const uint64_t round_mask = fmt->round_mask; 151 const uint64_t roundeven_mask = fmt->roundeven_mask; 152 uint64_t inc; 153 bool overflow_norm; 154 int exp, flags = 0; 155 156 if (unlikely(p->cls != float_class_normal)) { 157 switch (p->cls) { 158 case float_class_zero: 159 p->exp = 0; 160 frac_clear(p); 161 return; 162 case float_class_inf: 163 g_assert(!fmt->arm_althp); 164 p->exp = fmt->exp_max; 165 frac_clear(p); 166 return; 167 case float_class_qnan: 168 case float_class_snan: 169 g_assert(!fmt->arm_althp); 170 p->exp = fmt->exp_max; 171 frac_shr(p, fmt->frac_shift); 172 return; 173 default: 174 break; 175 } 176 g_assert_not_reached(); 177 } 178 179 switch (s->float_rounding_mode) { 180 case float_round_nearest_even: 181 overflow_norm = false; 182 inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); 183 break; 184 case float_round_ties_away: 185 overflow_norm = false; 186 inc = frac_lsbm1; 187 break; 188 case float_round_to_zero: 189 overflow_norm = true; 190 inc = 0; 191 break; 192 case float_round_up: 193 inc = p->sign ? 0 : round_mask; 194 overflow_norm = p->sign; 195 break; 196 case float_round_down: 197 inc = p->sign ? round_mask : 0; 198 overflow_norm = !p->sign; 199 break; 200 case float_round_to_odd: 201 overflow_norm = true; 202 inc = p->frac_lo & frac_lsb ? 0 : round_mask; 203 break; 204 default: 205 g_assert_not_reached(); 206 } 207 208 exp = p->exp + fmt->exp_bias; 209 if (likely(exp > 0)) { 210 if (p->frac_lo & round_mask) { 211 flags |= float_flag_inexact; 212 if (frac_addi(p, p, inc)) { 213 frac_shr(p, 1); 214 p->frac_hi |= DECOMPOSED_IMPLICIT_BIT; 215 exp++; 216 } 217 } 218 frac_shr(p, frac_shift); 219 220 if (fmt->arm_althp) { 221 /* ARM Alt HP eschews Inf and NaN for a wider exponent. */ 222 if (unlikely(exp > exp_max)) { 223 /* Overflow. Return the maximum normal. */ 224 flags = float_flag_invalid; 225 exp = exp_max; 226 frac_allones(p); 227 } 228 } else if (unlikely(exp >= exp_max)) { 229 flags |= float_flag_overflow | float_flag_inexact; 230 if (overflow_norm) { 231 exp = exp_max - 1; 232 frac_allones(p); 233 } else { 234 p->cls = float_class_inf; 235 exp = exp_max; 236 frac_clear(p); 237 } 238 } 239 } else if (s->flush_to_zero) { 240 flags |= float_flag_output_denormal; 241 p->cls = float_class_zero; 242 exp = 0; 243 frac_clear(p); 244 } else { 245 bool is_tiny = s->tininess_before_rounding || exp < 0; 246 247 if (!is_tiny) { 248 FloatPartsN discard; 249 is_tiny = !frac_addi(&discard, p, inc); 250 } 251 252 frac_shrjam(p, 1 - exp); 253 254 if (p->frac_lo & round_mask) { 255 /* Need to recompute round-to-even/round-to-odd. */ 256 switch (s->float_rounding_mode) { 257 case float_round_nearest_even: 258 inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 259 ? frac_lsbm1 : 0); 260 break; 261 case float_round_to_odd: 262 inc = p->frac_lo & frac_lsb ? 0 : round_mask; 263 break; 264 default: 265 break; 266 } 267 flags |= float_flag_inexact; 268 frac_addi(p, p, inc); 269 } 270 271 exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) != 0; 272 frac_shr(p, frac_shift); 273 274 if (is_tiny && (flags & float_flag_inexact)) { 275 flags |= float_flag_underflow; 276 } 277 if (exp == 0 && frac_eqz(p)) { 278 p->cls = float_class_zero; 279 } 280 } 281 p->exp = exp; 282 float_raise(flags, s); 283} 284 285/* 286 * Returns the result of adding or subtracting the values of the 287 * floating-point values `a' and `b'. The operation is performed 288 * according to the IEC/IEEE Standard for Binary Floating-Point 289 * Arithmetic. 290 */ 291static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b, 292 float_status *s, bool subtract) 293{ 294 bool b_sign = b->sign ^ subtract; 295 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); 296 297 if (a->sign != b_sign) { 298 /* Subtraction */ 299 if (likely(ab_mask == float_cmask_normal)) { 300 if (parts_sub_normal(a, b)) { 301 return a; 302 } 303 /* Subtract was exact, fall through to set sign. */ 304 ab_mask = float_cmask_zero; 305 } 306 307 if (ab_mask == float_cmask_zero) { 308 a->sign = s->float_rounding_mode == float_round_down; 309 return a; 310 } 311 312 if (unlikely(ab_mask & float_cmask_anynan)) { 313 goto p_nan; 314 } 315 316 if (ab_mask & float_cmask_inf) { 317 if (a->cls != float_class_inf) { 318 /* N - Inf */ 319 goto return_b; 320 } 321 if (b->cls != float_class_inf) { 322 /* Inf - N */ 323 return a; 324 } 325 /* Inf - Inf */ 326 float_raise(float_flag_invalid, s); 327 parts_default_nan(a, s); 328 return a; 329 } 330 } else { 331 /* Addition */ 332 if (likely(ab_mask == float_cmask_normal)) { 333 parts_add_normal(a, b); 334 return a; 335 } 336 337 if (ab_mask == float_cmask_zero) { 338 return a; 339 } 340 341 if (unlikely(ab_mask & float_cmask_anynan)) { 342 goto p_nan; 343 } 344 345 if (ab_mask & float_cmask_inf) { 346 a->cls = float_class_inf; 347 return a; 348 } 349 } 350 351 if (b->cls == float_class_zero) { 352 g_assert(a->cls == float_class_normal); 353 return a; 354 } 355 356 g_assert(a->cls == float_class_zero); 357 g_assert(b->cls == float_class_normal); 358 return_b: 359 b->sign = b_sign; 360 return b; 361 362 p_nan: 363 return parts_pick_nan(a, b, s); 364} 365 366/* 367 * Returns the result of multiplying the floating-point values `a' and 368 * `b'. The operation is performed according to the IEC/IEEE Standard 369 * for Binary Floating-Point Arithmetic. 370 */ 371static FloatPartsN *partsN(mul)(FloatPartsN *a, FloatPartsN *b, 372 float_status *s) 373{ 374 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); 375 bool sign = a->sign ^ b->sign; 376 377 if (likely(ab_mask == float_cmask_normal)) { 378 FloatPartsW tmp; 379 380 frac_mulw(&tmp, a, b); 381 frac_truncjam(a, &tmp); 382 383 a->exp += b->exp + 1; 384 if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) { 385 frac_add(a, a, a); 386 a->exp -= 1; 387 } 388 389 a->sign = sign; 390 return a; 391 } 392 393 /* Inf * Zero == NaN */ 394 if (unlikely(ab_mask == float_cmask_infzero)) { 395 float_raise(float_flag_invalid, s); 396 parts_default_nan(a, s); 397 return a; 398 } 399 400 if (unlikely(ab_mask & float_cmask_anynan)) { 401 return parts_pick_nan(a, b, s); 402 } 403 404 /* Multiply by 0 or Inf */ 405 if (ab_mask & float_cmask_inf) { 406 a->cls = float_class_inf; 407 a->sign = sign; 408 return a; 409 } 410 411 g_assert(ab_mask & float_cmask_zero); 412 a->cls = float_class_zero; 413 a->sign = sign; 414 return a; 415} 416 417/* 418 * Returns the result of multiplying the floating-point values `a' and 419 * `b' then adding 'c', with no intermediate rounding step after the 420 * multiplication. The operation is performed according to the 421 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008. 422 * The flags argument allows the caller to select negation of the 423 * addend, the intermediate product, or the final result. (The 424 * difference between this and having the caller do a separate 425 * negation is that negating externally will flip the sign bit on NaNs.) 426 * 427 * Requires A and C extracted into a double-sized structure to provide the 428 * extra space for the widening multiply. 429 */ 430static FloatPartsN *partsN(muladd)(FloatPartsN *a, FloatPartsN *b, 431 FloatPartsN *c, int flags, float_status *s) 432{ 433 int ab_mask, abc_mask; 434 FloatPartsW p_widen, c_widen; 435 436 ab_mask = float_cmask(a->cls) | float_cmask(b->cls); 437 abc_mask = float_cmask(c->cls) | ab_mask; 438 439 /* 440 * It is implementation-defined whether the cases of (0,inf,qnan) 441 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN 442 * they return if they do), so we have to hand this information 443 * off to the target-specific pick-a-NaN routine. 444 */ 445 if (unlikely(abc_mask & float_cmask_anynan)) { 446 return parts_pick_nan_muladd(a, b, c, s, ab_mask, abc_mask); 447 } 448 449 if (flags & float_muladd_negate_c) { 450 c->sign ^= 1; 451 } 452 453 /* Compute the sign of the product into A. */ 454 a->sign ^= b->sign; 455 if (flags & float_muladd_negate_product) { 456 a->sign ^= 1; 457 } 458 459 if (unlikely(ab_mask != float_cmask_normal)) { 460 if (unlikely(ab_mask == float_cmask_infzero)) { 461 goto d_nan; 462 } 463 464 if (ab_mask & float_cmask_inf) { 465 if (c->cls == float_class_inf && a->sign != c->sign) { 466 goto d_nan; 467 } 468 goto return_inf; 469 } 470 471 g_assert(ab_mask & float_cmask_zero); 472 if (c->cls == float_class_normal) { 473 *a = *c; 474 goto return_normal; 475 } 476 if (c->cls == float_class_zero) { 477 if (a->sign != c->sign) { 478 goto return_sub_zero; 479 } 480 goto return_zero; 481 } 482 g_assert(c->cls == float_class_inf); 483 } 484 485 if (unlikely(c->cls == float_class_inf)) { 486 a->sign = c->sign; 487 goto return_inf; 488 } 489 490 /* Perform the multiplication step. */ 491 p_widen.sign = a->sign; 492 p_widen.exp = a->exp + b->exp + 1; 493 frac_mulw(&p_widen, a, b); 494 if (!(p_widen.frac_hi & DECOMPOSED_IMPLICIT_BIT)) { 495 frac_add(&p_widen, &p_widen, &p_widen); 496 p_widen.exp -= 1; 497 } 498 499 /* Perform the addition step. */ 500 if (c->cls != float_class_zero) { 501 /* Zero-extend C to less significant bits. */ 502 frac_widen(&c_widen, c); 503 c_widen.exp = c->exp; 504 505 if (a->sign == c->sign) { 506 parts_add_normal(&p_widen, &c_widen); 507 } else if (!parts_sub_normal(&p_widen, &c_widen)) { 508 goto return_sub_zero; 509 } 510 } 511 512 /* Narrow with sticky bit, for proper rounding later. */ 513 frac_truncjam(a, &p_widen); 514 a->sign = p_widen.sign; 515 a->exp = p_widen.exp; 516 517 return_normal: 518 if (flags & float_muladd_halve_result) { 519 a->exp -= 1; 520 } 521 finish_sign: 522 if (flags & float_muladd_negate_result) { 523 a->sign ^= 1; 524 } 525 return a; 526 527 return_sub_zero: 528 a->sign = s->float_rounding_mode == float_round_down; 529 return_zero: 530 a->cls = float_class_zero; 531 goto finish_sign; 532 533 return_inf: 534 a->cls = float_class_inf; 535 goto finish_sign; 536 537 d_nan: 538 float_raise(float_flag_invalid, s); 539 parts_default_nan(a, s); 540 return a; 541} 542 543/* 544 * Returns the result of dividing the floating-point value `a' by the 545 * corresponding value `b'. The operation is performed according to 546 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic. 547 */ 548static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b, 549 float_status *s) 550{ 551 int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); 552 bool sign = a->sign ^ b->sign; 553 554 if (likely(ab_mask == float_cmask_normal)) { 555 a->sign = sign; 556 a->exp -= b->exp + frac_div(a, b); 557 return a; 558 } 559 560 /* 0/0 or Inf/Inf => NaN */ 561 if (unlikely(ab_mask == float_cmask_zero) || 562 unlikely(ab_mask == float_cmask_inf)) { 563 float_raise(float_flag_invalid, s); 564 parts_default_nan(a, s); 565 return a; 566 } 567 568 /* All the NaN cases */ 569 if (unlikely(ab_mask & float_cmask_anynan)) { 570 return parts_pick_nan(a, b, s); 571 } 572 573 a->sign = sign; 574 575 /* Inf / X */ 576 if (a->cls == float_class_inf) { 577 return a; 578 } 579 580 /* 0 / X */ 581 if (a->cls == float_class_zero) { 582 return a; 583 } 584 585 /* X / Inf */ 586 if (b->cls == float_class_inf) { 587 a->cls = float_class_zero; 588 return a; 589 } 590 591 /* X / 0 => Inf */ 592 g_assert(b->cls == float_class_zero); 593 float_raise(float_flag_divbyzero, s); 594 a->cls = float_class_inf; 595 return a; 596} 597 598/* 599 * Rounds the floating-point value `a' to an integer, and returns the 600 * result as a floating-point value. The operation is performed 601 * according to the IEC/IEEE Standard for Binary Floating-Point 602 * Arithmetic. 603 * 604 * parts_round_to_int_normal is an internal helper function for 605 * normal numbers only, returning true for inexact but not directly 606 * raising float_flag_inexact. 607 */ 608static bool partsN(round_to_int_normal)(FloatPartsN *a, FloatRoundMode rmode, 609 int scale, int frac_size) 610{ 611 uint64_t frac_lsb, frac_lsbm1, rnd_even_mask, rnd_mask, inc; 612 int shift_adj; 613 614 scale = MIN(MAX(scale, -0x10000), 0x10000); 615 a->exp += scale; 616 617 if (a->exp < 0) { 618 bool one; 619 620 /* All fractional */ 621 switch (rmode) { 622 case float_round_nearest_even: 623 one = false; 624 if (a->exp == -1) { 625 FloatPartsN tmp; 626 /* Shift left one, discarding DECOMPOSED_IMPLICIT_BIT */ 627 frac_add(&tmp, a, a); 628 /* Anything remaining means frac > 0.5. */ 629 one = !frac_eqz(&tmp); 630 } 631 break; 632 case float_round_ties_away: 633 one = a->exp == -1; 634 break; 635 case float_round_to_zero: 636 one = false; 637 break; 638 case float_round_up: 639 one = !a->sign; 640 break; 641 case float_round_down: 642 one = a->sign; 643 break; 644 case float_round_to_odd: 645 one = true; 646 break; 647 default: 648 g_assert_not_reached(); 649 } 650 651 frac_clear(a); 652 a->exp = 0; 653 if (one) { 654 a->frac_hi = DECOMPOSED_IMPLICIT_BIT; 655 } else { 656 a->cls = float_class_zero; 657 } 658 return true; 659 } 660 661 if (a->exp >= frac_size) { 662 /* All integral */ 663 return false; 664 } 665 666 if (N > 64 && a->exp < N - 64) { 667 /* 668 * Rounding is not in the low word -- shift lsb to bit 2, 669 * which leaves room for sticky and rounding bit. 670 */ 671 shift_adj = (N - 1) - (a->exp + 2); 672 frac_shrjam(a, shift_adj); 673 frac_lsb = 1 << 2; 674 } else { 675 shift_adj = 0; 676 frac_lsb = DECOMPOSED_IMPLICIT_BIT >> (a->exp & 63); 677 } 678 679 frac_lsbm1 = frac_lsb >> 1; 680 rnd_mask = frac_lsb - 1; 681 rnd_even_mask = rnd_mask | frac_lsb; 682 683 if (!(a->frac_lo & rnd_mask)) { 684 /* Fractional bits already clear, undo the shift above. */ 685 frac_shl(a, shift_adj); 686 return false; 687 } 688 689 switch (rmode) { 690 case float_round_nearest_even: 691 inc = ((a->frac_lo & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0); 692 break; 693 case float_round_ties_away: 694 inc = frac_lsbm1; 695 break; 696 case float_round_to_zero: 697 inc = 0; 698 break; 699 case float_round_up: 700 inc = a->sign ? 0 : rnd_mask; 701 break; 702 case float_round_down: 703 inc = a->sign ? rnd_mask : 0; 704 break; 705 case float_round_to_odd: 706 inc = a->frac_lo & frac_lsb ? 0 : rnd_mask; 707 break; 708 default: 709 g_assert_not_reached(); 710 } 711 712 if (shift_adj == 0) { 713 if (frac_addi(a, a, inc)) { 714 frac_shr(a, 1); 715 a->frac_hi |= DECOMPOSED_IMPLICIT_BIT; 716 a->exp++; 717 } 718 a->frac_lo &= ~rnd_mask; 719 } else { 720 frac_addi(a, a, inc); 721 a->frac_lo &= ~rnd_mask; 722 /* Be careful shifting back, not to overflow */ 723 frac_shl(a, shift_adj - 1); 724 if (a->frac_hi & DECOMPOSED_IMPLICIT_BIT) { 725 a->exp++; 726 } else { 727 frac_add(a, a, a); 728 } 729 } 730 return true; 731} 732 733static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode, 734 int scale, float_status *s, 735 const FloatFmt *fmt) 736{ 737 switch (a->cls) { 738 case float_class_qnan: 739 case float_class_snan: 740 parts_return_nan(a, s); 741 break; 742 case float_class_zero: 743 case float_class_inf: 744 break; 745 case float_class_normal: 746 if (parts_round_to_int_normal(a, rmode, scale, fmt->frac_size)) { 747 float_raise(float_flag_inexact, s); 748 } 749 break; 750 default: 751 g_assert_not_reached(); 752 } 753} 754 755/* 756 * Returns the result of converting the floating-point value `a' to 757 * the two's complement integer format. The conversion is performed 758 * according to the IEC/IEEE Standard for Binary Floating-Point 759 * Arithmetic---which means in particular that the conversion is 760 * rounded according to the current rounding mode. If `a' is a NaN, 761 * the largest positive integer is returned. Otherwise, if the 762 * conversion overflows, the largest integer with the same sign as `a' 763 * is returned. 764*/ 765static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode, 766 int scale, int64_t min, int64_t max, 767 float_status *s) 768{ 769 int flags = 0; 770 uint64_t r; 771 772 switch (p->cls) { 773 case float_class_snan: 774 case float_class_qnan: 775 flags = float_flag_invalid; 776 r = max; 777 break; 778 779 case float_class_inf: 780 flags = float_flag_invalid; 781 r = p->sign ? min : max; 782 break; 783 784 case float_class_zero: 785 return 0; 786 787 case float_class_normal: 788 /* TODO: N - 2 is frac_size for rounding; could use input fmt. */ 789 if (parts_round_to_int_normal(p, rmode, scale, N - 2)) { 790 flags = float_flag_inexact; 791 } 792 793 if (p->exp <= DECOMPOSED_BINARY_POINT) { 794 r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp); 795 } else { 796 r = UINT64_MAX; 797 } 798 if (p->sign) { 799 if (r <= -(uint64_t)min) { 800 r = -r; 801 } else { 802 flags = float_flag_invalid; 803 r = min; 804 } 805 } else if (r > max) { 806 flags = float_flag_invalid; 807 r = max; 808 } 809 break; 810 811 default: 812 g_assert_not_reached(); 813 } 814 815 float_raise(flags, s); 816 return r; 817} 818