1 /* 2 * QEMU dump 3 * 4 * Copyright Fujitsu, Corp. 2011, 2012 5 * 6 * Authors: 7 * Wen Congyang <wency@cn.fujitsu.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #include "qemu/osdep.h" 15 #include "qemu-common.h" 16 #include "qemu/cutils.h" 17 #include "elf.h" 18 #include "cpu.h" 19 #include "exec/hwaddr.h" 20 #include "monitor/monitor.h" 21 #include "sysemu/kvm.h" 22 #include "sysemu/dump.h" 23 #include "sysemu/sysemu.h" 24 #include "sysemu/memory_mapping.h" 25 #include "sysemu/cpus.h" 26 #include "qapi/error.h" 27 #include "qapi/qapi-commands-dump.h" 28 #include "qapi/qapi-events-dump.h" 29 #include "qapi/qmp/qerror.h" 30 #include "qemu/error-report.h" 31 #include "hw/misc/vmcoreinfo.h" 32 33 #ifdef TARGET_X86_64 34 #include "win_dump.h" 35 #endif 36 37 #include <zlib.h> 38 #ifdef CONFIG_LZO 39 #include <lzo/lzo1x.h> 40 #endif 41 #ifdef CONFIG_SNAPPY 42 #include <snappy-c.h> 43 #endif 44 #ifndef ELF_MACHINE_UNAME 45 #define ELF_MACHINE_UNAME "Unknown" 46 #endif 47 48 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */ 49 50 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \ 51 ((DIV_ROUND_UP((hdr_size), 4) + \ 52 DIV_ROUND_UP((name_size), 4) + \ 53 DIV_ROUND_UP((desc_size), 4)) * 4) 54 55 uint16_t cpu_to_dump16(DumpState *s, uint16_t val) 56 { 57 if (s->dump_info.d_endian == ELFDATA2LSB) { 58 val = cpu_to_le16(val); 59 } else { 60 val = cpu_to_be16(val); 61 } 62 63 return val; 64 } 65 66 uint32_t cpu_to_dump32(DumpState *s, uint32_t val) 67 { 68 if (s->dump_info.d_endian == ELFDATA2LSB) { 69 val = cpu_to_le32(val); 70 } else { 71 val = cpu_to_be32(val); 72 } 73 74 return val; 75 } 76 77 uint64_t cpu_to_dump64(DumpState *s, uint64_t val) 78 { 79 if (s->dump_info.d_endian == ELFDATA2LSB) { 80 val = cpu_to_le64(val); 81 } else { 82 val = cpu_to_be64(val); 83 } 84 85 return val; 86 } 87 88 static int dump_cleanup(DumpState *s) 89 { 90 guest_phys_blocks_free(&s->guest_phys_blocks); 91 memory_mapping_list_free(&s->list); 92 close(s->fd); 93 g_free(s->guest_note); 94 s->guest_note = NULL; 95 if (s->resume) { 96 if (s->detached) { 97 qemu_mutex_lock_iothread(); 98 } 99 vm_start(); 100 if (s->detached) { 101 qemu_mutex_unlock_iothread(); 102 } 103 } 104 105 return 0; 106 } 107 108 static int fd_write_vmcore(const void *buf, size_t size, void *opaque) 109 { 110 DumpState *s = opaque; 111 size_t written_size; 112 113 written_size = qemu_write_full(s->fd, buf, size); 114 if (written_size != size) { 115 return -errno; 116 } 117 118 return 0; 119 } 120 121 static void write_elf64_header(DumpState *s, Error **errp) 122 { 123 Elf64_Ehdr elf_header; 124 int ret; 125 126 memset(&elf_header, 0, sizeof(Elf64_Ehdr)); 127 memcpy(&elf_header, ELFMAG, SELFMAG); 128 elf_header.e_ident[EI_CLASS] = ELFCLASS64; 129 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; 130 elf_header.e_ident[EI_VERSION] = EV_CURRENT; 131 elf_header.e_type = cpu_to_dump16(s, ET_CORE); 132 elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 133 elf_header.e_version = cpu_to_dump32(s, EV_CURRENT); 134 elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 135 elf_header.e_phoff = cpu_to_dump64(s, sizeof(Elf64_Ehdr)); 136 elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr)); 137 elf_header.e_phnum = cpu_to_dump16(s, s->phdr_num); 138 if (s->have_section) { 139 uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info; 140 141 elf_header.e_shoff = cpu_to_dump64(s, shoff); 142 elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr)); 143 elf_header.e_shnum = cpu_to_dump16(s, 1); 144 } 145 146 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); 147 if (ret < 0) { 148 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 149 } 150 } 151 152 static void write_elf32_header(DumpState *s, Error **errp) 153 { 154 Elf32_Ehdr elf_header; 155 int ret; 156 157 memset(&elf_header, 0, sizeof(Elf32_Ehdr)); 158 memcpy(&elf_header, ELFMAG, SELFMAG); 159 elf_header.e_ident[EI_CLASS] = ELFCLASS32; 160 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; 161 elf_header.e_ident[EI_VERSION] = EV_CURRENT; 162 elf_header.e_type = cpu_to_dump16(s, ET_CORE); 163 elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 164 elf_header.e_version = cpu_to_dump32(s, EV_CURRENT); 165 elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 166 elf_header.e_phoff = cpu_to_dump32(s, sizeof(Elf32_Ehdr)); 167 elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr)); 168 elf_header.e_phnum = cpu_to_dump16(s, s->phdr_num); 169 if (s->have_section) { 170 uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info; 171 172 elf_header.e_shoff = cpu_to_dump32(s, shoff); 173 elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr)); 174 elf_header.e_shnum = cpu_to_dump16(s, 1); 175 } 176 177 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); 178 if (ret < 0) { 179 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 180 } 181 } 182 183 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, 184 int phdr_index, hwaddr offset, 185 hwaddr filesz, Error **errp) 186 { 187 Elf64_Phdr phdr; 188 int ret; 189 190 memset(&phdr, 0, sizeof(Elf64_Phdr)); 191 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 192 phdr.p_offset = cpu_to_dump64(s, offset); 193 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr); 194 phdr.p_filesz = cpu_to_dump64(s, filesz); 195 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length); 196 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 197 198 assert(memory_mapping->length >= filesz); 199 200 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 201 if (ret < 0) { 202 error_setg_errno(errp, -ret, 203 "dump: failed to write program header table"); 204 } 205 } 206 207 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, 208 int phdr_index, hwaddr offset, 209 hwaddr filesz, Error **errp) 210 { 211 Elf32_Phdr phdr; 212 int ret; 213 214 memset(&phdr, 0, sizeof(Elf32_Phdr)); 215 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 216 phdr.p_offset = cpu_to_dump32(s, offset); 217 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr); 218 phdr.p_filesz = cpu_to_dump32(s, filesz); 219 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length); 220 phdr.p_vaddr = 221 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 222 223 assert(memory_mapping->length >= filesz); 224 225 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 226 if (ret < 0) { 227 error_setg_errno(errp, -ret, 228 "dump: failed to write program header table"); 229 } 230 } 231 232 static void write_elf64_note(DumpState *s, Error **errp) 233 { 234 Elf64_Phdr phdr; 235 hwaddr begin = s->memory_offset - s->note_size; 236 int ret; 237 238 memset(&phdr, 0, sizeof(Elf64_Phdr)); 239 phdr.p_type = cpu_to_dump32(s, PT_NOTE); 240 phdr.p_offset = cpu_to_dump64(s, begin); 241 phdr.p_paddr = 0; 242 phdr.p_filesz = cpu_to_dump64(s, s->note_size); 243 phdr.p_memsz = cpu_to_dump64(s, s->note_size); 244 phdr.p_vaddr = 0; 245 246 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 247 if (ret < 0) { 248 error_setg_errno(errp, -ret, 249 "dump: failed to write program header table"); 250 } 251 } 252 253 static inline int cpu_index(CPUState *cpu) 254 { 255 return cpu->cpu_index + 1; 256 } 257 258 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s, 259 Error **errp) 260 { 261 int ret; 262 263 if (s->guest_note) { 264 ret = f(s->guest_note, s->guest_note_size, s); 265 if (ret < 0) { 266 error_setg(errp, "dump: failed to write guest note"); 267 } 268 } 269 } 270 271 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s, 272 Error **errp) 273 { 274 CPUState *cpu; 275 int ret; 276 int id; 277 278 CPU_FOREACH(cpu) { 279 id = cpu_index(cpu); 280 ret = cpu_write_elf64_note(f, cpu, id, s); 281 if (ret < 0) { 282 error_setg(errp, "dump: failed to write elf notes"); 283 return; 284 } 285 } 286 287 CPU_FOREACH(cpu) { 288 ret = cpu_write_elf64_qemunote(f, cpu, s); 289 if (ret < 0) { 290 error_setg(errp, "dump: failed to write CPU status"); 291 return; 292 } 293 } 294 295 write_guest_note(f, s, errp); 296 } 297 298 static void write_elf32_note(DumpState *s, Error **errp) 299 { 300 hwaddr begin = s->memory_offset - s->note_size; 301 Elf32_Phdr phdr; 302 int ret; 303 304 memset(&phdr, 0, sizeof(Elf32_Phdr)); 305 phdr.p_type = cpu_to_dump32(s, PT_NOTE); 306 phdr.p_offset = cpu_to_dump32(s, begin); 307 phdr.p_paddr = 0; 308 phdr.p_filesz = cpu_to_dump32(s, s->note_size); 309 phdr.p_memsz = cpu_to_dump32(s, s->note_size); 310 phdr.p_vaddr = 0; 311 312 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 313 if (ret < 0) { 314 error_setg_errno(errp, -ret, 315 "dump: failed to write program header table"); 316 } 317 } 318 319 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s, 320 Error **errp) 321 { 322 CPUState *cpu; 323 int ret; 324 int id; 325 326 CPU_FOREACH(cpu) { 327 id = cpu_index(cpu); 328 ret = cpu_write_elf32_note(f, cpu, id, s); 329 if (ret < 0) { 330 error_setg(errp, "dump: failed to write elf notes"); 331 return; 332 } 333 } 334 335 CPU_FOREACH(cpu) { 336 ret = cpu_write_elf32_qemunote(f, cpu, s); 337 if (ret < 0) { 338 error_setg(errp, "dump: failed to write CPU status"); 339 return; 340 } 341 } 342 343 write_guest_note(f, s, errp); 344 } 345 346 static void write_elf_section(DumpState *s, int type, Error **errp) 347 { 348 Elf32_Shdr shdr32; 349 Elf64_Shdr shdr64; 350 int shdr_size; 351 void *shdr; 352 int ret; 353 354 if (type == 0) { 355 shdr_size = sizeof(Elf32_Shdr); 356 memset(&shdr32, 0, shdr_size); 357 shdr32.sh_info = cpu_to_dump32(s, s->sh_info); 358 shdr = &shdr32; 359 } else { 360 shdr_size = sizeof(Elf64_Shdr); 361 memset(&shdr64, 0, shdr_size); 362 shdr64.sh_info = cpu_to_dump32(s, s->sh_info); 363 shdr = &shdr64; 364 } 365 366 ret = fd_write_vmcore(&shdr, shdr_size, s); 367 if (ret < 0) { 368 error_setg_errno(errp, -ret, 369 "dump: failed to write section header table"); 370 } 371 } 372 373 static void write_data(DumpState *s, void *buf, int length, Error **errp) 374 { 375 int ret; 376 377 ret = fd_write_vmcore(buf, length, s); 378 if (ret < 0) { 379 error_setg_errno(errp, -ret, "dump: failed to save memory"); 380 } else { 381 s->written_size += length; 382 } 383 } 384 385 /* write the memory to vmcore. 1 page per I/O. */ 386 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, 387 int64_t size, Error **errp) 388 { 389 int64_t i; 390 Error *local_err = NULL; 391 392 for (i = 0; i < size / s->dump_info.page_size; i++) { 393 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 394 s->dump_info.page_size, &local_err); 395 if (local_err) { 396 error_propagate(errp, local_err); 397 return; 398 } 399 } 400 401 if ((size % s->dump_info.page_size) != 0) { 402 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 403 size % s->dump_info.page_size, &local_err); 404 if (local_err) { 405 error_propagate(errp, local_err); 406 return; 407 } 408 } 409 } 410 411 /* get the memory's offset and size in the vmcore */ 412 static void get_offset_range(hwaddr phys_addr, 413 ram_addr_t mapping_length, 414 DumpState *s, 415 hwaddr *p_offset, 416 hwaddr *p_filesz) 417 { 418 GuestPhysBlock *block; 419 hwaddr offset = s->memory_offset; 420 int64_t size_in_block, start; 421 422 /* When the memory is not stored into vmcore, offset will be -1 */ 423 *p_offset = -1; 424 *p_filesz = 0; 425 426 if (s->has_filter) { 427 if (phys_addr < s->begin || phys_addr >= s->begin + s->length) { 428 return; 429 } 430 } 431 432 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 433 if (s->has_filter) { 434 if (block->target_start >= s->begin + s->length || 435 block->target_end <= s->begin) { 436 /* This block is out of the range */ 437 continue; 438 } 439 440 if (s->begin <= block->target_start) { 441 start = block->target_start; 442 } else { 443 start = s->begin; 444 } 445 446 size_in_block = block->target_end - start; 447 if (s->begin + s->length < block->target_end) { 448 size_in_block -= block->target_end - (s->begin + s->length); 449 } 450 } else { 451 start = block->target_start; 452 size_in_block = block->target_end - block->target_start; 453 } 454 455 if (phys_addr >= start && phys_addr < start + size_in_block) { 456 *p_offset = phys_addr - start + offset; 457 458 /* The offset range mapped from the vmcore file must not spill over 459 * the GuestPhysBlock, clamp it. The rest of the mapping will be 460 * zero-filled in memory at load time; see 461 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. 462 */ 463 *p_filesz = phys_addr + mapping_length <= start + size_in_block ? 464 mapping_length : 465 size_in_block - (phys_addr - start); 466 return; 467 } 468 469 offset += size_in_block; 470 } 471 } 472 473 static void write_elf_loads(DumpState *s, Error **errp) 474 { 475 hwaddr offset, filesz; 476 MemoryMapping *memory_mapping; 477 uint32_t phdr_index = 1; 478 uint32_t max_index; 479 Error *local_err = NULL; 480 481 if (s->have_section) { 482 max_index = s->sh_info; 483 } else { 484 max_index = s->phdr_num; 485 } 486 487 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { 488 get_offset_range(memory_mapping->phys_addr, 489 memory_mapping->length, 490 s, &offset, &filesz); 491 if (s->dump_info.d_class == ELFCLASS64) { 492 write_elf64_load(s, memory_mapping, phdr_index++, offset, 493 filesz, &local_err); 494 } else { 495 write_elf32_load(s, memory_mapping, phdr_index++, offset, 496 filesz, &local_err); 497 } 498 499 if (local_err) { 500 error_propagate(errp, local_err); 501 return; 502 } 503 504 if (phdr_index >= max_index) { 505 break; 506 } 507 } 508 } 509 510 /* write elf header, PT_NOTE and elf note to vmcore. */ 511 static void dump_begin(DumpState *s, Error **errp) 512 { 513 Error *local_err = NULL; 514 515 /* 516 * the vmcore's format is: 517 * -------------- 518 * | elf header | 519 * -------------- 520 * | PT_NOTE | 521 * -------------- 522 * | PT_LOAD | 523 * -------------- 524 * | ...... | 525 * -------------- 526 * | PT_LOAD | 527 * -------------- 528 * | sec_hdr | 529 * -------------- 530 * | elf note | 531 * -------------- 532 * | memory | 533 * -------------- 534 * 535 * we only know where the memory is saved after we write elf note into 536 * vmcore. 537 */ 538 539 /* write elf header to vmcore */ 540 if (s->dump_info.d_class == ELFCLASS64) { 541 write_elf64_header(s, &local_err); 542 } else { 543 write_elf32_header(s, &local_err); 544 } 545 if (local_err) { 546 error_propagate(errp, local_err); 547 return; 548 } 549 550 if (s->dump_info.d_class == ELFCLASS64) { 551 /* write PT_NOTE to vmcore */ 552 write_elf64_note(s, &local_err); 553 if (local_err) { 554 error_propagate(errp, local_err); 555 return; 556 } 557 558 /* write all PT_LOAD to vmcore */ 559 write_elf_loads(s, &local_err); 560 if (local_err) { 561 error_propagate(errp, local_err); 562 return; 563 } 564 565 /* write section to vmcore */ 566 if (s->have_section) { 567 write_elf_section(s, 1, &local_err); 568 if (local_err) { 569 error_propagate(errp, local_err); 570 return; 571 } 572 } 573 574 /* write notes to vmcore */ 575 write_elf64_notes(fd_write_vmcore, s, &local_err); 576 if (local_err) { 577 error_propagate(errp, local_err); 578 return; 579 } 580 } else { 581 /* write PT_NOTE to vmcore */ 582 write_elf32_note(s, &local_err); 583 if (local_err) { 584 error_propagate(errp, local_err); 585 return; 586 } 587 588 /* write all PT_LOAD to vmcore */ 589 write_elf_loads(s, &local_err); 590 if (local_err) { 591 error_propagate(errp, local_err); 592 return; 593 } 594 595 /* write section to vmcore */ 596 if (s->have_section) { 597 write_elf_section(s, 0, &local_err); 598 if (local_err) { 599 error_propagate(errp, local_err); 600 return; 601 } 602 } 603 604 /* write notes to vmcore */ 605 write_elf32_notes(fd_write_vmcore, s, &local_err); 606 if (local_err) { 607 error_propagate(errp, local_err); 608 return; 609 } 610 } 611 } 612 613 static int get_next_block(DumpState *s, GuestPhysBlock *block) 614 { 615 while (1) { 616 block = QTAILQ_NEXT(block, next); 617 if (!block) { 618 /* no more block */ 619 return 1; 620 } 621 622 s->start = 0; 623 s->next_block = block; 624 if (s->has_filter) { 625 if (block->target_start >= s->begin + s->length || 626 block->target_end <= s->begin) { 627 /* This block is out of the range */ 628 continue; 629 } 630 631 if (s->begin > block->target_start) { 632 s->start = s->begin - block->target_start; 633 } 634 } 635 636 return 0; 637 } 638 } 639 640 /* write all memory to vmcore */ 641 static void dump_iterate(DumpState *s, Error **errp) 642 { 643 GuestPhysBlock *block; 644 int64_t size; 645 Error *local_err = NULL; 646 647 do { 648 block = s->next_block; 649 650 size = block->target_end - block->target_start; 651 if (s->has_filter) { 652 size -= s->start; 653 if (s->begin + s->length < block->target_end) { 654 size -= block->target_end - (s->begin + s->length); 655 } 656 } 657 write_memory(s, block, s->start, size, &local_err); 658 if (local_err) { 659 error_propagate(errp, local_err); 660 return; 661 } 662 663 } while (!get_next_block(s, block)); 664 } 665 666 static void create_vmcore(DumpState *s, Error **errp) 667 { 668 Error *local_err = NULL; 669 670 dump_begin(s, &local_err); 671 if (local_err) { 672 error_propagate(errp, local_err); 673 return; 674 } 675 676 dump_iterate(s, errp); 677 } 678 679 static int write_start_flat_header(int fd) 680 { 681 MakedumpfileHeader *mh; 682 int ret = 0; 683 684 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); 685 mh = g_malloc0(MAX_SIZE_MDF_HEADER); 686 687 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, 688 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); 689 690 mh->type = cpu_to_be64(TYPE_FLAT_HEADER); 691 mh->version = cpu_to_be64(VERSION_FLAT_HEADER); 692 693 size_t written_size; 694 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER); 695 if (written_size != MAX_SIZE_MDF_HEADER) { 696 ret = -1; 697 } 698 699 g_free(mh); 700 return ret; 701 } 702 703 static int write_end_flat_header(int fd) 704 { 705 MakedumpfileDataHeader mdh; 706 707 mdh.offset = END_FLAG_FLAT_HEADER; 708 mdh.buf_size = END_FLAG_FLAT_HEADER; 709 710 size_t written_size; 711 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 712 if (written_size != sizeof(mdh)) { 713 return -1; 714 } 715 716 return 0; 717 } 718 719 static int write_buffer(int fd, off_t offset, const void *buf, size_t size) 720 { 721 size_t written_size; 722 MakedumpfileDataHeader mdh; 723 724 mdh.offset = cpu_to_be64(offset); 725 mdh.buf_size = cpu_to_be64(size); 726 727 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 728 if (written_size != sizeof(mdh)) { 729 return -1; 730 } 731 732 written_size = qemu_write_full(fd, buf, size); 733 if (written_size != size) { 734 return -1; 735 } 736 737 return 0; 738 } 739 740 static int buf_write_note(const void *buf, size_t size, void *opaque) 741 { 742 DumpState *s = opaque; 743 744 /* note_buf is not enough */ 745 if (s->note_buf_offset + size > s->note_size) { 746 return -1; 747 } 748 749 memcpy(s->note_buf + s->note_buf_offset, buf, size); 750 751 s->note_buf_offset += size; 752 753 return 0; 754 } 755 756 /* 757 * This function retrieves various sizes from an elf header. 758 * 759 * @note has to be a valid ELF note. The return sizes are unmodified 760 * (not padded or rounded up to be multiple of 4). 761 */ 762 static void get_note_sizes(DumpState *s, const void *note, 763 uint64_t *note_head_size, 764 uint64_t *name_size, 765 uint64_t *desc_size) 766 { 767 uint64_t note_head_sz; 768 uint64_t name_sz; 769 uint64_t desc_sz; 770 771 if (s->dump_info.d_class == ELFCLASS64) { 772 const Elf64_Nhdr *hdr = note; 773 note_head_sz = sizeof(Elf64_Nhdr); 774 name_sz = tswap64(hdr->n_namesz); 775 desc_sz = tswap64(hdr->n_descsz); 776 } else { 777 const Elf32_Nhdr *hdr = note; 778 note_head_sz = sizeof(Elf32_Nhdr); 779 name_sz = tswap32(hdr->n_namesz); 780 desc_sz = tswap32(hdr->n_descsz); 781 } 782 783 if (note_head_size) { 784 *note_head_size = note_head_sz; 785 } 786 if (name_size) { 787 *name_size = name_sz; 788 } 789 if (desc_size) { 790 *desc_size = desc_sz; 791 } 792 } 793 794 static bool note_name_equal(DumpState *s, 795 const uint8_t *note, const char *name) 796 { 797 int len = strlen(name) + 1; 798 uint64_t head_size, name_size; 799 800 get_note_sizes(s, note, &head_size, &name_size, NULL); 801 head_size = ROUND_UP(head_size, 4); 802 803 return name_size == len && memcmp(note + head_size, name, len) == 0; 804 } 805 806 /* write common header, sub header and elf note to vmcore */ 807 static void create_header32(DumpState *s, Error **errp) 808 { 809 DiskDumpHeader32 *dh = NULL; 810 KdumpSubHeader32 *kh = NULL; 811 size_t size; 812 uint32_t block_size; 813 uint32_t sub_hdr_size; 814 uint32_t bitmap_blocks; 815 uint32_t status = 0; 816 uint64_t offset_note; 817 Error *local_err = NULL; 818 819 /* write common header, the version of kdump-compressed format is 6th */ 820 size = sizeof(DiskDumpHeader32); 821 dh = g_malloc0(size); 822 823 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 824 dh->header_version = cpu_to_dump32(s, 6); 825 block_size = s->dump_info.page_size; 826 dh->block_size = cpu_to_dump32(s, block_size); 827 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; 828 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 829 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 830 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 831 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 832 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 833 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 834 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 835 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 836 837 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 838 status |= DUMP_DH_COMPRESSED_ZLIB; 839 } 840 #ifdef CONFIG_LZO 841 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 842 status |= DUMP_DH_COMPRESSED_LZO; 843 } 844 #endif 845 #ifdef CONFIG_SNAPPY 846 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 847 status |= DUMP_DH_COMPRESSED_SNAPPY; 848 } 849 #endif 850 dh->status = cpu_to_dump32(s, status); 851 852 if (write_buffer(s->fd, 0, dh, size) < 0) { 853 error_setg(errp, "dump: failed to write disk dump header"); 854 goto out; 855 } 856 857 /* write sub header */ 858 size = sizeof(KdumpSubHeader32); 859 kh = g_malloc0(size); 860 861 /* 64bit max_mapnr_64 */ 862 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 863 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base); 864 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 865 866 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 867 if (s->guest_note && 868 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 869 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 870 871 get_note_sizes(s, s->guest_note, 872 &hsize, &name_size, &size_vmcoreinfo_desc); 873 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 874 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 875 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 876 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc); 877 } 878 879 kh->offset_note = cpu_to_dump64(s, offset_note); 880 kh->note_size = cpu_to_dump32(s, s->note_size); 881 882 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 883 block_size, kh, size) < 0) { 884 error_setg(errp, "dump: failed to write kdump sub header"); 885 goto out; 886 } 887 888 /* write note */ 889 s->note_buf = g_malloc0(s->note_size); 890 s->note_buf_offset = 0; 891 892 /* use s->note_buf to store notes temporarily */ 893 write_elf32_notes(buf_write_note, s, &local_err); 894 if (local_err) { 895 error_propagate(errp, local_err); 896 goto out; 897 } 898 if (write_buffer(s->fd, offset_note, s->note_buf, 899 s->note_size) < 0) { 900 error_setg(errp, "dump: failed to write notes"); 901 goto out; 902 } 903 904 /* get offset of dump_bitmap */ 905 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 906 block_size; 907 908 /* get offset of page */ 909 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 910 block_size; 911 912 out: 913 g_free(dh); 914 g_free(kh); 915 g_free(s->note_buf); 916 } 917 918 /* write common header, sub header and elf note to vmcore */ 919 static void create_header64(DumpState *s, Error **errp) 920 { 921 DiskDumpHeader64 *dh = NULL; 922 KdumpSubHeader64 *kh = NULL; 923 size_t size; 924 uint32_t block_size; 925 uint32_t sub_hdr_size; 926 uint32_t bitmap_blocks; 927 uint32_t status = 0; 928 uint64_t offset_note; 929 Error *local_err = NULL; 930 931 /* write common header, the version of kdump-compressed format is 6th */ 932 size = sizeof(DiskDumpHeader64); 933 dh = g_malloc0(size); 934 935 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 936 dh->header_version = cpu_to_dump32(s, 6); 937 block_size = s->dump_info.page_size; 938 dh->block_size = cpu_to_dump32(s, block_size); 939 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; 940 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 941 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 942 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 943 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 944 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 945 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 946 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 947 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 948 949 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 950 status |= DUMP_DH_COMPRESSED_ZLIB; 951 } 952 #ifdef CONFIG_LZO 953 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 954 status |= DUMP_DH_COMPRESSED_LZO; 955 } 956 #endif 957 #ifdef CONFIG_SNAPPY 958 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 959 status |= DUMP_DH_COMPRESSED_SNAPPY; 960 } 961 #endif 962 dh->status = cpu_to_dump32(s, status); 963 964 if (write_buffer(s->fd, 0, dh, size) < 0) { 965 error_setg(errp, "dump: failed to write disk dump header"); 966 goto out; 967 } 968 969 /* write sub header */ 970 size = sizeof(KdumpSubHeader64); 971 kh = g_malloc0(size); 972 973 /* 64bit max_mapnr_64 */ 974 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 975 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base); 976 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 977 978 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 979 if (s->guest_note && 980 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 981 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 982 983 get_note_sizes(s, s->guest_note, 984 &hsize, &name_size, &size_vmcoreinfo_desc); 985 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 986 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 987 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 988 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc); 989 } 990 991 kh->offset_note = cpu_to_dump64(s, offset_note); 992 kh->note_size = cpu_to_dump64(s, s->note_size); 993 994 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 995 block_size, kh, size) < 0) { 996 error_setg(errp, "dump: failed to write kdump sub header"); 997 goto out; 998 } 999 1000 /* write note */ 1001 s->note_buf = g_malloc0(s->note_size); 1002 s->note_buf_offset = 0; 1003 1004 /* use s->note_buf to store notes temporarily */ 1005 write_elf64_notes(buf_write_note, s, &local_err); 1006 if (local_err) { 1007 error_propagate(errp, local_err); 1008 goto out; 1009 } 1010 1011 if (write_buffer(s->fd, offset_note, s->note_buf, 1012 s->note_size) < 0) { 1013 error_setg(errp, "dump: failed to write notes"); 1014 goto out; 1015 } 1016 1017 /* get offset of dump_bitmap */ 1018 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 1019 block_size; 1020 1021 /* get offset of page */ 1022 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 1023 block_size; 1024 1025 out: 1026 g_free(dh); 1027 g_free(kh); 1028 g_free(s->note_buf); 1029 } 1030 1031 static void write_dump_header(DumpState *s, Error **errp) 1032 { 1033 Error *local_err = NULL; 1034 1035 if (s->dump_info.d_class == ELFCLASS32) { 1036 create_header32(s, &local_err); 1037 } else { 1038 create_header64(s, &local_err); 1039 } 1040 error_propagate(errp, local_err); 1041 } 1042 1043 static size_t dump_bitmap_get_bufsize(DumpState *s) 1044 { 1045 return s->dump_info.page_size; 1046 } 1047 1048 /* 1049 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be 1050 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. 1051 * set_dump_bitmap will always leave the recently set bit un-sync. And setting 1052 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into 1053 * vmcore, ie. synchronizing un-sync bit into vmcore. 1054 */ 1055 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, 1056 uint8_t *buf, DumpState *s) 1057 { 1058 off_t old_offset, new_offset; 1059 off_t offset_bitmap1, offset_bitmap2; 1060 uint32_t byte, bit; 1061 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1062 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1063 1064 /* should not set the previous place */ 1065 assert(last_pfn <= pfn); 1066 1067 /* 1068 * if the bit needed to be set is not cached in buf, flush the data in buf 1069 * to vmcore firstly. 1070 * making new_offset be bigger than old_offset can also sync remained data 1071 * into vmcore. 1072 */ 1073 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf); 1074 new_offset = bitmap_bufsize * (pfn / bits_per_buf); 1075 1076 while (old_offset < new_offset) { 1077 /* calculate the offset and write dump_bitmap */ 1078 offset_bitmap1 = s->offset_dump_bitmap + old_offset; 1079 if (write_buffer(s->fd, offset_bitmap1, buf, 1080 bitmap_bufsize) < 0) { 1081 return -1; 1082 } 1083 1084 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ 1085 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + 1086 old_offset; 1087 if (write_buffer(s->fd, offset_bitmap2, buf, 1088 bitmap_bufsize) < 0) { 1089 return -1; 1090 } 1091 1092 memset(buf, 0, bitmap_bufsize); 1093 old_offset += bitmap_bufsize; 1094 } 1095 1096 /* get the exact place of the bit in the buf, and set it */ 1097 byte = (pfn % bits_per_buf) / CHAR_BIT; 1098 bit = (pfn % bits_per_buf) % CHAR_BIT; 1099 if (value) { 1100 buf[byte] |= 1u << bit; 1101 } else { 1102 buf[byte] &= ~(1u << bit); 1103 } 1104 1105 return 0; 1106 } 1107 1108 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr) 1109 { 1110 int target_page_shift = ctz32(s->dump_info.page_size); 1111 1112 return (addr >> target_page_shift) - ARCH_PFN_OFFSET; 1113 } 1114 1115 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn) 1116 { 1117 int target_page_shift = ctz32(s->dump_info.page_size); 1118 1119 return (pfn + ARCH_PFN_OFFSET) << target_page_shift; 1120 } 1121 1122 /* 1123 * exam every page and return the page frame number and the address of the page. 1124 * bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys 1125 * blocks, so block->target_start and block->target_end should be interal 1126 * multiples of the target page size. 1127 */ 1128 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, 1129 uint8_t **bufptr, DumpState *s) 1130 { 1131 GuestPhysBlock *block = *blockptr; 1132 hwaddr addr, target_page_mask = ~((hwaddr)s->dump_info.page_size - 1); 1133 uint8_t *buf; 1134 1135 /* block == NULL means the start of the iteration */ 1136 if (!block) { 1137 block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1138 *blockptr = block; 1139 assert((block->target_start & ~target_page_mask) == 0); 1140 assert((block->target_end & ~target_page_mask) == 0); 1141 *pfnptr = dump_paddr_to_pfn(s, block->target_start); 1142 if (bufptr) { 1143 *bufptr = block->host_addr; 1144 } 1145 return true; 1146 } 1147 1148 *pfnptr = *pfnptr + 1; 1149 addr = dump_pfn_to_paddr(s, *pfnptr); 1150 1151 if ((addr >= block->target_start) && 1152 (addr + s->dump_info.page_size <= block->target_end)) { 1153 buf = block->host_addr + (addr - block->target_start); 1154 } else { 1155 /* the next page is in the next block */ 1156 block = QTAILQ_NEXT(block, next); 1157 *blockptr = block; 1158 if (!block) { 1159 return false; 1160 } 1161 assert((block->target_start & ~target_page_mask) == 0); 1162 assert((block->target_end & ~target_page_mask) == 0); 1163 *pfnptr = dump_paddr_to_pfn(s, block->target_start); 1164 buf = block->host_addr; 1165 } 1166 1167 if (bufptr) { 1168 *bufptr = buf; 1169 } 1170 1171 return true; 1172 } 1173 1174 static void write_dump_bitmap(DumpState *s, Error **errp) 1175 { 1176 int ret = 0; 1177 uint64_t last_pfn, pfn; 1178 void *dump_bitmap_buf; 1179 size_t num_dumpable; 1180 GuestPhysBlock *block_iter = NULL; 1181 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1182 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1183 1184 /* dump_bitmap_buf is used to store dump_bitmap temporarily */ 1185 dump_bitmap_buf = g_malloc0(bitmap_bufsize); 1186 1187 num_dumpable = 0; 1188 last_pfn = 0; 1189 1190 /* 1191 * exam memory page by page, and set the bit in dump_bitmap corresponded 1192 * to the existing page. 1193 */ 1194 while (get_next_page(&block_iter, &pfn, NULL, s)) { 1195 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); 1196 if (ret < 0) { 1197 error_setg(errp, "dump: failed to set dump_bitmap"); 1198 goto out; 1199 } 1200 1201 last_pfn = pfn; 1202 num_dumpable++; 1203 } 1204 1205 /* 1206 * set_dump_bitmap will always leave the recently set bit un-sync. Here we 1207 * set the remaining bits from last_pfn to the end of the bitmap buffer to 1208 * 0. With those set, the un-sync bit will be synchronized into the vmcore. 1209 */ 1210 if (num_dumpable > 0) { 1211 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false, 1212 dump_bitmap_buf, s); 1213 if (ret < 0) { 1214 error_setg(errp, "dump: failed to sync dump_bitmap"); 1215 goto out; 1216 } 1217 } 1218 1219 /* number of dumpable pages that will be dumped later */ 1220 s->num_dumpable = num_dumpable; 1221 1222 out: 1223 g_free(dump_bitmap_buf); 1224 } 1225 1226 static void prepare_data_cache(DataCache *data_cache, DumpState *s, 1227 off_t offset) 1228 { 1229 data_cache->fd = s->fd; 1230 data_cache->data_size = 0; 1231 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s); 1232 data_cache->buf = g_malloc0(data_cache->buf_size); 1233 data_cache->offset = offset; 1234 } 1235 1236 static int write_cache(DataCache *dc, const void *buf, size_t size, 1237 bool flag_sync) 1238 { 1239 /* 1240 * dc->buf_size should not be less than size, otherwise dc will never be 1241 * enough 1242 */ 1243 assert(size <= dc->buf_size); 1244 1245 /* 1246 * if flag_sync is set, synchronize data in dc->buf into vmcore. 1247 * otherwise check if the space is enough for caching data in buf, if not, 1248 * write the data in dc->buf to dc->fd and reset dc->buf 1249 */ 1250 if ((!flag_sync && dc->data_size + size > dc->buf_size) || 1251 (flag_sync && dc->data_size > 0)) { 1252 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) { 1253 return -1; 1254 } 1255 1256 dc->offset += dc->data_size; 1257 dc->data_size = 0; 1258 } 1259 1260 if (!flag_sync) { 1261 memcpy(dc->buf + dc->data_size, buf, size); 1262 dc->data_size += size; 1263 } 1264 1265 return 0; 1266 } 1267 1268 static void free_data_cache(DataCache *data_cache) 1269 { 1270 g_free(data_cache->buf); 1271 } 1272 1273 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) 1274 { 1275 switch (flag_compress) { 1276 case DUMP_DH_COMPRESSED_ZLIB: 1277 return compressBound(page_size); 1278 1279 case DUMP_DH_COMPRESSED_LZO: 1280 /* 1281 * LZO will expand incompressible data by a little amount. Please check 1282 * the following URL to see the expansion calculation: 1283 * http://www.oberhumer.com/opensource/lzo/lzofaq.php 1284 */ 1285 return page_size + page_size / 16 + 64 + 3; 1286 1287 #ifdef CONFIG_SNAPPY 1288 case DUMP_DH_COMPRESSED_SNAPPY: 1289 return snappy_max_compressed_length(page_size); 1290 #endif 1291 } 1292 return 0; 1293 } 1294 1295 /* 1296 * check if the page is all 0 1297 */ 1298 static inline bool is_zero_page(const uint8_t *buf, size_t page_size) 1299 { 1300 return buffer_is_zero(buf, page_size); 1301 } 1302 1303 static void write_dump_pages(DumpState *s, Error **errp) 1304 { 1305 int ret = 0; 1306 DataCache page_desc, page_data; 1307 size_t len_buf_out, size_out; 1308 #ifdef CONFIG_LZO 1309 lzo_bytep wrkmem = NULL; 1310 #endif 1311 uint8_t *buf_out = NULL; 1312 off_t offset_desc, offset_data; 1313 PageDescriptor pd, pd_zero; 1314 uint8_t *buf; 1315 GuestPhysBlock *block_iter = NULL; 1316 uint64_t pfn_iter; 1317 1318 /* get offset of page_desc and page_data in dump file */ 1319 offset_desc = s->offset_page; 1320 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; 1321 1322 prepare_data_cache(&page_desc, s, offset_desc); 1323 prepare_data_cache(&page_data, s, offset_data); 1324 1325 /* prepare buffer to store compressed data */ 1326 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress); 1327 assert(len_buf_out != 0); 1328 1329 #ifdef CONFIG_LZO 1330 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); 1331 #endif 1332 1333 buf_out = g_malloc(len_buf_out); 1334 1335 /* 1336 * init zero page's page_desc and page_data, because every zero page 1337 * uses the same page_data 1338 */ 1339 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size); 1340 pd_zero.flags = cpu_to_dump32(s, 0); 1341 pd_zero.offset = cpu_to_dump64(s, offset_data); 1342 pd_zero.page_flags = cpu_to_dump64(s, 0); 1343 buf = g_malloc0(s->dump_info.page_size); 1344 ret = write_cache(&page_data, buf, s->dump_info.page_size, false); 1345 g_free(buf); 1346 if (ret < 0) { 1347 error_setg(errp, "dump: failed to write page data (zero page)"); 1348 goto out; 1349 } 1350 1351 offset_data += s->dump_info.page_size; 1352 1353 /* 1354 * dump memory to vmcore page by page. zero page will all be resided in the 1355 * first page of page section 1356 */ 1357 while (get_next_page(&block_iter, &pfn_iter, &buf, s)) { 1358 /* check zero page */ 1359 if (is_zero_page(buf, s->dump_info.page_size)) { 1360 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), 1361 false); 1362 if (ret < 0) { 1363 error_setg(errp, "dump: failed to write page desc"); 1364 goto out; 1365 } 1366 } else { 1367 /* 1368 * not zero page, then: 1369 * 1. compress the page 1370 * 2. write the compressed page into the cache of page_data 1371 * 3. get page desc of the compressed page and write it into the 1372 * cache of page_desc 1373 * 1374 * only one compression format will be used here, for 1375 * s->flag_compress is set. But when compression fails to work, 1376 * we fall back to save in plaintext. 1377 */ 1378 size_out = len_buf_out; 1379 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && 1380 (compress2(buf_out, (uLongf *)&size_out, buf, 1381 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) && 1382 (size_out < s->dump_info.page_size)) { 1383 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB); 1384 pd.size = cpu_to_dump32(s, size_out); 1385 1386 ret = write_cache(&page_data, buf_out, size_out, false); 1387 if (ret < 0) { 1388 error_setg(errp, "dump: failed to write page data"); 1389 goto out; 1390 } 1391 #ifdef CONFIG_LZO 1392 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && 1393 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out, 1394 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && 1395 (size_out < s->dump_info.page_size)) { 1396 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO); 1397 pd.size = cpu_to_dump32(s, size_out); 1398 1399 ret = write_cache(&page_data, buf_out, size_out, false); 1400 if (ret < 0) { 1401 error_setg(errp, "dump: failed to write page data"); 1402 goto out; 1403 } 1404 #endif 1405 #ifdef CONFIG_SNAPPY 1406 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && 1407 (snappy_compress((char *)buf, s->dump_info.page_size, 1408 (char *)buf_out, &size_out) == SNAPPY_OK) && 1409 (size_out < s->dump_info.page_size)) { 1410 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY); 1411 pd.size = cpu_to_dump32(s, size_out); 1412 1413 ret = write_cache(&page_data, buf_out, size_out, false); 1414 if (ret < 0) { 1415 error_setg(errp, "dump: failed to write page data"); 1416 goto out; 1417 } 1418 #endif 1419 } else { 1420 /* 1421 * fall back to save in plaintext, size_out should be 1422 * assigned the target's page size 1423 */ 1424 pd.flags = cpu_to_dump32(s, 0); 1425 size_out = s->dump_info.page_size; 1426 pd.size = cpu_to_dump32(s, size_out); 1427 1428 ret = write_cache(&page_data, buf, 1429 s->dump_info.page_size, false); 1430 if (ret < 0) { 1431 error_setg(errp, "dump: failed to write page data"); 1432 goto out; 1433 } 1434 } 1435 1436 /* get and write page desc here */ 1437 pd.page_flags = cpu_to_dump64(s, 0); 1438 pd.offset = cpu_to_dump64(s, offset_data); 1439 offset_data += size_out; 1440 1441 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); 1442 if (ret < 0) { 1443 error_setg(errp, "dump: failed to write page desc"); 1444 goto out; 1445 } 1446 } 1447 s->written_size += s->dump_info.page_size; 1448 } 1449 1450 ret = write_cache(&page_desc, NULL, 0, true); 1451 if (ret < 0) { 1452 error_setg(errp, "dump: failed to sync cache for page_desc"); 1453 goto out; 1454 } 1455 ret = write_cache(&page_data, NULL, 0, true); 1456 if (ret < 0) { 1457 error_setg(errp, "dump: failed to sync cache for page_data"); 1458 goto out; 1459 } 1460 1461 out: 1462 free_data_cache(&page_desc); 1463 free_data_cache(&page_data); 1464 1465 #ifdef CONFIG_LZO 1466 g_free(wrkmem); 1467 #endif 1468 1469 g_free(buf_out); 1470 } 1471 1472 static void create_kdump_vmcore(DumpState *s, Error **errp) 1473 { 1474 int ret; 1475 Error *local_err = NULL; 1476 1477 /* 1478 * the kdump-compressed format is: 1479 * File offset 1480 * +------------------------------------------+ 0x0 1481 * | main header (struct disk_dump_header) | 1482 * |------------------------------------------+ block 1 1483 * | sub header (struct kdump_sub_header) | 1484 * |------------------------------------------+ block 2 1485 * | 1st-dump_bitmap | 1486 * |------------------------------------------+ block 2 + X blocks 1487 * | 2nd-dump_bitmap | (aligned by block) 1488 * |------------------------------------------+ block 2 + 2 * X blocks 1489 * | page desc for pfn 0 (struct page_desc) | (aligned by block) 1490 * | page desc for pfn 1 (struct page_desc) | 1491 * | : | 1492 * |------------------------------------------| (not aligned by block) 1493 * | page data (pfn 0) | 1494 * | page data (pfn 1) | 1495 * | : | 1496 * +------------------------------------------+ 1497 */ 1498 1499 ret = write_start_flat_header(s->fd); 1500 if (ret < 0) { 1501 error_setg(errp, "dump: failed to write start flat header"); 1502 return; 1503 } 1504 1505 write_dump_header(s, &local_err); 1506 if (local_err) { 1507 error_propagate(errp, local_err); 1508 return; 1509 } 1510 1511 write_dump_bitmap(s, &local_err); 1512 if (local_err) { 1513 error_propagate(errp, local_err); 1514 return; 1515 } 1516 1517 write_dump_pages(s, &local_err); 1518 if (local_err) { 1519 error_propagate(errp, local_err); 1520 return; 1521 } 1522 1523 ret = write_end_flat_header(s->fd); 1524 if (ret < 0) { 1525 error_setg(errp, "dump: failed to write end flat header"); 1526 return; 1527 } 1528 } 1529 1530 static ram_addr_t get_start_block(DumpState *s) 1531 { 1532 GuestPhysBlock *block; 1533 1534 if (!s->has_filter) { 1535 s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1536 return 0; 1537 } 1538 1539 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1540 if (block->target_start >= s->begin + s->length || 1541 block->target_end <= s->begin) { 1542 /* This block is out of the range */ 1543 continue; 1544 } 1545 1546 s->next_block = block; 1547 if (s->begin > block->target_start) { 1548 s->start = s->begin - block->target_start; 1549 } else { 1550 s->start = 0; 1551 } 1552 return s->start; 1553 } 1554 1555 return -1; 1556 } 1557 1558 static void get_max_mapnr(DumpState *s) 1559 { 1560 GuestPhysBlock *last_block; 1561 1562 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head); 1563 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end); 1564 } 1565 1566 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE }; 1567 1568 static void dump_state_prepare(DumpState *s) 1569 { 1570 /* zero the struct, setting status to active */ 1571 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE }; 1572 } 1573 1574 bool dump_in_progress(void) 1575 { 1576 DumpState *state = &dump_state_global; 1577 return (atomic_read(&state->status) == DUMP_STATUS_ACTIVE); 1578 } 1579 1580 /* calculate total size of memory to be dumped (taking filter into 1581 * acoount.) */ 1582 static int64_t dump_calculate_size(DumpState *s) 1583 { 1584 GuestPhysBlock *block; 1585 int64_t size = 0, total = 0, left = 0, right = 0; 1586 1587 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1588 if (s->has_filter) { 1589 /* calculate the overlapped region. */ 1590 left = MAX(s->begin, block->target_start); 1591 right = MIN(s->begin + s->length, block->target_end); 1592 size = right - left; 1593 size = size > 0 ? size : 0; 1594 } else { 1595 /* count the whole region in */ 1596 size = (block->target_end - block->target_start); 1597 } 1598 total += size; 1599 } 1600 1601 return total; 1602 } 1603 1604 static void vmcoreinfo_update_phys_base(DumpState *s) 1605 { 1606 uint64_t size, note_head_size, name_size, phys_base; 1607 char **lines; 1608 uint8_t *vmci; 1609 size_t i; 1610 1611 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1612 return; 1613 } 1614 1615 get_note_sizes(s, s->guest_note, ¬e_head_size, &name_size, &size); 1616 note_head_size = ROUND_UP(note_head_size, 4); 1617 1618 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4); 1619 *(vmci + size) = '\0'; 1620 1621 lines = g_strsplit((char *)vmci, "\n", -1); 1622 for (i = 0; lines[i]; i++) { 1623 const char *prefix = NULL; 1624 1625 if (s->dump_info.d_machine == EM_X86_64) { 1626 prefix = "NUMBER(phys_base)="; 1627 } else if (s->dump_info.d_machine == EM_AARCH64) { 1628 prefix = "NUMBER(PHYS_OFFSET)="; 1629 } 1630 1631 if (prefix && g_str_has_prefix(lines[i], prefix)) { 1632 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16, 1633 &phys_base) < 0) { 1634 warn_report("Failed to read %s", prefix); 1635 } else { 1636 s->dump_info.phys_base = phys_base; 1637 } 1638 break; 1639 } 1640 } 1641 1642 g_strfreev(lines); 1643 } 1644 1645 static void dump_init(DumpState *s, int fd, bool has_format, 1646 DumpGuestMemoryFormat format, bool paging, bool has_filter, 1647 int64_t begin, int64_t length, Error **errp) 1648 { 1649 VMCoreInfoState *vmci = vmcoreinfo_find(); 1650 CPUState *cpu; 1651 int nr_cpus; 1652 Error *err = NULL; 1653 int ret; 1654 1655 s->has_format = has_format; 1656 s->format = format; 1657 s->written_size = 0; 1658 1659 /* kdump-compressed is conflict with paging and filter */ 1660 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1661 assert(!paging && !has_filter); 1662 } 1663 1664 if (runstate_is_running()) { 1665 vm_stop(RUN_STATE_SAVE_VM); 1666 s->resume = true; 1667 } else { 1668 s->resume = false; 1669 } 1670 1671 /* If we use KVM, we should synchronize the registers before we get dump 1672 * info or physmap info. 1673 */ 1674 cpu_synchronize_all_states(); 1675 nr_cpus = 0; 1676 CPU_FOREACH(cpu) { 1677 nr_cpus++; 1678 } 1679 1680 s->fd = fd; 1681 s->has_filter = has_filter; 1682 s->begin = begin; 1683 s->length = length; 1684 1685 memory_mapping_list_init(&s->list); 1686 1687 guest_phys_blocks_init(&s->guest_phys_blocks); 1688 guest_phys_blocks_append(&s->guest_phys_blocks); 1689 s->total_size = dump_calculate_size(s); 1690 #ifdef DEBUG_DUMP_GUEST_MEMORY 1691 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size); 1692 #endif 1693 1694 /* it does not make sense to dump non-existent memory */ 1695 if (!s->total_size) { 1696 error_setg(errp, "dump: no guest memory to dump"); 1697 goto cleanup; 1698 } 1699 1700 s->start = get_start_block(s); 1701 if (s->start == -1) { 1702 error_setg(errp, QERR_INVALID_PARAMETER, "begin"); 1703 goto cleanup; 1704 } 1705 1706 /* get dump info: endian, class and architecture. 1707 * If the target architecture is not supported, cpu_get_dump_info() will 1708 * return -1. 1709 */ 1710 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); 1711 if (ret < 0) { 1712 error_setg(errp, QERR_UNSUPPORTED); 1713 goto cleanup; 1714 } 1715 1716 if (!s->dump_info.page_size) { 1717 s->dump_info.page_size = TARGET_PAGE_SIZE; 1718 } 1719 1720 s->note_size = cpu_get_note_size(s->dump_info.d_class, 1721 s->dump_info.d_machine, nr_cpus); 1722 if (s->note_size < 0) { 1723 error_setg(errp, QERR_UNSUPPORTED); 1724 goto cleanup; 1725 } 1726 1727 /* 1728 * The goal of this block is to (a) update the previously guessed 1729 * phys_base, (b) copy the guest note out of the guest. 1730 * Failure to do so is not fatal for dumping. 1731 */ 1732 if (vmci) { 1733 uint64_t addr, note_head_size, name_size, desc_size; 1734 uint32_t size; 1735 uint16_t format; 1736 1737 note_head_size = s->dump_info.d_class == ELFCLASS32 ? 1738 sizeof(Elf32_Nhdr) : sizeof(Elf64_Nhdr); 1739 1740 format = le16_to_cpu(vmci->vmcoreinfo.guest_format); 1741 size = le32_to_cpu(vmci->vmcoreinfo.size); 1742 addr = le64_to_cpu(vmci->vmcoreinfo.paddr); 1743 if (!vmci->has_vmcoreinfo) { 1744 warn_report("guest note is not present"); 1745 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) { 1746 warn_report("guest note size is invalid: %" PRIu32, size); 1747 } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) { 1748 warn_report("guest note format is unsupported: %" PRIu16, format); 1749 } else { 1750 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */ 1751 cpu_physical_memory_read(addr, s->guest_note, size); 1752 1753 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size); 1754 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size, 1755 desc_size); 1756 if (name_size > MAX_GUEST_NOTE_SIZE || 1757 desc_size > MAX_GUEST_NOTE_SIZE || 1758 s->guest_note_size > size) { 1759 warn_report("Invalid guest note header"); 1760 g_free(s->guest_note); 1761 s->guest_note = NULL; 1762 } else { 1763 vmcoreinfo_update_phys_base(s); 1764 s->note_size += s->guest_note_size; 1765 } 1766 } 1767 } 1768 1769 /* get memory mapping */ 1770 if (paging) { 1771 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err); 1772 if (err != NULL) { 1773 error_propagate(errp, err); 1774 goto cleanup; 1775 } 1776 } else { 1777 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); 1778 } 1779 1780 s->nr_cpus = nr_cpus; 1781 1782 get_max_mapnr(s); 1783 1784 uint64_t tmp; 1785 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), 1786 s->dump_info.page_size); 1787 s->len_dump_bitmap = tmp * s->dump_info.page_size; 1788 1789 /* init for kdump-compressed format */ 1790 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1791 switch (format) { 1792 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: 1793 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; 1794 break; 1795 1796 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: 1797 #ifdef CONFIG_LZO 1798 if (lzo_init() != LZO_E_OK) { 1799 error_setg(errp, "failed to initialize the LZO library"); 1800 goto cleanup; 1801 } 1802 #endif 1803 s->flag_compress = DUMP_DH_COMPRESSED_LZO; 1804 break; 1805 1806 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: 1807 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; 1808 break; 1809 1810 default: 1811 s->flag_compress = 0; 1812 } 1813 1814 return; 1815 } 1816 1817 if (s->has_filter) { 1818 memory_mapping_filter(&s->list, s->begin, s->length); 1819 } 1820 1821 /* 1822 * calculate phdr_num 1823 * 1824 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow 1825 */ 1826 s->phdr_num = 1; /* PT_NOTE */ 1827 if (s->list.num < UINT16_MAX - 2) { 1828 s->phdr_num += s->list.num; 1829 s->have_section = false; 1830 } else { 1831 s->have_section = true; 1832 s->phdr_num = PN_XNUM; 1833 s->sh_info = 1; /* PT_NOTE */ 1834 1835 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */ 1836 if (s->list.num <= UINT32_MAX - 1) { 1837 s->sh_info += s->list.num; 1838 } else { 1839 s->sh_info = UINT32_MAX; 1840 } 1841 } 1842 1843 if (s->dump_info.d_class == ELFCLASS64) { 1844 if (s->have_section) { 1845 s->memory_offset = sizeof(Elf64_Ehdr) + 1846 sizeof(Elf64_Phdr) * s->sh_info + 1847 sizeof(Elf64_Shdr) + s->note_size; 1848 } else { 1849 s->memory_offset = sizeof(Elf64_Ehdr) + 1850 sizeof(Elf64_Phdr) * s->phdr_num + s->note_size; 1851 } 1852 } else { 1853 if (s->have_section) { 1854 s->memory_offset = sizeof(Elf32_Ehdr) + 1855 sizeof(Elf32_Phdr) * s->sh_info + 1856 sizeof(Elf32_Shdr) + s->note_size; 1857 } else { 1858 s->memory_offset = sizeof(Elf32_Ehdr) + 1859 sizeof(Elf32_Phdr) * s->phdr_num + s->note_size; 1860 } 1861 } 1862 1863 return; 1864 1865 cleanup: 1866 dump_cleanup(s); 1867 } 1868 1869 /* this operation might be time consuming. */ 1870 static void dump_process(DumpState *s, Error **errp) 1871 { 1872 Error *local_err = NULL; 1873 DumpQueryResult *result = NULL; 1874 1875 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 1876 #ifdef TARGET_X86_64 1877 create_win_dump(s, &local_err); 1878 #endif 1879 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1880 create_kdump_vmcore(s, &local_err); 1881 } else { 1882 create_vmcore(s, &local_err); 1883 } 1884 1885 /* make sure status is written after written_size updates */ 1886 smp_wmb(); 1887 atomic_set(&s->status, 1888 (local_err ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED)); 1889 1890 /* send DUMP_COMPLETED message (unconditionally) */ 1891 result = qmp_query_dump(NULL); 1892 /* should never fail */ 1893 assert(result); 1894 qapi_event_send_dump_completed(result, !!local_err, (local_err ? \ 1895 error_get_pretty(local_err) : NULL)); 1896 qapi_free_DumpQueryResult(result); 1897 1898 error_propagate(errp, local_err); 1899 dump_cleanup(s); 1900 } 1901 1902 static void *dump_thread(void *data) 1903 { 1904 DumpState *s = (DumpState *)data; 1905 dump_process(s, NULL); 1906 return NULL; 1907 } 1908 1909 DumpQueryResult *qmp_query_dump(Error **errp) 1910 { 1911 DumpQueryResult *result = g_new(DumpQueryResult, 1); 1912 DumpState *state = &dump_state_global; 1913 result->status = atomic_read(&state->status); 1914 /* make sure we are reading status and written_size in order */ 1915 smp_rmb(); 1916 result->completed = state->written_size; 1917 result->total = state->total_size; 1918 return result; 1919 } 1920 1921 void qmp_dump_guest_memory(bool paging, const char *file, 1922 bool has_detach, bool detach, 1923 bool has_begin, int64_t begin, bool has_length, 1924 int64_t length, bool has_format, 1925 DumpGuestMemoryFormat format, Error **errp) 1926 { 1927 const char *p; 1928 int fd = -1; 1929 DumpState *s; 1930 Error *local_err = NULL; 1931 bool detach_p = false; 1932 1933 if (runstate_check(RUN_STATE_INMIGRATE)) { 1934 error_setg(errp, "Dump not allowed during incoming migration."); 1935 return; 1936 } 1937 1938 /* if there is a dump in background, we should wait until the dump 1939 * finished */ 1940 if (dump_in_progress()) { 1941 error_setg(errp, "There is a dump in process, please wait."); 1942 return; 1943 } 1944 1945 /* 1946 * kdump-compressed format need the whole memory dumped, so paging or 1947 * filter is not supported here. 1948 */ 1949 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && 1950 (paging || has_begin || has_length)) { 1951 error_setg(errp, "kdump-compressed format doesn't support paging or " 1952 "filter"); 1953 return; 1954 } 1955 if (has_begin && !has_length) { 1956 error_setg(errp, QERR_MISSING_PARAMETER, "length"); 1957 return; 1958 } 1959 if (!has_begin && has_length) { 1960 error_setg(errp, QERR_MISSING_PARAMETER, "begin"); 1961 return; 1962 } 1963 if (has_detach) { 1964 detach_p = detach; 1965 } 1966 1967 /* check whether lzo/snappy is supported */ 1968 #ifndef CONFIG_LZO 1969 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { 1970 error_setg(errp, "kdump-lzo is not available now"); 1971 return; 1972 } 1973 #endif 1974 1975 #ifndef CONFIG_SNAPPY 1976 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { 1977 error_setg(errp, "kdump-snappy is not available now"); 1978 return; 1979 } 1980 #endif 1981 1982 #ifndef TARGET_X86_64 1983 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 1984 error_setg(errp, "Windows dump is only available for x86-64"); 1985 return; 1986 } 1987 #endif 1988 1989 #if !defined(WIN32) 1990 if (strstart(file, "fd:", &p)) { 1991 fd = monitor_get_fd(cur_mon, p, errp); 1992 if (fd == -1) { 1993 return; 1994 } 1995 } 1996 #endif 1997 1998 if (strstart(file, "file:", &p)) { 1999 fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); 2000 if (fd < 0) { 2001 error_setg_file_open(errp, errno, p); 2002 return; 2003 } 2004 } 2005 2006 if (fd == -1) { 2007 error_setg(errp, QERR_INVALID_PARAMETER, "protocol"); 2008 return; 2009 } 2010 2011 s = &dump_state_global; 2012 dump_state_prepare(s); 2013 2014 dump_init(s, fd, has_format, format, paging, has_begin, 2015 begin, length, &local_err); 2016 if (local_err) { 2017 error_propagate(errp, local_err); 2018 atomic_set(&s->status, DUMP_STATUS_FAILED); 2019 return; 2020 } 2021 2022 if (detach_p) { 2023 /* detached dump */ 2024 s->detached = true; 2025 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread, 2026 s, QEMU_THREAD_DETACHED); 2027 } else { 2028 /* sync dump */ 2029 dump_process(s, errp); 2030 } 2031 } 2032 2033 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) 2034 { 2035 DumpGuestMemoryFormatList *item; 2036 DumpGuestMemoryCapability *cap = 2037 g_malloc0(sizeof(DumpGuestMemoryCapability)); 2038 2039 /* elf is always available */ 2040 item = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2041 cap->formats = item; 2042 item->value = DUMP_GUEST_MEMORY_FORMAT_ELF; 2043 2044 /* kdump-zlib is always available */ 2045 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2046 item = item->next; 2047 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB; 2048 2049 /* add new item if kdump-lzo is available */ 2050 #ifdef CONFIG_LZO 2051 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2052 item = item->next; 2053 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO; 2054 #endif 2055 2056 /* add new item if kdump-snappy is available */ 2057 #ifdef CONFIG_SNAPPY 2058 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2059 item = item->next; 2060 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY; 2061 #endif 2062 2063 /* Windows dump is available only if target is x86_64 */ 2064 #ifdef TARGET_X86_64 2065 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2066 item = item->next; 2067 item->value = DUMP_GUEST_MEMORY_FORMAT_WIN_DMP; 2068 #endif 2069 2070 return cap; 2071 } 2072