1 /* 2 * QEMU dump 3 * 4 * Copyright Fujitsu, Corp. 2011, 2012 5 * 6 * Authors: 7 * Wen Congyang <wency@cn.fujitsu.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #include "qemu/osdep.h" 15 #include "qemu/cutils.h" 16 #include "elf.h" 17 #include "exec/hwaddr.h" 18 #include "monitor/monitor.h" 19 #include "sysemu/kvm.h" 20 #include "sysemu/dump.h" 21 #include "sysemu/memory_mapping.h" 22 #include "sysemu/runstate.h" 23 #include "sysemu/cpus.h" 24 #include "qapi/error.h" 25 #include "qapi/qapi-commands-dump.h" 26 #include "qapi/qapi-events-dump.h" 27 #include "qapi/qmp/qerror.h" 28 #include "qemu/error-report.h" 29 #include "qemu/main-loop.h" 30 #include "hw/misc/vmcoreinfo.h" 31 #include "migration/blocker.h" 32 33 #ifdef TARGET_X86_64 34 #include "win_dump.h" 35 #endif 36 37 #include <zlib.h> 38 #ifdef CONFIG_LZO 39 #include <lzo/lzo1x.h> 40 #endif 41 #ifdef CONFIG_SNAPPY 42 #include <snappy-c.h> 43 #endif 44 #ifndef ELF_MACHINE_UNAME 45 #define ELF_MACHINE_UNAME "Unknown" 46 #endif 47 48 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */ 49 50 static Error *dump_migration_blocker; 51 52 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \ 53 ((DIV_ROUND_UP((hdr_size), 4) + \ 54 DIV_ROUND_UP((name_size), 4) + \ 55 DIV_ROUND_UP((desc_size), 4)) * 4) 56 57 static inline bool dump_is_64bit(DumpState *s) 58 { 59 return s->dump_info.d_class == ELFCLASS64; 60 } 61 62 static inline bool dump_has_filter(DumpState *s) 63 { 64 return s->filter_area_length > 0; 65 } 66 67 uint16_t cpu_to_dump16(DumpState *s, uint16_t val) 68 { 69 if (s->dump_info.d_endian == ELFDATA2LSB) { 70 val = cpu_to_le16(val); 71 } else { 72 val = cpu_to_be16(val); 73 } 74 75 return val; 76 } 77 78 uint32_t cpu_to_dump32(DumpState *s, uint32_t val) 79 { 80 if (s->dump_info.d_endian == ELFDATA2LSB) { 81 val = cpu_to_le32(val); 82 } else { 83 val = cpu_to_be32(val); 84 } 85 86 return val; 87 } 88 89 uint64_t cpu_to_dump64(DumpState *s, uint64_t val) 90 { 91 if (s->dump_info.d_endian == ELFDATA2LSB) { 92 val = cpu_to_le64(val); 93 } else { 94 val = cpu_to_be64(val); 95 } 96 97 return val; 98 } 99 100 static int dump_cleanup(DumpState *s) 101 { 102 guest_phys_blocks_free(&s->guest_phys_blocks); 103 memory_mapping_list_free(&s->list); 104 close(s->fd); 105 g_free(s->guest_note); 106 s->guest_note = NULL; 107 if (s->resume) { 108 if (s->detached) { 109 qemu_mutex_lock_iothread(); 110 } 111 vm_start(); 112 if (s->detached) { 113 qemu_mutex_unlock_iothread(); 114 } 115 } 116 migrate_del_blocker(dump_migration_blocker); 117 118 return 0; 119 } 120 121 static int fd_write_vmcore(const void *buf, size_t size, void *opaque) 122 { 123 DumpState *s = opaque; 124 size_t written_size; 125 126 written_size = qemu_write_full(s->fd, buf, size); 127 if (written_size != size) { 128 return -errno; 129 } 130 131 return 0; 132 } 133 134 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header) 135 { 136 /* 137 * phnum in the elf header is 16 bit, if we have more segments we 138 * set phnum to PN_XNUM and write the real number of segments to a 139 * special section. 140 */ 141 uint16_t phnum = MIN(s->phdr_num, PN_XNUM); 142 143 memset(elf_header, 0, sizeof(Elf64_Ehdr)); 144 memcpy(elf_header, ELFMAG, SELFMAG); 145 elf_header->e_ident[EI_CLASS] = ELFCLASS64; 146 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; 147 elf_header->e_ident[EI_VERSION] = EV_CURRENT; 148 elf_header->e_type = cpu_to_dump16(s, ET_CORE); 149 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 150 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); 151 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 152 elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset); 153 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr)); 154 elf_header->e_phnum = cpu_to_dump16(s, phnum); 155 if (s->shdr_num) { 156 elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset); 157 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr)); 158 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); 159 } 160 } 161 162 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header) 163 { 164 /* 165 * phnum in the elf header is 16 bit, if we have more segments we 166 * set phnum to PN_XNUM and write the real number of segments to a 167 * special section. 168 */ 169 uint16_t phnum = MIN(s->phdr_num, PN_XNUM); 170 171 memset(elf_header, 0, sizeof(Elf32_Ehdr)); 172 memcpy(elf_header, ELFMAG, SELFMAG); 173 elf_header->e_ident[EI_CLASS] = ELFCLASS32; 174 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; 175 elf_header->e_ident[EI_VERSION] = EV_CURRENT; 176 elf_header->e_type = cpu_to_dump16(s, ET_CORE); 177 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 178 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); 179 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 180 elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset); 181 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr)); 182 elf_header->e_phnum = cpu_to_dump16(s, phnum); 183 if (s->shdr_num) { 184 elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset); 185 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr)); 186 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); 187 } 188 } 189 190 static void write_elf_header(DumpState *s, Error **errp) 191 { 192 Elf32_Ehdr elf32_header; 193 Elf64_Ehdr elf64_header; 194 size_t header_size; 195 void *header_ptr; 196 int ret; 197 198 if (dump_is_64bit(s)) { 199 prepare_elf64_header(s, &elf64_header); 200 header_size = sizeof(elf64_header); 201 header_ptr = &elf64_header; 202 } else { 203 prepare_elf32_header(s, &elf32_header); 204 header_size = sizeof(elf32_header); 205 header_ptr = &elf32_header; 206 } 207 208 ret = fd_write_vmcore(header_ptr, header_size, s); 209 if (ret < 0) { 210 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 211 } 212 } 213 214 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, 215 int phdr_index, hwaddr offset, 216 hwaddr filesz, Error **errp) 217 { 218 Elf64_Phdr phdr; 219 int ret; 220 221 memset(&phdr, 0, sizeof(Elf64_Phdr)); 222 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 223 phdr.p_offset = cpu_to_dump64(s, offset); 224 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr); 225 phdr.p_filesz = cpu_to_dump64(s, filesz); 226 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length); 227 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 228 229 assert(memory_mapping->length >= filesz); 230 231 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 232 if (ret < 0) { 233 error_setg_errno(errp, -ret, 234 "dump: failed to write program header table"); 235 } 236 } 237 238 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, 239 int phdr_index, hwaddr offset, 240 hwaddr filesz, Error **errp) 241 { 242 Elf32_Phdr phdr; 243 int ret; 244 245 memset(&phdr, 0, sizeof(Elf32_Phdr)); 246 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 247 phdr.p_offset = cpu_to_dump32(s, offset); 248 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr); 249 phdr.p_filesz = cpu_to_dump32(s, filesz); 250 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length); 251 phdr.p_vaddr = 252 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 253 254 assert(memory_mapping->length >= filesz); 255 256 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 257 if (ret < 0) { 258 error_setg_errno(errp, -ret, 259 "dump: failed to write program header table"); 260 } 261 } 262 263 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr) 264 { 265 memset(phdr, 0, sizeof(*phdr)); 266 phdr->p_type = cpu_to_dump32(s, PT_NOTE); 267 phdr->p_offset = cpu_to_dump64(s, s->note_offset); 268 phdr->p_paddr = 0; 269 phdr->p_filesz = cpu_to_dump64(s, s->note_size); 270 phdr->p_memsz = cpu_to_dump64(s, s->note_size); 271 phdr->p_vaddr = 0; 272 } 273 274 static inline int cpu_index(CPUState *cpu) 275 { 276 return cpu->cpu_index + 1; 277 } 278 279 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s, 280 Error **errp) 281 { 282 int ret; 283 284 if (s->guest_note) { 285 ret = f(s->guest_note, s->guest_note_size, s); 286 if (ret < 0) { 287 error_setg(errp, "dump: failed to write guest note"); 288 } 289 } 290 } 291 292 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s, 293 Error **errp) 294 { 295 CPUState *cpu; 296 int ret; 297 int id; 298 299 CPU_FOREACH(cpu) { 300 id = cpu_index(cpu); 301 ret = cpu_write_elf64_note(f, cpu, id, s); 302 if (ret < 0) { 303 error_setg(errp, "dump: failed to write elf notes"); 304 return; 305 } 306 } 307 308 CPU_FOREACH(cpu) { 309 ret = cpu_write_elf64_qemunote(f, cpu, s); 310 if (ret < 0) { 311 error_setg(errp, "dump: failed to write CPU status"); 312 return; 313 } 314 } 315 316 write_guest_note(f, s, errp); 317 } 318 319 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr) 320 { 321 memset(phdr, 0, sizeof(*phdr)); 322 phdr->p_type = cpu_to_dump32(s, PT_NOTE); 323 phdr->p_offset = cpu_to_dump32(s, s->note_offset); 324 phdr->p_paddr = 0; 325 phdr->p_filesz = cpu_to_dump32(s, s->note_size); 326 phdr->p_memsz = cpu_to_dump32(s, s->note_size); 327 phdr->p_vaddr = 0; 328 } 329 330 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s, 331 Error **errp) 332 { 333 CPUState *cpu; 334 int ret; 335 int id; 336 337 CPU_FOREACH(cpu) { 338 id = cpu_index(cpu); 339 ret = cpu_write_elf32_note(f, cpu, id, s); 340 if (ret < 0) { 341 error_setg(errp, "dump: failed to write elf notes"); 342 return; 343 } 344 } 345 346 CPU_FOREACH(cpu) { 347 ret = cpu_write_elf32_qemunote(f, cpu, s); 348 if (ret < 0) { 349 error_setg(errp, "dump: failed to write CPU status"); 350 return; 351 } 352 } 353 354 write_guest_note(f, s, errp); 355 } 356 357 static void write_elf_phdr_note(DumpState *s, Error **errp) 358 { 359 ERRP_GUARD(); 360 Elf32_Phdr phdr32; 361 Elf64_Phdr phdr64; 362 void *phdr; 363 size_t size; 364 int ret; 365 366 if (dump_is_64bit(s)) { 367 prepare_elf64_phdr_note(s, &phdr64); 368 size = sizeof(phdr64); 369 phdr = &phdr64; 370 } else { 371 prepare_elf32_phdr_note(s, &phdr32); 372 size = sizeof(phdr32); 373 phdr = &phdr32; 374 } 375 376 ret = fd_write_vmcore(phdr, size, s); 377 if (ret < 0) { 378 error_setg_errno(errp, -ret, 379 "dump: failed to write program header table"); 380 } 381 } 382 383 static void write_elf_section(DumpState *s, int type, Error **errp) 384 { 385 Elf32_Shdr shdr32; 386 Elf64_Shdr shdr64; 387 int shdr_size; 388 void *shdr; 389 int ret; 390 391 if (type == 0) { 392 shdr_size = sizeof(Elf32_Shdr); 393 memset(&shdr32, 0, shdr_size); 394 shdr32.sh_info = cpu_to_dump32(s, s->phdr_num); 395 shdr = &shdr32; 396 } else { 397 shdr_size = sizeof(Elf64_Shdr); 398 memset(&shdr64, 0, shdr_size); 399 shdr64.sh_info = cpu_to_dump32(s, s->phdr_num); 400 shdr = &shdr64; 401 } 402 403 ret = fd_write_vmcore(shdr, shdr_size, s); 404 if (ret < 0) { 405 error_setg_errno(errp, -ret, 406 "dump: failed to write section header table"); 407 } 408 } 409 410 static void write_data(DumpState *s, void *buf, int length, Error **errp) 411 { 412 int ret; 413 414 ret = fd_write_vmcore(buf, length, s); 415 if (ret < 0) { 416 error_setg_errno(errp, -ret, "dump: failed to save memory"); 417 } else { 418 s->written_size += length; 419 } 420 } 421 422 /* write the memory to vmcore. 1 page per I/O. */ 423 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, 424 int64_t size, Error **errp) 425 { 426 ERRP_GUARD(); 427 int64_t i; 428 429 for (i = 0; i < size / s->dump_info.page_size; i++) { 430 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 431 s->dump_info.page_size, errp); 432 if (*errp) { 433 return; 434 } 435 } 436 437 if ((size % s->dump_info.page_size) != 0) { 438 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 439 size % s->dump_info.page_size, errp); 440 if (*errp) { 441 return; 442 } 443 } 444 } 445 446 /* get the memory's offset and size in the vmcore */ 447 static void get_offset_range(hwaddr phys_addr, 448 ram_addr_t mapping_length, 449 DumpState *s, 450 hwaddr *p_offset, 451 hwaddr *p_filesz) 452 { 453 GuestPhysBlock *block; 454 hwaddr offset = s->memory_offset; 455 int64_t size_in_block, start; 456 457 /* When the memory is not stored into vmcore, offset will be -1 */ 458 *p_offset = -1; 459 *p_filesz = 0; 460 461 if (dump_has_filter(s)) { 462 if (phys_addr < s->filter_area_begin || 463 phys_addr >= s->filter_area_begin + s->filter_area_length) { 464 return; 465 } 466 } 467 468 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 469 if (dump_has_filter(s)) { 470 if (block->target_start >= s->filter_area_begin + s->filter_area_length || 471 block->target_end <= s->filter_area_begin) { 472 /* This block is out of the range */ 473 continue; 474 } 475 476 if (s->filter_area_begin <= block->target_start) { 477 start = block->target_start; 478 } else { 479 start = s->filter_area_begin; 480 } 481 482 size_in_block = block->target_end - start; 483 if (s->filter_area_begin + s->filter_area_length < block->target_end) { 484 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length); 485 } 486 } else { 487 start = block->target_start; 488 size_in_block = block->target_end - block->target_start; 489 } 490 491 if (phys_addr >= start && phys_addr < start + size_in_block) { 492 *p_offset = phys_addr - start + offset; 493 494 /* The offset range mapped from the vmcore file must not spill over 495 * the GuestPhysBlock, clamp it. The rest of the mapping will be 496 * zero-filled in memory at load time; see 497 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. 498 */ 499 *p_filesz = phys_addr + mapping_length <= start + size_in_block ? 500 mapping_length : 501 size_in_block - (phys_addr - start); 502 return; 503 } 504 505 offset += size_in_block; 506 } 507 } 508 509 static void write_elf_phdr_loads(DumpState *s, Error **errp) 510 { 511 ERRP_GUARD(); 512 hwaddr offset, filesz; 513 MemoryMapping *memory_mapping; 514 uint32_t phdr_index = 1; 515 516 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { 517 get_offset_range(memory_mapping->phys_addr, 518 memory_mapping->length, 519 s, &offset, &filesz); 520 if (dump_is_64bit(s)) { 521 write_elf64_load(s, memory_mapping, phdr_index++, offset, 522 filesz, errp); 523 } else { 524 write_elf32_load(s, memory_mapping, phdr_index++, offset, 525 filesz, errp); 526 } 527 528 if (*errp) { 529 return; 530 } 531 532 if (phdr_index >= s->phdr_num) { 533 break; 534 } 535 } 536 } 537 538 static void write_elf_notes(DumpState *s, Error **errp) 539 { 540 if (dump_is_64bit(s)) { 541 write_elf64_notes(fd_write_vmcore, s, errp); 542 } else { 543 write_elf32_notes(fd_write_vmcore, s, errp); 544 } 545 } 546 547 /* write elf header, PT_NOTE and elf note to vmcore. */ 548 static void dump_begin(DumpState *s, Error **errp) 549 { 550 ERRP_GUARD(); 551 552 /* 553 * the vmcore's format is: 554 * -------------- 555 * | elf header | 556 * -------------- 557 * | PT_NOTE | 558 * -------------- 559 * | PT_LOAD | 560 * -------------- 561 * | ...... | 562 * -------------- 563 * | PT_LOAD | 564 * -------------- 565 * | sec_hdr | 566 * -------------- 567 * | elf note | 568 * -------------- 569 * | memory | 570 * -------------- 571 * 572 * we only know where the memory is saved after we write elf note into 573 * vmcore. 574 */ 575 576 /* write elf header to vmcore */ 577 write_elf_header(s, errp); 578 if (*errp) { 579 return; 580 } 581 582 /* write PT_NOTE to vmcore */ 583 write_elf_phdr_note(s, errp); 584 if (*errp) { 585 return; 586 } 587 588 /* write all PT_LOADs to vmcore */ 589 write_elf_phdr_loads(s, errp); 590 if (*errp) { 591 return; 592 } 593 594 /* write section to vmcore */ 595 if (s->shdr_num) { 596 write_elf_section(s, 1, errp); 597 if (*errp) { 598 return; 599 } 600 } 601 602 /* write notes to vmcore */ 603 write_elf_notes(s, errp); 604 } 605 606 static int64_t dump_filtered_memblock_size(GuestPhysBlock *block, 607 int64_t filter_area_start, 608 int64_t filter_area_length) 609 { 610 int64_t size, left, right; 611 612 /* No filter, return full size */ 613 if (!filter_area_length) { 614 return block->target_end - block->target_start; 615 } 616 617 /* calculate the overlapped region. */ 618 left = MAX(filter_area_start, block->target_start); 619 right = MIN(filter_area_start + filter_area_length, block->target_end); 620 size = right - left; 621 size = size > 0 ? size : 0; 622 623 return size; 624 } 625 626 static int64_t dump_filtered_memblock_start(GuestPhysBlock *block, 627 int64_t filter_area_start, 628 int64_t filter_area_length) 629 { 630 if (filter_area_length) { 631 /* return -1 if the block is not within filter area */ 632 if (block->target_start >= filter_area_start + filter_area_length || 633 block->target_end <= filter_area_start) { 634 return -1; 635 } 636 637 if (filter_area_start > block->target_start) { 638 return filter_area_start - block->target_start; 639 } 640 } 641 642 return 0; 643 } 644 645 /* write all memory to vmcore */ 646 static void dump_iterate(DumpState *s, Error **errp) 647 { 648 ERRP_GUARD(); 649 GuestPhysBlock *block; 650 int64_t memblock_size, memblock_start; 651 652 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 653 memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length); 654 if (memblock_start == -1) { 655 continue; 656 } 657 658 memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length); 659 660 /* Write the memory to file */ 661 write_memory(s, block, memblock_start, memblock_size, errp); 662 if (*errp) { 663 return; 664 } 665 } 666 } 667 668 static void create_vmcore(DumpState *s, Error **errp) 669 { 670 ERRP_GUARD(); 671 672 dump_begin(s, errp); 673 if (*errp) { 674 return; 675 } 676 677 dump_iterate(s, errp); 678 } 679 680 static int write_start_flat_header(int fd) 681 { 682 MakedumpfileHeader *mh; 683 int ret = 0; 684 685 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); 686 mh = g_malloc0(MAX_SIZE_MDF_HEADER); 687 688 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, 689 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); 690 691 mh->type = cpu_to_be64(TYPE_FLAT_HEADER); 692 mh->version = cpu_to_be64(VERSION_FLAT_HEADER); 693 694 size_t written_size; 695 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER); 696 if (written_size != MAX_SIZE_MDF_HEADER) { 697 ret = -1; 698 } 699 700 g_free(mh); 701 return ret; 702 } 703 704 static int write_end_flat_header(int fd) 705 { 706 MakedumpfileDataHeader mdh; 707 708 mdh.offset = END_FLAG_FLAT_HEADER; 709 mdh.buf_size = END_FLAG_FLAT_HEADER; 710 711 size_t written_size; 712 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 713 if (written_size != sizeof(mdh)) { 714 return -1; 715 } 716 717 return 0; 718 } 719 720 static int write_buffer(int fd, off_t offset, const void *buf, size_t size) 721 { 722 size_t written_size; 723 MakedumpfileDataHeader mdh; 724 725 mdh.offset = cpu_to_be64(offset); 726 mdh.buf_size = cpu_to_be64(size); 727 728 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 729 if (written_size != sizeof(mdh)) { 730 return -1; 731 } 732 733 written_size = qemu_write_full(fd, buf, size); 734 if (written_size != size) { 735 return -1; 736 } 737 738 return 0; 739 } 740 741 static int buf_write_note(const void *buf, size_t size, void *opaque) 742 { 743 DumpState *s = opaque; 744 745 /* note_buf is not enough */ 746 if (s->note_buf_offset + size > s->note_size) { 747 return -1; 748 } 749 750 memcpy(s->note_buf + s->note_buf_offset, buf, size); 751 752 s->note_buf_offset += size; 753 754 return 0; 755 } 756 757 /* 758 * This function retrieves various sizes from an elf header. 759 * 760 * @note has to be a valid ELF note. The return sizes are unmodified 761 * (not padded or rounded up to be multiple of 4). 762 */ 763 static void get_note_sizes(DumpState *s, const void *note, 764 uint64_t *note_head_size, 765 uint64_t *name_size, 766 uint64_t *desc_size) 767 { 768 uint64_t note_head_sz; 769 uint64_t name_sz; 770 uint64_t desc_sz; 771 772 if (dump_is_64bit(s)) { 773 const Elf64_Nhdr *hdr = note; 774 note_head_sz = sizeof(Elf64_Nhdr); 775 name_sz = tswap64(hdr->n_namesz); 776 desc_sz = tswap64(hdr->n_descsz); 777 } else { 778 const Elf32_Nhdr *hdr = note; 779 note_head_sz = sizeof(Elf32_Nhdr); 780 name_sz = tswap32(hdr->n_namesz); 781 desc_sz = tswap32(hdr->n_descsz); 782 } 783 784 if (note_head_size) { 785 *note_head_size = note_head_sz; 786 } 787 if (name_size) { 788 *name_size = name_sz; 789 } 790 if (desc_size) { 791 *desc_size = desc_sz; 792 } 793 } 794 795 static bool note_name_equal(DumpState *s, 796 const uint8_t *note, const char *name) 797 { 798 int len = strlen(name) + 1; 799 uint64_t head_size, name_size; 800 801 get_note_sizes(s, note, &head_size, &name_size, NULL); 802 head_size = ROUND_UP(head_size, 4); 803 804 return name_size == len && memcmp(note + head_size, name, len) == 0; 805 } 806 807 /* write common header, sub header and elf note to vmcore */ 808 static void create_header32(DumpState *s, Error **errp) 809 { 810 ERRP_GUARD(); 811 DiskDumpHeader32 *dh = NULL; 812 KdumpSubHeader32 *kh = NULL; 813 size_t size; 814 uint32_t block_size; 815 uint32_t sub_hdr_size; 816 uint32_t bitmap_blocks; 817 uint32_t status = 0; 818 uint64_t offset_note; 819 820 /* write common header, the version of kdump-compressed format is 6th */ 821 size = sizeof(DiskDumpHeader32); 822 dh = g_malloc0(size); 823 824 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 825 dh->header_version = cpu_to_dump32(s, 6); 826 block_size = s->dump_info.page_size; 827 dh->block_size = cpu_to_dump32(s, block_size); 828 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; 829 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 830 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 831 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 832 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 833 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 834 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 835 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 836 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 837 838 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 839 status |= DUMP_DH_COMPRESSED_ZLIB; 840 } 841 #ifdef CONFIG_LZO 842 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 843 status |= DUMP_DH_COMPRESSED_LZO; 844 } 845 #endif 846 #ifdef CONFIG_SNAPPY 847 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 848 status |= DUMP_DH_COMPRESSED_SNAPPY; 849 } 850 #endif 851 dh->status = cpu_to_dump32(s, status); 852 853 if (write_buffer(s->fd, 0, dh, size) < 0) { 854 error_setg(errp, "dump: failed to write disk dump header"); 855 goto out; 856 } 857 858 /* write sub header */ 859 size = sizeof(KdumpSubHeader32); 860 kh = g_malloc0(size); 861 862 /* 64bit max_mapnr_64 */ 863 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 864 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base); 865 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 866 867 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 868 if (s->guest_note && 869 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 870 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 871 872 get_note_sizes(s, s->guest_note, 873 &hsize, &name_size, &size_vmcoreinfo_desc); 874 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 875 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 876 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 877 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc); 878 } 879 880 kh->offset_note = cpu_to_dump64(s, offset_note); 881 kh->note_size = cpu_to_dump32(s, s->note_size); 882 883 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 884 block_size, kh, size) < 0) { 885 error_setg(errp, "dump: failed to write kdump sub header"); 886 goto out; 887 } 888 889 /* write note */ 890 s->note_buf = g_malloc0(s->note_size); 891 s->note_buf_offset = 0; 892 893 /* use s->note_buf to store notes temporarily */ 894 write_elf32_notes(buf_write_note, s, errp); 895 if (*errp) { 896 goto out; 897 } 898 if (write_buffer(s->fd, offset_note, s->note_buf, 899 s->note_size) < 0) { 900 error_setg(errp, "dump: failed to write notes"); 901 goto out; 902 } 903 904 /* get offset of dump_bitmap */ 905 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 906 block_size; 907 908 /* get offset of page */ 909 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 910 block_size; 911 912 out: 913 g_free(dh); 914 g_free(kh); 915 g_free(s->note_buf); 916 } 917 918 /* write common header, sub header and elf note to vmcore */ 919 static void create_header64(DumpState *s, Error **errp) 920 { 921 ERRP_GUARD(); 922 DiskDumpHeader64 *dh = NULL; 923 KdumpSubHeader64 *kh = NULL; 924 size_t size; 925 uint32_t block_size; 926 uint32_t sub_hdr_size; 927 uint32_t bitmap_blocks; 928 uint32_t status = 0; 929 uint64_t offset_note; 930 931 /* write common header, the version of kdump-compressed format is 6th */ 932 size = sizeof(DiskDumpHeader64); 933 dh = g_malloc0(size); 934 935 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 936 dh->header_version = cpu_to_dump32(s, 6); 937 block_size = s->dump_info.page_size; 938 dh->block_size = cpu_to_dump32(s, block_size); 939 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; 940 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 941 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 942 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 943 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 944 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 945 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 946 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 947 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 948 949 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 950 status |= DUMP_DH_COMPRESSED_ZLIB; 951 } 952 #ifdef CONFIG_LZO 953 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 954 status |= DUMP_DH_COMPRESSED_LZO; 955 } 956 #endif 957 #ifdef CONFIG_SNAPPY 958 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 959 status |= DUMP_DH_COMPRESSED_SNAPPY; 960 } 961 #endif 962 dh->status = cpu_to_dump32(s, status); 963 964 if (write_buffer(s->fd, 0, dh, size) < 0) { 965 error_setg(errp, "dump: failed to write disk dump header"); 966 goto out; 967 } 968 969 /* write sub header */ 970 size = sizeof(KdumpSubHeader64); 971 kh = g_malloc0(size); 972 973 /* 64bit max_mapnr_64 */ 974 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 975 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base); 976 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 977 978 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 979 if (s->guest_note && 980 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 981 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 982 983 get_note_sizes(s, s->guest_note, 984 &hsize, &name_size, &size_vmcoreinfo_desc); 985 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 986 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 987 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 988 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc); 989 } 990 991 kh->offset_note = cpu_to_dump64(s, offset_note); 992 kh->note_size = cpu_to_dump64(s, s->note_size); 993 994 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 995 block_size, kh, size) < 0) { 996 error_setg(errp, "dump: failed to write kdump sub header"); 997 goto out; 998 } 999 1000 /* write note */ 1001 s->note_buf = g_malloc0(s->note_size); 1002 s->note_buf_offset = 0; 1003 1004 /* use s->note_buf to store notes temporarily */ 1005 write_elf64_notes(buf_write_note, s, errp); 1006 if (*errp) { 1007 goto out; 1008 } 1009 1010 if (write_buffer(s->fd, offset_note, s->note_buf, 1011 s->note_size) < 0) { 1012 error_setg(errp, "dump: failed to write notes"); 1013 goto out; 1014 } 1015 1016 /* get offset of dump_bitmap */ 1017 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 1018 block_size; 1019 1020 /* get offset of page */ 1021 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 1022 block_size; 1023 1024 out: 1025 g_free(dh); 1026 g_free(kh); 1027 g_free(s->note_buf); 1028 } 1029 1030 static void write_dump_header(DumpState *s, Error **errp) 1031 { 1032 if (dump_is_64bit(s)) { 1033 create_header64(s, errp); 1034 } else { 1035 create_header32(s, errp); 1036 } 1037 } 1038 1039 static size_t dump_bitmap_get_bufsize(DumpState *s) 1040 { 1041 return s->dump_info.page_size; 1042 } 1043 1044 /* 1045 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be 1046 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. 1047 * set_dump_bitmap will always leave the recently set bit un-sync. And setting 1048 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into 1049 * vmcore, ie. synchronizing un-sync bit into vmcore. 1050 */ 1051 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, 1052 uint8_t *buf, DumpState *s) 1053 { 1054 off_t old_offset, new_offset; 1055 off_t offset_bitmap1, offset_bitmap2; 1056 uint32_t byte, bit; 1057 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1058 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1059 1060 /* should not set the previous place */ 1061 assert(last_pfn <= pfn); 1062 1063 /* 1064 * if the bit needed to be set is not cached in buf, flush the data in buf 1065 * to vmcore firstly. 1066 * making new_offset be bigger than old_offset can also sync remained data 1067 * into vmcore. 1068 */ 1069 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf); 1070 new_offset = bitmap_bufsize * (pfn / bits_per_buf); 1071 1072 while (old_offset < new_offset) { 1073 /* calculate the offset and write dump_bitmap */ 1074 offset_bitmap1 = s->offset_dump_bitmap + old_offset; 1075 if (write_buffer(s->fd, offset_bitmap1, buf, 1076 bitmap_bufsize) < 0) { 1077 return -1; 1078 } 1079 1080 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ 1081 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + 1082 old_offset; 1083 if (write_buffer(s->fd, offset_bitmap2, buf, 1084 bitmap_bufsize) < 0) { 1085 return -1; 1086 } 1087 1088 memset(buf, 0, bitmap_bufsize); 1089 old_offset += bitmap_bufsize; 1090 } 1091 1092 /* get the exact place of the bit in the buf, and set it */ 1093 byte = (pfn % bits_per_buf) / CHAR_BIT; 1094 bit = (pfn % bits_per_buf) % CHAR_BIT; 1095 if (value) { 1096 buf[byte] |= 1u << bit; 1097 } else { 1098 buf[byte] &= ~(1u << bit); 1099 } 1100 1101 return 0; 1102 } 1103 1104 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr) 1105 { 1106 int target_page_shift = ctz32(s->dump_info.page_size); 1107 1108 return (addr >> target_page_shift) - ARCH_PFN_OFFSET; 1109 } 1110 1111 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn) 1112 { 1113 int target_page_shift = ctz32(s->dump_info.page_size); 1114 1115 return (pfn + ARCH_PFN_OFFSET) << target_page_shift; 1116 } 1117 1118 /* 1119 * Return the page frame number and the page content in *bufptr. bufptr can be 1120 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated 1121 * memory. This is not necessarily the memory returned. 1122 */ 1123 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, 1124 uint8_t **bufptr, DumpState *s) 1125 { 1126 GuestPhysBlock *block = *blockptr; 1127 uint32_t page_size = s->dump_info.page_size; 1128 uint8_t *buf = NULL, *hbuf; 1129 hwaddr addr; 1130 1131 /* block == NULL means the start of the iteration */ 1132 if (!block) { 1133 block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1134 *blockptr = block; 1135 addr = block->target_start; 1136 *pfnptr = dump_paddr_to_pfn(s, addr); 1137 } else { 1138 *pfnptr += 1; 1139 addr = dump_pfn_to_paddr(s, *pfnptr); 1140 } 1141 assert(block != NULL); 1142 1143 while (1) { 1144 if (addr >= block->target_start && addr < block->target_end) { 1145 size_t n = MIN(block->target_end - addr, page_size - addr % page_size); 1146 hbuf = block->host_addr + (addr - block->target_start); 1147 if (!buf) { 1148 if (n == page_size) { 1149 /* this is a whole target page, go for it */ 1150 assert(addr % page_size == 0); 1151 buf = hbuf; 1152 break; 1153 } else if (bufptr) { 1154 assert(*bufptr); 1155 buf = *bufptr; 1156 memset(buf, 0, page_size); 1157 } else { 1158 return true; 1159 } 1160 } 1161 1162 memcpy(buf + addr % page_size, hbuf, n); 1163 addr += n; 1164 if (addr % page_size == 0) { 1165 /* we filled up the page */ 1166 break; 1167 } 1168 } else { 1169 /* the next page is in the next block */ 1170 *blockptr = block = QTAILQ_NEXT(block, next); 1171 if (!block) { 1172 break; 1173 } 1174 1175 addr = block->target_start; 1176 /* are we still in the same page? */ 1177 if (dump_paddr_to_pfn(s, addr) != *pfnptr) { 1178 if (buf) { 1179 /* no, but we already filled something earlier, return it */ 1180 break; 1181 } else { 1182 /* else continue from there */ 1183 *pfnptr = dump_paddr_to_pfn(s, addr); 1184 } 1185 } 1186 } 1187 } 1188 1189 if (bufptr) { 1190 *bufptr = buf; 1191 } 1192 1193 return buf != NULL; 1194 } 1195 1196 static void write_dump_bitmap(DumpState *s, Error **errp) 1197 { 1198 int ret = 0; 1199 uint64_t last_pfn, pfn; 1200 void *dump_bitmap_buf; 1201 size_t num_dumpable; 1202 GuestPhysBlock *block_iter = NULL; 1203 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1204 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1205 1206 /* dump_bitmap_buf is used to store dump_bitmap temporarily */ 1207 dump_bitmap_buf = g_malloc0(bitmap_bufsize); 1208 1209 num_dumpable = 0; 1210 last_pfn = 0; 1211 1212 /* 1213 * exam memory page by page, and set the bit in dump_bitmap corresponded 1214 * to the existing page. 1215 */ 1216 while (get_next_page(&block_iter, &pfn, NULL, s)) { 1217 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); 1218 if (ret < 0) { 1219 error_setg(errp, "dump: failed to set dump_bitmap"); 1220 goto out; 1221 } 1222 1223 last_pfn = pfn; 1224 num_dumpable++; 1225 } 1226 1227 /* 1228 * set_dump_bitmap will always leave the recently set bit un-sync. Here we 1229 * set the remaining bits from last_pfn to the end of the bitmap buffer to 1230 * 0. With those set, the un-sync bit will be synchronized into the vmcore. 1231 */ 1232 if (num_dumpable > 0) { 1233 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false, 1234 dump_bitmap_buf, s); 1235 if (ret < 0) { 1236 error_setg(errp, "dump: failed to sync dump_bitmap"); 1237 goto out; 1238 } 1239 } 1240 1241 /* number of dumpable pages that will be dumped later */ 1242 s->num_dumpable = num_dumpable; 1243 1244 out: 1245 g_free(dump_bitmap_buf); 1246 } 1247 1248 static void prepare_data_cache(DataCache *data_cache, DumpState *s, 1249 off_t offset) 1250 { 1251 data_cache->fd = s->fd; 1252 data_cache->data_size = 0; 1253 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s); 1254 data_cache->buf = g_malloc0(data_cache->buf_size); 1255 data_cache->offset = offset; 1256 } 1257 1258 static int write_cache(DataCache *dc, const void *buf, size_t size, 1259 bool flag_sync) 1260 { 1261 /* 1262 * dc->buf_size should not be less than size, otherwise dc will never be 1263 * enough 1264 */ 1265 assert(size <= dc->buf_size); 1266 1267 /* 1268 * if flag_sync is set, synchronize data in dc->buf into vmcore. 1269 * otherwise check if the space is enough for caching data in buf, if not, 1270 * write the data in dc->buf to dc->fd and reset dc->buf 1271 */ 1272 if ((!flag_sync && dc->data_size + size > dc->buf_size) || 1273 (flag_sync && dc->data_size > 0)) { 1274 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) { 1275 return -1; 1276 } 1277 1278 dc->offset += dc->data_size; 1279 dc->data_size = 0; 1280 } 1281 1282 if (!flag_sync) { 1283 memcpy(dc->buf + dc->data_size, buf, size); 1284 dc->data_size += size; 1285 } 1286 1287 return 0; 1288 } 1289 1290 static void free_data_cache(DataCache *data_cache) 1291 { 1292 g_free(data_cache->buf); 1293 } 1294 1295 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) 1296 { 1297 switch (flag_compress) { 1298 case DUMP_DH_COMPRESSED_ZLIB: 1299 return compressBound(page_size); 1300 1301 case DUMP_DH_COMPRESSED_LZO: 1302 /* 1303 * LZO will expand incompressible data by a little amount. Please check 1304 * the following URL to see the expansion calculation: 1305 * http://www.oberhumer.com/opensource/lzo/lzofaq.php 1306 */ 1307 return page_size + page_size / 16 + 64 + 3; 1308 1309 #ifdef CONFIG_SNAPPY 1310 case DUMP_DH_COMPRESSED_SNAPPY: 1311 return snappy_max_compressed_length(page_size); 1312 #endif 1313 } 1314 return 0; 1315 } 1316 1317 static void write_dump_pages(DumpState *s, Error **errp) 1318 { 1319 int ret = 0; 1320 DataCache page_desc, page_data; 1321 size_t len_buf_out, size_out; 1322 #ifdef CONFIG_LZO 1323 lzo_bytep wrkmem = NULL; 1324 #endif 1325 uint8_t *buf_out = NULL; 1326 off_t offset_desc, offset_data; 1327 PageDescriptor pd, pd_zero; 1328 uint8_t *buf; 1329 GuestPhysBlock *block_iter = NULL; 1330 uint64_t pfn_iter; 1331 g_autofree uint8_t *page = NULL; 1332 1333 /* get offset of page_desc and page_data in dump file */ 1334 offset_desc = s->offset_page; 1335 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; 1336 1337 prepare_data_cache(&page_desc, s, offset_desc); 1338 prepare_data_cache(&page_data, s, offset_data); 1339 1340 /* prepare buffer to store compressed data */ 1341 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress); 1342 assert(len_buf_out != 0); 1343 1344 #ifdef CONFIG_LZO 1345 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); 1346 #endif 1347 1348 buf_out = g_malloc(len_buf_out); 1349 1350 /* 1351 * init zero page's page_desc and page_data, because every zero page 1352 * uses the same page_data 1353 */ 1354 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size); 1355 pd_zero.flags = cpu_to_dump32(s, 0); 1356 pd_zero.offset = cpu_to_dump64(s, offset_data); 1357 pd_zero.page_flags = cpu_to_dump64(s, 0); 1358 buf = g_malloc0(s->dump_info.page_size); 1359 ret = write_cache(&page_data, buf, s->dump_info.page_size, false); 1360 g_free(buf); 1361 if (ret < 0) { 1362 error_setg(errp, "dump: failed to write page data (zero page)"); 1363 goto out; 1364 } 1365 1366 offset_data += s->dump_info.page_size; 1367 page = g_malloc(s->dump_info.page_size); 1368 1369 /* 1370 * dump memory to vmcore page by page. zero page will all be resided in the 1371 * first page of page section 1372 */ 1373 for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) { 1374 /* check zero page */ 1375 if (buffer_is_zero(buf, s->dump_info.page_size)) { 1376 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), 1377 false); 1378 if (ret < 0) { 1379 error_setg(errp, "dump: failed to write page desc"); 1380 goto out; 1381 } 1382 } else { 1383 /* 1384 * not zero page, then: 1385 * 1. compress the page 1386 * 2. write the compressed page into the cache of page_data 1387 * 3. get page desc of the compressed page and write it into the 1388 * cache of page_desc 1389 * 1390 * only one compression format will be used here, for 1391 * s->flag_compress is set. But when compression fails to work, 1392 * we fall back to save in plaintext. 1393 */ 1394 size_out = len_buf_out; 1395 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && 1396 (compress2(buf_out, (uLongf *)&size_out, buf, 1397 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) && 1398 (size_out < s->dump_info.page_size)) { 1399 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB); 1400 pd.size = cpu_to_dump32(s, size_out); 1401 1402 ret = write_cache(&page_data, buf_out, size_out, false); 1403 if (ret < 0) { 1404 error_setg(errp, "dump: failed to write page data"); 1405 goto out; 1406 } 1407 #ifdef CONFIG_LZO 1408 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && 1409 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out, 1410 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && 1411 (size_out < s->dump_info.page_size)) { 1412 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO); 1413 pd.size = cpu_to_dump32(s, size_out); 1414 1415 ret = write_cache(&page_data, buf_out, size_out, false); 1416 if (ret < 0) { 1417 error_setg(errp, "dump: failed to write page data"); 1418 goto out; 1419 } 1420 #endif 1421 #ifdef CONFIG_SNAPPY 1422 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && 1423 (snappy_compress((char *)buf, s->dump_info.page_size, 1424 (char *)buf_out, &size_out) == SNAPPY_OK) && 1425 (size_out < s->dump_info.page_size)) { 1426 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY); 1427 pd.size = cpu_to_dump32(s, size_out); 1428 1429 ret = write_cache(&page_data, buf_out, size_out, false); 1430 if (ret < 0) { 1431 error_setg(errp, "dump: failed to write page data"); 1432 goto out; 1433 } 1434 #endif 1435 } else { 1436 /* 1437 * fall back to save in plaintext, size_out should be 1438 * assigned the target's page size 1439 */ 1440 pd.flags = cpu_to_dump32(s, 0); 1441 size_out = s->dump_info.page_size; 1442 pd.size = cpu_to_dump32(s, size_out); 1443 1444 ret = write_cache(&page_data, buf, 1445 s->dump_info.page_size, false); 1446 if (ret < 0) { 1447 error_setg(errp, "dump: failed to write page data"); 1448 goto out; 1449 } 1450 } 1451 1452 /* get and write page desc here */ 1453 pd.page_flags = cpu_to_dump64(s, 0); 1454 pd.offset = cpu_to_dump64(s, offset_data); 1455 offset_data += size_out; 1456 1457 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); 1458 if (ret < 0) { 1459 error_setg(errp, "dump: failed to write page desc"); 1460 goto out; 1461 } 1462 } 1463 s->written_size += s->dump_info.page_size; 1464 } 1465 1466 ret = write_cache(&page_desc, NULL, 0, true); 1467 if (ret < 0) { 1468 error_setg(errp, "dump: failed to sync cache for page_desc"); 1469 goto out; 1470 } 1471 ret = write_cache(&page_data, NULL, 0, true); 1472 if (ret < 0) { 1473 error_setg(errp, "dump: failed to sync cache for page_data"); 1474 goto out; 1475 } 1476 1477 out: 1478 free_data_cache(&page_desc); 1479 free_data_cache(&page_data); 1480 1481 #ifdef CONFIG_LZO 1482 g_free(wrkmem); 1483 #endif 1484 1485 g_free(buf_out); 1486 } 1487 1488 static void create_kdump_vmcore(DumpState *s, Error **errp) 1489 { 1490 ERRP_GUARD(); 1491 int ret; 1492 1493 /* 1494 * the kdump-compressed format is: 1495 * File offset 1496 * +------------------------------------------+ 0x0 1497 * | main header (struct disk_dump_header) | 1498 * |------------------------------------------+ block 1 1499 * | sub header (struct kdump_sub_header) | 1500 * |------------------------------------------+ block 2 1501 * | 1st-dump_bitmap | 1502 * |------------------------------------------+ block 2 + X blocks 1503 * | 2nd-dump_bitmap | (aligned by block) 1504 * |------------------------------------------+ block 2 + 2 * X blocks 1505 * | page desc for pfn 0 (struct page_desc) | (aligned by block) 1506 * | page desc for pfn 1 (struct page_desc) | 1507 * | : | 1508 * |------------------------------------------| (not aligned by block) 1509 * | page data (pfn 0) | 1510 * | page data (pfn 1) | 1511 * | : | 1512 * +------------------------------------------+ 1513 */ 1514 1515 ret = write_start_flat_header(s->fd); 1516 if (ret < 0) { 1517 error_setg(errp, "dump: failed to write start flat header"); 1518 return; 1519 } 1520 1521 write_dump_header(s, errp); 1522 if (*errp) { 1523 return; 1524 } 1525 1526 write_dump_bitmap(s, errp); 1527 if (*errp) { 1528 return; 1529 } 1530 1531 write_dump_pages(s, errp); 1532 if (*errp) { 1533 return; 1534 } 1535 1536 ret = write_end_flat_header(s->fd); 1537 if (ret < 0) { 1538 error_setg(errp, "dump: failed to write end flat header"); 1539 return; 1540 } 1541 } 1542 1543 static int validate_start_block(DumpState *s) 1544 { 1545 GuestPhysBlock *block; 1546 1547 if (!dump_has_filter(s)) { 1548 return 0; 1549 } 1550 1551 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1552 /* This block is out of the range */ 1553 if (block->target_start >= s->filter_area_begin + s->filter_area_length || 1554 block->target_end <= s->filter_area_begin) { 1555 continue; 1556 } 1557 return 0; 1558 } 1559 1560 return -1; 1561 } 1562 1563 static void get_max_mapnr(DumpState *s) 1564 { 1565 GuestPhysBlock *last_block; 1566 1567 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head); 1568 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end); 1569 } 1570 1571 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE }; 1572 1573 static void dump_state_prepare(DumpState *s) 1574 { 1575 /* zero the struct, setting status to active */ 1576 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE }; 1577 } 1578 1579 bool qemu_system_dump_in_progress(void) 1580 { 1581 DumpState *state = &dump_state_global; 1582 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE); 1583 } 1584 1585 /* 1586 * calculate total size of memory to be dumped (taking filter into 1587 * account.) 1588 */ 1589 static int64_t dump_calculate_size(DumpState *s) 1590 { 1591 GuestPhysBlock *block; 1592 int64_t total = 0; 1593 1594 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1595 total += dump_filtered_memblock_size(block, 1596 s->filter_area_begin, 1597 s->filter_area_length); 1598 } 1599 1600 return total; 1601 } 1602 1603 static void vmcoreinfo_update_phys_base(DumpState *s) 1604 { 1605 uint64_t size, note_head_size, name_size, phys_base; 1606 char **lines; 1607 uint8_t *vmci; 1608 size_t i; 1609 1610 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1611 return; 1612 } 1613 1614 get_note_sizes(s, s->guest_note, ¬e_head_size, &name_size, &size); 1615 note_head_size = ROUND_UP(note_head_size, 4); 1616 1617 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4); 1618 *(vmci + size) = '\0'; 1619 1620 lines = g_strsplit((char *)vmci, "\n", -1); 1621 for (i = 0; lines[i]; i++) { 1622 const char *prefix = NULL; 1623 1624 if (s->dump_info.d_machine == EM_X86_64) { 1625 prefix = "NUMBER(phys_base)="; 1626 } else if (s->dump_info.d_machine == EM_AARCH64) { 1627 prefix = "NUMBER(PHYS_OFFSET)="; 1628 } 1629 1630 if (prefix && g_str_has_prefix(lines[i], prefix)) { 1631 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16, 1632 &phys_base) < 0) { 1633 warn_report("Failed to read %s", prefix); 1634 } else { 1635 s->dump_info.phys_base = phys_base; 1636 } 1637 break; 1638 } 1639 } 1640 1641 g_strfreev(lines); 1642 } 1643 1644 static void dump_init(DumpState *s, int fd, bool has_format, 1645 DumpGuestMemoryFormat format, bool paging, bool has_filter, 1646 int64_t begin, int64_t length, Error **errp) 1647 { 1648 ERRP_GUARD(); 1649 VMCoreInfoState *vmci = vmcoreinfo_find(); 1650 CPUState *cpu; 1651 int nr_cpus; 1652 int ret; 1653 1654 s->has_format = has_format; 1655 s->format = format; 1656 s->written_size = 0; 1657 1658 /* kdump-compressed is conflict with paging and filter */ 1659 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1660 assert(!paging && !has_filter); 1661 } 1662 1663 if (runstate_is_running()) { 1664 vm_stop(RUN_STATE_SAVE_VM); 1665 s->resume = true; 1666 } else { 1667 s->resume = false; 1668 } 1669 1670 /* If we use KVM, we should synchronize the registers before we get dump 1671 * info or physmap info. 1672 */ 1673 cpu_synchronize_all_states(); 1674 nr_cpus = 0; 1675 CPU_FOREACH(cpu) { 1676 nr_cpus++; 1677 } 1678 1679 s->fd = fd; 1680 if (has_filter && !length) { 1681 error_setg(errp, QERR_INVALID_PARAMETER, "length"); 1682 goto cleanup; 1683 } 1684 s->filter_area_begin = begin; 1685 s->filter_area_length = length; 1686 1687 memory_mapping_list_init(&s->list); 1688 1689 guest_phys_blocks_init(&s->guest_phys_blocks); 1690 guest_phys_blocks_append(&s->guest_phys_blocks); 1691 s->total_size = dump_calculate_size(s); 1692 #ifdef DEBUG_DUMP_GUEST_MEMORY 1693 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size); 1694 #endif 1695 1696 /* it does not make sense to dump non-existent memory */ 1697 if (!s->total_size) { 1698 error_setg(errp, "dump: no guest memory to dump"); 1699 goto cleanup; 1700 } 1701 1702 /* Is the filter filtering everything? */ 1703 if (validate_start_block(s) == -1) { 1704 error_setg(errp, QERR_INVALID_PARAMETER, "begin"); 1705 goto cleanup; 1706 } 1707 1708 /* get dump info: endian, class and architecture. 1709 * If the target architecture is not supported, cpu_get_dump_info() will 1710 * return -1. 1711 */ 1712 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); 1713 if (ret < 0) { 1714 error_setg(errp, QERR_UNSUPPORTED); 1715 goto cleanup; 1716 } 1717 1718 if (!s->dump_info.page_size) { 1719 s->dump_info.page_size = TARGET_PAGE_SIZE; 1720 } 1721 1722 s->note_size = cpu_get_note_size(s->dump_info.d_class, 1723 s->dump_info.d_machine, nr_cpus); 1724 if (s->note_size < 0) { 1725 error_setg(errp, QERR_UNSUPPORTED); 1726 goto cleanup; 1727 } 1728 1729 /* 1730 * The goal of this block is to (a) update the previously guessed 1731 * phys_base, (b) copy the guest note out of the guest. 1732 * Failure to do so is not fatal for dumping. 1733 */ 1734 if (vmci) { 1735 uint64_t addr, note_head_size, name_size, desc_size; 1736 uint32_t size; 1737 uint16_t format; 1738 1739 note_head_size = dump_is_64bit(s) ? 1740 sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr); 1741 1742 format = le16_to_cpu(vmci->vmcoreinfo.guest_format); 1743 size = le32_to_cpu(vmci->vmcoreinfo.size); 1744 addr = le64_to_cpu(vmci->vmcoreinfo.paddr); 1745 if (!vmci->has_vmcoreinfo) { 1746 warn_report("guest note is not present"); 1747 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) { 1748 warn_report("guest note size is invalid: %" PRIu32, size); 1749 } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) { 1750 warn_report("guest note format is unsupported: %" PRIu16, format); 1751 } else { 1752 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */ 1753 cpu_physical_memory_read(addr, s->guest_note, size); 1754 1755 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size); 1756 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size, 1757 desc_size); 1758 if (name_size > MAX_GUEST_NOTE_SIZE || 1759 desc_size > MAX_GUEST_NOTE_SIZE || 1760 s->guest_note_size > size) { 1761 warn_report("Invalid guest note header"); 1762 g_free(s->guest_note); 1763 s->guest_note = NULL; 1764 } else { 1765 vmcoreinfo_update_phys_base(s); 1766 s->note_size += s->guest_note_size; 1767 } 1768 } 1769 } 1770 1771 /* get memory mapping */ 1772 if (paging) { 1773 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp); 1774 if (*errp) { 1775 goto cleanup; 1776 } 1777 } else { 1778 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); 1779 } 1780 1781 s->nr_cpus = nr_cpus; 1782 1783 get_max_mapnr(s); 1784 1785 uint64_t tmp; 1786 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), 1787 s->dump_info.page_size); 1788 s->len_dump_bitmap = tmp * s->dump_info.page_size; 1789 1790 /* init for kdump-compressed format */ 1791 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1792 switch (format) { 1793 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: 1794 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; 1795 break; 1796 1797 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: 1798 #ifdef CONFIG_LZO 1799 if (lzo_init() != LZO_E_OK) { 1800 error_setg(errp, "failed to initialize the LZO library"); 1801 goto cleanup; 1802 } 1803 #endif 1804 s->flag_compress = DUMP_DH_COMPRESSED_LZO; 1805 break; 1806 1807 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: 1808 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; 1809 break; 1810 1811 default: 1812 s->flag_compress = 0; 1813 } 1814 1815 return; 1816 } 1817 1818 if (dump_has_filter(s)) { 1819 memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length); 1820 } 1821 1822 /* 1823 * calculate phdr_num 1824 * 1825 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow 1826 */ 1827 s->phdr_num = 1; /* PT_NOTE */ 1828 if (s->list.num < UINT16_MAX - 2) { 1829 s->shdr_num = 0; 1830 s->phdr_num += s->list.num; 1831 } else { 1832 /* sh_info of section 0 holds the real number of phdrs */ 1833 s->shdr_num = 1; 1834 1835 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */ 1836 if (s->list.num <= UINT32_MAX - 1) { 1837 s->phdr_num += s->list.num; 1838 } else { 1839 s->phdr_num = UINT32_MAX; 1840 } 1841 } 1842 1843 if (dump_is_64bit(s)) { 1844 s->phdr_offset = sizeof(Elf64_Ehdr); 1845 s->shdr_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num; 1846 s->note_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num; 1847 s->memory_offset = s->note_offset + s->note_size; 1848 } else { 1849 1850 s->phdr_offset = sizeof(Elf32_Ehdr); 1851 s->shdr_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num; 1852 s->note_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num; 1853 s->memory_offset = s->note_offset + s->note_size; 1854 } 1855 1856 return; 1857 1858 cleanup: 1859 dump_cleanup(s); 1860 } 1861 1862 /* this operation might be time consuming. */ 1863 static void dump_process(DumpState *s, Error **errp) 1864 { 1865 ERRP_GUARD(); 1866 DumpQueryResult *result = NULL; 1867 1868 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 1869 #ifdef TARGET_X86_64 1870 create_win_dump(s, errp); 1871 #endif 1872 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1873 create_kdump_vmcore(s, errp); 1874 } else { 1875 create_vmcore(s, errp); 1876 } 1877 1878 /* make sure status is written after written_size updates */ 1879 smp_wmb(); 1880 qatomic_set(&s->status, 1881 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED)); 1882 1883 /* send DUMP_COMPLETED message (unconditionally) */ 1884 result = qmp_query_dump(NULL); 1885 /* should never fail */ 1886 assert(result); 1887 qapi_event_send_dump_completed(result, !!*errp, (*errp ? 1888 error_get_pretty(*errp) : NULL)); 1889 qapi_free_DumpQueryResult(result); 1890 1891 dump_cleanup(s); 1892 } 1893 1894 static void *dump_thread(void *data) 1895 { 1896 DumpState *s = (DumpState *)data; 1897 dump_process(s, NULL); 1898 return NULL; 1899 } 1900 1901 DumpQueryResult *qmp_query_dump(Error **errp) 1902 { 1903 DumpQueryResult *result = g_new(DumpQueryResult, 1); 1904 DumpState *state = &dump_state_global; 1905 result->status = qatomic_read(&state->status); 1906 /* make sure we are reading status and written_size in order */ 1907 smp_rmb(); 1908 result->completed = state->written_size; 1909 result->total = state->total_size; 1910 return result; 1911 } 1912 1913 void qmp_dump_guest_memory(bool paging, const char *file, 1914 bool has_detach, bool detach, 1915 bool has_begin, int64_t begin, bool has_length, 1916 int64_t length, bool has_format, 1917 DumpGuestMemoryFormat format, Error **errp) 1918 { 1919 ERRP_GUARD(); 1920 const char *p; 1921 int fd = -1; 1922 DumpState *s; 1923 bool detach_p = false; 1924 1925 if (runstate_check(RUN_STATE_INMIGRATE)) { 1926 error_setg(errp, "Dump not allowed during incoming migration."); 1927 return; 1928 } 1929 1930 /* if there is a dump in background, we should wait until the dump 1931 * finished */ 1932 if (qemu_system_dump_in_progress()) { 1933 error_setg(errp, "There is a dump in process, please wait."); 1934 return; 1935 } 1936 1937 /* 1938 * kdump-compressed format need the whole memory dumped, so paging or 1939 * filter is not supported here. 1940 */ 1941 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && 1942 (paging || has_begin || has_length)) { 1943 error_setg(errp, "kdump-compressed format doesn't support paging or " 1944 "filter"); 1945 return; 1946 } 1947 if (has_begin && !has_length) { 1948 error_setg(errp, QERR_MISSING_PARAMETER, "length"); 1949 return; 1950 } 1951 if (!has_begin && has_length) { 1952 error_setg(errp, QERR_MISSING_PARAMETER, "begin"); 1953 return; 1954 } 1955 if (has_detach) { 1956 detach_p = detach; 1957 } 1958 1959 /* check whether lzo/snappy is supported */ 1960 #ifndef CONFIG_LZO 1961 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { 1962 error_setg(errp, "kdump-lzo is not available now"); 1963 return; 1964 } 1965 #endif 1966 1967 #ifndef CONFIG_SNAPPY 1968 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { 1969 error_setg(errp, "kdump-snappy is not available now"); 1970 return; 1971 } 1972 #endif 1973 1974 #ifndef TARGET_X86_64 1975 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 1976 error_setg(errp, "Windows dump is only available for x86-64"); 1977 return; 1978 } 1979 #endif 1980 1981 #if !defined(WIN32) 1982 if (strstart(file, "fd:", &p)) { 1983 fd = monitor_get_fd(monitor_cur(), p, errp); 1984 if (fd == -1) { 1985 return; 1986 } 1987 } 1988 #endif 1989 1990 if (strstart(file, "file:", &p)) { 1991 fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); 1992 if (fd < 0) { 1993 error_setg_file_open(errp, errno, p); 1994 return; 1995 } 1996 } 1997 1998 if (fd == -1) { 1999 error_setg(errp, QERR_INVALID_PARAMETER, "protocol"); 2000 return; 2001 } 2002 2003 if (!dump_migration_blocker) { 2004 error_setg(&dump_migration_blocker, 2005 "Live migration disabled: dump-guest-memory in progress"); 2006 } 2007 2008 /* 2009 * Allows even for -only-migratable, but forbid migration during the 2010 * process of dump guest memory. 2011 */ 2012 if (migrate_add_blocker_internal(dump_migration_blocker, errp)) { 2013 /* Remember to release the fd before passing it over to dump state */ 2014 close(fd); 2015 return; 2016 } 2017 2018 s = &dump_state_global; 2019 dump_state_prepare(s); 2020 2021 dump_init(s, fd, has_format, format, paging, has_begin, 2022 begin, length, errp); 2023 if (*errp) { 2024 qatomic_set(&s->status, DUMP_STATUS_FAILED); 2025 return; 2026 } 2027 2028 if (detach_p) { 2029 /* detached dump */ 2030 s->detached = true; 2031 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread, 2032 s, QEMU_THREAD_DETACHED); 2033 } else { 2034 /* sync dump */ 2035 dump_process(s, errp); 2036 } 2037 } 2038 2039 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) 2040 { 2041 DumpGuestMemoryCapability *cap = 2042 g_new0(DumpGuestMemoryCapability, 1); 2043 DumpGuestMemoryFormatList **tail = &cap->formats; 2044 2045 /* elf is always available */ 2046 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF); 2047 2048 /* kdump-zlib is always available */ 2049 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB); 2050 2051 /* add new item if kdump-lzo is available */ 2052 #ifdef CONFIG_LZO 2053 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO); 2054 #endif 2055 2056 /* add new item if kdump-snappy is available */ 2057 #ifdef CONFIG_SNAPPY 2058 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY); 2059 #endif 2060 2061 /* Windows dump is available only if target is x86_64 */ 2062 #ifdef TARGET_X86_64 2063 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP); 2064 #endif 2065 2066 return cap; 2067 } 2068