1 /* 2 * QEMU dump 3 * 4 * Copyright Fujitsu, Corp. 2011, 2012 5 * 6 * Authors: 7 * Wen Congyang <wency@cn.fujitsu.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #include "qemu/osdep.h" 15 #include "qemu/cutils.h" 16 #include "elf.h" 17 #include "qemu/bswap.h" 18 #include "exec/target_page.h" 19 #include "monitor/monitor.h" 20 #include "sysemu/dump.h" 21 #include "sysemu/runstate.h" 22 #include "sysemu/cpus.h" 23 #include "qapi/error.h" 24 #include "qapi/qapi-commands-dump.h" 25 #include "qapi/qapi-events-dump.h" 26 #include "qapi/qmp/qerror.h" 27 #include "qemu/error-report.h" 28 #include "qemu/main-loop.h" 29 #include "hw/misc/vmcoreinfo.h" 30 #include "migration/blocker.h" 31 #include "hw/core/cpu.h" 32 #include "win_dump.h" 33 #include "qemu/range.h" 34 35 #include <zlib.h> 36 #ifdef CONFIG_LZO 37 #include <lzo/lzo1x.h> 38 #endif 39 #ifdef CONFIG_SNAPPY 40 #include <snappy-c.h> 41 #endif 42 #ifndef ELF_MACHINE_UNAME 43 #define ELF_MACHINE_UNAME "Unknown" 44 #endif 45 46 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */ 47 48 static Error *dump_migration_blocker; 49 50 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \ 51 ((DIV_ROUND_UP((hdr_size), 4) + \ 52 DIV_ROUND_UP((name_size), 4) + \ 53 DIV_ROUND_UP((desc_size), 4)) * 4) 54 55 static inline bool dump_is_64bit(DumpState *s) 56 { 57 return s->dump_info.d_class == ELFCLASS64; 58 } 59 60 static inline bool dump_has_filter(DumpState *s) 61 { 62 return s->filter_area_length > 0; 63 } 64 65 uint16_t cpu_to_dump16(DumpState *s, uint16_t val) 66 { 67 if (s->dump_info.d_endian == ELFDATA2LSB) { 68 val = cpu_to_le16(val); 69 } else { 70 val = cpu_to_be16(val); 71 } 72 73 return val; 74 } 75 76 uint32_t cpu_to_dump32(DumpState *s, uint32_t val) 77 { 78 if (s->dump_info.d_endian == ELFDATA2LSB) { 79 val = cpu_to_le32(val); 80 } else { 81 val = cpu_to_be32(val); 82 } 83 84 return val; 85 } 86 87 uint64_t cpu_to_dump64(DumpState *s, uint64_t val) 88 { 89 if (s->dump_info.d_endian == ELFDATA2LSB) { 90 val = cpu_to_le64(val); 91 } else { 92 val = cpu_to_be64(val); 93 } 94 95 return val; 96 } 97 98 static int dump_cleanup(DumpState *s) 99 { 100 if (s->dump_info.arch_cleanup_fn) { 101 s->dump_info.arch_cleanup_fn(s); 102 } 103 104 guest_phys_blocks_free(&s->guest_phys_blocks); 105 memory_mapping_list_free(&s->list); 106 close(s->fd); 107 g_free(s->guest_note); 108 g_clear_pointer(&s->string_table_buf, g_array_unref); 109 s->guest_note = NULL; 110 if (s->resume) { 111 if (s->detached) { 112 bql_lock(); 113 } 114 vm_start(); 115 if (s->detached) { 116 bql_unlock(); 117 } 118 } 119 migrate_del_blocker(&dump_migration_blocker); 120 121 return 0; 122 } 123 124 static int fd_write_vmcore(const void *buf, size_t size, void *opaque) 125 { 126 DumpState *s = opaque; 127 size_t written_size; 128 129 written_size = qemu_write_full(s->fd, buf, size); 130 if (written_size != size) { 131 return -errno; 132 } 133 134 return 0; 135 } 136 137 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header) 138 { 139 /* 140 * phnum in the elf header is 16 bit, if we have more segments we 141 * set phnum to PN_XNUM and write the real number of segments to a 142 * special section. 143 */ 144 uint16_t phnum = MIN(s->phdr_num, PN_XNUM); 145 146 memset(elf_header, 0, sizeof(Elf64_Ehdr)); 147 memcpy(elf_header, ELFMAG, SELFMAG); 148 elf_header->e_ident[EI_CLASS] = ELFCLASS64; 149 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; 150 elf_header->e_ident[EI_VERSION] = EV_CURRENT; 151 elf_header->e_type = cpu_to_dump16(s, ET_CORE); 152 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 153 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); 154 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 155 elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset); 156 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr)); 157 elf_header->e_phnum = cpu_to_dump16(s, phnum); 158 elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset); 159 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr)); 160 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); 161 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1); 162 } 163 164 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header) 165 { 166 /* 167 * phnum in the elf header is 16 bit, if we have more segments we 168 * set phnum to PN_XNUM and write the real number of segments to a 169 * special section. 170 */ 171 uint16_t phnum = MIN(s->phdr_num, PN_XNUM); 172 173 memset(elf_header, 0, sizeof(Elf32_Ehdr)); 174 memcpy(elf_header, ELFMAG, SELFMAG); 175 elf_header->e_ident[EI_CLASS] = ELFCLASS32; 176 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; 177 elf_header->e_ident[EI_VERSION] = EV_CURRENT; 178 elf_header->e_type = cpu_to_dump16(s, ET_CORE); 179 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 180 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); 181 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 182 elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset); 183 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr)); 184 elf_header->e_phnum = cpu_to_dump16(s, phnum); 185 elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset); 186 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr)); 187 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); 188 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1); 189 } 190 191 static void write_elf_header(DumpState *s, Error **errp) 192 { 193 Elf32_Ehdr elf32_header; 194 Elf64_Ehdr elf64_header; 195 size_t header_size; 196 void *header_ptr; 197 int ret; 198 199 /* The NULL header and the shstrtab are always defined */ 200 assert(s->shdr_num >= 2); 201 if (dump_is_64bit(s)) { 202 prepare_elf64_header(s, &elf64_header); 203 header_size = sizeof(elf64_header); 204 header_ptr = &elf64_header; 205 } else { 206 prepare_elf32_header(s, &elf32_header); 207 header_size = sizeof(elf32_header); 208 header_ptr = &elf32_header; 209 } 210 211 ret = fd_write_vmcore(header_ptr, header_size, s); 212 if (ret < 0) { 213 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 214 } 215 } 216 217 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, 218 int phdr_index, hwaddr offset, 219 hwaddr filesz, Error **errp) 220 { 221 Elf64_Phdr phdr; 222 int ret; 223 224 memset(&phdr, 0, sizeof(Elf64_Phdr)); 225 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 226 phdr.p_offset = cpu_to_dump64(s, offset); 227 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr); 228 phdr.p_filesz = cpu_to_dump64(s, filesz); 229 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length); 230 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 231 232 assert(memory_mapping->length >= filesz); 233 234 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 235 if (ret < 0) { 236 error_setg_errno(errp, -ret, 237 "dump: failed to write program header table"); 238 } 239 } 240 241 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, 242 int phdr_index, hwaddr offset, 243 hwaddr filesz, Error **errp) 244 { 245 Elf32_Phdr phdr; 246 int ret; 247 248 memset(&phdr, 0, sizeof(Elf32_Phdr)); 249 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 250 phdr.p_offset = cpu_to_dump32(s, offset); 251 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr); 252 phdr.p_filesz = cpu_to_dump32(s, filesz); 253 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length); 254 phdr.p_vaddr = 255 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 256 257 assert(memory_mapping->length >= filesz); 258 259 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 260 if (ret < 0) { 261 error_setg_errno(errp, -ret, 262 "dump: failed to write program header table"); 263 } 264 } 265 266 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr) 267 { 268 memset(phdr, 0, sizeof(*phdr)); 269 phdr->p_type = cpu_to_dump32(s, PT_NOTE); 270 phdr->p_offset = cpu_to_dump64(s, s->note_offset); 271 phdr->p_paddr = 0; 272 phdr->p_filesz = cpu_to_dump64(s, s->note_size); 273 phdr->p_memsz = cpu_to_dump64(s, s->note_size); 274 phdr->p_vaddr = 0; 275 } 276 277 static inline int cpu_index(CPUState *cpu) 278 { 279 return cpu->cpu_index + 1; 280 } 281 282 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s, 283 Error **errp) 284 { 285 int ret; 286 287 if (s->guest_note) { 288 ret = f(s->guest_note, s->guest_note_size, s); 289 if (ret < 0) { 290 error_setg(errp, "dump: failed to write guest note"); 291 } 292 } 293 } 294 295 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s, 296 Error **errp) 297 { 298 CPUState *cpu; 299 int ret; 300 int id; 301 302 CPU_FOREACH(cpu) { 303 id = cpu_index(cpu); 304 ret = cpu_write_elf64_note(f, cpu, id, s); 305 if (ret < 0) { 306 error_setg(errp, "dump: failed to write elf notes"); 307 return; 308 } 309 } 310 311 CPU_FOREACH(cpu) { 312 ret = cpu_write_elf64_qemunote(f, cpu, s); 313 if (ret < 0) { 314 error_setg(errp, "dump: failed to write CPU status"); 315 return; 316 } 317 } 318 319 write_guest_note(f, s, errp); 320 } 321 322 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr) 323 { 324 memset(phdr, 0, sizeof(*phdr)); 325 phdr->p_type = cpu_to_dump32(s, PT_NOTE); 326 phdr->p_offset = cpu_to_dump32(s, s->note_offset); 327 phdr->p_paddr = 0; 328 phdr->p_filesz = cpu_to_dump32(s, s->note_size); 329 phdr->p_memsz = cpu_to_dump32(s, s->note_size); 330 phdr->p_vaddr = 0; 331 } 332 333 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s, 334 Error **errp) 335 { 336 CPUState *cpu; 337 int ret; 338 int id; 339 340 CPU_FOREACH(cpu) { 341 id = cpu_index(cpu); 342 ret = cpu_write_elf32_note(f, cpu, id, s); 343 if (ret < 0) { 344 error_setg(errp, "dump: failed to write elf notes"); 345 return; 346 } 347 } 348 349 CPU_FOREACH(cpu) { 350 ret = cpu_write_elf32_qemunote(f, cpu, s); 351 if (ret < 0) { 352 error_setg(errp, "dump: failed to write CPU status"); 353 return; 354 } 355 } 356 357 write_guest_note(f, s, errp); 358 } 359 360 static void write_elf_phdr_note(DumpState *s, Error **errp) 361 { 362 Elf32_Phdr phdr32; 363 Elf64_Phdr phdr64; 364 void *phdr; 365 size_t size; 366 int ret; 367 368 if (dump_is_64bit(s)) { 369 prepare_elf64_phdr_note(s, &phdr64); 370 size = sizeof(phdr64); 371 phdr = &phdr64; 372 } else { 373 prepare_elf32_phdr_note(s, &phdr32); 374 size = sizeof(phdr32); 375 phdr = &phdr32; 376 } 377 378 ret = fd_write_vmcore(phdr, size, s); 379 if (ret < 0) { 380 error_setg_errno(errp, -ret, 381 "dump: failed to write program header table"); 382 } 383 } 384 385 static void prepare_elf_section_hdr_zero(DumpState *s) 386 { 387 if (dump_is_64bit(s)) { 388 Elf64_Shdr *shdr64 = s->elf_section_hdrs; 389 390 shdr64->sh_info = cpu_to_dump32(s, s->phdr_num); 391 } else { 392 Elf32_Shdr *shdr32 = s->elf_section_hdrs; 393 394 shdr32->sh_info = cpu_to_dump32(s, s->phdr_num); 395 } 396 } 397 398 static void prepare_elf_section_hdr_string(DumpState *s, void *buff) 399 { 400 uint64_t index = s->string_table_buf->len; 401 const char strtab[] = ".shstrtab"; 402 Elf32_Shdr shdr32 = {}; 403 Elf64_Shdr shdr64 = {}; 404 int shdr_size; 405 void *shdr; 406 407 g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab)); 408 if (dump_is_64bit(s)) { 409 shdr_size = sizeof(Elf64_Shdr); 410 shdr64.sh_type = SHT_STRTAB; 411 shdr64.sh_offset = s->section_offset + s->elf_section_data_size; 412 shdr64.sh_name = index; 413 shdr64.sh_size = s->string_table_buf->len; 414 shdr = &shdr64; 415 } else { 416 shdr_size = sizeof(Elf32_Shdr); 417 shdr32.sh_type = SHT_STRTAB; 418 shdr32.sh_offset = s->section_offset + s->elf_section_data_size; 419 shdr32.sh_name = index; 420 shdr32.sh_size = s->string_table_buf->len; 421 shdr = &shdr32; 422 } 423 memcpy(buff, shdr, shdr_size); 424 } 425 426 static bool prepare_elf_section_hdrs(DumpState *s, Error **errp) 427 { 428 size_t len, sizeof_shdr; 429 void *buff_hdr; 430 431 /* 432 * Section ordering: 433 * - HDR zero 434 * - Arch section hdrs 435 * - String table hdr 436 */ 437 sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr); 438 len = sizeof_shdr * s->shdr_num; 439 s->elf_section_hdrs = g_malloc0(len); 440 buff_hdr = s->elf_section_hdrs; 441 442 /* 443 * The first section header is ALWAYS a special initial section 444 * header. 445 * 446 * The header should be 0 with one exception being that if 447 * phdr_num is PN_XNUM then the sh_info field contains the real 448 * number of segment entries. 449 * 450 * As we zero allocate the buffer we will only need to modify 451 * sh_info for the PN_XNUM case. 452 */ 453 if (s->phdr_num >= PN_XNUM) { 454 prepare_elf_section_hdr_zero(s); 455 } 456 buff_hdr += sizeof_shdr; 457 458 /* Add architecture defined section headers */ 459 if (s->dump_info.arch_sections_write_hdr_fn 460 && s->shdr_num > 2) { 461 buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr); 462 463 if (s->shdr_num >= SHN_LORESERVE) { 464 error_setg_errno(errp, EINVAL, 465 "dump: too many architecture defined sections"); 466 return false; 467 } 468 } 469 470 /* 471 * String table is the last section since strings are added via 472 * arch_sections_write_hdr(). 473 */ 474 prepare_elf_section_hdr_string(s, buff_hdr); 475 return true; 476 } 477 478 static void write_elf_section_headers(DumpState *s, Error **errp) 479 { 480 size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr); 481 int ret; 482 483 if (!prepare_elf_section_hdrs(s, errp)) { 484 return; 485 } 486 487 ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s); 488 if (ret < 0) { 489 error_setg_errno(errp, -ret, "dump: failed to write section headers"); 490 } 491 492 g_free(s->elf_section_hdrs); 493 } 494 495 static void write_elf_sections(DumpState *s, Error **errp) 496 { 497 int ret; 498 499 if (s->elf_section_data_size) { 500 /* Write architecture section data */ 501 ret = fd_write_vmcore(s->elf_section_data, 502 s->elf_section_data_size, s); 503 if (ret < 0) { 504 error_setg_errno(errp, -ret, 505 "dump: failed to write architecture section data"); 506 return; 507 } 508 } 509 510 /* Write string table */ 511 ret = fd_write_vmcore(s->string_table_buf->data, 512 s->string_table_buf->len, s); 513 if (ret < 0) { 514 error_setg_errno(errp, -ret, "dump: failed to write string table data"); 515 } 516 } 517 518 static void write_data(DumpState *s, void *buf, int length, Error **errp) 519 { 520 int ret; 521 522 ret = fd_write_vmcore(buf, length, s); 523 if (ret < 0) { 524 error_setg_errno(errp, -ret, "dump: failed to save memory"); 525 } else { 526 s->written_size += length; 527 } 528 } 529 530 /* write the memory to vmcore. 1 page per I/O. */ 531 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, 532 int64_t size, Error **errp) 533 { 534 ERRP_GUARD(); 535 int64_t i; 536 537 for (i = 0; i < size / s->dump_info.page_size; i++) { 538 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 539 s->dump_info.page_size, errp); 540 if (*errp) { 541 return; 542 } 543 } 544 545 if ((size % s->dump_info.page_size) != 0) { 546 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 547 size % s->dump_info.page_size, errp); 548 if (*errp) { 549 return; 550 } 551 } 552 } 553 554 /* get the memory's offset and size in the vmcore */ 555 static void get_offset_range(hwaddr phys_addr, 556 ram_addr_t mapping_length, 557 DumpState *s, 558 hwaddr *p_offset, 559 hwaddr *p_filesz) 560 { 561 GuestPhysBlock *block; 562 hwaddr offset = s->memory_offset; 563 int64_t size_in_block, start; 564 565 /* When the memory is not stored into vmcore, offset will be -1 */ 566 *p_offset = -1; 567 *p_filesz = 0; 568 569 if (dump_has_filter(s)) { 570 if (phys_addr < s->filter_area_begin || 571 phys_addr >= s->filter_area_begin + s->filter_area_length) { 572 return; 573 } 574 } 575 576 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 577 if (dump_has_filter(s)) { 578 if (!ranges_overlap(block->target_start, 579 block->target_end - block->target_start, 580 s->filter_area_begin, 581 s->filter_area_length)) { 582 /* This block is out of the range */ 583 continue; 584 } 585 586 if (s->filter_area_begin <= block->target_start) { 587 start = block->target_start; 588 } else { 589 start = s->filter_area_begin; 590 } 591 592 size_in_block = block->target_end - start; 593 if (s->filter_area_begin + s->filter_area_length < block->target_end) { 594 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length); 595 } 596 } else { 597 start = block->target_start; 598 size_in_block = block->target_end - block->target_start; 599 } 600 601 if (phys_addr >= start && phys_addr < start + size_in_block) { 602 *p_offset = phys_addr - start + offset; 603 604 /* The offset range mapped from the vmcore file must not spill over 605 * the GuestPhysBlock, clamp it. The rest of the mapping will be 606 * zero-filled in memory at load time; see 607 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. 608 */ 609 *p_filesz = phys_addr + mapping_length <= start + size_in_block ? 610 mapping_length : 611 size_in_block - (phys_addr - start); 612 return; 613 } 614 615 offset += size_in_block; 616 } 617 } 618 619 static void write_elf_phdr_loads(DumpState *s, Error **errp) 620 { 621 ERRP_GUARD(); 622 hwaddr offset, filesz; 623 MemoryMapping *memory_mapping; 624 uint32_t phdr_index = 1; 625 626 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { 627 get_offset_range(memory_mapping->phys_addr, 628 memory_mapping->length, 629 s, &offset, &filesz); 630 if (dump_is_64bit(s)) { 631 write_elf64_load(s, memory_mapping, phdr_index++, offset, 632 filesz, errp); 633 } else { 634 write_elf32_load(s, memory_mapping, phdr_index++, offset, 635 filesz, errp); 636 } 637 638 if (*errp) { 639 return; 640 } 641 642 if (phdr_index >= s->phdr_num) { 643 break; 644 } 645 } 646 } 647 648 static void write_elf_notes(DumpState *s, Error **errp) 649 { 650 if (dump_is_64bit(s)) { 651 write_elf64_notes(fd_write_vmcore, s, errp); 652 } else { 653 write_elf32_notes(fd_write_vmcore, s, errp); 654 } 655 } 656 657 /* write elf header, PT_NOTE and elf note to vmcore. */ 658 static void dump_begin(DumpState *s, Error **errp) 659 { 660 ERRP_GUARD(); 661 662 /* 663 * the vmcore's format is: 664 * -------------- 665 * | elf header | 666 * -------------- 667 * | sctn_hdr | 668 * -------------- 669 * | PT_NOTE | 670 * -------------- 671 * | PT_LOAD | 672 * -------------- 673 * | ...... | 674 * -------------- 675 * | PT_LOAD | 676 * -------------- 677 * | elf note | 678 * -------------- 679 * | memory | 680 * -------------- 681 * 682 * we only know where the memory is saved after we write elf note into 683 * vmcore. 684 */ 685 686 /* write elf header to vmcore */ 687 write_elf_header(s, errp); 688 if (*errp) { 689 return; 690 } 691 692 /* write section headers to vmcore */ 693 write_elf_section_headers(s, errp); 694 if (*errp) { 695 return; 696 } 697 698 /* write PT_NOTE to vmcore */ 699 write_elf_phdr_note(s, errp); 700 if (*errp) { 701 return; 702 } 703 704 /* write all PT_LOADs to vmcore */ 705 write_elf_phdr_loads(s, errp); 706 if (*errp) { 707 return; 708 } 709 710 /* write notes to vmcore */ 711 write_elf_notes(s, errp); 712 } 713 714 int64_t dump_filtered_memblock_size(GuestPhysBlock *block, 715 int64_t filter_area_start, 716 int64_t filter_area_length) 717 { 718 int64_t size, left, right; 719 720 /* No filter, return full size */ 721 if (!filter_area_length) { 722 return block->target_end - block->target_start; 723 } 724 725 /* calculate the overlapped region. */ 726 left = MAX(filter_area_start, block->target_start); 727 right = MIN(filter_area_start + filter_area_length, block->target_end); 728 size = right - left; 729 size = size > 0 ? size : 0; 730 731 return size; 732 } 733 734 int64_t dump_filtered_memblock_start(GuestPhysBlock *block, 735 int64_t filter_area_start, 736 int64_t filter_area_length) 737 { 738 if (filter_area_length) { 739 /* return -1 if the block is not within filter area */ 740 if (!ranges_overlap(block->target_start, 741 block->target_end - block->target_start, 742 filter_area_start, filter_area_length)) { 743 return -1; 744 } 745 746 if (filter_area_start > block->target_start) { 747 return filter_area_start - block->target_start; 748 } 749 } 750 751 return 0; 752 } 753 754 /* write all memory to vmcore */ 755 static void dump_iterate(DumpState *s, Error **errp) 756 { 757 ERRP_GUARD(); 758 GuestPhysBlock *block; 759 int64_t memblock_size, memblock_start; 760 761 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 762 memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length); 763 if (memblock_start == -1) { 764 continue; 765 } 766 767 memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length); 768 769 /* Write the memory to file */ 770 write_memory(s, block, memblock_start, memblock_size, errp); 771 if (*errp) { 772 return; 773 } 774 } 775 } 776 777 static void dump_end(DumpState *s, Error **errp) 778 { 779 int rc; 780 781 if (s->elf_section_data_size) { 782 s->elf_section_data = g_malloc0(s->elf_section_data_size); 783 } 784 785 /* Adds the architecture defined section data to s->elf_section_data */ 786 if (s->dump_info.arch_sections_write_fn && 787 s->elf_section_data_size) { 788 rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data); 789 if (rc) { 790 error_setg_errno(errp, rc, 791 "dump: failed to get arch section data"); 792 g_free(s->elf_section_data); 793 return; 794 } 795 } 796 797 /* write sections to vmcore */ 798 write_elf_sections(s, errp); 799 } 800 801 static void create_vmcore(DumpState *s, Error **errp) 802 { 803 ERRP_GUARD(); 804 805 dump_begin(s, errp); 806 if (*errp) { 807 return; 808 } 809 810 /* Iterate over memory and dump it to file */ 811 dump_iterate(s, errp); 812 if (*errp) { 813 return; 814 } 815 816 /* Write the section data */ 817 dump_end(s, errp); 818 } 819 820 static int write_start_flat_header(DumpState *s) 821 { 822 MakedumpfileHeader *mh; 823 int ret = 0; 824 825 if (s->kdump_raw) { 826 return 0; 827 } 828 829 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); 830 mh = g_malloc0(MAX_SIZE_MDF_HEADER); 831 832 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, 833 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); 834 835 mh->type = cpu_to_be64(TYPE_FLAT_HEADER); 836 mh->version = cpu_to_be64(VERSION_FLAT_HEADER); 837 838 size_t written_size; 839 written_size = qemu_write_full(s->fd, mh, MAX_SIZE_MDF_HEADER); 840 if (written_size != MAX_SIZE_MDF_HEADER) { 841 ret = -1; 842 } 843 844 g_free(mh); 845 return ret; 846 } 847 848 static int write_end_flat_header(DumpState *s) 849 { 850 MakedumpfileDataHeader mdh; 851 852 if (s->kdump_raw) { 853 return 0; 854 } 855 856 mdh.offset = END_FLAG_FLAT_HEADER; 857 mdh.buf_size = END_FLAG_FLAT_HEADER; 858 859 size_t written_size; 860 written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh)); 861 if (written_size != sizeof(mdh)) { 862 return -1; 863 } 864 865 return 0; 866 } 867 868 static int write_buffer(DumpState *s, off_t offset, const void *buf, size_t size) 869 { 870 size_t written_size; 871 MakedumpfileDataHeader mdh; 872 off_t seek_loc; 873 874 if (s->kdump_raw) { 875 seek_loc = lseek(s->fd, offset, SEEK_SET); 876 if (seek_loc == (off_t) -1) { 877 return -1; 878 } 879 } else { 880 mdh.offset = cpu_to_be64(offset); 881 mdh.buf_size = cpu_to_be64(size); 882 883 written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh)); 884 if (written_size != sizeof(mdh)) { 885 return -1; 886 } 887 } 888 889 written_size = qemu_write_full(s->fd, buf, size); 890 if (written_size != size) { 891 return -1; 892 } 893 894 return 0; 895 } 896 897 static int buf_write_note(const void *buf, size_t size, void *opaque) 898 { 899 DumpState *s = opaque; 900 901 /* note_buf is not enough */ 902 if (s->note_buf_offset + size > s->note_size) { 903 return -1; 904 } 905 906 memcpy(s->note_buf + s->note_buf_offset, buf, size); 907 908 s->note_buf_offset += size; 909 910 return 0; 911 } 912 913 /* 914 * This function retrieves various sizes from an elf header. 915 * 916 * @note has to be a valid ELF note. The return sizes are unmodified 917 * (not padded or rounded up to be multiple of 4). 918 */ 919 static void get_note_sizes(DumpState *s, const void *note, 920 uint64_t *note_head_size, 921 uint64_t *name_size, 922 uint64_t *desc_size) 923 { 924 uint64_t note_head_sz; 925 uint64_t name_sz; 926 uint64_t desc_sz; 927 928 if (dump_is_64bit(s)) { 929 const Elf64_Nhdr *hdr = note; 930 note_head_sz = sizeof(Elf64_Nhdr); 931 name_sz = cpu_to_dump64(s, hdr->n_namesz); 932 desc_sz = cpu_to_dump64(s, hdr->n_descsz); 933 } else { 934 const Elf32_Nhdr *hdr = note; 935 note_head_sz = sizeof(Elf32_Nhdr); 936 name_sz = cpu_to_dump32(s, hdr->n_namesz); 937 desc_sz = cpu_to_dump32(s, hdr->n_descsz); 938 } 939 940 if (note_head_size) { 941 *note_head_size = note_head_sz; 942 } 943 if (name_size) { 944 *name_size = name_sz; 945 } 946 if (desc_size) { 947 *desc_size = desc_sz; 948 } 949 } 950 951 static bool note_name_equal(DumpState *s, 952 const uint8_t *note, const char *name) 953 { 954 int len = strlen(name) + 1; 955 uint64_t head_size, name_size; 956 957 get_note_sizes(s, note, &head_size, &name_size, NULL); 958 head_size = ROUND_UP(head_size, 4); 959 960 return name_size == len && memcmp(note + head_size, name, len) == 0; 961 } 962 963 /* write common header, sub header and elf note to vmcore */ 964 static void create_header32(DumpState *s, Error **errp) 965 { 966 ERRP_GUARD(); 967 DiskDumpHeader32 *dh = NULL; 968 KdumpSubHeader32 *kh = NULL; 969 size_t size; 970 uint32_t block_size; 971 uint32_t sub_hdr_size; 972 uint32_t bitmap_blocks; 973 uint32_t status = 0; 974 uint64_t offset_note; 975 976 /* write common header, the version of kdump-compressed format is 6th */ 977 size = sizeof(DiskDumpHeader32); 978 dh = g_malloc0(size); 979 980 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 981 dh->header_version = cpu_to_dump32(s, 6); 982 block_size = s->dump_info.page_size; 983 dh->block_size = cpu_to_dump32(s, block_size); 984 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; 985 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 986 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 987 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 988 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 989 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 990 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 991 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 992 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 993 994 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 995 status |= DUMP_DH_COMPRESSED_ZLIB; 996 } 997 #ifdef CONFIG_LZO 998 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 999 status |= DUMP_DH_COMPRESSED_LZO; 1000 } 1001 #endif 1002 #ifdef CONFIG_SNAPPY 1003 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 1004 status |= DUMP_DH_COMPRESSED_SNAPPY; 1005 } 1006 #endif 1007 dh->status = cpu_to_dump32(s, status); 1008 1009 if (write_buffer(s, 0, dh, size) < 0) { 1010 error_setg(errp, "dump: failed to write disk dump header"); 1011 goto out; 1012 } 1013 1014 /* write sub header */ 1015 size = sizeof(KdumpSubHeader32); 1016 kh = g_malloc0(size); 1017 1018 /* 64bit max_mapnr_64 */ 1019 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 1020 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base); 1021 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 1022 1023 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 1024 if (s->guest_note && 1025 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1026 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 1027 1028 get_note_sizes(s, s->guest_note, 1029 &hsize, &name_size, &size_vmcoreinfo_desc); 1030 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 1031 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 1032 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 1033 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc); 1034 } 1035 1036 kh->offset_note = cpu_to_dump64(s, offset_note); 1037 kh->note_size = cpu_to_dump32(s, s->note_size); 1038 1039 if (write_buffer(s, DISKDUMP_HEADER_BLOCKS * 1040 block_size, kh, size) < 0) { 1041 error_setg(errp, "dump: failed to write kdump sub header"); 1042 goto out; 1043 } 1044 1045 /* write note */ 1046 s->note_buf = g_malloc0(s->note_size); 1047 s->note_buf_offset = 0; 1048 1049 /* use s->note_buf to store notes temporarily */ 1050 write_elf32_notes(buf_write_note, s, errp); 1051 if (*errp) { 1052 goto out; 1053 } 1054 if (write_buffer(s, offset_note, s->note_buf, 1055 s->note_size) < 0) { 1056 error_setg(errp, "dump: failed to write notes"); 1057 goto out; 1058 } 1059 1060 /* get offset of dump_bitmap */ 1061 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 1062 block_size; 1063 1064 /* get offset of page */ 1065 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 1066 block_size; 1067 1068 out: 1069 g_free(dh); 1070 g_free(kh); 1071 g_free(s->note_buf); 1072 } 1073 1074 /* write common header, sub header and elf note to vmcore */ 1075 static void create_header64(DumpState *s, Error **errp) 1076 { 1077 ERRP_GUARD(); 1078 DiskDumpHeader64 *dh = NULL; 1079 KdumpSubHeader64 *kh = NULL; 1080 size_t size; 1081 uint32_t block_size; 1082 uint32_t sub_hdr_size; 1083 uint32_t bitmap_blocks; 1084 uint32_t status = 0; 1085 uint64_t offset_note; 1086 1087 /* write common header, the version of kdump-compressed format is 6th */ 1088 size = sizeof(DiskDumpHeader64); 1089 dh = g_malloc0(size); 1090 1091 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 1092 dh->header_version = cpu_to_dump32(s, 6); 1093 block_size = s->dump_info.page_size; 1094 dh->block_size = cpu_to_dump32(s, block_size); 1095 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; 1096 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 1097 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 1098 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 1099 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 1100 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 1101 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 1102 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 1103 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 1104 1105 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 1106 status |= DUMP_DH_COMPRESSED_ZLIB; 1107 } 1108 #ifdef CONFIG_LZO 1109 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 1110 status |= DUMP_DH_COMPRESSED_LZO; 1111 } 1112 #endif 1113 #ifdef CONFIG_SNAPPY 1114 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 1115 status |= DUMP_DH_COMPRESSED_SNAPPY; 1116 } 1117 #endif 1118 dh->status = cpu_to_dump32(s, status); 1119 1120 if (write_buffer(s, 0, dh, size) < 0) { 1121 error_setg(errp, "dump: failed to write disk dump header"); 1122 goto out; 1123 } 1124 1125 /* write sub header */ 1126 size = sizeof(KdumpSubHeader64); 1127 kh = g_malloc0(size); 1128 1129 /* 64bit max_mapnr_64 */ 1130 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 1131 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base); 1132 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 1133 1134 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 1135 if (s->guest_note && 1136 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1137 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 1138 1139 get_note_sizes(s, s->guest_note, 1140 &hsize, &name_size, &size_vmcoreinfo_desc); 1141 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 1142 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 1143 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 1144 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc); 1145 } 1146 1147 kh->offset_note = cpu_to_dump64(s, offset_note); 1148 kh->note_size = cpu_to_dump64(s, s->note_size); 1149 1150 if (write_buffer(s, DISKDUMP_HEADER_BLOCKS * 1151 block_size, kh, size) < 0) { 1152 error_setg(errp, "dump: failed to write kdump sub header"); 1153 goto out; 1154 } 1155 1156 /* write note */ 1157 s->note_buf = g_malloc0(s->note_size); 1158 s->note_buf_offset = 0; 1159 1160 /* use s->note_buf to store notes temporarily */ 1161 write_elf64_notes(buf_write_note, s, errp); 1162 if (*errp) { 1163 goto out; 1164 } 1165 1166 if (write_buffer(s, offset_note, s->note_buf, 1167 s->note_size) < 0) { 1168 error_setg(errp, "dump: failed to write notes"); 1169 goto out; 1170 } 1171 1172 /* get offset of dump_bitmap */ 1173 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 1174 block_size; 1175 1176 /* get offset of page */ 1177 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 1178 block_size; 1179 1180 out: 1181 g_free(dh); 1182 g_free(kh); 1183 g_free(s->note_buf); 1184 } 1185 1186 static void write_dump_header(DumpState *s, Error **errp) 1187 { 1188 if (dump_is_64bit(s)) { 1189 create_header64(s, errp); 1190 } else { 1191 create_header32(s, errp); 1192 } 1193 } 1194 1195 static size_t dump_bitmap_get_bufsize(DumpState *s) 1196 { 1197 return s->dump_info.page_size; 1198 } 1199 1200 /* 1201 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be 1202 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. 1203 * set_dump_bitmap will always leave the recently set bit un-sync. And setting 1204 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into 1205 * vmcore, ie. synchronizing un-sync bit into vmcore. 1206 */ 1207 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, 1208 uint8_t *buf, DumpState *s) 1209 { 1210 off_t old_offset, new_offset; 1211 off_t offset_bitmap1, offset_bitmap2; 1212 uint32_t byte, bit; 1213 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1214 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1215 1216 /* should not set the previous place */ 1217 assert(last_pfn <= pfn); 1218 1219 /* 1220 * if the bit needed to be set is not cached in buf, flush the data in buf 1221 * to vmcore firstly. 1222 * making new_offset be bigger than old_offset can also sync remained data 1223 * into vmcore. 1224 */ 1225 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf); 1226 new_offset = bitmap_bufsize * (pfn / bits_per_buf); 1227 1228 while (old_offset < new_offset) { 1229 /* calculate the offset and write dump_bitmap */ 1230 offset_bitmap1 = s->offset_dump_bitmap + old_offset; 1231 if (write_buffer(s, offset_bitmap1, buf, 1232 bitmap_bufsize) < 0) { 1233 return -1; 1234 } 1235 1236 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ 1237 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + 1238 old_offset; 1239 if (write_buffer(s, offset_bitmap2, buf, 1240 bitmap_bufsize) < 0) { 1241 return -1; 1242 } 1243 1244 memset(buf, 0, bitmap_bufsize); 1245 old_offset += bitmap_bufsize; 1246 } 1247 1248 /* get the exact place of the bit in the buf, and set it */ 1249 byte = (pfn % bits_per_buf) / CHAR_BIT; 1250 bit = (pfn % bits_per_buf) % CHAR_BIT; 1251 if (value) { 1252 buf[byte] |= 1u << bit; 1253 } else { 1254 buf[byte] &= ~(1u << bit); 1255 } 1256 1257 return 0; 1258 } 1259 1260 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr) 1261 { 1262 int target_page_shift = ctz32(s->dump_info.page_size); 1263 1264 return (addr >> target_page_shift) - ARCH_PFN_OFFSET; 1265 } 1266 1267 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn) 1268 { 1269 int target_page_shift = ctz32(s->dump_info.page_size); 1270 1271 return (pfn + ARCH_PFN_OFFSET) << target_page_shift; 1272 } 1273 1274 /* 1275 * Return the page frame number and the page content in *bufptr. bufptr can be 1276 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated 1277 * memory. This is not necessarily the memory returned. 1278 */ 1279 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, 1280 uint8_t **bufptr, DumpState *s) 1281 { 1282 GuestPhysBlock *block = *blockptr; 1283 uint32_t page_size = s->dump_info.page_size; 1284 uint8_t *buf = NULL, *hbuf; 1285 hwaddr addr; 1286 1287 /* block == NULL means the start of the iteration */ 1288 if (!block) { 1289 block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1290 *blockptr = block; 1291 addr = block->target_start; 1292 *pfnptr = dump_paddr_to_pfn(s, addr); 1293 } else { 1294 *pfnptr += 1; 1295 addr = dump_pfn_to_paddr(s, *pfnptr); 1296 } 1297 assert(block != NULL); 1298 1299 while (1) { 1300 if (addr >= block->target_start && addr < block->target_end) { 1301 size_t n = MIN(block->target_end - addr, page_size - addr % page_size); 1302 hbuf = block->host_addr + (addr - block->target_start); 1303 if (!buf) { 1304 if (n == page_size) { 1305 /* this is a whole target page, go for it */ 1306 assert(addr % page_size == 0); 1307 buf = hbuf; 1308 break; 1309 } else if (bufptr) { 1310 assert(*bufptr); 1311 buf = *bufptr; 1312 memset(buf, 0, page_size); 1313 } else { 1314 return true; 1315 } 1316 } 1317 1318 memcpy(buf + addr % page_size, hbuf, n); 1319 addr += n; 1320 if (addr % page_size == 0 || addr >= block->target_end) { 1321 /* we filled up the page or the current block is finished */ 1322 break; 1323 } 1324 } else { 1325 /* the next page is in the next block */ 1326 *blockptr = block = QTAILQ_NEXT(block, next); 1327 if (!block) { 1328 break; 1329 } 1330 1331 addr = block->target_start; 1332 /* are we still in the same page? */ 1333 if (dump_paddr_to_pfn(s, addr) != *pfnptr) { 1334 if (buf) { 1335 /* no, but we already filled something earlier, return it */ 1336 break; 1337 } else { 1338 /* else continue from there */ 1339 *pfnptr = dump_paddr_to_pfn(s, addr); 1340 } 1341 } 1342 } 1343 } 1344 1345 if (bufptr) { 1346 *bufptr = buf; 1347 } 1348 1349 return buf != NULL; 1350 } 1351 1352 static void write_dump_bitmap(DumpState *s, Error **errp) 1353 { 1354 int ret = 0; 1355 uint64_t last_pfn, pfn; 1356 void *dump_bitmap_buf; 1357 size_t num_dumpable; 1358 GuestPhysBlock *block_iter = NULL; 1359 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1360 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1361 1362 /* dump_bitmap_buf is used to store dump_bitmap temporarily */ 1363 dump_bitmap_buf = g_malloc0(bitmap_bufsize); 1364 1365 num_dumpable = 0; 1366 last_pfn = 0; 1367 1368 /* 1369 * exam memory page by page, and set the bit in dump_bitmap corresponded 1370 * to the existing page. 1371 */ 1372 while (get_next_page(&block_iter, &pfn, NULL, s)) { 1373 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); 1374 if (ret < 0) { 1375 error_setg(errp, "dump: failed to set dump_bitmap"); 1376 goto out; 1377 } 1378 1379 last_pfn = pfn; 1380 num_dumpable++; 1381 } 1382 1383 /* 1384 * set_dump_bitmap will always leave the recently set bit un-sync. Here we 1385 * set the remaining bits from last_pfn to the end of the bitmap buffer to 1386 * 0. With those set, the un-sync bit will be synchronized into the vmcore. 1387 */ 1388 if (num_dumpable > 0) { 1389 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false, 1390 dump_bitmap_buf, s); 1391 if (ret < 0) { 1392 error_setg(errp, "dump: failed to sync dump_bitmap"); 1393 goto out; 1394 } 1395 } 1396 1397 /* number of dumpable pages that will be dumped later */ 1398 s->num_dumpable = num_dumpable; 1399 1400 out: 1401 g_free(dump_bitmap_buf); 1402 } 1403 1404 static void prepare_data_cache(DataCache *data_cache, DumpState *s, 1405 off_t offset) 1406 { 1407 data_cache->state = s; 1408 data_cache->data_size = 0; 1409 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s); 1410 data_cache->buf = g_malloc0(data_cache->buf_size); 1411 data_cache->offset = offset; 1412 } 1413 1414 static int write_cache(DataCache *dc, const void *buf, size_t size, 1415 bool flag_sync) 1416 { 1417 /* 1418 * dc->buf_size should not be less than size, otherwise dc will never be 1419 * enough 1420 */ 1421 assert(size <= dc->buf_size); 1422 1423 /* 1424 * if flag_sync is set, synchronize data in dc->buf into vmcore. 1425 * otherwise check if the space is enough for caching data in buf, if not, 1426 * write the data in dc->buf to dc->state->fd and reset dc->buf 1427 */ 1428 if ((!flag_sync && dc->data_size + size > dc->buf_size) || 1429 (flag_sync && dc->data_size > 0)) { 1430 if (write_buffer(dc->state, dc->offset, dc->buf, dc->data_size) < 0) { 1431 return -1; 1432 } 1433 1434 dc->offset += dc->data_size; 1435 dc->data_size = 0; 1436 } 1437 1438 if (!flag_sync) { 1439 memcpy(dc->buf + dc->data_size, buf, size); 1440 dc->data_size += size; 1441 } 1442 1443 return 0; 1444 } 1445 1446 static void free_data_cache(DataCache *data_cache) 1447 { 1448 g_free(data_cache->buf); 1449 } 1450 1451 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) 1452 { 1453 switch (flag_compress) { 1454 case DUMP_DH_COMPRESSED_ZLIB: 1455 return compressBound(page_size); 1456 1457 case DUMP_DH_COMPRESSED_LZO: 1458 /* 1459 * LZO will expand incompressible data by a little amount. Please check 1460 * the following URL to see the expansion calculation: 1461 * http://www.oberhumer.com/opensource/lzo/lzofaq.php 1462 */ 1463 return page_size + page_size / 16 + 64 + 3; 1464 1465 #ifdef CONFIG_SNAPPY 1466 case DUMP_DH_COMPRESSED_SNAPPY: 1467 return snappy_max_compressed_length(page_size); 1468 #endif 1469 } 1470 return 0; 1471 } 1472 1473 static void write_dump_pages(DumpState *s, Error **errp) 1474 { 1475 int ret = 0; 1476 DataCache page_desc, page_data; 1477 size_t len_buf_out, size_out; 1478 #ifdef CONFIG_LZO 1479 lzo_bytep wrkmem = NULL; 1480 #endif 1481 uint8_t *buf_out = NULL; 1482 off_t offset_desc, offset_data; 1483 PageDescriptor pd, pd_zero; 1484 uint8_t *buf; 1485 GuestPhysBlock *block_iter = NULL; 1486 uint64_t pfn_iter; 1487 g_autofree uint8_t *page = NULL; 1488 1489 /* get offset of page_desc and page_data in dump file */ 1490 offset_desc = s->offset_page; 1491 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; 1492 1493 prepare_data_cache(&page_desc, s, offset_desc); 1494 prepare_data_cache(&page_data, s, offset_data); 1495 1496 /* prepare buffer to store compressed data */ 1497 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress); 1498 assert(len_buf_out != 0); 1499 1500 #ifdef CONFIG_LZO 1501 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); 1502 #endif 1503 1504 buf_out = g_malloc(len_buf_out); 1505 1506 /* 1507 * init zero page's page_desc and page_data, because every zero page 1508 * uses the same page_data 1509 */ 1510 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size); 1511 pd_zero.flags = cpu_to_dump32(s, 0); 1512 pd_zero.offset = cpu_to_dump64(s, offset_data); 1513 pd_zero.page_flags = cpu_to_dump64(s, 0); 1514 buf = g_malloc0(s->dump_info.page_size); 1515 ret = write_cache(&page_data, buf, s->dump_info.page_size, false); 1516 g_free(buf); 1517 if (ret < 0) { 1518 error_setg(errp, "dump: failed to write page data (zero page)"); 1519 goto out; 1520 } 1521 1522 offset_data += s->dump_info.page_size; 1523 page = g_malloc(s->dump_info.page_size); 1524 1525 /* 1526 * dump memory to vmcore page by page. zero page will all be resided in the 1527 * first page of page section 1528 */ 1529 for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) { 1530 /* check zero page */ 1531 if (buffer_is_zero(buf, s->dump_info.page_size)) { 1532 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), 1533 false); 1534 if (ret < 0) { 1535 error_setg(errp, "dump: failed to write page desc"); 1536 goto out; 1537 } 1538 } else { 1539 /* 1540 * not zero page, then: 1541 * 1. compress the page 1542 * 2. write the compressed page into the cache of page_data 1543 * 3. get page desc of the compressed page and write it into the 1544 * cache of page_desc 1545 * 1546 * only one compression format will be used here, for 1547 * s->flag_compress is set. But when compression fails to work, 1548 * we fall back to save in plaintext. 1549 */ 1550 size_out = len_buf_out; 1551 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && 1552 (compress2(buf_out, (uLongf *)&size_out, buf, 1553 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) && 1554 (size_out < s->dump_info.page_size)) { 1555 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB); 1556 pd.size = cpu_to_dump32(s, size_out); 1557 1558 ret = write_cache(&page_data, buf_out, size_out, false); 1559 if (ret < 0) { 1560 error_setg(errp, "dump: failed to write page data"); 1561 goto out; 1562 } 1563 #ifdef CONFIG_LZO 1564 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && 1565 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out, 1566 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && 1567 (size_out < s->dump_info.page_size)) { 1568 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO); 1569 pd.size = cpu_to_dump32(s, size_out); 1570 1571 ret = write_cache(&page_data, buf_out, size_out, false); 1572 if (ret < 0) { 1573 error_setg(errp, "dump: failed to write page data"); 1574 goto out; 1575 } 1576 #endif 1577 #ifdef CONFIG_SNAPPY 1578 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && 1579 (snappy_compress((char *)buf, s->dump_info.page_size, 1580 (char *)buf_out, &size_out) == SNAPPY_OK) && 1581 (size_out < s->dump_info.page_size)) { 1582 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY); 1583 pd.size = cpu_to_dump32(s, size_out); 1584 1585 ret = write_cache(&page_data, buf_out, size_out, false); 1586 if (ret < 0) { 1587 error_setg(errp, "dump: failed to write page data"); 1588 goto out; 1589 } 1590 #endif 1591 } else { 1592 /* 1593 * fall back to save in plaintext, size_out should be 1594 * assigned the target's page size 1595 */ 1596 pd.flags = cpu_to_dump32(s, 0); 1597 size_out = s->dump_info.page_size; 1598 pd.size = cpu_to_dump32(s, size_out); 1599 1600 ret = write_cache(&page_data, buf, 1601 s->dump_info.page_size, false); 1602 if (ret < 0) { 1603 error_setg(errp, "dump: failed to write page data"); 1604 goto out; 1605 } 1606 } 1607 1608 /* get and write page desc here */ 1609 pd.page_flags = cpu_to_dump64(s, 0); 1610 pd.offset = cpu_to_dump64(s, offset_data); 1611 offset_data += size_out; 1612 1613 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); 1614 if (ret < 0) { 1615 error_setg(errp, "dump: failed to write page desc"); 1616 goto out; 1617 } 1618 } 1619 s->written_size += s->dump_info.page_size; 1620 } 1621 1622 ret = write_cache(&page_desc, NULL, 0, true); 1623 if (ret < 0) { 1624 error_setg(errp, "dump: failed to sync cache for page_desc"); 1625 goto out; 1626 } 1627 ret = write_cache(&page_data, NULL, 0, true); 1628 if (ret < 0) { 1629 error_setg(errp, "dump: failed to sync cache for page_data"); 1630 goto out; 1631 } 1632 1633 out: 1634 free_data_cache(&page_desc); 1635 free_data_cache(&page_data); 1636 1637 #ifdef CONFIG_LZO 1638 g_free(wrkmem); 1639 #endif 1640 1641 g_free(buf_out); 1642 } 1643 1644 static void create_kdump_vmcore(DumpState *s, Error **errp) 1645 { 1646 ERRP_GUARD(); 1647 int ret; 1648 1649 /* 1650 * the kdump-compressed format is: 1651 * File offset 1652 * +------------------------------------------+ 0x0 1653 * | main header (struct disk_dump_header) | 1654 * |------------------------------------------+ block 1 1655 * | sub header (struct kdump_sub_header) | 1656 * |------------------------------------------+ block 2 1657 * | 1st-dump_bitmap | 1658 * |------------------------------------------+ block 2 + X blocks 1659 * | 2nd-dump_bitmap | (aligned by block) 1660 * |------------------------------------------+ block 2 + 2 * X blocks 1661 * | page desc for pfn 0 (struct page_desc) | (aligned by block) 1662 * | page desc for pfn 1 (struct page_desc) | 1663 * | : | 1664 * |------------------------------------------| (not aligned by block) 1665 * | page data (pfn 0) | 1666 * | page data (pfn 1) | 1667 * | : | 1668 * +------------------------------------------+ 1669 */ 1670 1671 ret = write_start_flat_header(s); 1672 if (ret < 0) { 1673 error_setg(errp, "dump: failed to write start flat header"); 1674 return; 1675 } 1676 1677 write_dump_header(s, errp); 1678 if (*errp) { 1679 return; 1680 } 1681 1682 write_dump_bitmap(s, errp); 1683 if (*errp) { 1684 return; 1685 } 1686 1687 write_dump_pages(s, errp); 1688 if (*errp) { 1689 return; 1690 } 1691 1692 ret = write_end_flat_header(s); 1693 if (ret < 0) { 1694 error_setg(errp, "dump: failed to write end flat header"); 1695 return; 1696 } 1697 } 1698 1699 static void get_max_mapnr(DumpState *s) 1700 { 1701 GuestPhysBlock *last_block; 1702 1703 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head); 1704 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end); 1705 } 1706 1707 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE }; 1708 1709 static void dump_state_prepare(DumpState *s) 1710 { 1711 /* zero the struct, setting status to active */ 1712 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE }; 1713 } 1714 1715 bool qemu_system_dump_in_progress(void) 1716 { 1717 DumpState *state = &dump_state_global; 1718 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE); 1719 } 1720 1721 /* 1722 * calculate total size of memory to be dumped (taking filter into 1723 * account.) 1724 */ 1725 static int64_t dump_calculate_size(DumpState *s) 1726 { 1727 GuestPhysBlock *block; 1728 int64_t total = 0; 1729 1730 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1731 total += dump_filtered_memblock_size(block, 1732 s->filter_area_begin, 1733 s->filter_area_length); 1734 } 1735 1736 return total; 1737 } 1738 1739 static void vmcoreinfo_update_phys_base(DumpState *s) 1740 { 1741 uint64_t size, note_head_size, name_size, phys_base; 1742 char **lines; 1743 uint8_t *vmci; 1744 size_t i; 1745 1746 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1747 return; 1748 } 1749 1750 get_note_sizes(s, s->guest_note, ¬e_head_size, &name_size, &size); 1751 note_head_size = ROUND_UP(note_head_size, 4); 1752 1753 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4); 1754 *(vmci + size) = '\0'; 1755 1756 lines = g_strsplit((char *)vmci, "\n", -1); 1757 for (i = 0; lines[i]; i++) { 1758 const char *prefix = NULL; 1759 1760 if (s->dump_info.d_machine == EM_X86_64) { 1761 prefix = "NUMBER(phys_base)="; 1762 } else if (s->dump_info.d_machine == EM_AARCH64) { 1763 prefix = "NUMBER(PHYS_OFFSET)="; 1764 } 1765 1766 if (prefix && g_str_has_prefix(lines[i], prefix)) { 1767 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16, 1768 &phys_base) < 0) { 1769 warn_report("Failed to read %s", prefix); 1770 } else { 1771 s->dump_info.phys_base = phys_base; 1772 } 1773 break; 1774 } 1775 } 1776 1777 g_strfreev(lines); 1778 } 1779 1780 static void dump_init(DumpState *s, int fd, bool has_format, 1781 DumpGuestMemoryFormat format, bool paging, bool has_filter, 1782 int64_t begin, int64_t length, bool kdump_raw, 1783 Error **errp) 1784 { 1785 ERRP_GUARD(); 1786 VMCoreInfoState *vmci = vmcoreinfo_find(); 1787 CPUState *cpu; 1788 int nr_cpus; 1789 int ret; 1790 1791 s->has_format = has_format; 1792 s->format = format; 1793 s->written_size = 0; 1794 s->kdump_raw = kdump_raw; 1795 1796 /* kdump-compressed is conflict with paging and filter */ 1797 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1798 assert(!paging && !has_filter); 1799 } 1800 1801 if (runstate_is_running()) { 1802 vm_stop(RUN_STATE_SAVE_VM); 1803 s->resume = true; 1804 } else { 1805 s->resume = false; 1806 } 1807 1808 /* If we use KVM, we should synchronize the registers before we get dump 1809 * info or physmap info. 1810 */ 1811 cpu_synchronize_all_states(); 1812 nr_cpus = 0; 1813 CPU_FOREACH(cpu) { 1814 nr_cpus++; 1815 } 1816 1817 s->fd = fd; 1818 if (has_filter && !length) { 1819 error_setg(errp, "parameter 'length' expects a non-zero size"); 1820 goto cleanup; 1821 } 1822 s->filter_area_begin = begin; 1823 s->filter_area_length = length; 1824 1825 /* First index is 0, it's the special null name */ 1826 s->string_table_buf = g_array_new(FALSE, TRUE, 1); 1827 /* 1828 * Allocate the null name, due to the clearing option set to true 1829 * it will be 0. 1830 */ 1831 g_array_set_size(s->string_table_buf, 1); 1832 1833 memory_mapping_list_init(&s->list); 1834 1835 guest_phys_blocks_init(&s->guest_phys_blocks); 1836 guest_phys_blocks_append(&s->guest_phys_blocks); 1837 s->total_size = dump_calculate_size(s); 1838 #ifdef DEBUG_DUMP_GUEST_MEMORY 1839 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size); 1840 #endif 1841 1842 /* it does not make sense to dump non-existent memory */ 1843 if (!s->total_size) { 1844 error_setg(errp, "dump: no guest memory to dump"); 1845 goto cleanup; 1846 } 1847 1848 /* get dump info: endian, class and architecture. 1849 * If the target architecture is not supported, cpu_get_dump_info() will 1850 * return -1. 1851 */ 1852 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); 1853 if (ret < 0) { 1854 error_setg(errp, 1855 "dumping guest memory is not supported on this target"); 1856 goto cleanup; 1857 } 1858 1859 if (!s->dump_info.page_size) { 1860 s->dump_info.page_size = qemu_target_page_size(); 1861 } 1862 1863 s->note_size = cpu_get_note_size(s->dump_info.d_class, 1864 s->dump_info.d_machine, nr_cpus); 1865 assert(s->note_size >= 0); 1866 1867 /* 1868 * The goal of this block is to (a) update the previously guessed 1869 * phys_base, (b) copy the guest note out of the guest. 1870 * Failure to do so is not fatal for dumping. 1871 */ 1872 if (vmci) { 1873 uint64_t addr, note_head_size, name_size, desc_size; 1874 uint32_t size; 1875 uint16_t guest_format; 1876 1877 note_head_size = dump_is_64bit(s) ? 1878 sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr); 1879 1880 guest_format = le16_to_cpu(vmci->vmcoreinfo.guest_format); 1881 size = le32_to_cpu(vmci->vmcoreinfo.size); 1882 addr = le64_to_cpu(vmci->vmcoreinfo.paddr); 1883 if (!vmci->has_vmcoreinfo) { 1884 warn_report("guest note is not present"); 1885 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) { 1886 warn_report("guest note size is invalid: %" PRIu32, size); 1887 } else if (guest_format != FW_CFG_VMCOREINFO_FORMAT_ELF) { 1888 warn_report("guest note format is unsupported: %" PRIu16, guest_format); 1889 } else { 1890 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */ 1891 cpu_physical_memory_read(addr, s->guest_note, size); 1892 1893 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size); 1894 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size, 1895 desc_size); 1896 if (name_size > MAX_GUEST_NOTE_SIZE || 1897 desc_size > MAX_GUEST_NOTE_SIZE || 1898 s->guest_note_size > size) { 1899 warn_report("Invalid guest note header"); 1900 g_free(s->guest_note); 1901 s->guest_note = NULL; 1902 } else { 1903 vmcoreinfo_update_phys_base(s); 1904 s->note_size += s->guest_note_size; 1905 } 1906 } 1907 } 1908 1909 /* get memory mapping */ 1910 if (paging) { 1911 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp); 1912 if (*errp) { 1913 goto cleanup; 1914 } 1915 } else { 1916 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); 1917 } 1918 1919 s->nr_cpus = nr_cpus; 1920 1921 get_max_mapnr(s); 1922 1923 uint64_t tmp; 1924 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), 1925 s->dump_info.page_size); 1926 s->len_dump_bitmap = tmp * s->dump_info.page_size; 1927 1928 /* init for kdump-compressed format */ 1929 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1930 switch (format) { 1931 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: 1932 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; 1933 break; 1934 1935 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: 1936 #ifdef CONFIG_LZO 1937 if (lzo_init() != LZO_E_OK) { 1938 error_setg(errp, "failed to initialize the LZO library"); 1939 goto cleanup; 1940 } 1941 #endif 1942 s->flag_compress = DUMP_DH_COMPRESSED_LZO; 1943 break; 1944 1945 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: 1946 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; 1947 break; 1948 1949 default: 1950 s->flag_compress = 0; 1951 } 1952 1953 return; 1954 } 1955 1956 if (dump_has_filter(s)) { 1957 memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length); 1958 } 1959 1960 /* 1961 * The first section header is always a special one in which most 1962 * fields are 0. The section header string table is also always 1963 * set. 1964 */ 1965 s->shdr_num = 2; 1966 1967 /* 1968 * Adds the number of architecture sections to shdr_num and sets 1969 * elf_section_data_size so we know the offsets and sizes of all 1970 * parts. 1971 */ 1972 if (s->dump_info.arch_sections_add_fn) { 1973 s->dump_info.arch_sections_add_fn(s); 1974 } 1975 1976 /* 1977 * calculate shdr_num so we know the offsets and sizes of all 1978 * parts. 1979 * Calculate phdr_num 1980 * 1981 * The absolute maximum amount of phdrs is UINT32_MAX - 1 as 1982 * sh_info is 32 bit. There's special handling once we go over 1983 * UINT16_MAX - 1 but that is handled in the ehdr and section 1984 * code. 1985 */ 1986 s->phdr_num = 1; /* Reserve PT_NOTE */ 1987 if (s->list.num <= UINT32_MAX - 1) { 1988 s->phdr_num += s->list.num; 1989 } else { 1990 s->phdr_num = UINT32_MAX; 1991 } 1992 1993 /* 1994 * Now that the number of section and program headers is known we 1995 * can calculate the offsets of the headers and data. 1996 */ 1997 if (dump_is_64bit(s)) { 1998 s->shdr_offset = sizeof(Elf64_Ehdr); 1999 s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num; 2000 s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num; 2001 } else { 2002 s->shdr_offset = sizeof(Elf32_Ehdr); 2003 s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num; 2004 s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num; 2005 } 2006 s->memory_offset = s->note_offset + s->note_size; 2007 s->section_offset = s->memory_offset + s->total_size; 2008 2009 return; 2010 2011 cleanup: 2012 dump_cleanup(s); 2013 } 2014 2015 /* this operation might be time consuming. */ 2016 static void dump_process(DumpState *s, Error **errp) 2017 { 2018 ERRP_GUARD(); 2019 DumpQueryResult *result = NULL; 2020 2021 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 2022 create_win_dump(s, errp); 2023 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 2024 create_kdump_vmcore(s, errp); 2025 } else { 2026 create_vmcore(s, errp); 2027 } 2028 2029 /* make sure status is written after written_size updates */ 2030 smp_wmb(); 2031 qatomic_set(&s->status, 2032 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED)); 2033 2034 /* send DUMP_COMPLETED message (unconditionally) */ 2035 result = qmp_query_dump(NULL); 2036 /* should never fail */ 2037 assert(result); 2038 qapi_event_send_dump_completed(result, 2039 *errp ? error_get_pretty(*errp) : NULL); 2040 qapi_free_DumpQueryResult(result); 2041 2042 dump_cleanup(s); 2043 } 2044 2045 static void *dump_thread(void *data) 2046 { 2047 DumpState *s = (DumpState *)data; 2048 dump_process(s, NULL); 2049 return NULL; 2050 } 2051 2052 DumpQueryResult *qmp_query_dump(Error **errp) 2053 { 2054 DumpQueryResult *result = g_new(DumpQueryResult, 1); 2055 DumpState *state = &dump_state_global; 2056 result->status = qatomic_read(&state->status); 2057 /* make sure we are reading status and written_size in order */ 2058 smp_rmb(); 2059 result->completed = state->written_size; 2060 result->total = state->total_size; 2061 return result; 2062 } 2063 2064 void qmp_dump_guest_memory(bool paging, const char *protocol, 2065 bool has_detach, bool detach, 2066 bool has_begin, int64_t begin, 2067 bool has_length, int64_t length, 2068 bool has_format, DumpGuestMemoryFormat format, 2069 Error **errp) 2070 { 2071 ERRP_GUARD(); 2072 const char *p; 2073 int fd; 2074 DumpState *s; 2075 bool detach_p = false; 2076 bool kdump_raw = false; 2077 2078 if (runstate_check(RUN_STATE_INMIGRATE)) { 2079 error_setg(errp, "Dump not allowed during incoming migration."); 2080 return; 2081 } 2082 2083 /* if there is a dump in background, we should wait until the dump 2084 * finished */ 2085 if (qemu_system_dump_in_progress()) { 2086 error_setg(errp, "There is a dump in process, please wait."); 2087 return; 2088 } 2089 2090 /* 2091 * externally, we represent kdump-raw-* as separate formats, but internally 2092 * they are handled the same, except for the "raw" flag 2093 */ 2094 if (has_format) { 2095 switch (format) { 2096 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB: 2097 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB; 2098 kdump_raw = true; 2099 break; 2100 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO: 2101 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO; 2102 kdump_raw = true; 2103 break; 2104 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY: 2105 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY; 2106 kdump_raw = true; 2107 break; 2108 default: 2109 break; 2110 } 2111 } 2112 2113 /* 2114 * kdump-compressed format need the whole memory dumped, so paging or 2115 * filter is not supported here. 2116 */ 2117 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && 2118 (paging || has_begin || has_length)) { 2119 error_setg(errp, "kdump-compressed format doesn't support paging or " 2120 "filter"); 2121 return; 2122 } 2123 if (has_begin && !has_length) { 2124 error_setg(errp, QERR_MISSING_PARAMETER, "length"); 2125 return; 2126 } 2127 if (!has_begin && has_length) { 2128 error_setg(errp, QERR_MISSING_PARAMETER, "begin"); 2129 return; 2130 } 2131 if (has_detach) { 2132 detach_p = detach; 2133 } 2134 2135 /* check whether lzo/snappy is supported */ 2136 #ifndef CONFIG_LZO 2137 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { 2138 error_setg(errp, "kdump-lzo is not available now"); 2139 return; 2140 } 2141 #endif 2142 2143 #ifndef CONFIG_SNAPPY 2144 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { 2145 error_setg(errp, "kdump-snappy is not available now"); 2146 return; 2147 } 2148 #endif 2149 2150 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP 2151 && !win_dump_available(errp)) { 2152 return; 2153 } 2154 2155 if (strstart(protocol, "fd:", &p)) { 2156 fd = monitor_get_fd(monitor_cur(), p, errp); 2157 if (fd == -1) { 2158 return; 2159 } 2160 } else if (strstart(protocol, "file:", &p)) { 2161 fd = qemu_create(p, O_WRONLY | O_TRUNC | O_BINARY, S_IRUSR, errp); 2162 if (fd < 0) { 2163 return; 2164 } 2165 } else { 2166 error_setg(errp, 2167 "parameter 'protocol' must start with 'file:' or 'fd:'"); 2168 return; 2169 } 2170 if (kdump_raw && lseek(fd, 0, SEEK_CUR) == (off_t) -1) { 2171 close(fd); 2172 error_setg(errp, "kdump-raw formats require a seekable file"); 2173 return; 2174 } 2175 2176 if (!dump_migration_blocker) { 2177 error_setg(&dump_migration_blocker, 2178 "Live migration disabled: dump-guest-memory in progress"); 2179 } 2180 2181 /* 2182 * Allows even for -only-migratable, but forbid migration during the 2183 * process of dump guest memory. 2184 */ 2185 if (migrate_add_blocker_internal(&dump_migration_blocker, errp)) { 2186 /* Remember to release the fd before passing it over to dump state */ 2187 close(fd); 2188 return; 2189 } 2190 2191 s = &dump_state_global; 2192 dump_state_prepare(s); 2193 2194 dump_init(s, fd, has_format, format, paging, has_begin, 2195 begin, length, kdump_raw, errp); 2196 if (*errp) { 2197 qatomic_set(&s->status, DUMP_STATUS_FAILED); 2198 return; 2199 } 2200 2201 if (detach_p) { 2202 /* detached dump */ 2203 s->detached = true; 2204 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread, 2205 s, QEMU_THREAD_DETACHED); 2206 } else { 2207 /* sync dump */ 2208 dump_process(s, errp); 2209 } 2210 } 2211 2212 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) 2213 { 2214 DumpGuestMemoryCapability *cap = 2215 g_new0(DumpGuestMemoryCapability, 1); 2216 DumpGuestMemoryFormatList **tail = &cap->formats; 2217 2218 /* elf is always available */ 2219 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF); 2220 2221 /* kdump-zlib is always available */ 2222 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB); 2223 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB); 2224 2225 /* add new item if kdump-lzo is available */ 2226 #ifdef CONFIG_LZO 2227 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO); 2228 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO); 2229 #endif 2230 2231 /* add new item if kdump-snappy is available */ 2232 #ifdef CONFIG_SNAPPY 2233 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY); 2234 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY); 2235 #endif 2236 2237 if (win_dump_available(NULL)) { 2238 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP); 2239 } 2240 2241 return cap; 2242 } 2243