xref: /openbmc/qemu/fpu/softfloat-parts.c.inc (revision 744c72a8)
1/*
2 * QEMU float support
3 *
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 *  the SoftFloat-2a license
10 *  the BSD license
11 *  GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
16 */
17
18static void partsN(return_nan)(FloatPartsN *a, float_status *s)
19{
20    switch (a->cls) {
21    case float_class_snan:
22        float_raise(float_flag_invalid, s);
23        if (s->default_nan_mode) {
24            parts_default_nan(a, s);
25        } else {
26            parts_silence_nan(a, s);
27        }
28        break;
29    case float_class_qnan:
30        if (s->default_nan_mode) {
31            parts_default_nan(a, s);
32        }
33        break;
34    default:
35        g_assert_not_reached();
36    }
37}
38
39static FloatPartsN *partsN(pick_nan)(FloatPartsN *a, FloatPartsN *b,
40                                     float_status *s)
41{
42    if (is_snan(a->cls) || is_snan(b->cls)) {
43        float_raise(float_flag_invalid, s);
44    }
45
46    if (s->default_nan_mode) {
47        parts_default_nan(a, s);
48    } else {
49        int cmp = frac_cmp(a, b);
50        if (cmp == 0) {
51            cmp = a->sign < b->sign;
52        }
53
54        if (pickNaN(a->cls, b->cls, cmp > 0, s)) {
55            a = b;
56        }
57        if (is_snan(a->cls)) {
58            parts_silence_nan(a, s);
59        }
60    }
61    return a;
62}
63
64static FloatPartsN *partsN(pick_nan_muladd)(FloatPartsN *a, FloatPartsN *b,
65                                            FloatPartsN *c, float_status *s,
66                                            int ab_mask, int abc_mask)
67{
68    int which;
69
70    if (unlikely(abc_mask & float_cmask_snan)) {
71        float_raise(float_flag_invalid, s);
72    }
73
74    which = pickNaNMulAdd(a->cls, b->cls, c->cls,
75                          ab_mask == float_cmask_infzero, s);
76
77    if (s->default_nan_mode || which == 3) {
78        /*
79         * Note that this check is after pickNaNMulAdd so that function
80         * has an opportunity to set the Invalid flag for infzero.
81         */
82        parts_default_nan(a, s);
83        return a;
84    }
85
86    switch (which) {
87    case 0:
88        break;
89    case 1:
90        a = b;
91        break;
92    case 2:
93        a = c;
94        break;
95    default:
96        g_assert_not_reached();
97    }
98    if (is_snan(a->cls)) {
99        parts_silence_nan(a, s);
100    }
101    return a;
102}
103
104/*
105 * Canonicalize the FloatParts structure.  Determine the class,
106 * unbias the exponent, and normalize the fraction.
107 */
108static void partsN(canonicalize)(FloatPartsN *p, float_status *status,
109                                 const FloatFmt *fmt)
110{
111    if (unlikely(p->exp == 0)) {
112        if (likely(frac_eqz(p))) {
113            p->cls = float_class_zero;
114        } else if (status->flush_inputs_to_zero) {
115            float_raise(float_flag_input_denormal, status);
116            p->cls = float_class_zero;
117            frac_clear(p);
118        } else {
119            int shift = frac_normalize(p);
120            p->cls = float_class_normal;
121            p->exp = fmt->frac_shift - fmt->exp_bias - shift + 1;
122        }
123    } else if (likely(p->exp < fmt->exp_max) || fmt->arm_althp) {
124        p->cls = float_class_normal;
125        p->exp -= fmt->exp_bias;
126        frac_shl(p, fmt->frac_shift);
127        p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
128    } else if (likely(frac_eqz(p))) {
129        p->cls = float_class_inf;
130    } else {
131        frac_shl(p, fmt->frac_shift);
132        p->cls = (parts_is_snan_frac(p->frac_hi, status)
133                  ? float_class_snan : float_class_qnan);
134    }
135}
136
137/*
138 * Round and uncanonicalize a floating-point number by parts. There
139 * are FRAC_SHIFT bits that may require rounding at the bottom of the
140 * fraction; these bits will be removed. The exponent will be biased
141 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
142 */
143static void partsN(uncanon)(FloatPartsN *p, float_status *s,
144                            const FloatFmt *fmt)
145{
146    const int exp_max = fmt->exp_max;
147    const int frac_shift = fmt->frac_shift;
148    const uint64_t frac_lsb = fmt->frac_lsb;
149    const uint64_t frac_lsbm1 = fmt->frac_lsbm1;
150    const uint64_t round_mask = fmt->round_mask;
151    const uint64_t roundeven_mask = fmt->roundeven_mask;
152    uint64_t inc;
153    bool overflow_norm;
154    int exp, flags = 0;
155
156    if (unlikely(p->cls != float_class_normal)) {
157        switch (p->cls) {
158        case float_class_zero:
159            p->exp = 0;
160            frac_clear(p);
161            return;
162        case float_class_inf:
163            g_assert(!fmt->arm_althp);
164            p->exp = fmt->exp_max;
165            frac_clear(p);
166            return;
167        case float_class_qnan:
168        case float_class_snan:
169            g_assert(!fmt->arm_althp);
170            p->exp = fmt->exp_max;
171            frac_shr(p, fmt->frac_shift);
172            return;
173        default:
174            break;
175        }
176        g_assert_not_reached();
177    }
178
179    switch (s->float_rounding_mode) {
180    case float_round_nearest_even:
181        overflow_norm = false;
182        inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
183        break;
184    case float_round_ties_away:
185        overflow_norm = false;
186        inc = frac_lsbm1;
187        break;
188    case float_round_to_zero:
189        overflow_norm = true;
190        inc = 0;
191        break;
192    case float_round_up:
193        inc = p->sign ? 0 : round_mask;
194        overflow_norm = p->sign;
195        break;
196    case float_round_down:
197        inc = p->sign ? round_mask : 0;
198        overflow_norm = !p->sign;
199        break;
200    case float_round_to_odd:
201        overflow_norm = true;
202        inc = p->frac_lo & frac_lsb ? 0 : round_mask;
203        break;
204    default:
205        g_assert_not_reached();
206    }
207
208    exp = p->exp + fmt->exp_bias;
209    if (likely(exp > 0)) {
210        if (p->frac_lo & round_mask) {
211            flags |= float_flag_inexact;
212            if (frac_addi(p, p, inc)) {
213                frac_shr(p, 1);
214                p->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
215                exp++;
216            }
217        }
218        frac_shr(p, frac_shift);
219
220        if (fmt->arm_althp) {
221            /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
222            if (unlikely(exp > exp_max)) {
223                /* Overflow.  Return the maximum normal.  */
224                flags = float_flag_invalid;
225                exp = exp_max;
226                frac_allones(p);
227            }
228        } else if (unlikely(exp >= exp_max)) {
229            flags |= float_flag_overflow | float_flag_inexact;
230            if (overflow_norm) {
231                exp = exp_max - 1;
232                frac_allones(p);
233            } else {
234                p->cls = float_class_inf;
235                exp = exp_max;
236                frac_clear(p);
237            }
238        }
239    } else if (s->flush_to_zero) {
240        flags |= float_flag_output_denormal;
241        p->cls = float_class_zero;
242        exp = 0;
243        frac_clear(p);
244    } else {
245        bool is_tiny = s->tininess_before_rounding || exp < 0;
246
247        if (!is_tiny) {
248            FloatPartsN discard;
249            is_tiny = !frac_addi(&discard, p, inc);
250        }
251
252        frac_shrjam(p, 1 - exp);
253
254        if (p->frac_lo & round_mask) {
255            /* Need to recompute round-to-even/round-to-odd. */
256            switch (s->float_rounding_mode) {
257            case float_round_nearest_even:
258                inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1
259                       ? frac_lsbm1 : 0);
260                break;
261            case float_round_to_odd:
262                inc = p->frac_lo & frac_lsb ? 0 : round_mask;
263                break;
264            default:
265                break;
266            }
267            flags |= float_flag_inexact;
268            frac_addi(p, p, inc);
269        }
270
271        exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) != 0;
272        frac_shr(p, frac_shift);
273
274        if (is_tiny && (flags & float_flag_inexact)) {
275            flags |= float_flag_underflow;
276        }
277        if (exp == 0 && frac_eqz(p)) {
278            p->cls = float_class_zero;
279        }
280    }
281    p->exp = exp;
282    float_raise(flags, s);
283}
284
285/*
286 * Returns the result of adding or subtracting the values of the
287 * floating-point values `a' and `b'. The operation is performed
288 * according to the IEC/IEEE Standard for Binary Floating-Point
289 * Arithmetic.
290 */
291static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b,
292                                   float_status *s, bool subtract)
293{
294    bool b_sign = b->sign ^ subtract;
295    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
296
297    if (a->sign != b_sign) {
298        /* Subtraction */
299        if (likely(ab_mask == float_cmask_normal)) {
300            if (parts_sub_normal(a, b)) {
301                return a;
302            }
303            /* Subtract was exact, fall through to set sign. */
304            ab_mask = float_cmask_zero;
305        }
306
307        if (ab_mask == float_cmask_zero) {
308            a->sign = s->float_rounding_mode == float_round_down;
309            return a;
310        }
311
312        if (unlikely(ab_mask & float_cmask_anynan)) {
313            goto p_nan;
314        }
315
316        if (ab_mask & float_cmask_inf) {
317            if (a->cls != float_class_inf) {
318                /* N - Inf */
319                goto return_b;
320            }
321            if (b->cls != float_class_inf) {
322                /* Inf - N */
323                return a;
324            }
325            /* Inf - Inf */
326            float_raise(float_flag_invalid, s);
327            parts_default_nan(a, s);
328            return a;
329        }
330    } else {
331        /* Addition */
332        if (likely(ab_mask == float_cmask_normal)) {
333            parts_add_normal(a, b);
334            return a;
335        }
336
337        if (ab_mask == float_cmask_zero) {
338            return a;
339        }
340
341        if (unlikely(ab_mask & float_cmask_anynan)) {
342            goto p_nan;
343        }
344
345        if (ab_mask & float_cmask_inf) {
346            a->cls = float_class_inf;
347            return a;
348        }
349    }
350
351    if (b->cls == float_class_zero) {
352        g_assert(a->cls == float_class_normal);
353        return a;
354    }
355
356    g_assert(a->cls == float_class_zero);
357    g_assert(b->cls == float_class_normal);
358 return_b:
359    b->sign = b_sign;
360    return b;
361
362 p_nan:
363    return parts_pick_nan(a, b, s);
364}
365
366/*
367 * Returns the result of multiplying the floating-point values `a' and
368 * `b'. The operation is performed according to the IEC/IEEE Standard
369 * for Binary Floating-Point Arithmetic.
370 */
371static FloatPartsN *partsN(mul)(FloatPartsN *a, FloatPartsN *b,
372                                float_status *s)
373{
374    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
375    bool sign = a->sign ^ b->sign;
376
377    if (likely(ab_mask == float_cmask_normal)) {
378        FloatPartsW tmp;
379
380        frac_mulw(&tmp, a, b);
381        frac_truncjam(a, &tmp);
382
383        a->exp += b->exp + 1;
384        if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
385            frac_add(a, a, a);
386            a->exp -= 1;
387        }
388
389        a->sign = sign;
390        return a;
391    }
392
393    /* Inf * Zero == NaN */
394    if (unlikely(ab_mask == float_cmask_infzero)) {
395        float_raise(float_flag_invalid, s);
396        parts_default_nan(a, s);
397        return a;
398    }
399
400    if (unlikely(ab_mask & float_cmask_anynan)) {
401        return parts_pick_nan(a, b, s);
402    }
403
404    /* Multiply by 0 or Inf */
405    if (ab_mask & float_cmask_inf) {
406        a->cls = float_class_inf;
407        a->sign = sign;
408        return a;
409    }
410
411    g_assert(ab_mask & float_cmask_zero);
412    a->cls = float_class_zero;
413    a->sign = sign;
414    return a;
415}
416
417/*
418 * Returns the result of multiplying the floating-point values `a' and
419 * `b' then adding 'c', with no intermediate rounding step after the
420 * multiplication. The operation is performed according to the
421 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
422 * The flags argument allows the caller to select negation of the
423 * addend, the intermediate product, or the final result. (The
424 * difference between this and having the caller do a separate
425 * negation is that negating externally will flip the sign bit on NaNs.)
426 *
427 * Requires A and C extracted into a double-sized structure to provide the
428 * extra space for the widening multiply.
429 */
430static FloatPartsN *partsN(muladd)(FloatPartsN *a, FloatPartsN *b,
431                                   FloatPartsN *c, int flags, float_status *s)
432{
433    int ab_mask, abc_mask;
434    FloatPartsW p_widen, c_widen;
435
436    ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
437    abc_mask = float_cmask(c->cls) | ab_mask;
438
439    /*
440     * It is implementation-defined whether the cases of (0,inf,qnan)
441     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
442     * they return if they do), so we have to hand this information
443     * off to the target-specific pick-a-NaN routine.
444     */
445    if (unlikely(abc_mask & float_cmask_anynan)) {
446        return parts_pick_nan_muladd(a, b, c, s, ab_mask, abc_mask);
447    }
448
449    if (flags & float_muladd_negate_c) {
450        c->sign ^= 1;
451    }
452
453    /* Compute the sign of the product into A. */
454    a->sign ^= b->sign;
455    if (flags & float_muladd_negate_product) {
456        a->sign ^= 1;
457    }
458
459    if (unlikely(ab_mask != float_cmask_normal)) {
460        if (unlikely(ab_mask == float_cmask_infzero)) {
461            goto d_nan;
462        }
463
464        if (ab_mask & float_cmask_inf) {
465            if (c->cls == float_class_inf && a->sign != c->sign) {
466                goto d_nan;
467            }
468            goto return_inf;
469        }
470
471        g_assert(ab_mask & float_cmask_zero);
472        if (c->cls == float_class_normal) {
473            *a = *c;
474            goto return_normal;
475        }
476        if (c->cls == float_class_zero) {
477            if (a->sign != c->sign) {
478                goto return_sub_zero;
479            }
480            goto return_zero;
481        }
482        g_assert(c->cls == float_class_inf);
483    }
484
485    if (unlikely(c->cls == float_class_inf)) {
486        a->sign = c->sign;
487        goto return_inf;
488    }
489
490    /* Perform the multiplication step. */
491    p_widen.sign = a->sign;
492    p_widen.exp = a->exp + b->exp + 1;
493    frac_mulw(&p_widen, a, b);
494    if (!(p_widen.frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
495        frac_add(&p_widen, &p_widen, &p_widen);
496        p_widen.exp -= 1;
497    }
498
499    /* Perform the addition step. */
500    if (c->cls != float_class_zero) {
501        /* Zero-extend C to less significant bits. */
502        frac_widen(&c_widen, c);
503        c_widen.exp = c->exp;
504
505        if (a->sign == c->sign) {
506            parts_add_normal(&p_widen, &c_widen);
507        } else if (!parts_sub_normal(&p_widen, &c_widen)) {
508            goto return_sub_zero;
509        }
510    }
511
512    /* Narrow with sticky bit, for proper rounding later. */
513    frac_truncjam(a, &p_widen);
514    a->sign = p_widen.sign;
515    a->exp = p_widen.exp;
516
517 return_normal:
518    if (flags & float_muladd_halve_result) {
519        a->exp -= 1;
520    }
521 finish_sign:
522    if (flags & float_muladd_negate_result) {
523        a->sign ^= 1;
524    }
525    return a;
526
527 return_sub_zero:
528    a->sign = s->float_rounding_mode == float_round_down;
529 return_zero:
530    a->cls = float_class_zero;
531    goto finish_sign;
532
533 return_inf:
534    a->cls = float_class_inf;
535    goto finish_sign;
536
537 d_nan:
538    float_raise(float_flag_invalid, s);
539    parts_default_nan(a, s);
540    return a;
541}
542
543/*
544 * Returns the result of dividing the floating-point value `a' by the
545 * corresponding value `b'. The operation is performed according to
546 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
547 */
548static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b,
549                                float_status *s)
550{
551    int ab_mask = float_cmask(a->cls) | float_cmask(b->cls);
552    bool sign = a->sign ^ b->sign;
553
554    if (likely(ab_mask == float_cmask_normal)) {
555        a->sign = sign;
556        a->exp -= b->exp + frac_div(a, b);
557        return a;
558    }
559
560    /* 0/0 or Inf/Inf => NaN */
561    if (unlikely(ab_mask == float_cmask_zero) ||
562        unlikely(ab_mask == float_cmask_inf)) {
563        float_raise(float_flag_invalid, s);
564        parts_default_nan(a, s);
565        return a;
566    }
567
568    /* All the NaN cases */
569    if (unlikely(ab_mask & float_cmask_anynan)) {
570        return parts_pick_nan(a, b, s);
571    }
572
573    a->sign = sign;
574
575    /* Inf / X */
576    if (a->cls == float_class_inf) {
577        return a;
578    }
579
580    /* 0 / X */
581    if (a->cls == float_class_zero) {
582        return a;
583    }
584
585    /* X / Inf */
586    if (b->cls == float_class_inf) {
587        a->cls = float_class_zero;
588        return a;
589    }
590
591    /* X / 0 => Inf */
592    g_assert(b->cls == float_class_zero);
593    float_raise(float_flag_divbyzero, s);
594    a->cls = float_class_inf;
595    return a;
596}
597
598/*
599 * Rounds the floating-point value `a' to an integer, and returns the
600 * result as a floating-point value. The operation is performed
601 * according to the IEC/IEEE Standard for Binary Floating-Point
602 * Arithmetic.
603 *
604 * parts_round_to_int_normal is an internal helper function for
605 * normal numbers only, returning true for inexact but not directly
606 * raising float_flag_inexact.
607 */
608static bool partsN(round_to_int_normal)(FloatPartsN *a, FloatRoundMode rmode,
609                                        int scale, int frac_size)
610{
611    uint64_t frac_lsb, frac_lsbm1, rnd_even_mask, rnd_mask, inc;
612    int shift_adj;
613
614    scale = MIN(MAX(scale, -0x10000), 0x10000);
615    a->exp += scale;
616
617    if (a->exp < 0) {
618        bool one;
619
620        /* All fractional */
621        switch (rmode) {
622        case float_round_nearest_even:
623            one = false;
624            if (a->exp == -1) {
625                FloatPartsN tmp;
626                /* Shift left one, discarding DECOMPOSED_IMPLICIT_BIT */
627                frac_add(&tmp, a, a);
628                /* Anything remaining means frac > 0.5. */
629                one = !frac_eqz(&tmp);
630            }
631            break;
632        case float_round_ties_away:
633            one = a->exp == -1;
634            break;
635        case float_round_to_zero:
636            one = false;
637            break;
638        case float_round_up:
639            one = !a->sign;
640            break;
641        case float_round_down:
642            one = a->sign;
643            break;
644        case float_round_to_odd:
645            one = true;
646            break;
647        default:
648            g_assert_not_reached();
649        }
650
651        frac_clear(a);
652        a->exp = 0;
653        if (one) {
654            a->frac_hi = DECOMPOSED_IMPLICIT_BIT;
655        } else {
656            a->cls = float_class_zero;
657        }
658        return true;
659    }
660
661    if (a->exp >= frac_size) {
662        /* All integral */
663        return false;
664    }
665
666    if (N > 64 && a->exp < N - 64) {
667        /*
668         * Rounding is not in the low word -- shift lsb to bit 2,
669         * which leaves room for sticky and rounding bit.
670         */
671        shift_adj = (N - 1) - (a->exp + 2);
672        frac_shrjam(a, shift_adj);
673        frac_lsb = 1 << 2;
674    } else {
675        shift_adj = 0;
676        frac_lsb = DECOMPOSED_IMPLICIT_BIT >> (a->exp & 63);
677    }
678
679    frac_lsbm1 = frac_lsb >> 1;
680    rnd_mask = frac_lsb - 1;
681    rnd_even_mask = rnd_mask | frac_lsb;
682
683    if (!(a->frac_lo & rnd_mask)) {
684        /* Fractional bits already clear, undo the shift above. */
685        frac_shl(a, shift_adj);
686        return false;
687    }
688
689    switch (rmode) {
690    case float_round_nearest_even:
691        inc = ((a->frac_lo & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
692        break;
693    case float_round_ties_away:
694        inc = frac_lsbm1;
695        break;
696    case float_round_to_zero:
697        inc = 0;
698        break;
699    case float_round_up:
700        inc = a->sign ? 0 : rnd_mask;
701        break;
702    case float_round_down:
703        inc = a->sign ? rnd_mask : 0;
704        break;
705    case float_round_to_odd:
706        inc = a->frac_lo & frac_lsb ? 0 : rnd_mask;
707        break;
708    default:
709        g_assert_not_reached();
710    }
711
712    if (shift_adj == 0) {
713        if (frac_addi(a, a, inc)) {
714            frac_shr(a, 1);
715            a->frac_hi |= DECOMPOSED_IMPLICIT_BIT;
716            a->exp++;
717        }
718        a->frac_lo &= ~rnd_mask;
719    } else {
720        frac_addi(a, a, inc);
721        a->frac_lo &= ~rnd_mask;
722        /* Be careful shifting back, not to overflow */
723        frac_shl(a, shift_adj - 1);
724        if (a->frac_hi & DECOMPOSED_IMPLICIT_BIT) {
725            a->exp++;
726        } else {
727            frac_add(a, a, a);
728        }
729    }
730    return true;
731}
732
733static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode,
734                                 int scale, float_status *s,
735                                 const FloatFmt *fmt)
736{
737    switch (a->cls) {
738    case float_class_qnan:
739    case float_class_snan:
740        parts_return_nan(a, s);
741        break;
742    case float_class_zero:
743    case float_class_inf:
744        break;
745    case float_class_normal:
746        if (parts_round_to_int_normal(a, rmode, scale, fmt->frac_size)) {
747            float_raise(float_flag_inexact, s);
748        }
749        break;
750    default:
751        g_assert_not_reached();
752    }
753}
754
755/*
756 * Returns the result of converting the floating-point value `a' to
757 * the two's complement integer format. The conversion is performed
758 * according to the IEC/IEEE Standard for Binary Floating-Point
759 * Arithmetic---which means in particular that the conversion is
760 * rounded according to the current rounding mode. If `a' is a NaN,
761 * the largest positive integer is returned. Otherwise, if the
762 * conversion overflows, the largest integer with the same sign as `a'
763 * is returned.
764*/
765static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode,
766                                     int scale, int64_t min, int64_t max,
767                                     float_status *s)
768{
769    int flags = 0;
770    uint64_t r;
771
772    switch (p->cls) {
773    case float_class_snan:
774    case float_class_qnan:
775        flags = float_flag_invalid;
776        r = max;
777        break;
778
779    case float_class_inf:
780        flags = float_flag_invalid;
781        r = p->sign ? min : max;
782        break;
783
784    case float_class_zero:
785        return 0;
786
787    case float_class_normal:
788        /* TODO: N - 2 is frac_size for rounding; could use input fmt. */
789        if (parts_round_to_int_normal(p, rmode, scale, N - 2)) {
790            flags = float_flag_inexact;
791        }
792
793        if (p->exp <= DECOMPOSED_BINARY_POINT) {
794            r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp);
795        } else {
796            r = UINT64_MAX;
797        }
798        if (p->sign) {
799            if (r <= -(uint64_t)min) {
800                r = -r;
801            } else {
802                flags = float_flag_invalid;
803                r = min;
804            }
805        } else if (r > max) {
806            flags = float_flag_invalid;
807            r = max;
808        }
809        break;
810
811    default:
812        g_assert_not_reached();
813    }
814
815    float_raise(flags, s);
816    return r;
817}
818