1 /* 2 * QEMU dump 3 * 4 * Copyright Fujitsu, Corp. 2011, 2012 5 * 6 * Authors: 7 * Wen Congyang <wency@cn.fujitsu.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #include "qemu/osdep.h" 15 #include "qemu/cutils.h" 16 #include "elf.h" 17 #include "exec/hwaddr.h" 18 #include "monitor/monitor.h" 19 #include "sysemu/kvm.h" 20 #include "sysemu/dump.h" 21 #include "sysemu/memory_mapping.h" 22 #include "sysemu/runstate.h" 23 #include "sysemu/cpus.h" 24 #include "qapi/error.h" 25 #include "qapi/qapi-commands-dump.h" 26 #include "qapi/qapi-events-dump.h" 27 #include "qapi/qmp/qerror.h" 28 #include "qemu/error-report.h" 29 #include "qemu/main-loop.h" 30 #include "hw/misc/vmcoreinfo.h" 31 #include "migration/blocker.h" 32 33 #ifdef TARGET_X86_64 34 #include "win_dump.h" 35 #endif 36 37 #include <zlib.h> 38 #ifdef CONFIG_LZO 39 #include <lzo/lzo1x.h> 40 #endif 41 #ifdef CONFIG_SNAPPY 42 #include <snappy-c.h> 43 #endif 44 #ifndef ELF_MACHINE_UNAME 45 #define ELF_MACHINE_UNAME "Unknown" 46 #endif 47 48 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */ 49 50 static Error *dump_migration_blocker; 51 52 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \ 53 ((DIV_ROUND_UP((hdr_size), 4) + \ 54 DIV_ROUND_UP((name_size), 4) + \ 55 DIV_ROUND_UP((desc_size), 4)) * 4) 56 57 uint16_t cpu_to_dump16(DumpState *s, uint16_t val) 58 { 59 if (s->dump_info.d_endian == ELFDATA2LSB) { 60 val = cpu_to_le16(val); 61 } else { 62 val = cpu_to_be16(val); 63 } 64 65 return val; 66 } 67 68 uint32_t cpu_to_dump32(DumpState *s, uint32_t val) 69 { 70 if (s->dump_info.d_endian == ELFDATA2LSB) { 71 val = cpu_to_le32(val); 72 } else { 73 val = cpu_to_be32(val); 74 } 75 76 return val; 77 } 78 79 uint64_t cpu_to_dump64(DumpState *s, uint64_t val) 80 { 81 if (s->dump_info.d_endian == ELFDATA2LSB) { 82 val = cpu_to_le64(val); 83 } else { 84 val = cpu_to_be64(val); 85 } 86 87 return val; 88 } 89 90 static int dump_cleanup(DumpState *s) 91 { 92 guest_phys_blocks_free(&s->guest_phys_blocks); 93 memory_mapping_list_free(&s->list); 94 close(s->fd); 95 g_free(s->guest_note); 96 s->guest_note = NULL; 97 if (s->resume) { 98 if (s->detached) { 99 qemu_mutex_lock_iothread(); 100 } 101 vm_start(); 102 if (s->detached) { 103 qemu_mutex_unlock_iothread(); 104 } 105 } 106 migrate_del_blocker(dump_migration_blocker); 107 108 return 0; 109 } 110 111 static int fd_write_vmcore(const void *buf, size_t size, void *opaque) 112 { 113 DumpState *s = opaque; 114 size_t written_size; 115 116 written_size = qemu_write_full(s->fd, buf, size); 117 if (written_size != size) { 118 return -errno; 119 } 120 121 return 0; 122 } 123 124 static void write_elf64_header(DumpState *s, Error **errp) 125 { 126 /* 127 * phnum in the elf header is 16 bit, if we have more segments we 128 * set phnum to PN_XNUM and write the real number of segments to a 129 * special section. 130 */ 131 uint16_t phnum = MIN(s->phdr_num, PN_XNUM); 132 Elf64_Ehdr elf_header; 133 int ret; 134 135 memset(&elf_header, 0, sizeof(Elf64_Ehdr)); 136 memcpy(&elf_header, ELFMAG, SELFMAG); 137 elf_header.e_ident[EI_CLASS] = ELFCLASS64; 138 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; 139 elf_header.e_ident[EI_VERSION] = EV_CURRENT; 140 elf_header.e_type = cpu_to_dump16(s, ET_CORE); 141 elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 142 elf_header.e_version = cpu_to_dump32(s, EV_CURRENT); 143 elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 144 elf_header.e_phoff = cpu_to_dump64(s, s->phdr_offset); 145 elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr)); 146 elf_header.e_phnum = cpu_to_dump16(s, phnum); 147 if (s->shdr_num) { 148 elf_header.e_shoff = cpu_to_dump64(s, s->shdr_offset); 149 elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr)); 150 elf_header.e_shnum = cpu_to_dump16(s, s->shdr_num); 151 } 152 153 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); 154 if (ret < 0) { 155 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 156 } 157 } 158 159 static void write_elf32_header(DumpState *s, Error **errp) 160 { 161 /* 162 * phnum in the elf header is 16 bit, if we have more segments we 163 * set phnum to PN_XNUM and write the real number of segments to a 164 * special section. 165 */ 166 uint16_t phnum = MIN(s->phdr_num, PN_XNUM); 167 Elf32_Ehdr elf_header; 168 int ret; 169 170 memset(&elf_header, 0, sizeof(Elf32_Ehdr)); 171 memcpy(&elf_header, ELFMAG, SELFMAG); 172 elf_header.e_ident[EI_CLASS] = ELFCLASS32; 173 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; 174 elf_header.e_ident[EI_VERSION] = EV_CURRENT; 175 elf_header.e_type = cpu_to_dump16(s, ET_CORE); 176 elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 177 elf_header.e_version = cpu_to_dump32(s, EV_CURRENT); 178 elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 179 elf_header.e_phoff = cpu_to_dump32(s, s->phdr_offset); 180 elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr)); 181 elf_header.e_phnum = cpu_to_dump16(s, phnum); 182 if (s->shdr_num) { 183 elf_header.e_shoff = cpu_to_dump32(s, s->shdr_offset); 184 elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr)); 185 elf_header.e_shnum = cpu_to_dump16(s, s->shdr_num); 186 } 187 188 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); 189 if (ret < 0) { 190 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 191 } 192 } 193 194 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, 195 int phdr_index, hwaddr offset, 196 hwaddr filesz, Error **errp) 197 { 198 Elf64_Phdr phdr; 199 int ret; 200 201 memset(&phdr, 0, sizeof(Elf64_Phdr)); 202 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 203 phdr.p_offset = cpu_to_dump64(s, offset); 204 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr); 205 phdr.p_filesz = cpu_to_dump64(s, filesz); 206 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length); 207 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 208 209 assert(memory_mapping->length >= filesz); 210 211 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 212 if (ret < 0) { 213 error_setg_errno(errp, -ret, 214 "dump: failed to write program header table"); 215 } 216 } 217 218 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, 219 int phdr_index, hwaddr offset, 220 hwaddr filesz, Error **errp) 221 { 222 Elf32_Phdr phdr; 223 int ret; 224 225 memset(&phdr, 0, sizeof(Elf32_Phdr)); 226 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 227 phdr.p_offset = cpu_to_dump32(s, offset); 228 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr); 229 phdr.p_filesz = cpu_to_dump32(s, filesz); 230 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length); 231 phdr.p_vaddr = 232 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 233 234 assert(memory_mapping->length >= filesz); 235 236 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 237 if (ret < 0) { 238 error_setg_errno(errp, -ret, 239 "dump: failed to write program header table"); 240 } 241 } 242 243 static void write_elf64_note(DumpState *s, Error **errp) 244 { 245 Elf64_Phdr phdr; 246 int ret; 247 248 memset(&phdr, 0, sizeof(Elf64_Phdr)); 249 phdr.p_type = cpu_to_dump32(s, PT_NOTE); 250 phdr.p_offset = cpu_to_dump64(s, s->note_offset); 251 phdr.p_paddr = 0; 252 phdr.p_filesz = cpu_to_dump64(s, s->note_size); 253 phdr.p_memsz = cpu_to_dump64(s, s->note_size); 254 phdr.p_vaddr = 0; 255 256 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 257 if (ret < 0) { 258 error_setg_errno(errp, -ret, 259 "dump: failed to write program header table"); 260 } 261 } 262 263 static inline int cpu_index(CPUState *cpu) 264 { 265 return cpu->cpu_index + 1; 266 } 267 268 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s, 269 Error **errp) 270 { 271 int ret; 272 273 if (s->guest_note) { 274 ret = f(s->guest_note, s->guest_note_size, s); 275 if (ret < 0) { 276 error_setg(errp, "dump: failed to write guest note"); 277 } 278 } 279 } 280 281 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s, 282 Error **errp) 283 { 284 CPUState *cpu; 285 int ret; 286 int id; 287 288 CPU_FOREACH(cpu) { 289 id = cpu_index(cpu); 290 ret = cpu_write_elf64_note(f, cpu, id, s); 291 if (ret < 0) { 292 error_setg(errp, "dump: failed to write elf notes"); 293 return; 294 } 295 } 296 297 CPU_FOREACH(cpu) { 298 ret = cpu_write_elf64_qemunote(f, cpu, s); 299 if (ret < 0) { 300 error_setg(errp, "dump: failed to write CPU status"); 301 return; 302 } 303 } 304 305 write_guest_note(f, s, errp); 306 } 307 308 static void write_elf32_note(DumpState *s, Error **errp) 309 { 310 Elf32_Phdr phdr; 311 int ret; 312 313 memset(&phdr, 0, sizeof(Elf32_Phdr)); 314 phdr.p_type = cpu_to_dump32(s, PT_NOTE); 315 phdr.p_offset = cpu_to_dump32(s, s->note_offset); 316 phdr.p_paddr = 0; 317 phdr.p_filesz = cpu_to_dump32(s, s->note_size); 318 phdr.p_memsz = cpu_to_dump32(s, s->note_size); 319 phdr.p_vaddr = 0; 320 321 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 322 if (ret < 0) { 323 error_setg_errno(errp, -ret, 324 "dump: failed to write program header table"); 325 } 326 } 327 328 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s, 329 Error **errp) 330 { 331 CPUState *cpu; 332 int ret; 333 int id; 334 335 CPU_FOREACH(cpu) { 336 id = cpu_index(cpu); 337 ret = cpu_write_elf32_note(f, cpu, id, s); 338 if (ret < 0) { 339 error_setg(errp, "dump: failed to write elf notes"); 340 return; 341 } 342 } 343 344 CPU_FOREACH(cpu) { 345 ret = cpu_write_elf32_qemunote(f, cpu, s); 346 if (ret < 0) { 347 error_setg(errp, "dump: failed to write CPU status"); 348 return; 349 } 350 } 351 352 write_guest_note(f, s, errp); 353 } 354 355 static void write_elf_section(DumpState *s, int type, Error **errp) 356 { 357 Elf32_Shdr shdr32; 358 Elf64_Shdr shdr64; 359 int shdr_size; 360 void *shdr; 361 int ret; 362 363 if (type == 0) { 364 shdr_size = sizeof(Elf32_Shdr); 365 memset(&shdr32, 0, shdr_size); 366 shdr32.sh_info = cpu_to_dump32(s, s->phdr_num); 367 shdr = &shdr32; 368 } else { 369 shdr_size = sizeof(Elf64_Shdr); 370 memset(&shdr64, 0, shdr_size); 371 shdr64.sh_info = cpu_to_dump32(s, s->phdr_num); 372 shdr = &shdr64; 373 } 374 375 ret = fd_write_vmcore(shdr, shdr_size, s); 376 if (ret < 0) { 377 error_setg_errno(errp, -ret, 378 "dump: failed to write section header table"); 379 } 380 } 381 382 static void write_data(DumpState *s, void *buf, int length, Error **errp) 383 { 384 int ret; 385 386 ret = fd_write_vmcore(buf, length, s); 387 if (ret < 0) { 388 error_setg_errno(errp, -ret, "dump: failed to save memory"); 389 } else { 390 s->written_size += length; 391 } 392 } 393 394 /* write the memory to vmcore. 1 page per I/O. */ 395 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, 396 int64_t size, Error **errp) 397 { 398 ERRP_GUARD(); 399 int64_t i; 400 401 for (i = 0; i < size / s->dump_info.page_size; i++) { 402 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 403 s->dump_info.page_size, errp); 404 if (*errp) { 405 return; 406 } 407 } 408 409 if ((size % s->dump_info.page_size) != 0) { 410 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 411 size % s->dump_info.page_size, errp); 412 if (*errp) { 413 return; 414 } 415 } 416 } 417 418 /* get the memory's offset and size in the vmcore */ 419 static void get_offset_range(hwaddr phys_addr, 420 ram_addr_t mapping_length, 421 DumpState *s, 422 hwaddr *p_offset, 423 hwaddr *p_filesz) 424 { 425 GuestPhysBlock *block; 426 hwaddr offset = s->memory_offset; 427 int64_t size_in_block, start; 428 429 /* When the memory is not stored into vmcore, offset will be -1 */ 430 *p_offset = -1; 431 *p_filesz = 0; 432 433 if (s->has_filter) { 434 if (phys_addr < s->begin || phys_addr >= s->begin + s->length) { 435 return; 436 } 437 } 438 439 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 440 if (s->has_filter) { 441 if (block->target_start >= s->begin + s->length || 442 block->target_end <= s->begin) { 443 /* This block is out of the range */ 444 continue; 445 } 446 447 if (s->begin <= block->target_start) { 448 start = block->target_start; 449 } else { 450 start = s->begin; 451 } 452 453 size_in_block = block->target_end - start; 454 if (s->begin + s->length < block->target_end) { 455 size_in_block -= block->target_end - (s->begin + s->length); 456 } 457 } else { 458 start = block->target_start; 459 size_in_block = block->target_end - block->target_start; 460 } 461 462 if (phys_addr >= start && phys_addr < start + size_in_block) { 463 *p_offset = phys_addr - start + offset; 464 465 /* The offset range mapped from the vmcore file must not spill over 466 * the GuestPhysBlock, clamp it. The rest of the mapping will be 467 * zero-filled in memory at load time; see 468 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. 469 */ 470 *p_filesz = phys_addr + mapping_length <= start + size_in_block ? 471 mapping_length : 472 size_in_block - (phys_addr - start); 473 return; 474 } 475 476 offset += size_in_block; 477 } 478 } 479 480 static void write_elf_loads(DumpState *s, Error **errp) 481 { 482 ERRP_GUARD(); 483 hwaddr offset, filesz; 484 MemoryMapping *memory_mapping; 485 uint32_t phdr_index = 1; 486 487 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { 488 get_offset_range(memory_mapping->phys_addr, 489 memory_mapping->length, 490 s, &offset, &filesz); 491 if (s->dump_info.d_class == ELFCLASS64) { 492 write_elf64_load(s, memory_mapping, phdr_index++, offset, 493 filesz, errp); 494 } else { 495 write_elf32_load(s, memory_mapping, phdr_index++, offset, 496 filesz, errp); 497 } 498 499 if (*errp) { 500 return; 501 } 502 503 if (phdr_index >= s->phdr_num) { 504 break; 505 } 506 } 507 } 508 509 /* write elf header, PT_NOTE and elf note to vmcore. */ 510 static void dump_begin(DumpState *s, Error **errp) 511 { 512 ERRP_GUARD(); 513 514 /* 515 * the vmcore's format is: 516 * -------------- 517 * | elf header | 518 * -------------- 519 * | PT_NOTE | 520 * -------------- 521 * | PT_LOAD | 522 * -------------- 523 * | ...... | 524 * -------------- 525 * | PT_LOAD | 526 * -------------- 527 * | sec_hdr | 528 * -------------- 529 * | elf note | 530 * -------------- 531 * | memory | 532 * -------------- 533 * 534 * we only know where the memory is saved after we write elf note into 535 * vmcore. 536 */ 537 538 /* write elf header to vmcore */ 539 if (s->dump_info.d_class == ELFCLASS64) { 540 write_elf64_header(s, errp); 541 } else { 542 write_elf32_header(s, errp); 543 } 544 if (*errp) { 545 return; 546 } 547 548 if (s->dump_info.d_class == ELFCLASS64) { 549 /* write PT_NOTE to vmcore */ 550 write_elf64_note(s, errp); 551 if (*errp) { 552 return; 553 } 554 555 /* write all PT_LOAD to vmcore */ 556 write_elf_loads(s, errp); 557 if (*errp) { 558 return; 559 } 560 561 /* write section to vmcore */ 562 if (s->shdr_num) { 563 write_elf_section(s, 1, errp); 564 if (*errp) { 565 return; 566 } 567 } 568 569 /* write notes to vmcore */ 570 write_elf64_notes(fd_write_vmcore, s, errp); 571 if (*errp) { 572 return; 573 } 574 } else { 575 /* write PT_NOTE to vmcore */ 576 write_elf32_note(s, errp); 577 if (*errp) { 578 return; 579 } 580 581 /* write all PT_LOAD to vmcore */ 582 write_elf_loads(s, errp); 583 if (*errp) { 584 return; 585 } 586 587 /* write section to vmcore */ 588 if (s->shdr_num) { 589 write_elf_section(s, 0, errp); 590 if (*errp) { 591 return; 592 } 593 } 594 595 /* write notes to vmcore */ 596 write_elf32_notes(fd_write_vmcore, s, errp); 597 if (*errp) { 598 return; 599 } 600 } 601 } 602 603 static int get_next_block(DumpState *s, GuestPhysBlock *block) 604 { 605 while (1) { 606 block = QTAILQ_NEXT(block, next); 607 if (!block) { 608 /* no more block */ 609 return 1; 610 } 611 612 s->start = 0; 613 s->next_block = block; 614 if (s->has_filter) { 615 if (block->target_start >= s->begin + s->length || 616 block->target_end <= s->begin) { 617 /* This block is out of the range */ 618 continue; 619 } 620 621 if (s->begin > block->target_start) { 622 s->start = s->begin - block->target_start; 623 } 624 } 625 626 return 0; 627 } 628 } 629 630 /* write all memory to vmcore */ 631 static void dump_iterate(DumpState *s, Error **errp) 632 { 633 ERRP_GUARD(); 634 GuestPhysBlock *block; 635 int64_t size; 636 637 do { 638 block = s->next_block; 639 640 size = block->target_end - block->target_start; 641 if (s->has_filter) { 642 size -= s->start; 643 if (s->begin + s->length < block->target_end) { 644 size -= block->target_end - (s->begin + s->length); 645 } 646 } 647 write_memory(s, block, s->start, size, errp); 648 if (*errp) { 649 return; 650 } 651 652 } while (!get_next_block(s, block)); 653 } 654 655 static void create_vmcore(DumpState *s, Error **errp) 656 { 657 ERRP_GUARD(); 658 659 dump_begin(s, errp); 660 if (*errp) { 661 return; 662 } 663 664 dump_iterate(s, errp); 665 } 666 667 static int write_start_flat_header(int fd) 668 { 669 MakedumpfileHeader *mh; 670 int ret = 0; 671 672 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); 673 mh = g_malloc0(MAX_SIZE_MDF_HEADER); 674 675 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, 676 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); 677 678 mh->type = cpu_to_be64(TYPE_FLAT_HEADER); 679 mh->version = cpu_to_be64(VERSION_FLAT_HEADER); 680 681 size_t written_size; 682 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER); 683 if (written_size != MAX_SIZE_MDF_HEADER) { 684 ret = -1; 685 } 686 687 g_free(mh); 688 return ret; 689 } 690 691 static int write_end_flat_header(int fd) 692 { 693 MakedumpfileDataHeader mdh; 694 695 mdh.offset = END_FLAG_FLAT_HEADER; 696 mdh.buf_size = END_FLAG_FLAT_HEADER; 697 698 size_t written_size; 699 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 700 if (written_size != sizeof(mdh)) { 701 return -1; 702 } 703 704 return 0; 705 } 706 707 static int write_buffer(int fd, off_t offset, const void *buf, size_t size) 708 { 709 size_t written_size; 710 MakedumpfileDataHeader mdh; 711 712 mdh.offset = cpu_to_be64(offset); 713 mdh.buf_size = cpu_to_be64(size); 714 715 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 716 if (written_size != sizeof(mdh)) { 717 return -1; 718 } 719 720 written_size = qemu_write_full(fd, buf, size); 721 if (written_size != size) { 722 return -1; 723 } 724 725 return 0; 726 } 727 728 static int buf_write_note(const void *buf, size_t size, void *opaque) 729 { 730 DumpState *s = opaque; 731 732 /* note_buf is not enough */ 733 if (s->note_buf_offset + size > s->note_size) { 734 return -1; 735 } 736 737 memcpy(s->note_buf + s->note_buf_offset, buf, size); 738 739 s->note_buf_offset += size; 740 741 return 0; 742 } 743 744 /* 745 * This function retrieves various sizes from an elf header. 746 * 747 * @note has to be a valid ELF note. The return sizes are unmodified 748 * (not padded or rounded up to be multiple of 4). 749 */ 750 static void get_note_sizes(DumpState *s, const void *note, 751 uint64_t *note_head_size, 752 uint64_t *name_size, 753 uint64_t *desc_size) 754 { 755 uint64_t note_head_sz; 756 uint64_t name_sz; 757 uint64_t desc_sz; 758 759 if (s->dump_info.d_class == ELFCLASS64) { 760 const Elf64_Nhdr *hdr = note; 761 note_head_sz = sizeof(Elf64_Nhdr); 762 name_sz = tswap64(hdr->n_namesz); 763 desc_sz = tswap64(hdr->n_descsz); 764 } else { 765 const Elf32_Nhdr *hdr = note; 766 note_head_sz = sizeof(Elf32_Nhdr); 767 name_sz = tswap32(hdr->n_namesz); 768 desc_sz = tswap32(hdr->n_descsz); 769 } 770 771 if (note_head_size) { 772 *note_head_size = note_head_sz; 773 } 774 if (name_size) { 775 *name_size = name_sz; 776 } 777 if (desc_size) { 778 *desc_size = desc_sz; 779 } 780 } 781 782 static bool note_name_equal(DumpState *s, 783 const uint8_t *note, const char *name) 784 { 785 int len = strlen(name) + 1; 786 uint64_t head_size, name_size; 787 788 get_note_sizes(s, note, &head_size, &name_size, NULL); 789 head_size = ROUND_UP(head_size, 4); 790 791 return name_size == len && memcmp(note + head_size, name, len) == 0; 792 } 793 794 /* write common header, sub header and elf note to vmcore */ 795 static void create_header32(DumpState *s, Error **errp) 796 { 797 ERRP_GUARD(); 798 DiskDumpHeader32 *dh = NULL; 799 KdumpSubHeader32 *kh = NULL; 800 size_t size; 801 uint32_t block_size; 802 uint32_t sub_hdr_size; 803 uint32_t bitmap_blocks; 804 uint32_t status = 0; 805 uint64_t offset_note; 806 807 /* write common header, the version of kdump-compressed format is 6th */ 808 size = sizeof(DiskDumpHeader32); 809 dh = g_malloc0(size); 810 811 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 812 dh->header_version = cpu_to_dump32(s, 6); 813 block_size = s->dump_info.page_size; 814 dh->block_size = cpu_to_dump32(s, block_size); 815 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; 816 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 817 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 818 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 819 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 820 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 821 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 822 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 823 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 824 825 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 826 status |= DUMP_DH_COMPRESSED_ZLIB; 827 } 828 #ifdef CONFIG_LZO 829 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 830 status |= DUMP_DH_COMPRESSED_LZO; 831 } 832 #endif 833 #ifdef CONFIG_SNAPPY 834 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 835 status |= DUMP_DH_COMPRESSED_SNAPPY; 836 } 837 #endif 838 dh->status = cpu_to_dump32(s, status); 839 840 if (write_buffer(s->fd, 0, dh, size) < 0) { 841 error_setg(errp, "dump: failed to write disk dump header"); 842 goto out; 843 } 844 845 /* write sub header */ 846 size = sizeof(KdumpSubHeader32); 847 kh = g_malloc0(size); 848 849 /* 64bit max_mapnr_64 */ 850 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 851 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base); 852 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 853 854 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 855 if (s->guest_note && 856 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 857 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 858 859 get_note_sizes(s, s->guest_note, 860 &hsize, &name_size, &size_vmcoreinfo_desc); 861 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 862 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 863 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 864 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc); 865 } 866 867 kh->offset_note = cpu_to_dump64(s, offset_note); 868 kh->note_size = cpu_to_dump32(s, s->note_size); 869 870 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 871 block_size, kh, size) < 0) { 872 error_setg(errp, "dump: failed to write kdump sub header"); 873 goto out; 874 } 875 876 /* write note */ 877 s->note_buf = g_malloc0(s->note_size); 878 s->note_buf_offset = 0; 879 880 /* use s->note_buf to store notes temporarily */ 881 write_elf32_notes(buf_write_note, s, errp); 882 if (*errp) { 883 goto out; 884 } 885 if (write_buffer(s->fd, offset_note, s->note_buf, 886 s->note_size) < 0) { 887 error_setg(errp, "dump: failed to write notes"); 888 goto out; 889 } 890 891 /* get offset of dump_bitmap */ 892 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 893 block_size; 894 895 /* get offset of page */ 896 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 897 block_size; 898 899 out: 900 g_free(dh); 901 g_free(kh); 902 g_free(s->note_buf); 903 } 904 905 /* write common header, sub header and elf note to vmcore */ 906 static void create_header64(DumpState *s, Error **errp) 907 { 908 ERRP_GUARD(); 909 DiskDumpHeader64 *dh = NULL; 910 KdumpSubHeader64 *kh = NULL; 911 size_t size; 912 uint32_t block_size; 913 uint32_t sub_hdr_size; 914 uint32_t bitmap_blocks; 915 uint32_t status = 0; 916 uint64_t offset_note; 917 918 /* write common header, the version of kdump-compressed format is 6th */ 919 size = sizeof(DiskDumpHeader64); 920 dh = g_malloc0(size); 921 922 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 923 dh->header_version = cpu_to_dump32(s, 6); 924 block_size = s->dump_info.page_size; 925 dh->block_size = cpu_to_dump32(s, block_size); 926 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; 927 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 928 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 929 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 930 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 931 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 932 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 933 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 934 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 935 936 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 937 status |= DUMP_DH_COMPRESSED_ZLIB; 938 } 939 #ifdef CONFIG_LZO 940 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 941 status |= DUMP_DH_COMPRESSED_LZO; 942 } 943 #endif 944 #ifdef CONFIG_SNAPPY 945 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 946 status |= DUMP_DH_COMPRESSED_SNAPPY; 947 } 948 #endif 949 dh->status = cpu_to_dump32(s, status); 950 951 if (write_buffer(s->fd, 0, dh, size) < 0) { 952 error_setg(errp, "dump: failed to write disk dump header"); 953 goto out; 954 } 955 956 /* write sub header */ 957 size = sizeof(KdumpSubHeader64); 958 kh = g_malloc0(size); 959 960 /* 64bit max_mapnr_64 */ 961 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 962 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base); 963 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 964 965 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 966 if (s->guest_note && 967 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 968 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 969 970 get_note_sizes(s, s->guest_note, 971 &hsize, &name_size, &size_vmcoreinfo_desc); 972 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 973 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 974 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 975 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc); 976 } 977 978 kh->offset_note = cpu_to_dump64(s, offset_note); 979 kh->note_size = cpu_to_dump64(s, s->note_size); 980 981 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 982 block_size, kh, size) < 0) { 983 error_setg(errp, "dump: failed to write kdump sub header"); 984 goto out; 985 } 986 987 /* write note */ 988 s->note_buf = g_malloc0(s->note_size); 989 s->note_buf_offset = 0; 990 991 /* use s->note_buf to store notes temporarily */ 992 write_elf64_notes(buf_write_note, s, errp); 993 if (*errp) { 994 goto out; 995 } 996 997 if (write_buffer(s->fd, offset_note, s->note_buf, 998 s->note_size) < 0) { 999 error_setg(errp, "dump: failed to write notes"); 1000 goto out; 1001 } 1002 1003 /* get offset of dump_bitmap */ 1004 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 1005 block_size; 1006 1007 /* get offset of page */ 1008 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 1009 block_size; 1010 1011 out: 1012 g_free(dh); 1013 g_free(kh); 1014 g_free(s->note_buf); 1015 } 1016 1017 static void write_dump_header(DumpState *s, Error **errp) 1018 { 1019 if (s->dump_info.d_class == ELFCLASS32) { 1020 create_header32(s, errp); 1021 } else { 1022 create_header64(s, errp); 1023 } 1024 } 1025 1026 static size_t dump_bitmap_get_bufsize(DumpState *s) 1027 { 1028 return s->dump_info.page_size; 1029 } 1030 1031 /* 1032 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be 1033 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. 1034 * set_dump_bitmap will always leave the recently set bit un-sync. And setting 1035 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into 1036 * vmcore, ie. synchronizing un-sync bit into vmcore. 1037 */ 1038 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, 1039 uint8_t *buf, DumpState *s) 1040 { 1041 off_t old_offset, new_offset; 1042 off_t offset_bitmap1, offset_bitmap2; 1043 uint32_t byte, bit; 1044 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1045 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1046 1047 /* should not set the previous place */ 1048 assert(last_pfn <= pfn); 1049 1050 /* 1051 * if the bit needed to be set is not cached in buf, flush the data in buf 1052 * to vmcore firstly. 1053 * making new_offset be bigger than old_offset can also sync remained data 1054 * into vmcore. 1055 */ 1056 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf); 1057 new_offset = bitmap_bufsize * (pfn / bits_per_buf); 1058 1059 while (old_offset < new_offset) { 1060 /* calculate the offset and write dump_bitmap */ 1061 offset_bitmap1 = s->offset_dump_bitmap + old_offset; 1062 if (write_buffer(s->fd, offset_bitmap1, buf, 1063 bitmap_bufsize) < 0) { 1064 return -1; 1065 } 1066 1067 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ 1068 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + 1069 old_offset; 1070 if (write_buffer(s->fd, offset_bitmap2, buf, 1071 bitmap_bufsize) < 0) { 1072 return -1; 1073 } 1074 1075 memset(buf, 0, bitmap_bufsize); 1076 old_offset += bitmap_bufsize; 1077 } 1078 1079 /* get the exact place of the bit in the buf, and set it */ 1080 byte = (pfn % bits_per_buf) / CHAR_BIT; 1081 bit = (pfn % bits_per_buf) % CHAR_BIT; 1082 if (value) { 1083 buf[byte] |= 1u << bit; 1084 } else { 1085 buf[byte] &= ~(1u << bit); 1086 } 1087 1088 return 0; 1089 } 1090 1091 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr) 1092 { 1093 int target_page_shift = ctz32(s->dump_info.page_size); 1094 1095 return (addr >> target_page_shift) - ARCH_PFN_OFFSET; 1096 } 1097 1098 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn) 1099 { 1100 int target_page_shift = ctz32(s->dump_info.page_size); 1101 1102 return (pfn + ARCH_PFN_OFFSET) << target_page_shift; 1103 } 1104 1105 /* 1106 * exam every page and return the page frame number and the address of the page. 1107 * bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys 1108 * blocks, so block->target_start and block->target_end should be interal 1109 * multiples of the target page size. 1110 */ 1111 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, 1112 uint8_t **bufptr, DumpState *s) 1113 { 1114 GuestPhysBlock *block = *blockptr; 1115 hwaddr addr, target_page_mask = ~((hwaddr)s->dump_info.page_size - 1); 1116 uint8_t *buf; 1117 1118 /* block == NULL means the start of the iteration */ 1119 if (!block) { 1120 block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1121 *blockptr = block; 1122 assert((block->target_start & ~target_page_mask) == 0); 1123 assert((block->target_end & ~target_page_mask) == 0); 1124 *pfnptr = dump_paddr_to_pfn(s, block->target_start); 1125 if (bufptr) { 1126 *bufptr = block->host_addr; 1127 } 1128 return true; 1129 } 1130 1131 *pfnptr = *pfnptr + 1; 1132 addr = dump_pfn_to_paddr(s, *pfnptr); 1133 1134 if ((addr >= block->target_start) && 1135 (addr + s->dump_info.page_size <= block->target_end)) { 1136 buf = block->host_addr + (addr - block->target_start); 1137 } else { 1138 /* the next page is in the next block */ 1139 block = QTAILQ_NEXT(block, next); 1140 *blockptr = block; 1141 if (!block) { 1142 return false; 1143 } 1144 assert((block->target_start & ~target_page_mask) == 0); 1145 assert((block->target_end & ~target_page_mask) == 0); 1146 *pfnptr = dump_paddr_to_pfn(s, block->target_start); 1147 buf = block->host_addr; 1148 } 1149 1150 if (bufptr) { 1151 *bufptr = buf; 1152 } 1153 1154 return true; 1155 } 1156 1157 static void write_dump_bitmap(DumpState *s, Error **errp) 1158 { 1159 int ret = 0; 1160 uint64_t last_pfn, pfn; 1161 void *dump_bitmap_buf; 1162 size_t num_dumpable; 1163 GuestPhysBlock *block_iter = NULL; 1164 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1165 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1166 1167 /* dump_bitmap_buf is used to store dump_bitmap temporarily */ 1168 dump_bitmap_buf = g_malloc0(bitmap_bufsize); 1169 1170 num_dumpable = 0; 1171 last_pfn = 0; 1172 1173 /* 1174 * exam memory page by page, and set the bit in dump_bitmap corresponded 1175 * to the existing page. 1176 */ 1177 while (get_next_page(&block_iter, &pfn, NULL, s)) { 1178 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); 1179 if (ret < 0) { 1180 error_setg(errp, "dump: failed to set dump_bitmap"); 1181 goto out; 1182 } 1183 1184 last_pfn = pfn; 1185 num_dumpable++; 1186 } 1187 1188 /* 1189 * set_dump_bitmap will always leave the recently set bit un-sync. Here we 1190 * set the remaining bits from last_pfn to the end of the bitmap buffer to 1191 * 0. With those set, the un-sync bit will be synchronized into the vmcore. 1192 */ 1193 if (num_dumpable > 0) { 1194 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false, 1195 dump_bitmap_buf, s); 1196 if (ret < 0) { 1197 error_setg(errp, "dump: failed to sync dump_bitmap"); 1198 goto out; 1199 } 1200 } 1201 1202 /* number of dumpable pages that will be dumped later */ 1203 s->num_dumpable = num_dumpable; 1204 1205 out: 1206 g_free(dump_bitmap_buf); 1207 } 1208 1209 static void prepare_data_cache(DataCache *data_cache, DumpState *s, 1210 off_t offset) 1211 { 1212 data_cache->fd = s->fd; 1213 data_cache->data_size = 0; 1214 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s); 1215 data_cache->buf = g_malloc0(data_cache->buf_size); 1216 data_cache->offset = offset; 1217 } 1218 1219 static int write_cache(DataCache *dc, const void *buf, size_t size, 1220 bool flag_sync) 1221 { 1222 /* 1223 * dc->buf_size should not be less than size, otherwise dc will never be 1224 * enough 1225 */ 1226 assert(size <= dc->buf_size); 1227 1228 /* 1229 * if flag_sync is set, synchronize data in dc->buf into vmcore. 1230 * otherwise check if the space is enough for caching data in buf, if not, 1231 * write the data in dc->buf to dc->fd and reset dc->buf 1232 */ 1233 if ((!flag_sync && dc->data_size + size > dc->buf_size) || 1234 (flag_sync && dc->data_size > 0)) { 1235 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) { 1236 return -1; 1237 } 1238 1239 dc->offset += dc->data_size; 1240 dc->data_size = 0; 1241 } 1242 1243 if (!flag_sync) { 1244 memcpy(dc->buf + dc->data_size, buf, size); 1245 dc->data_size += size; 1246 } 1247 1248 return 0; 1249 } 1250 1251 static void free_data_cache(DataCache *data_cache) 1252 { 1253 g_free(data_cache->buf); 1254 } 1255 1256 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) 1257 { 1258 switch (flag_compress) { 1259 case DUMP_DH_COMPRESSED_ZLIB: 1260 return compressBound(page_size); 1261 1262 case DUMP_DH_COMPRESSED_LZO: 1263 /* 1264 * LZO will expand incompressible data by a little amount. Please check 1265 * the following URL to see the expansion calculation: 1266 * http://www.oberhumer.com/opensource/lzo/lzofaq.php 1267 */ 1268 return page_size + page_size / 16 + 64 + 3; 1269 1270 #ifdef CONFIG_SNAPPY 1271 case DUMP_DH_COMPRESSED_SNAPPY: 1272 return snappy_max_compressed_length(page_size); 1273 #endif 1274 } 1275 return 0; 1276 } 1277 1278 static void write_dump_pages(DumpState *s, Error **errp) 1279 { 1280 int ret = 0; 1281 DataCache page_desc, page_data; 1282 size_t len_buf_out, size_out; 1283 #ifdef CONFIG_LZO 1284 lzo_bytep wrkmem = NULL; 1285 #endif 1286 uint8_t *buf_out = NULL; 1287 off_t offset_desc, offset_data; 1288 PageDescriptor pd, pd_zero; 1289 uint8_t *buf; 1290 GuestPhysBlock *block_iter = NULL; 1291 uint64_t pfn_iter; 1292 1293 /* get offset of page_desc and page_data in dump file */ 1294 offset_desc = s->offset_page; 1295 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; 1296 1297 prepare_data_cache(&page_desc, s, offset_desc); 1298 prepare_data_cache(&page_data, s, offset_data); 1299 1300 /* prepare buffer to store compressed data */ 1301 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress); 1302 assert(len_buf_out != 0); 1303 1304 #ifdef CONFIG_LZO 1305 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); 1306 #endif 1307 1308 buf_out = g_malloc(len_buf_out); 1309 1310 /* 1311 * init zero page's page_desc and page_data, because every zero page 1312 * uses the same page_data 1313 */ 1314 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size); 1315 pd_zero.flags = cpu_to_dump32(s, 0); 1316 pd_zero.offset = cpu_to_dump64(s, offset_data); 1317 pd_zero.page_flags = cpu_to_dump64(s, 0); 1318 buf = g_malloc0(s->dump_info.page_size); 1319 ret = write_cache(&page_data, buf, s->dump_info.page_size, false); 1320 g_free(buf); 1321 if (ret < 0) { 1322 error_setg(errp, "dump: failed to write page data (zero page)"); 1323 goto out; 1324 } 1325 1326 offset_data += s->dump_info.page_size; 1327 1328 /* 1329 * dump memory to vmcore page by page. zero page will all be resided in the 1330 * first page of page section 1331 */ 1332 while (get_next_page(&block_iter, &pfn_iter, &buf, s)) { 1333 /* check zero page */ 1334 if (buffer_is_zero(buf, s->dump_info.page_size)) { 1335 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), 1336 false); 1337 if (ret < 0) { 1338 error_setg(errp, "dump: failed to write page desc"); 1339 goto out; 1340 } 1341 } else { 1342 /* 1343 * not zero page, then: 1344 * 1. compress the page 1345 * 2. write the compressed page into the cache of page_data 1346 * 3. get page desc of the compressed page and write it into the 1347 * cache of page_desc 1348 * 1349 * only one compression format will be used here, for 1350 * s->flag_compress is set. But when compression fails to work, 1351 * we fall back to save in plaintext. 1352 */ 1353 size_out = len_buf_out; 1354 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && 1355 (compress2(buf_out, (uLongf *)&size_out, buf, 1356 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) && 1357 (size_out < s->dump_info.page_size)) { 1358 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB); 1359 pd.size = cpu_to_dump32(s, size_out); 1360 1361 ret = write_cache(&page_data, buf_out, size_out, false); 1362 if (ret < 0) { 1363 error_setg(errp, "dump: failed to write page data"); 1364 goto out; 1365 } 1366 #ifdef CONFIG_LZO 1367 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && 1368 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out, 1369 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && 1370 (size_out < s->dump_info.page_size)) { 1371 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO); 1372 pd.size = cpu_to_dump32(s, size_out); 1373 1374 ret = write_cache(&page_data, buf_out, size_out, false); 1375 if (ret < 0) { 1376 error_setg(errp, "dump: failed to write page data"); 1377 goto out; 1378 } 1379 #endif 1380 #ifdef CONFIG_SNAPPY 1381 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && 1382 (snappy_compress((char *)buf, s->dump_info.page_size, 1383 (char *)buf_out, &size_out) == SNAPPY_OK) && 1384 (size_out < s->dump_info.page_size)) { 1385 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY); 1386 pd.size = cpu_to_dump32(s, size_out); 1387 1388 ret = write_cache(&page_data, buf_out, size_out, false); 1389 if (ret < 0) { 1390 error_setg(errp, "dump: failed to write page data"); 1391 goto out; 1392 } 1393 #endif 1394 } else { 1395 /* 1396 * fall back to save in plaintext, size_out should be 1397 * assigned the target's page size 1398 */ 1399 pd.flags = cpu_to_dump32(s, 0); 1400 size_out = s->dump_info.page_size; 1401 pd.size = cpu_to_dump32(s, size_out); 1402 1403 ret = write_cache(&page_data, buf, 1404 s->dump_info.page_size, false); 1405 if (ret < 0) { 1406 error_setg(errp, "dump: failed to write page data"); 1407 goto out; 1408 } 1409 } 1410 1411 /* get and write page desc here */ 1412 pd.page_flags = cpu_to_dump64(s, 0); 1413 pd.offset = cpu_to_dump64(s, offset_data); 1414 offset_data += size_out; 1415 1416 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); 1417 if (ret < 0) { 1418 error_setg(errp, "dump: failed to write page desc"); 1419 goto out; 1420 } 1421 } 1422 s->written_size += s->dump_info.page_size; 1423 } 1424 1425 ret = write_cache(&page_desc, NULL, 0, true); 1426 if (ret < 0) { 1427 error_setg(errp, "dump: failed to sync cache for page_desc"); 1428 goto out; 1429 } 1430 ret = write_cache(&page_data, NULL, 0, true); 1431 if (ret < 0) { 1432 error_setg(errp, "dump: failed to sync cache for page_data"); 1433 goto out; 1434 } 1435 1436 out: 1437 free_data_cache(&page_desc); 1438 free_data_cache(&page_data); 1439 1440 #ifdef CONFIG_LZO 1441 g_free(wrkmem); 1442 #endif 1443 1444 g_free(buf_out); 1445 } 1446 1447 static void create_kdump_vmcore(DumpState *s, Error **errp) 1448 { 1449 ERRP_GUARD(); 1450 int ret; 1451 1452 /* 1453 * the kdump-compressed format is: 1454 * File offset 1455 * +------------------------------------------+ 0x0 1456 * | main header (struct disk_dump_header) | 1457 * |------------------------------------------+ block 1 1458 * | sub header (struct kdump_sub_header) | 1459 * |------------------------------------------+ block 2 1460 * | 1st-dump_bitmap | 1461 * |------------------------------------------+ block 2 + X blocks 1462 * | 2nd-dump_bitmap | (aligned by block) 1463 * |------------------------------------------+ block 2 + 2 * X blocks 1464 * | page desc for pfn 0 (struct page_desc) | (aligned by block) 1465 * | page desc for pfn 1 (struct page_desc) | 1466 * | : | 1467 * |------------------------------------------| (not aligned by block) 1468 * | page data (pfn 0) | 1469 * | page data (pfn 1) | 1470 * | : | 1471 * +------------------------------------------+ 1472 */ 1473 1474 ret = write_start_flat_header(s->fd); 1475 if (ret < 0) { 1476 error_setg(errp, "dump: failed to write start flat header"); 1477 return; 1478 } 1479 1480 write_dump_header(s, errp); 1481 if (*errp) { 1482 return; 1483 } 1484 1485 write_dump_bitmap(s, errp); 1486 if (*errp) { 1487 return; 1488 } 1489 1490 write_dump_pages(s, errp); 1491 if (*errp) { 1492 return; 1493 } 1494 1495 ret = write_end_flat_header(s->fd); 1496 if (ret < 0) { 1497 error_setg(errp, "dump: failed to write end flat header"); 1498 return; 1499 } 1500 } 1501 1502 static ram_addr_t get_start_block(DumpState *s) 1503 { 1504 GuestPhysBlock *block; 1505 1506 if (!s->has_filter) { 1507 s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1508 return 0; 1509 } 1510 1511 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1512 if (block->target_start >= s->begin + s->length || 1513 block->target_end <= s->begin) { 1514 /* This block is out of the range */ 1515 continue; 1516 } 1517 1518 s->next_block = block; 1519 if (s->begin > block->target_start) { 1520 s->start = s->begin - block->target_start; 1521 } else { 1522 s->start = 0; 1523 } 1524 return s->start; 1525 } 1526 1527 return -1; 1528 } 1529 1530 static void get_max_mapnr(DumpState *s) 1531 { 1532 GuestPhysBlock *last_block; 1533 1534 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head); 1535 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end); 1536 } 1537 1538 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE }; 1539 1540 static void dump_state_prepare(DumpState *s) 1541 { 1542 /* zero the struct, setting status to active */ 1543 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE }; 1544 } 1545 1546 bool qemu_system_dump_in_progress(void) 1547 { 1548 DumpState *state = &dump_state_global; 1549 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE); 1550 } 1551 1552 /* calculate total size of memory to be dumped (taking filter into 1553 * acoount.) */ 1554 static int64_t dump_calculate_size(DumpState *s) 1555 { 1556 GuestPhysBlock *block; 1557 int64_t size = 0, total = 0, left = 0, right = 0; 1558 1559 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1560 if (s->has_filter) { 1561 /* calculate the overlapped region. */ 1562 left = MAX(s->begin, block->target_start); 1563 right = MIN(s->begin + s->length, block->target_end); 1564 size = right - left; 1565 size = size > 0 ? size : 0; 1566 } else { 1567 /* count the whole region in */ 1568 size = (block->target_end - block->target_start); 1569 } 1570 total += size; 1571 } 1572 1573 return total; 1574 } 1575 1576 static void vmcoreinfo_update_phys_base(DumpState *s) 1577 { 1578 uint64_t size, note_head_size, name_size, phys_base; 1579 char **lines; 1580 uint8_t *vmci; 1581 size_t i; 1582 1583 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1584 return; 1585 } 1586 1587 get_note_sizes(s, s->guest_note, ¬e_head_size, &name_size, &size); 1588 note_head_size = ROUND_UP(note_head_size, 4); 1589 1590 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4); 1591 *(vmci + size) = '\0'; 1592 1593 lines = g_strsplit((char *)vmci, "\n", -1); 1594 for (i = 0; lines[i]; i++) { 1595 const char *prefix = NULL; 1596 1597 if (s->dump_info.d_machine == EM_X86_64) { 1598 prefix = "NUMBER(phys_base)="; 1599 } else if (s->dump_info.d_machine == EM_AARCH64) { 1600 prefix = "NUMBER(PHYS_OFFSET)="; 1601 } 1602 1603 if (prefix && g_str_has_prefix(lines[i], prefix)) { 1604 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16, 1605 &phys_base) < 0) { 1606 warn_report("Failed to read %s", prefix); 1607 } else { 1608 s->dump_info.phys_base = phys_base; 1609 } 1610 break; 1611 } 1612 } 1613 1614 g_strfreev(lines); 1615 } 1616 1617 static void dump_init(DumpState *s, int fd, bool has_format, 1618 DumpGuestMemoryFormat format, bool paging, bool has_filter, 1619 int64_t begin, int64_t length, Error **errp) 1620 { 1621 ERRP_GUARD(); 1622 VMCoreInfoState *vmci = vmcoreinfo_find(); 1623 CPUState *cpu; 1624 int nr_cpus; 1625 int ret; 1626 1627 s->has_format = has_format; 1628 s->format = format; 1629 s->written_size = 0; 1630 1631 /* kdump-compressed is conflict with paging and filter */ 1632 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1633 assert(!paging && !has_filter); 1634 } 1635 1636 if (runstate_is_running()) { 1637 vm_stop(RUN_STATE_SAVE_VM); 1638 s->resume = true; 1639 } else { 1640 s->resume = false; 1641 } 1642 1643 /* If we use KVM, we should synchronize the registers before we get dump 1644 * info or physmap info. 1645 */ 1646 cpu_synchronize_all_states(); 1647 nr_cpus = 0; 1648 CPU_FOREACH(cpu) { 1649 nr_cpus++; 1650 } 1651 1652 s->fd = fd; 1653 s->has_filter = has_filter; 1654 s->begin = begin; 1655 s->length = length; 1656 1657 memory_mapping_list_init(&s->list); 1658 1659 guest_phys_blocks_init(&s->guest_phys_blocks); 1660 guest_phys_blocks_append(&s->guest_phys_blocks); 1661 s->total_size = dump_calculate_size(s); 1662 #ifdef DEBUG_DUMP_GUEST_MEMORY 1663 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size); 1664 #endif 1665 1666 /* it does not make sense to dump non-existent memory */ 1667 if (!s->total_size) { 1668 error_setg(errp, "dump: no guest memory to dump"); 1669 goto cleanup; 1670 } 1671 1672 s->start = get_start_block(s); 1673 if (s->start == -1) { 1674 error_setg(errp, QERR_INVALID_PARAMETER, "begin"); 1675 goto cleanup; 1676 } 1677 1678 /* get dump info: endian, class and architecture. 1679 * If the target architecture is not supported, cpu_get_dump_info() will 1680 * return -1. 1681 */ 1682 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); 1683 if (ret < 0) { 1684 error_setg(errp, QERR_UNSUPPORTED); 1685 goto cleanup; 1686 } 1687 1688 if (!s->dump_info.page_size) { 1689 s->dump_info.page_size = TARGET_PAGE_SIZE; 1690 } 1691 1692 s->note_size = cpu_get_note_size(s->dump_info.d_class, 1693 s->dump_info.d_machine, nr_cpus); 1694 if (s->note_size < 0) { 1695 error_setg(errp, QERR_UNSUPPORTED); 1696 goto cleanup; 1697 } 1698 1699 /* 1700 * The goal of this block is to (a) update the previously guessed 1701 * phys_base, (b) copy the guest note out of the guest. 1702 * Failure to do so is not fatal for dumping. 1703 */ 1704 if (vmci) { 1705 uint64_t addr, note_head_size, name_size, desc_size; 1706 uint32_t size; 1707 uint16_t format; 1708 1709 note_head_size = s->dump_info.d_class == ELFCLASS32 ? 1710 sizeof(Elf32_Nhdr) : sizeof(Elf64_Nhdr); 1711 1712 format = le16_to_cpu(vmci->vmcoreinfo.guest_format); 1713 size = le32_to_cpu(vmci->vmcoreinfo.size); 1714 addr = le64_to_cpu(vmci->vmcoreinfo.paddr); 1715 if (!vmci->has_vmcoreinfo) { 1716 warn_report("guest note is not present"); 1717 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) { 1718 warn_report("guest note size is invalid: %" PRIu32, size); 1719 } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) { 1720 warn_report("guest note format is unsupported: %" PRIu16, format); 1721 } else { 1722 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */ 1723 cpu_physical_memory_read(addr, s->guest_note, size); 1724 1725 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size); 1726 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size, 1727 desc_size); 1728 if (name_size > MAX_GUEST_NOTE_SIZE || 1729 desc_size > MAX_GUEST_NOTE_SIZE || 1730 s->guest_note_size > size) { 1731 warn_report("Invalid guest note header"); 1732 g_free(s->guest_note); 1733 s->guest_note = NULL; 1734 } else { 1735 vmcoreinfo_update_phys_base(s); 1736 s->note_size += s->guest_note_size; 1737 } 1738 } 1739 } 1740 1741 /* get memory mapping */ 1742 if (paging) { 1743 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp); 1744 if (*errp) { 1745 goto cleanup; 1746 } 1747 } else { 1748 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); 1749 } 1750 1751 s->nr_cpus = nr_cpus; 1752 1753 get_max_mapnr(s); 1754 1755 uint64_t tmp; 1756 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), 1757 s->dump_info.page_size); 1758 s->len_dump_bitmap = tmp * s->dump_info.page_size; 1759 1760 /* init for kdump-compressed format */ 1761 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1762 switch (format) { 1763 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: 1764 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; 1765 break; 1766 1767 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: 1768 #ifdef CONFIG_LZO 1769 if (lzo_init() != LZO_E_OK) { 1770 error_setg(errp, "failed to initialize the LZO library"); 1771 goto cleanup; 1772 } 1773 #endif 1774 s->flag_compress = DUMP_DH_COMPRESSED_LZO; 1775 break; 1776 1777 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: 1778 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; 1779 break; 1780 1781 default: 1782 s->flag_compress = 0; 1783 } 1784 1785 return; 1786 } 1787 1788 if (s->has_filter) { 1789 memory_mapping_filter(&s->list, s->begin, s->length); 1790 } 1791 1792 /* 1793 * calculate phdr_num 1794 * 1795 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow 1796 */ 1797 s->phdr_num = 1; /* PT_NOTE */ 1798 if (s->list.num < UINT16_MAX - 2) { 1799 s->shdr_num = 0; 1800 s->phdr_num += s->list.num; 1801 } else { 1802 /* sh_info of section 0 holds the real number of phdrs */ 1803 s->shdr_num = 1; 1804 1805 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */ 1806 if (s->list.num <= UINT32_MAX - 1) { 1807 s->phdr_num += s->list.num; 1808 } else { 1809 s->phdr_num = UINT32_MAX; 1810 } 1811 } 1812 1813 if (s->dump_info.d_class == ELFCLASS64) { 1814 s->phdr_offset = sizeof(Elf64_Ehdr); 1815 s->shdr_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num; 1816 s->note_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num; 1817 s->memory_offset = s->note_offset + s->note_size; 1818 } else { 1819 1820 s->phdr_offset = sizeof(Elf32_Ehdr); 1821 s->shdr_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num; 1822 s->note_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num; 1823 s->memory_offset = s->note_offset + s->note_size; 1824 } 1825 1826 return; 1827 1828 cleanup: 1829 dump_cleanup(s); 1830 } 1831 1832 /* this operation might be time consuming. */ 1833 static void dump_process(DumpState *s, Error **errp) 1834 { 1835 ERRP_GUARD(); 1836 DumpQueryResult *result = NULL; 1837 1838 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 1839 #ifdef TARGET_X86_64 1840 create_win_dump(s, errp); 1841 #endif 1842 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1843 create_kdump_vmcore(s, errp); 1844 } else { 1845 create_vmcore(s, errp); 1846 } 1847 1848 /* make sure status is written after written_size updates */ 1849 smp_wmb(); 1850 qatomic_set(&s->status, 1851 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED)); 1852 1853 /* send DUMP_COMPLETED message (unconditionally) */ 1854 result = qmp_query_dump(NULL); 1855 /* should never fail */ 1856 assert(result); 1857 qapi_event_send_dump_completed(result, !!*errp, (*errp ? 1858 error_get_pretty(*errp) : NULL)); 1859 qapi_free_DumpQueryResult(result); 1860 1861 dump_cleanup(s); 1862 } 1863 1864 static void *dump_thread(void *data) 1865 { 1866 DumpState *s = (DumpState *)data; 1867 dump_process(s, NULL); 1868 return NULL; 1869 } 1870 1871 DumpQueryResult *qmp_query_dump(Error **errp) 1872 { 1873 DumpQueryResult *result = g_new(DumpQueryResult, 1); 1874 DumpState *state = &dump_state_global; 1875 result->status = qatomic_read(&state->status); 1876 /* make sure we are reading status and written_size in order */ 1877 smp_rmb(); 1878 result->completed = state->written_size; 1879 result->total = state->total_size; 1880 return result; 1881 } 1882 1883 void qmp_dump_guest_memory(bool paging, const char *file, 1884 bool has_detach, bool detach, 1885 bool has_begin, int64_t begin, bool has_length, 1886 int64_t length, bool has_format, 1887 DumpGuestMemoryFormat format, Error **errp) 1888 { 1889 ERRP_GUARD(); 1890 const char *p; 1891 int fd = -1; 1892 DumpState *s; 1893 bool detach_p = false; 1894 1895 if (runstate_check(RUN_STATE_INMIGRATE)) { 1896 error_setg(errp, "Dump not allowed during incoming migration."); 1897 return; 1898 } 1899 1900 /* if there is a dump in background, we should wait until the dump 1901 * finished */ 1902 if (qemu_system_dump_in_progress()) { 1903 error_setg(errp, "There is a dump in process, please wait."); 1904 return; 1905 } 1906 1907 /* 1908 * kdump-compressed format need the whole memory dumped, so paging or 1909 * filter is not supported here. 1910 */ 1911 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && 1912 (paging || has_begin || has_length)) { 1913 error_setg(errp, "kdump-compressed format doesn't support paging or " 1914 "filter"); 1915 return; 1916 } 1917 if (has_begin && !has_length) { 1918 error_setg(errp, QERR_MISSING_PARAMETER, "length"); 1919 return; 1920 } 1921 if (!has_begin && has_length) { 1922 error_setg(errp, QERR_MISSING_PARAMETER, "begin"); 1923 return; 1924 } 1925 if (has_detach) { 1926 detach_p = detach; 1927 } 1928 1929 /* check whether lzo/snappy is supported */ 1930 #ifndef CONFIG_LZO 1931 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { 1932 error_setg(errp, "kdump-lzo is not available now"); 1933 return; 1934 } 1935 #endif 1936 1937 #ifndef CONFIG_SNAPPY 1938 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { 1939 error_setg(errp, "kdump-snappy is not available now"); 1940 return; 1941 } 1942 #endif 1943 1944 #ifndef TARGET_X86_64 1945 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 1946 error_setg(errp, "Windows dump is only available for x86-64"); 1947 return; 1948 } 1949 #endif 1950 1951 #if !defined(WIN32) 1952 if (strstart(file, "fd:", &p)) { 1953 fd = monitor_get_fd(monitor_cur(), p, errp); 1954 if (fd == -1) { 1955 return; 1956 } 1957 } 1958 #endif 1959 1960 if (strstart(file, "file:", &p)) { 1961 fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); 1962 if (fd < 0) { 1963 error_setg_file_open(errp, errno, p); 1964 return; 1965 } 1966 } 1967 1968 if (fd == -1) { 1969 error_setg(errp, QERR_INVALID_PARAMETER, "protocol"); 1970 return; 1971 } 1972 1973 if (!dump_migration_blocker) { 1974 error_setg(&dump_migration_blocker, 1975 "Live migration disabled: dump-guest-memory in progress"); 1976 } 1977 1978 /* 1979 * Allows even for -only-migratable, but forbid migration during the 1980 * process of dump guest memory. 1981 */ 1982 if (migrate_add_blocker_internal(dump_migration_blocker, errp)) { 1983 /* Remember to release the fd before passing it over to dump state */ 1984 close(fd); 1985 return; 1986 } 1987 1988 s = &dump_state_global; 1989 dump_state_prepare(s); 1990 1991 dump_init(s, fd, has_format, format, paging, has_begin, 1992 begin, length, errp); 1993 if (*errp) { 1994 qatomic_set(&s->status, DUMP_STATUS_FAILED); 1995 return; 1996 } 1997 1998 if (detach_p) { 1999 /* detached dump */ 2000 s->detached = true; 2001 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread, 2002 s, QEMU_THREAD_DETACHED); 2003 } else { 2004 /* sync dump */ 2005 dump_process(s, errp); 2006 } 2007 } 2008 2009 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) 2010 { 2011 DumpGuestMemoryCapability *cap = 2012 g_new0(DumpGuestMemoryCapability, 1); 2013 DumpGuestMemoryFormatList **tail = &cap->formats; 2014 2015 /* elf is always available */ 2016 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF); 2017 2018 /* kdump-zlib is always available */ 2019 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB); 2020 2021 /* add new item if kdump-lzo is available */ 2022 #ifdef CONFIG_LZO 2023 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO); 2024 #endif 2025 2026 /* add new item if kdump-snappy is available */ 2027 #ifdef CONFIG_SNAPPY 2028 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY); 2029 #endif 2030 2031 /* Windows dump is available only if target is x86_64 */ 2032 #ifdef TARGET_X86_64 2033 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP); 2034 #endif 2035 2036 return cap; 2037 } 2038