xref: /openbmc/qemu/dump/dump.c (revision 5bfb75f15297a91161f720f997792dd9abc05dea)
1  /*
2   * QEMU dump
3   *
4   * Copyright Fujitsu, Corp. 2011, 2012
5   *
6   * Authors:
7   *     Wen Congyang <wency@cn.fujitsu.com>
8   *
9   * This work is licensed under the terms of the GNU GPL, version 2 or later.
10   * See the COPYING file in the top-level directory.
11   *
12   */
13  
14  #include "qemu/osdep.h"
15  #include "qemu/cutils.h"
16  #include "elf.h"
17  #include "qemu/bswap.h"
18  #include "exec/target_page.h"
19  #include "monitor/monitor.h"
20  #include "sysemu/dump.h"
21  #include "sysemu/runstate.h"
22  #include "sysemu/cpus.h"
23  #include "qapi/error.h"
24  #include "qapi/qapi-commands-dump.h"
25  #include "qapi/qapi-events-dump.h"
26  #include "qapi/qmp/qerror.h"
27  #include "qemu/error-report.h"
28  #include "qemu/main-loop.h"
29  #include "hw/misc/vmcoreinfo.h"
30  #include "migration/blocker.h"
31  #include "hw/core/cpu.h"
32  #include "win_dump.h"
33  
34  #include <zlib.h>
35  #ifdef CONFIG_LZO
36  #include <lzo/lzo1x.h>
37  #endif
38  #ifdef CONFIG_SNAPPY
39  #include <snappy-c.h>
40  #endif
41  #ifndef ELF_MACHINE_UNAME
42  #define ELF_MACHINE_UNAME "Unknown"
43  #endif
44  
45  #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
46  
47  static Error *dump_migration_blocker;
48  
49  #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size)   \
50      ((DIV_ROUND_UP((hdr_size), 4) +                     \
51        DIV_ROUND_UP((name_size), 4) +                    \
52        DIV_ROUND_UP((desc_size), 4)) * 4)
53  
54  static inline bool dump_is_64bit(DumpState *s)
55  {
56      return s->dump_info.d_class == ELFCLASS64;
57  }
58  
59  static inline bool dump_has_filter(DumpState *s)
60  {
61      return s->filter_area_length > 0;
62  }
63  
64  uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
65  {
66      if (s->dump_info.d_endian == ELFDATA2LSB) {
67          val = cpu_to_le16(val);
68      } else {
69          val = cpu_to_be16(val);
70      }
71  
72      return val;
73  }
74  
75  uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
76  {
77      if (s->dump_info.d_endian == ELFDATA2LSB) {
78          val = cpu_to_le32(val);
79      } else {
80          val = cpu_to_be32(val);
81      }
82  
83      return val;
84  }
85  
86  uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
87  {
88      if (s->dump_info.d_endian == ELFDATA2LSB) {
89          val = cpu_to_le64(val);
90      } else {
91          val = cpu_to_be64(val);
92      }
93  
94      return val;
95  }
96  
97  static int dump_cleanup(DumpState *s)
98  {
99      if (s->dump_info.arch_cleanup_fn) {
100          s->dump_info.arch_cleanup_fn(s);
101      }
102  
103      guest_phys_blocks_free(&s->guest_phys_blocks);
104      memory_mapping_list_free(&s->list);
105      close(s->fd);
106      g_free(s->guest_note);
107      g_clear_pointer(&s->string_table_buf, g_array_unref);
108      s->guest_note = NULL;
109      if (s->resume) {
110          if (s->detached) {
111              bql_lock();
112          }
113          vm_start();
114          if (s->detached) {
115              bql_unlock();
116          }
117      }
118      migrate_del_blocker(&dump_migration_blocker);
119  
120      return 0;
121  }
122  
123  static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
124  {
125      DumpState *s = opaque;
126      size_t written_size;
127  
128      written_size = qemu_write_full(s->fd, buf, size);
129      if (written_size != size) {
130          return -errno;
131      }
132  
133      return 0;
134  }
135  
136  static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
137  {
138      /*
139       * phnum in the elf header is 16 bit, if we have more segments we
140       * set phnum to PN_XNUM and write the real number of segments to a
141       * special section.
142       */
143      uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
144  
145      memset(elf_header, 0, sizeof(Elf64_Ehdr));
146      memcpy(elf_header, ELFMAG, SELFMAG);
147      elf_header->e_ident[EI_CLASS] = ELFCLASS64;
148      elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
149      elf_header->e_ident[EI_VERSION] = EV_CURRENT;
150      elf_header->e_type = cpu_to_dump16(s, ET_CORE);
151      elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
152      elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
153      elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
154      elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
155      elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
156      elf_header->e_phnum = cpu_to_dump16(s, phnum);
157      elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
158      elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
159      elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
160      elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
161  }
162  
163  static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
164  {
165      /*
166       * phnum in the elf header is 16 bit, if we have more segments we
167       * set phnum to PN_XNUM and write the real number of segments to a
168       * special section.
169       */
170      uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
171  
172      memset(elf_header, 0, sizeof(Elf32_Ehdr));
173      memcpy(elf_header, ELFMAG, SELFMAG);
174      elf_header->e_ident[EI_CLASS] = ELFCLASS32;
175      elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
176      elf_header->e_ident[EI_VERSION] = EV_CURRENT;
177      elf_header->e_type = cpu_to_dump16(s, ET_CORE);
178      elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
179      elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
180      elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
181      elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
182      elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
183      elf_header->e_phnum = cpu_to_dump16(s, phnum);
184      elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
185      elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
186      elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
187      elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
188  }
189  
190  static void write_elf_header(DumpState *s, Error **errp)
191  {
192      Elf32_Ehdr elf32_header;
193      Elf64_Ehdr elf64_header;
194      size_t header_size;
195      void *header_ptr;
196      int ret;
197  
198      /* The NULL header and the shstrtab are always defined */
199      assert(s->shdr_num >= 2);
200      if (dump_is_64bit(s)) {
201          prepare_elf64_header(s, &elf64_header);
202          header_size = sizeof(elf64_header);
203          header_ptr = &elf64_header;
204      } else {
205          prepare_elf32_header(s, &elf32_header);
206          header_size = sizeof(elf32_header);
207          header_ptr = &elf32_header;
208      }
209  
210      ret = fd_write_vmcore(header_ptr, header_size, s);
211      if (ret < 0) {
212          error_setg_errno(errp, -ret, "dump: failed to write elf header");
213      }
214  }
215  
216  static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
217                               int phdr_index, hwaddr offset,
218                               hwaddr filesz, Error **errp)
219  {
220      Elf64_Phdr phdr;
221      int ret;
222  
223      memset(&phdr, 0, sizeof(Elf64_Phdr));
224      phdr.p_type = cpu_to_dump32(s, PT_LOAD);
225      phdr.p_offset = cpu_to_dump64(s, offset);
226      phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
227      phdr.p_filesz = cpu_to_dump64(s, filesz);
228      phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
229      phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
230  
231      assert(memory_mapping->length >= filesz);
232  
233      ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
234      if (ret < 0) {
235          error_setg_errno(errp, -ret,
236                           "dump: failed to write program header table");
237      }
238  }
239  
240  static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
241                               int phdr_index, hwaddr offset,
242                               hwaddr filesz, Error **errp)
243  {
244      Elf32_Phdr phdr;
245      int ret;
246  
247      memset(&phdr, 0, sizeof(Elf32_Phdr));
248      phdr.p_type = cpu_to_dump32(s, PT_LOAD);
249      phdr.p_offset = cpu_to_dump32(s, offset);
250      phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
251      phdr.p_filesz = cpu_to_dump32(s, filesz);
252      phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
253      phdr.p_vaddr =
254          cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
255  
256      assert(memory_mapping->length >= filesz);
257  
258      ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
259      if (ret < 0) {
260          error_setg_errno(errp, -ret,
261                           "dump: failed to write program header table");
262      }
263  }
264  
265  static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
266  {
267      memset(phdr, 0, sizeof(*phdr));
268      phdr->p_type = cpu_to_dump32(s, PT_NOTE);
269      phdr->p_offset = cpu_to_dump64(s, s->note_offset);
270      phdr->p_paddr = 0;
271      phdr->p_filesz = cpu_to_dump64(s, s->note_size);
272      phdr->p_memsz = cpu_to_dump64(s, s->note_size);
273      phdr->p_vaddr = 0;
274  }
275  
276  static inline int cpu_index(CPUState *cpu)
277  {
278      return cpu->cpu_index + 1;
279  }
280  
281  static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
282                               Error **errp)
283  {
284      int ret;
285  
286      if (s->guest_note) {
287          ret = f(s->guest_note, s->guest_note_size, s);
288          if (ret < 0) {
289              error_setg(errp, "dump: failed to write guest note");
290          }
291      }
292  }
293  
294  static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
295                                Error **errp)
296  {
297      CPUState *cpu;
298      int ret;
299      int id;
300  
301      CPU_FOREACH(cpu) {
302          id = cpu_index(cpu);
303          ret = cpu_write_elf64_note(f, cpu, id, s);
304          if (ret < 0) {
305              error_setg(errp, "dump: failed to write elf notes");
306              return;
307          }
308      }
309  
310      CPU_FOREACH(cpu) {
311          ret = cpu_write_elf64_qemunote(f, cpu, s);
312          if (ret < 0) {
313              error_setg(errp, "dump: failed to write CPU status");
314              return;
315          }
316      }
317  
318      write_guest_note(f, s, errp);
319  }
320  
321  static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
322  {
323      memset(phdr, 0, sizeof(*phdr));
324      phdr->p_type = cpu_to_dump32(s, PT_NOTE);
325      phdr->p_offset = cpu_to_dump32(s, s->note_offset);
326      phdr->p_paddr = 0;
327      phdr->p_filesz = cpu_to_dump32(s, s->note_size);
328      phdr->p_memsz = cpu_to_dump32(s, s->note_size);
329      phdr->p_vaddr = 0;
330  }
331  
332  static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
333                                Error **errp)
334  {
335      CPUState *cpu;
336      int ret;
337      int id;
338  
339      CPU_FOREACH(cpu) {
340          id = cpu_index(cpu);
341          ret = cpu_write_elf32_note(f, cpu, id, s);
342          if (ret < 0) {
343              error_setg(errp, "dump: failed to write elf notes");
344              return;
345          }
346      }
347  
348      CPU_FOREACH(cpu) {
349          ret = cpu_write_elf32_qemunote(f, cpu, s);
350          if (ret < 0) {
351              error_setg(errp, "dump: failed to write CPU status");
352              return;
353          }
354      }
355  
356      write_guest_note(f, s, errp);
357  }
358  
359  static void write_elf_phdr_note(DumpState *s, Error **errp)
360  {
361      Elf32_Phdr phdr32;
362      Elf64_Phdr phdr64;
363      void *phdr;
364      size_t size;
365      int ret;
366  
367      if (dump_is_64bit(s)) {
368          prepare_elf64_phdr_note(s, &phdr64);
369          size = sizeof(phdr64);
370          phdr = &phdr64;
371      } else {
372          prepare_elf32_phdr_note(s, &phdr32);
373          size = sizeof(phdr32);
374          phdr = &phdr32;
375      }
376  
377      ret = fd_write_vmcore(phdr, size, s);
378      if (ret < 0) {
379          error_setg_errno(errp, -ret,
380                           "dump: failed to write program header table");
381      }
382  }
383  
384  static void prepare_elf_section_hdr_zero(DumpState *s)
385  {
386      if (dump_is_64bit(s)) {
387          Elf64_Shdr *shdr64 = s->elf_section_hdrs;
388  
389          shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
390      } else {
391          Elf32_Shdr *shdr32 = s->elf_section_hdrs;
392  
393          shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
394      }
395  }
396  
397  static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
398  {
399      uint64_t index = s->string_table_buf->len;
400      const char strtab[] = ".shstrtab";
401      Elf32_Shdr shdr32 = {};
402      Elf64_Shdr shdr64 = {};
403      int shdr_size;
404      void *shdr;
405  
406      g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
407      if (dump_is_64bit(s)) {
408          shdr_size = sizeof(Elf64_Shdr);
409          shdr64.sh_type = SHT_STRTAB;
410          shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
411          shdr64.sh_name = index;
412          shdr64.sh_size = s->string_table_buf->len;
413          shdr = &shdr64;
414      } else {
415          shdr_size = sizeof(Elf32_Shdr);
416          shdr32.sh_type = SHT_STRTAB;
417          shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
418          shdr32.sh_name = index;
419          shdr32.sh_size = s->string_table_buf->len;
420          shdr = &shdr32;
421      }
422      memcpy(buff, shdr, shdr_size);
423  }
424  
425  static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
426  {
427      size_t len, sizeof_shdr;
428      void *buff_hdr;
429  
430      /*
431       * Section ordering:
432       * - HDR zero
433       * - Arch section hdrs
434       * - String table hdr
435       */
436      sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
437      len = sizeof_shdr * s->shdr_num;
438      s->elf_section_hdrs = g_malloc0(len);
439      buff_hdr = s->elf_section_hdrs;
440  
441      /*
442       * The first section header is ALWAYS a special initial section
443       * header.
444       *
445       * The header should be 0 with one exception being that if
446       * phdr_num is PN_XNUM then the sh_info field contains the real
447       * number of segment entries.
448       *
449       * As we zero allocate the buffer we will only need to modify
450       * sh_info for the PN_XNUM case.
451       */
452      if (s->phdr_num >= PN_XNUM) {
453          prepare_elf_section_hdr_zero(s);
454      }
455      buff_hdr += sizeof_shdr;
456  
457      /* Add architecture defined section headers */
458      if (s->dump_info.arch_sections_write_hdr_fn
459          && s->shdr_num > 2) {
460          buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
461  
462          if (s->shdr_num >= SHN_LORESERVE) {
463              error_setg_errno(errp, EINVAL,
464                               "dump: too many architecture defined sections");
465              return false;
466          }
467      }
468  
469      /*
470       * String table is the last section since strings are added via
471       * arch_sections_write_hdr().
472       */
473      prepare_elf_section_hdr_string(s, buff_hdr);
474      return true;
475  }
476  
477  static void write_elf_section_headers(DumpState *s, Error **errp)
478  {
479      size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
480      int ret;
481  
482      if (!prepare_elf_section_hdrs(s, errp)) {
483          return;
484      }
485  
486      ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
487      if (ret < 0) {
488          error_setg_errno(errp, -ret, "dump: failed to write section headers");
489      }
490  
491      g_free(s->elf_section_hdrs);
492  }
493  
494  static void write_elf_sections(DumpState *s, Error **errp)
495  {
496      int ret;
497  
498      if (s->elf_section_data_size) {
499          /* Write architecture section data */
500          ret = fd_write_vmcore(s->elf_section_data,
501                                s->elf_section_data_size, s);
502          if (ret < 0) {
503              error_setg_errno(errp, -ret,
504                               "dump: failed to write architecture section data");
505              return;
506          }
507      }
508  
509      /* Write string table */
510      ret = fd_write_vmcore(s->string_table_buf->data,
511                            s->string_table_buf->len, s);
512      if (ret < 0) {
513          error_setg_errno(errp, -ret, "dump: failed to write string table data");
514      }
515  }
516  
517  static void write_data(DumpState *s, void *buf, int length, Error **errp)
518  {
519      int ret;
520  
521      ret = fd_write_vmcore(buf, length, s);
522      if (ret < 0) {
523          error_setg_errno(errp, -ret, "dump: failed to save memory");
524      } else {
525          s->written_size += length;
526      }
527  }
528  
529  /* write the memory to vmcore. 1 page per I/O. */
530  static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
531                           int64_t size, Error **errp)
532  {
533      ERRP_GUARD();
534      int64_t i;
535  
536      for (i = 0; i < size / s->dump_info.page_size; i++) {
537          write_data(s, block->host_addr + start + i * s->dump_info.page_size,
538                     s->dump_info.page_size, errp);
539          if (*errp) {
540              return;
541          }
542      }
543  
544      if ((size % s->dump_info.page_size) != 0) {
545          write_data(s, block->host_addr + start + i * s->dump_info.page_size,
546                     size % s->dump_info.page_size, errp);
547          if (*errp) {
548              return;
549          }
550      }
551  }
552  
553  /* get the memory's offset and size in the vmcore */
554  static void get_offset_range(hwaddr phys_addr,
555                               ram_addr_t mapping_length,
556                               DumpState *s,
557                               hwaddr *p_offset,
558                               hwaddr *p_filesz)
559  {
560      GuestPhysBlock *block;
561      hwaddr offset = s->memory_offset;
562      int64_t size_in_block, start;
563  
564      /* When the memory is not stored into vmcore, offset will be -1 */
565      *p_offset = -1;
566      *p_filesz = 0;
567  
568      if (dump_has_filter(s)) {
569          if (phys_addr < s->filter_area_begin ||
570              phys_addr >= s->filter_area_begin + s->filter_area_length) {
571              return;
572          }
573      }
574  
575      QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
576          if (dump_has_filter(s)) {
577              if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
578                  block->target_end <= s->filter_area_begin) {
579                  /* This block is out of the range */
580                  continue;
581              }
582  
583              if (s->filter_area_begin <= block->target_start) {
584                  start = block->target_start;
585              } else {
586                  start = s->filter_area_begin;
587              }
588  
589              size_in_block = block->target_end - start;
590              if (s->filter_area_begin + s->filter_area_length < block->target_end) {
591                  size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
592              }
593          } else {
594              start = block->target_start;
595              size_in_block = block->target_end - block->target_start;
596          }
597  
598          if (phys_addr >= start && phys_addr < start + size_in_block) {
599              *p_offset = phys_addr - start + offset;
600  
601              /* The offset range mapped from the vmcore file must not spill over
602               * the GuestPhysBlock, clamp it. The rest of the mapping will be
603               * zero-filled in memory at load time; see
604               * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
605               */
606              *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
607                          mapping_length :
608                          size_in_block - (phys_addr - start);
609              return;
610          }
611  
612          offset += size_in_block;
613      }
614  }
615  
616  static void write_elf_phdr_loads(DumpState *s, Error **errp)
617  {
618      ERRP_GUARD();
619      hwaddr offset, filesz;
620      MemoryMapping *memory_mapping;
621      uint32_t phdr_index = 1;
622  
623      QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
624          get_offset_range(memory_mapping->phys_addr,
625                           memory_mapping->length,
626                           s, &offset, &filesz);
627          if (dump_is_64bit(s)) {
628              write_elf64_load(s, memory_mapping, phdr_index++, offset,
629                               filesz, errp);
630          } else {
631              write_elf32_load(s, memory_mapping, phdr_index++, offset,
632                               filesz, errp);
633          }
634  
635          if (*errp) {
636              return;
637          }
638  
639          if (phdr_index >= s->phdr_num) {
640              break;
641          }
642      }
643  }
644  
645  static void write_elf_notes(DumpState *s, Error **errp)
646  {
647      if (dump_is_64bit(s)) {
648          write_elf64_notes(fd_write_vmcore, s, errp);
649      } else {
650          write_elf32_notes(fd_write_vmcore, s, errp);
651      }
652  }
653  
654  /* write elf header, PT_NOTE and elf note to vmcore. */
655  static void dump_begin(DumpState *s, Error **errp)
656  {
657      ERRP_GUARD();
658  
659      /*
660       * the vmcore's format is:
661       *   --------------
662       *   |  elf header |
663       *   --------------
664       *   |  sctn_hdr   |
665       *   --------------
666       *   |  PT_NOTE    |
667       *   --------------
668       *   |  PT_LOAD    |
669       *   --------------
670       *   |  ......     |
671       *   --------------
672       *   |  PT_LOAD    |
673       *   --------------
674       *   |  elf note   |
675       *   --------------
676       *   |  memory     |
677       *   --------------
678       *
679       * we only know where the memory is saved after we write elf note into
680       * vmcore.
681       */
682  
683      /* write elf header to vmcore */
684      write_elf_header(s, errp);
685      if (*errp) {
686          return;
687      }
688  
689      /* write section headers to vmcore */
690      write_elf_section_headers(s, errp);
691      if (*errp) {
692          return;
693      }
694  
695      /* write PT_NOTE to vmcore */
696      write_elf_phdr_note(s, errp);
697      if (*errp) {
698          return;
699      }
700  
701      /* write all PT_LOADs to vmcore */
702      write_elf_phdr_loads(s, errp);
703      if (*errp) {
704          return;
705      }
706  
707      /* write notes to vmcore */
708      write_elf_notes(s, errp);
709  }
710  
711  int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
712                                      int64_t filter_area_start,
713                                      int64_t filter_area_length)
714  {
715      int64_t size, left, right;
716  
717      /* No filter, return full size */
718      if (!filter_area_length) {
719          return block->target_end - block->target_start;
720      }
721  
722      /* calculate the overlapped region. */
723      left = MAX(filter_area_start, block->target_start);
724      right = MIN(filter_area_start + filter_area_length, block->target_end);
725      size = right - left;
726      size = size > 0 ? size : 0;
727  
728      return size;
729  }
730  
731  int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
732                                       int64_t filter_area_start,
733                                       int64_t filter_area_length)
734  {
735      if (filter_area_length) {
736          /* return -1 if the block is not within filter area */
737          if (block->target_start >= filter_area_start + filter_area_length ||
738              block->target_end <= filter_area_start) {
739              return -1;
740          }
741  
742          if (filter_area_start > block->target_start) {
743              return filter_area_start - block->target_start;
744          }
745      }
746  
747      return 0;
748  }
749  
750  /* write all memory to vmcore */
751  static void dump_iterate(DumpState *s, Error **errp)
752  {
753      ERRP_GUARD();
754      GuestPhysBlock *block;
755      int64_t memblock_size, memblock_start;
756  
757      QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
758          memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
759          if (memblock_start == -1) {
760              continue;
761          }
762  
763          memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
764  
765          /* Write the memory to file */
766          write_memory(s, block, memblock_start, memblock_size, errp);
767          if (*errp) {
768              return;
769          }
770      }
771  }
772  
773  static void dump_end(DumpState *s, Error **errp)
774  {
775      int rc;
776  
777      if (s->elf_section_data_size) {
778          s->elf_section_data = g_malloc0(s->elf_section_data_size);
779      }
780  
781      /* Adds the architecture defined section data to s->elf_section_data  */
782      if (s->dump_info.arch_sections_write_fn &&
783          s->elf_section_data_size) {
784          rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
785          if (rc) {
786              error_setg_errno(errp, rc,
787                               "dump: failed to get arch section data");
788              g_free(s->elf_section_data);
789              return;
790          }
791      }
792  
793      /* write sections to vmcore */
794      write_elf_sections(s, errp);
795  }
796  
797  static void create_vmcore(DumpState *s, Error **errp)
798  {
799      ERRP_GUARD();
800  
801      dump_begin(s, errp);
802      if (*errp) {
803          return;
804      }
805  
806      /* Iterate over memory and dump it to file */
807      dump_iterate(s, errp);
808      if (*errp) {
809          return;
810      }
811  
812      /* Write the section data */
813      dump_end(s, errp);
814  }
815  
816  static int write_start_flat_header(DumpState *s)
817  {
818      MakedumpfileHeader *mh;
819      int ret = 0;
820  
821      if (s->kdump_raw) {
822          return 0;
823      }
824  
825      QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
826      mh = g_malloc0(MAX_SIZE_MDF_HEADER);
827  
828      memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
829             MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
830  
831      mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
832      mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
833  
834      size_t written_size;
835      written_size = qemu_write_full(s->fd, mh, MAX_SIZE_MDF_HEADER);
836      if (written_size != MAX_SIZE_MDF_HEADER) {
837          ret = -1;
838      }
839  
840      g_free(mh);
841      return ret;
842  }
843  
844  static int write_end_flat_header(DumpState *s)
845  {
846      MakedumpfileDataHeader mdh;
847  
848      if (s->kdump_raw) {
849          return 0;
850      }
851  
852      mdh.offset = END_FLAG_FLAT_HEADER;
853      mdh.buf_size = END_FLAG_FLAT_HEADER;
854  
855      size_t written_size;
856      written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh));
857      if (written_size != sizeof(mdh)) {
858          return -1;
859      }
860  
861      return 0;
862  }
863  
864  static int write_buffer(DumpState *s, off_t offset, const void *buf, size_t size)
865  {
866      size_t written_size;
867      MakedumpfileDataHeader mdh;
868      off_t seek_loc;
869  
870      if (s->kdump_raw) {
871          seek_loc = lseek(s->fd, offset, SEEK_SET);
872          if (seek_loc == (off_t) -1) {
873              return -1;
874          }
875      } else {
876          mdh.offset = cpu_to_be64(offset);
877          mdh.buf_size = cpu_to_be64(size);
878  
879          written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh));
880          if (written_size != sizeof(mdh)) {
881              return -1;
882          }
883      }
884  
885      written_size = qemu_write_full(s->fd, buf, size);
886      if (written_size != size) {
887          return -1;
888      }
889  
890      return 0;
891  }
892  
893  static int buf_write_note(const void *buf, size_t size, void *opaque)
894  {
895      DumpState *s = opaque;
896  
897      /* note_buf is not enough */
898      if (s->note_buf_offset + size > s->note_size) {
899          return -1;
900      }
901  
902      memcpy(s->note_buf + s->note_buf_offset, buf, size);
903  
904      s->note_buf_offset += size;
905  
906      return 0;
907  }
908  
909  /*
910   * This function retrieves various sizes from an elf header.
911   *
912   * @note has to be a valid ELF note. The return sizes are unmodified
913   * (not padded or rounded up to be multiple of 4).
914   */
915  static void get_note_sizes(DumpState *s, const void *note,
916                             uint64_t *note_head_size,
917                             uint64_t *name_size,
918                             uint64_t *desc_size)
919  {
920      uint64_t note_head_sz;
921      uint64_t name_sz;
922      uint64_t desc_sz;
923  
924      if (dump_is_64bit(s)) {
925          const Elf64_Nhdr *hdr = note;
926          note_head_sz = sizeof(Elf64_Nhdr);
927          name_sz = cpu_to_dump64(s, hdr->n_namesz);
928          desc_sz = cpu_to_dump64(s, hdr->n_descsz);
929      } else {
930          const Elf32_Nhdr *hdr = note;
931          note_head_sz = sizeof(Elf32_Nhdr);
932          name_sz = cpu_to_dump32(s, hdr->n_namesz);
933          desc_sz = cpu_to_dump32(s, hdr->n_descsz);
934      }
935  
936      if (note_head_size) {
937          *note_head_size = note_head_sz;
938      }
939      if (name_size) {
940          *name_size = name_sz;
941      }
942      if (desc_size) {
943          *desc_size = desc_sz;
944      }
945  }
946  
947  static bool note_name_equal(DumpState *s,
948                              const uint8_t *note, const char *name)
949  {
950      int len = strlen(name) + 1;
951      uint64_t head_size, name_size;
952  
953      get_note_sizes(s, note, &head_size, &name_size, NULL);
954      head_size = ROUND_UP(head_size, 4);
955  
956      return name_size == len && memcmp(note + head_size, name, len) == 0;
957  }
958  
959  /* write common header, sub header and elf note to vmcore */
960  static void create_header32(DumpState *s, Error **errp)
961  {
962      ERRP_GUARD();
963      DiskDumpHeader32 *dh = NULL;
964      KdumpSubHeader32 *kh = NULL;
965      size_t size;
966      uint32_t block_size;
967      uint32_t sub_hdr_size;
968      uint32_t bitmap_blocks;
969      uint32_t status = 0;
970      uint64_t offset_note;
971  
972      /* write common header, the version of kdump-compressed format is 6th */
973      size = sizeof(DiskDumpHeader32);
974      dh = g_malloc0(size);
975  
976      memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
977      dh->header_version = cpu_to_dump32(s, 6);
978      block_size = s->dump_info.page_size;
979      dh->block_size = cpu_to_dump32(s, block_size);
980      sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
981      sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
982      dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
983      /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
984      dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
985      dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
986      bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
987      dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
988      strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
989  
990      if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
991          status |= DUMP_DH_COMPRESSED_ZLIB;
992      }
993  #ifdef CONFIG_LZO
994      if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
995          status |= DUMP_DH_COMPRESSED_LZO;
996      }
997  #endif
998  #ifdef CONFIG_SNAPPY
999      if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1000          status |= DUMP_DH_COMPRESSED_SNAPPY;
1001      }
1002  #endif
1003      dh->status = cpu_to_dump32(s, status);
1004  
1005      if (write_buffer(s, 0, dh, size) < 0) {
1006          error_setg(errp, "dump: failed to write disk dump header");
1007          goto out;
1008      }
1009  
1010      /* write sub header */
1011      size = sizeof(KdumpSubHeader32);
1012      kh = g_malloc0(size);
1013  
1014      /* 64bit max_mapnr_64 */
1015      kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1016      kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
1017      kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1018  
1019      offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1020      if (s->guest_note &&
1021          note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1022          uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1023  
1024          get_note_sizes(s, s->guest_note,
1025                         &hsize, &name_size, &size_vmcoreinfo_desc);
1026          offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1027              (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1028          kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1029          kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
1030      }
1031  
1032      kh->offset_note = cpu_to_dump64(s, offset_note);
1033      kh->note_size = cpu_to_dump32(s, s->note_size);
1034  
1035      if (write_buffer(s, DISKDUMP_HEADER_BLOCKS *
1036                       block_size, kh, size) < 0) {
1037          error_setg(errp, "dump: failed to write kdump sub header");
1038          goto out;
1039      }
1040  
1041      /* write note */
1042      s->note_buf = g_malloc0(s->note_size);
1043      s->note_buf_offset = 0;
1044  
1045      /* use s->note_buf to store notes temporarily */
1046      write_elf32_notes(buf_write_note, s, errp);
1047      if (*errp) {
1048          goto out;
1049      }
1050      if (write_buffer(s, offset_note, s->note_buf,
1051                       s->note_size) < 0) {
1052          error_setg(errp, "dump: failed to write notes");
1053          goto out;
1054      }
1055  
1056      /* get offset of dump_bitmap */
1057      s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1058                               block_size;
1059  
1060      /* get offset of page */
1061      s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1062                       block_size;
1063  
1064  out:
1065      g_free(dh);
1066      g_free(kh);
1067      g_free(s->note_buf);
1068  }
1069  
1070  /* write common header, sub header and elf note to vmcore */
1071  static void create_header64(DumpState *s, Error **errp)
1072  {
1073      ERRP_GUARD();
1074      DiskDumpHeader64 *dh = NULL;
1075      KdumpSubHeader64 *kh = NULL;
1076      size_t size;
1077      uint32_t block_size;
1078      uint32_t sub_hdr_size;
1079      uint32_t bitmap_blocks;
1080      uint32_t status = 0;
1081      uint64_t offset_note;
1082  
1083      /* write common header, the version of kdump-compressed format is 6th */
1084      size = sizeof(DiskDumpHeader64);
1085      dh = g_malloc0(size);
1086  
1087      memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
1088      dh->header_version = cpu_to_dump32(s, 6);
1089      block_size = s->dump_info.page_size;
1090      dh->block_size = cpu_to_dump32(s, block_size);
1091      sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
1092      sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
1093      dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
1094      /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1095      dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
1096      dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
1097      bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
1098      dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
1099      strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
1100  
1101      if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
1102          status |= DUMP_DH_COMPRESSED_ZLIB;
1103      }
1104  #ifdef CONFIG_LZO
1105      if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
1106          status |= DUMP_DH_COMPRESSED_LZO;
1107      }
1108  #endif
1109  #ifdef CONFIG_SNAPPY
1110      if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1111          status |= DUMP_DH_COMPRESSED_SNAPPY;
1112      }
1113  #endif
1114      dh->status = cpu_to_dump32(s, status);
1115  
1116      if (write_buffer(s, 0, dh, size) < 0) {
1117          error_setg(errp, "dump: failed to write disk dump header");
1118          goto out;
1119      }
1120  
1121      /* write sub header */
1122      size = sizeof(KdumpSubHeader64);
1123      kh = g_malloc0(size);
1124  
1125      /* 64bit max_mapnr_64 */
1126      kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1127      kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
1128      kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1129  
1130      offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1131      if (s->guest_note &&
1132          note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1133          uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1134  
1135          get_note_sizes(s, s->guest_note,
1136                         &hsize, &name_size, &size_vmcoreinfo_desc);
1137          offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1138              (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1139          kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1140          kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
1141      }
1142  
1143      kh->offset_note = cpu_to_dump64(s, offset_note);
1144      kh->note_size = cpu_to_dump64(s, s->note_size);
1145  
1146      if (write_buffer(s, DISKDUMP_HEADER_BLOCKS *
1147                       block_size, kh, size) < 0) {
1148          error_setg(errp, "dump: failed to write kdump sub header");
1149          goto out;
1150      }
1151  
1152      /* write note */
1153      s->note_buf = g_malloc0(s->note_size);
1154      s->note_buf_offset = 0;
1155  
1156      /* use s->note_buf to store notes temporarily */
1157      write_elf64_notes(buf_write_note, s, errp);
1158      if (*errp) {
1159          goto out;
1160      }
1161  
1162      if (write_buffer(s, offset_note, s->note_buf,
1163                       s->note_size) < 0) {
1164          error_setg(errp, "dump: failed to write notes");
1165          goto out;
1166      }
1167  
1168      /* get offset of dump_bitmap */
1169      s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1170                               block_size;
1171  
1172      /* get offset of page */
1173      s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1174                       block_size;
1175  
1176  out:
1177      g_free(dh);
1178      g_free(kh);
1179      g_free(s->note_buf);
1180  }
1181  
1182  static void write_dump_header(DumpState *s, Error **errp)
1183  {
1184      if (dump_is_64bit(s)) {
1185          create_header64(s, errp);
1186      } else {
1187          create_header32(s, errp);
1188      }
1189  }
1190  
1191  static size_t dump_bitmap_get_bufsize(DumpState *s)
1192  {
1193      return s->dump_info.page_size;
1194  }
1195  
1196  /*
1197   * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1198   * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1199   * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1200   * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1201   * vmcore, ie. synchronizing un-sync bit into vmcore.
1202   */
1203  static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1204                             uint8_t *buf, DumpState *s)
1205  {
1206      off_t old_offset, new_offset;
1207      off_t offset_bitmap1, offset_bitmap2;
1208      uint32_t byte, bit;
1209      size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1210      size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1211  
1212      /* should not set the previous place */
1213      assert(last_pfn <= pfn);
1214  
1215      /*
1216       * if the bit needed to be set is not cached in buf, flush the data in buf
1217       * to vmcore firstly.
1218       * making new_offset be bigger than old_offset can also sync remained data
1219       * into vmcore.
1220       */
1221      old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1222      new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1223  
1224      while (old_offset < new_offset) {
1225          /* calculate the offset and write dump_bitmap */
1226          offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1227          if (write_buffer(s, offset_bitmap1, buf,
1228                           bitmap_bufsize) < 0) {
1229              return -1;
1230          }
1231  
1232          /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1233          offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1234                           old_offset;
1235          if (write_buffer(s, offset_bitmap2, buf,
1236                           bitmap_bufsize) < 0) {
1237              return -1;
1238          }
1239  
1240          memset(buf, 0, bitmap_bufsize);
1241          old_offset += bitmap_bufsize;
1242      }
1243  
1244      /* get the exact place of the bit in the buf, and set it */
1245      byte = (pfn % bits_per_buf) / CHAR_BIT;
1246      bit = (pfn % bits_per_buf) % CHAR_BIT;
1247      if (value) {
1248          buf[byte] |= 1u << bit;
1249      } else {
1250          buf[byte] &= ~(1u << bit);
1251      }
1252  
1253      return 0;
1254  }
1255  
1256  static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1257  {
1258      int target_page_shift = ctz32(s->dump_info.page_size);
1259  
1260      return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1261  }
1262  
1263  static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1264  {
1265      int target_page_shift = ctz32(s->dump_info.page_size);
1266  
1267      return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1268  }
1269  
1270  /*
1271   * Return the page frame number and the page content in *bufptr. bufptr can be
1272   * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1273   * memory. This is not necessarily the memory returned.
1274   */
1275  static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1276                            uint8_t **bufptr, DumpState *s)
1277  {
1278      GuestPhysBlock *block = *blockptr;
1279      uint32_t page_size = s->dump_info.page_size;
1280      uint8_t *buf = NULL, *hbuf;
1281      hwaddr addr;
1282  
1283      /* block == NULL means the start of the iteration */
1284      if (!block) {
1285          block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1286          *blockptr = block;
1287          addr = block->target_start;
1288          *pfnptr = dump_paddr_to_pfn(s, addr);
1289      } else {
1290          *pfnptr += 1;
1291          addr = dump_pfn_to_paddr(s, *pfnptr);
1292      }
1293      assert(block != NULL);
1294  
1295      while (1) {
1296          if (addr >= block->target_start && addr < block->target_end) {
1297              size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
1298              hbuf = block->host_addr + (addr - block->target_start);
1299              if (!buf) {
1300                  if (n == page_size) {
1301                      /* this is a whole target page, go for it */
1302                      assert(addr % page_size == 0);
1303                      buf = hbuf;
1304                      break;
1305                  } else if (bufptr) {
1306                      assert(*bufptr);
1307                      buf = *bufptr;
1308                      memset(buf, 0, page_size);
1309                  } else {
1310                      return true;
1311                  }
1312              }
1313  
1314              memcpy(buf + addr % page_size, hbuf, n);
1315              addr += n;
1316              if (addr % page_size == 0 || addr >= block->target_end) {
1317                  /* we filled up the page or the current block is finished */
1318                  break;
1319              }
1320          } else {
1321              /* the next page is in the next block */
1322              *blockptr = block = QTAILQ_NEXT(block, next);
1323              if (!block) {
1324                  break;
1325              }
1326  
1327              addr = block->target_start;
1328              /* are we still in the same page? */
1329              if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
1330                  if (buf) {
1331                      /* no, but we already filled something earlier, return it */
1332                      break;
1333                  } else {
1334                      /* else continue from there */
1335                      *pfnptr = dump_paddr_to_pfn(s, addr);
1336                  }
1337              }
1338          }
1339      }
1340  
1341      if (bufptr) {
1342          *bufptr = buf;
1343      }
1344  
1345      return buf != NULL;
1346  }
1347  
1348  static void write_dump_bitmap(DumpState *s, Error **errp)
1349  {
1350      int ret = 0;
1351      uint64_t last_pfn, pfn;
1352      void *dump_bitmap_buf;
1353      size_t num_dumpable;
1354      GuestPhysBlock *block_iter = NULL;
1355      size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1356      size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1357  
1358      /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1359      dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1360  
1361      num_dumpable = 0;
1362      last_pfn = 0;
1363  
1364      /*
1365       * exam memory page by page, and set the bit in dump_bitmap corresponded
1366       * to the existing page.
1367       */
1368      while (get_next_page(&block_iter, &pfn, NULL, s)) {
1369          ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1370          if (ret < 0) {
1371              error_setg(errp, "dump: failed to set dump_bitmap");
1372              goto out;
1373          }
1374  
1375          last_pfn = pfn;
1376          num_dumpable++;
1377      }
1378  
1379      /*
1380       * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1381       * set the remaining bits from last_pfn to the end of the bitmap buffer to
1382       * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1383       */
1384      if (num_dumpable > 0) {
1385          ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1386                                dump_bitmap_buf, s);
1387          if (ret < 0) {
1388              error_setg(errp, "dump: failed to sync dump_bitmap");
1389              goto out;
1390          }
1391      }
1392  
1393      /* number of dumpable pages that will be dumped later */
1394      s->num_dumpable = num_dumpable;
1395  
1396  out:
1397      g_free(dump_bitmap_buf);
1398  }
1399  
1400  static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1401                                 off_t offset)
1402  {
1403      data_cache->state = s;
1404      data_cache->data_size = 0;
1405      data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1406      data_cache->buf = g_malloc0(data_cache->buf_size);
1407      data_cache->offset = offset;
1408  }
1409  
1410  static int write_cache(DataCache *dc, const void *buf, size_t size,
1411                         bool flag_sync)
1412  {
1413      /*
1414       * dc->buf_size should not be less than size, otherwise dc will never be
1415       * enough
1416       */
1417      assert(size <= dc->buf_size);
1418  
1419      /*
1420       * if flag_sync is set, synchronize data in dc->buf into vmcore.
1421       * otherwise check if the space is enough for caching data in buf, if not,
1422       * write the data in dc->buf to dc->state->fd and reset dc->buf
1423       */
1424      if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1425          (flag_sync && dc->data_size > 0)) {
1426          if (write_buffer(dc->state, dc->offset, dc->buf, dc->data_size) < 0) {
1427              return -1;
1428          }
1429  
1430          dc->offset += dc->data_size;
1431          dc->data_size = 0;
1432      }
1433  
1434      if (!flag_sync) {
1435          memcpy(dc->buf + dc->data_size, buf, size);
1436          dc->data_size += size;
1437      }
1438  
1439      return 0;
1440  }
1441  
1442  static void free_data_cache(DataCache *data_cache)
1443  {
1444      g_free(data_cache->buf);
1445  }
1446  
1447  static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1448  {
1449      switch (flag_compress) {
1450      case DUMP_DH_COMPRESSED_ZLIB:
1451          return compressBound(page_size);
1452  
1453      case DUMP_DH_COMPRESSED_LZO:
1454          /*
1455           * LZO will expand incompressible data by a little amount. Please check
1456           * the following URL to see the expansion calculation:
1457           * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1458           */
1459          return page_size + page_size / 16 + 64 + 3;
1460  
1461  #ifdef CONFIG_SNAPPY
1462      case DUMP_DH_COMPRESSED_SNAPPY:
1463          return snappy_max_compressed_length(page_size);
1464  #endif
1465      }
1466      return 0;
1467  }
1468  
1469  static void write_dump_pages(DumpState *s, Error **errp)
1470  {
1471      int ret = 0;
1472      DataCache page_desc, page_data;
1473      size_t len_buf_out, size_out;
1474  #ifdef CONFIG_LZO
1475      lzo_bytep wrkmem = NULL;
1476  #endif
1477      uint8_t *buf_out = NULL;
1478      off_t offset_desc, offset_data;
1479      PageDescriptor pd, pd_zero;
1480      uint8_t *buf;
1481      GuestPhysBlock *block_iter = NULL;
1482      uint64_t pfn_iter;
1483      g_autofree uint8_t *page = NULL;
1484  
1485      /* get offset of page_desc and page_data in dump file */
1486      offset_desc = s->offset_page;
1487      offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1488  
1489      prepare_data_cache(&page_desc, s, offset_desc);
1490      prepare_data_cache(&page_data, s, offset_data);
1491  
1492      /* prepare buffer to store compressed data */
1493      len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1494      assert(len_buf_out != 0);
1495  
1496  #ifdef CONFIG_LZO
1497      wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1498  #endif
1499  
1500      buf_out = g_malloc(len_buf_out);
1501  
1502      /*
1503       * init zero page's page_desc and page_data, because every zero page
1504       * uses the same page_data
1505       */
1506      pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1507      pd_zero.flags = cpu_to_dump32(s, 0);
1508      pd_zero.offset = cpu_to_dump64(s, offset_data);
1509      pd_zero.page_flags = cpu_to_dump64(s, 0);
1510      buf = g_malloc0(s->dump_info.page_size);
1511      ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1512      g_free(buf);
1513      if (ret < 0) {
1514          error_setg(errp, "dump: failed to write page data (zero page)");
1515          goto out;
1516      }
1517  
1518      offset_data += s->dump_info.page_size;
1519      page = g_malloc(s->dump_info.page_size);
1520  
1521      /*
1522       * dump memory to vmcore page by page. zero page will all be resided in the
1523       * first page of page section
1524       */
1525      for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
1526          /* check zero page */
1527          if (buffer_is_zero(buf, s->dump_info.page_size)) {
1528              ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1529                                false);
1530              if (ret < 0) {
1531                  error_setg(errp, "dump: failed to write page desc");
1532                  goto out;
1533              }
1534          } else {
1535              /*
1536               * not zero page, then:
1537               * 1. compress the page
1538               * 2. write the compressed page into the cache of page_data
1539               * 3. get page desc of the compressed page and write it into the
1540               *    cache of page_desc
1541               *
1542               * only one compression format will be used here, for
1543               * s->flag_compress is set. But when compression fails to work,
1544               * we fall back to save in plaintext.
1545               */
1546               size_out = len_buf_out;
1547               if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1548                      (compress2(buf_out, (uLongf *)&size_out, buf,
1549                                 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1550                      (size_out < s->dump_info.page_size)) {
1551                  pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1552                  pd.size  = cpu_to_dump32(s, size_out);
1553  
1554                  ret = write_cache(&page_data, buf_out, size_out, false);
1555                  if (ret < 0) {
1556                      error_setg(errp, "dump: failed to write page data");
1557                      goto out;
1558                  }
1559  #ifdef CONFIG_LZO
1560              } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1561                      (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1562                      (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1563                      (size_out < s->dump_info.page_size)) {
1564                  pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1565                  pd.size  = cpu_to_dump32(s, size_out);
1566  
1567                  ret = write_cache(&page_data, buf_out, size_out, false);
1568                  if (ret < 0) {
1569                      error_setg(errp, "dump: failed to write page data");
1570                      goto out;
1571                  }
1572  #endif
1573  #ifdef CONFIG_SNAPPY
1574              } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1575                      (snappy_compress((char *)buf, s->dump_info.page_size,
1576                      (char *)buf_out, &size_out) == SNAPPY_OK) &&
1577                      (size_out < s->dump_info.page_size)) {
1578                  pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1579                  pd.size  = cpu_to_dump32(s, size_out);
1580  
1581                  ret = write_cache(&page_data, buf_out, size_out, false);
1582                  if (ret < 0) {
1583                      error_setg(errp, "dump: failed to write page data");
1584                      goto out;
1585                  }
1586  #endif
1587              } else {
1588                  /*
1589                   * fall back to save in plaintext, size_out should be
1590                   * assigned the target's page size
1591                   */
1592                  pd.flags = cpu_to_dump32(s, 0);
1593                  size_out = s->dump_info.page_size;
1594                  pd.size = cpu_to_dump32(s, size_out);
1595  
1596                  ret = write_cache(&page_data, buf,
1597                                    s->dump_info.page_size, false);
1598                  if (ret < 0) {
1599                      error_setg(errp, "dump: failed to write page data");
1600                      goto out;
1601                  }
1602              }
1603  
1604              /* get and write page desc here */
1605              pd.page_flags = cpu_to_dump64(s, 0);
1606              pd.offset = cpu_to_dump64(s, offset_data);
1607              offset_data += size_out;
1608  
1609              ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1610              if (ret < 0) {
1611                  error_setg(errp, "dump: failed to write page desc");
1612                  goto out;
1613              }
1614          }
1615          s->written_size += s->dump_info.page_size;
1616      }
1617  
1618      ret = write_cache(&page_desc, NULL, 0, true);
1619      if (ret < 0) {
1620          error_setg(errp, "dump: failed to sync cache for page_desc");
1621          goto out;
1622      }
1623      ret = write_cache(&page_data, NULL, 0, true);
1624      if (ret < 0) {
1625          error_setg(errp, "dump: failed to sync cache for page_data");
1626          goto out;
1627      }
1628  
1629  out:
1630      free_data_cache(&page_desc);
1631      free_data_cache(&page_data);
1632  
1633  #ifdef CONFIG_LZO
1634      g_free(wrkmem);
1635  #endif
1636  
1637      g_free(buf_out);
1638  }
1639  
1640  static void create_kdump_vmcore(DumpState *s, Error **errp)
1641  {
1642      ERRP_GUARD();
1643      int ret;
1644  
1645      /*
1646       * the kdump-compressed format is:
1647       *                                               File offset
1648       *  +------------------------------------------+ 0x0
1649       *  |    main header (struct disk_dump_header) |
1650       *  |------------------------------------------+ block 1
1651       *  |    sub header (struct kdump_sub_header)  |
1652       *  |------------------------------------------+ block 2
1653       *  |            1st-dump_bitmap               |
1654       *  |------------------------------------------+ block 2 + X blocks
1655       *  |            2nd-dump_bitmap               | (aligned by block)
1656       *  |------------------------------------------+ block 2 + 2 * X blocks
1657       *  |  page desc for pfn 0 (struct page_desc)  | (aligned by block)
1658       *  |  page desc for pfn 1 (struct page_desc)  |
1659       *  |                    :                     |
1660       *  |------------------------------------------| (not aligned by block)
1661       *  |         page data (pfn 0)                |
1662       *  |         page data (pfn 1)                |
1663       *  |                    :                     |
1664       *  +------------------------------------------+
1665       */
1666  
1667      ret = write_start_flat_header(s);
1668      if (ret < 0) {
1669          error_setg(errp, "dump: failed to write start flat header");
1670          return;
1671      }
1672  
1673      write_dump_header(s, errp);
1674      if (*errp) {
1675          return;
1676      }
1677  
1678      write_dump_bitmap(s, errp);
1679      if (*errp) {
1680          return;
1681      }
1682  
1683      write_dump_pages(s, errp);
1684      if (*errp) {
1685          return;
1686      }
1687  
1688      ret = write_end_flat_header(s);
1689      if (ret < 0) {
1690          error_setg(errp, "dump: failed to write end flat header");
1691          return;
1692      }
1693  }
1694  
1695  static void get_max_mapnr(DumpState *s)
1696  {
1697      GuestPhysBlock *last_block;
1698  
1699      last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1700      s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1701  }
1702  
1703  static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1704  
1705  static void dump_state_prepare(DumpState *s)
1706  {
1707      /* zero the struct, setting status to active */
1708      *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1709  }
1710  
1711  bool qemu_system_dump_in_progress(void)
1712  {
1713      DumpState *state = &dump_state_global;
1714      return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1715  }
1716  
1717  /*
1718   * calculate total size of memory to be dumped (taking filter into
1719   * account.)
1720   */
1721  static int64_t dump_calculate_size(DumpState *s)
1722  {
1723      GuestPhysBlock *block;
1724      int64_t total = 0;
1725  
1726      QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1727          total += dump_filtered_memblock_size(block,
1728                                               s->filter_area_begin,
1729                                               s->filter_area_length);
1730      }
1731  
1732      return total;
1733  }
1734  
1735  static void vmcoreinfo_update_phys_base(DumpState *s)
1736  {
1737      uint64_t size, note_head_size, name_size, phys_base;
1738      char **lines;
1739      uint8_t *vmci;
1740      size_t i;
1741  
1742      if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1743          return;
1744      }
1745  
1746      get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1747      note_head_size = ROUND_UP(note_head_size, 4);
1748  
1749      vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1750      *(vmci + size) = '\0';
1751  
1752      lines = g_strsplit((char *)vmci, "\n", -1);
1753      for (i = 0; lines[i]; i++) {
1754          const char *prefix = NULL;
1755  
1756          if (s->dump_info.d_machine == EM_X86_64) {
1757              prefix = "NUMBER(phys_base)=";
1758          } else if (s->dump_info.d_machine == EM_AARCH64) {
1759              prefix = "NUMBER(PHYS_OFFSET)=";
1760          }
1761  
1762          if (prefix && g_str_has_prefix(lines[i], prefix)) {
1763              if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1764                                &phys_base) < 0) {
1765                  warn_report("Failed to read %s", prefix);
1766              } else {
1767                  s->dump_info.phys_base = phys_base;
1768              }
1769              break;
1770          }
1771      }
1772  
1773      g_strfreev(lines);
1774  }
1775  
1776  static void dump_init(DumpState *s, int fd, bool has_format,
1777                        DumpGuestMemoryFormat format, bool paging, bool has_filter,
1778                        int64_t begin, int64_t length, bool kdump_raw,
1779                        Error **errp)
1780  {
1781      ERRP_GUARD();
1782      VMCoreInfoState *vmci = vmcoreinfo_find();
1783      CPUState *cpu;
1784      int nr_cpus;
1785      int ret;
1786  
1787      s->has_format = has_format;
1788      s->format = format;
1789      s->written_size = 0;
1790      s->kdump_raw = kdump_raw;
1791  
1792      /* kdump-compressed is conflict with paging and filter */
1793      if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1794          assert(!paging && !has_filter);
1795      }
1796  
1797      if (runstate_is_running()) {
1798          vm_stop(RUN_STATE_SAVE_VM);
1799          s->resume = true;
1800      } else {
1801          s->resume = false;
1802      }
1803  
1804      /* If we use KVM, we should synchronize the registers before we get dump
1805       * info or physmap info.
1806       */
1807      cpu_synchronize_all_states();
1808      nr_cpus = 0;
1809      CPU_FOREACH(cpu) {
1810          nr_cpus++;
1811      }
1812  
1813      s->fd = fd;
1814      if (has_filter && !length) {
1815          error_setg(errp, "parameter 'length' expects a non-zero size");
1816          goto cleanup;
1817      }
1818      s->filter_area_begin = begin;
1819      s->filter_area_length = length;
1820  
1821      /* First index is 0, it's the special null name */
1822      s->string_table_buf = g_array_new(FALSE, TRUE, 1);
1823      /*
1824       * Allocate the null name, due to the clearing option set to true
1825       * it will be 0.
1826       */
1827      g_array_set_size(s->string_table_buf, 1);
1828  
1829      memory_mapping_list_init(&s->list);
1830  
1831      guest_phys_blocks_init(&s->guest_phys_blocks);
1832      guest_phys_blocks_append(&s->guest_phys_blocks);
1833      s->total_size = dump_calculate_size(s);
1834  #ifdef DEBUG_DUMP_GUEST_MEMORY
1835      fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1836  #endif
1837  
1838      /* it does not make sense to dump non-existent memory */
1839      if (!s->total_size) {
1840          error_setg(errp, "dump: no guest memory to dump");
1841          goto cleanup;
1842      }
1843  
1844      /* get dump info: endian, class and architecture.
1845       * If the target architecture is not supported, cpu_get_dump_info() will
1846       * return -1.
1847       */
1848      ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1849      if (ret < 0) {
1850          error_setg(errp,
1851                     "dumping guest memory is not supported on this target");
1852          goto cleanup;
1853      }
1854  
1855      if (!s->dump_info.page_size) {
1856          s->dump_info.page_size = qemu_target_page_size();
1857      }
1858  
1859      s->note_size = cpu_get_note_size(s->dump_info.d_class,
1860                                       s->dump_info.d_machine, nr_cpus);
1861      assert(s->note_size >= 0);
1862  
1863      /*
1864       * The goal of this block is to (a) update the previously guessed
1865       * phys_base, (b) copy the guest note out of the guest.
1866       * Failure to do so is not fatal for dumping.
1867       */
1868      if (vmci) {
1869          uint64_t addr, note_head_size, name_size, desc_size;
1870          uint32_t size;
1871          uint16_t guest_format;
1872  
1873          note_head_size = dump_is_64bit(s) ?
1874              sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1875  
1876          guest_format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1877          size = le32_to_cpu(vmci->vmcoreinfo.size);
1878          addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1879          if (!vmci->has_vmcoreinfo) {
1880              warn_report("guest note is not present");
1881          } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1882              warn_report("guest note size is invalid: %" PRIu32, size);
1883          } else if (guest_format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1884              warn_report("guest note format is unsupported: %" PRIu16, guest_format);
1885          } else {
1886              s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1887              cpu_physical_memory_read(addr, s->guest_note, size);
1888  
1889              get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1890              s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1891                                                 desc_size);
1892              if (name_size > MAX_GUEST_NOTE_SIZE ||
1893                  desc_size > MAX_GUEST_NOTE_SIZE ||
1894                  s->guest_note_size > size) {
1895                  warn_report("Invalid guest note header");
1896                  g_free(s->guest_note);
1897                  s->guest_note = NULL;
1898              } else {
1899                  vmcoreinfo_update_phys_base(s);
1900                  s->note_size += s->guest_note_size;
1901              }
1902          }
1903      }
1904  
1905      /* get memory mapping */
1906      if (paging) {
1907          qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1908          if (*errp) {
1909              goto cleanup;
1910          }
1911      } else {
1912          qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1913      }
1914  
1915      s->nr_cpus = nr_cpus;
1916  
1917      get_max_mapnr(s);
1918  
1919      uint64_t tmp;
1920      tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1921                         s->dump_info.page_size);
1922      s->len_dump_bitmap = tmp * s->dump_info.page_size;
1923  
1924      /* init for kdump-compressed format */
1925      if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1926          switch (format) {
1927          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1928              s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1929              break;
1930  
1931          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1932  #ifdef CONFIG_LZO
1933              if (lzo_init() != LZO_E_OK) {
1934                  error_setg(errp, "failed to initialize the LZO library");
1935                  goto cleanup;
1936              }
1937  #endif
1938              s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1939              break;
1940  
1941          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1942              s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1943              break;
1944  
1945          default:
1946              s->flag_compress = 0;
1947          }
1948  
1949          return;
1950      }
1951  
1952      if (dump_has_filter(s)) {
1953          memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
1954      }
1955  
1956      /*
1957       * The first section header is always a special one in which most
1958       * fields are 0. The section header string table is also always
1959       * set.
1960       */
1961      s->shdr_num = 2;
1962  
1963      /*
1964       * Adds the number of architecture sections to shdr_num and sets
1965       * elf_section_data_size so we know the offsets and sizes of all
1966       * parts.
1967       */
1968      if (s->dump_info.arch_sections_add_fn) {
1969          s->dump_info.arch_sections_add_fn(s);
1970      }
1971  
1972      /*
1973       * calculate shdr_num so we know the offsets and sizes of all
1974       * parts.
1975       * Calculate phdr_num
1976       *
1977       * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1978       * sh_info is 32 bit. There's special handling once we go over
1979       * UINT16_MAX - 1 but that is handled in the ehdr and section
1980       * code.
1981       */
1982      s->phdr_num = 1; /* Reserve PT_NOTE */
1983      if (s->list.num <= UINT32_MAX - 1) {
1984          s->phdr_num += s->list.num;
1985      } else {
1986          s->phdr_num = UINT32_MAX;
1987      }
1988  
1989      /*
1990       * Now that the number of section and program headers is known we
1991       * can calculate the offsets of the headers and data.
1992       */
1993      if (dump_is_64bit(s)) {
1994          s->shdr_offset = sizeof(Elf64_Ehdr);
1995          s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
1996          s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
1997      } else {
1998          s->shdr_offset = sizeof(Elf32_Ehdr);
1999          s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
2000          s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
2001      }
2002      s->memory_offset = s->note_offset + s->note_size;
2003      s->section_offset = s->memory_offset + s->total_size;
2004  
2005      return;
2006  
2007  cleanup:
2008      dump_cleanup(s);
2009  }
2010  
2011  /* this operation might be time consuming. */
2012  static void dump_process(DumpState *s, Error **errp)
2013  {
2014      ERRP_GUARD();
2015      DumpQueryResult *result = NULL;
2016  
2017      if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2018          create_win_dump(s, errp);
2019      } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
2020          create_kdump_vmcore(s, errp);
2021      } else {
2022          create_vmcore(s, errp);
2023      }
2024  
2025      /* make sure status is written after written_size updates */
2026      smp_wmb();
2027      qatomic_set(&s->status,
2028                 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
2029  
2030      /* send DUMP_COMPLETED message (unconditionally) */
2031      result = qmp_query_dump(NULL);
2032      /* should never fail */
2033      assert(result);
2034      qapi_event_send_dump_completed(result,
2035                                     *errp ? error_get_pretty(*errp) : NULL);
2036      qapi_free_DumpQueryResult(result);
2037  
2038      dump_cleanup(s);
2039  }
2040  
2041  static void *dump_thread(void *data)
2042  {
2043      DumpState *s = (DumpState *)data;
2044      dump_process(s, NULL);
2045      return NULL;
2046  }
2047  
2048  DumpQueryResult *qmp_query_dump(Error **errp)
2049  {
2050      DumpQueryResult *result = g_new(DumpQueryResult, 1);
2051      DumpState *state = &dump_state_global;
2052      result->status = qatomic_read(&state->status);
2053      /* make sure we are reading status and written_size in order */
2054      smp_rmb();
2055      result->completed = state->written_size;
2056      result->total = state->total_size;
2057      return result;
2058  }
2059  
2060  void qmp_dump_guest_memory(bool paging, const char *protocol,
2061                             bool has_detach, bool detach,
2062                             bool has_begin, int64_t begin,
2063                             bool has_length, int64_t length,
2064                             bool has_format, DumpGuestMemoryFormat format,
2065                             Error **errp)
2066  {
2067      ERRP_GUARD();
2068      const char *p;
2069      int fd;
2070      DumpState *s;
2071      bool detach_p = false;
2072      bool kdump_raw = false;
2073  
2074      if (runstate_check(RUN_STATE_INMIGRATE)) {
2075          error_setg(errp, "Dump not allowed during incoming migration.");
2076          return;
2077      }
2078  
2079      /* if there is a dump in background, we should wait until the dump
2080       * finished */
2081      if (qemu_system_dump_in_progress()) {
2082          error_setg(errp, "There is a dump in process, please wait.");
2083          return;
2084      }
2085  
2086      /*
2087       * externally, we represent kdump-raw-* as separate formats, but internally
2088       * they are handled the same, except for the "raw" flag
2089       */
2090      if (has_format) {
2091          switch (format) {
2092          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB:
2093              format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB;
2094              kdump_raw = true;
2095              break;
2096          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO:
2097              format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO;
2098              kdump_raw = true;
2099              break;
2100          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY:
2101              format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY;
2102              kdump_raw = true;
2103              break;
2104          default:
2105              break;
2106          }
2107      }
2108  
2109      /*
2110       * kdump-compressed format need the whole memory dumped, so paging or
2111       * filter is not supported here.
2112       */
2113      if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
2114          (paging || has_begin || has_length)) {
2115          error_setg(errp, "kdump-compressed format doesn't support paging or "
2116                           "filter");
2117          return;
2118      }
2119      if (has_begin && !has_length) {
2120          error_setg(errp, QERR_MISSING_PARAMETER, "length");
2121          return;
2122      }
2123      if (!has_begin && has_length) {
2124          error_setg(errp, QERR_MISSING_PARAMETER, "begin");
2125          return;
2126      }
2127      if (has_detach) {
2128          detach_p = detach;
2129      }
2130  
2131      /* check whether lzo/snappy is supported */
2132  #ifndef CONFIG_LZO
2133      if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
2134          error_setg(errp, "kdump-lzo is not available now");
2135          return;
2136      }
2137  #endif
2138  
2139  #ifndef CONFIG_SNAPPY
2140      if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
2141          error_setg(errp, "kdump-snappy is not available now");
2142          return;
2143      }
2144  #endif
2145  
2146      if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
2147          && !win_dump_available(errp)) {
2148          return;
2149      }
2150  
2151      if (strstart(protocol, "fd:", &p)) {
2152          fd = monitor_get_fd(monitor_cur(), p, errp);
2153          if (fd == -1) {
2154              return;
2155          }
2156      } else if  (strstart(protocol, "file:", &p)) {
2157          fd = qemu_create(p, O_WRONLY | O_TRUNC | O_BINARY, S_IRUSR, errp);
2158          if (fd < 0) {
2159              return;
2160          }
2161      } else {
2162          error_setg(errp,
2163                     "parameter 'protocol' must start with 'file:' or 'fd:'");
2164          return;
2165      }
2166      if (kdump_raw && lseek(fd, 0, SEEK_CUR) == (off_t) -1) {
2167          close(fd);
2168          error_setg(errp, "kdump-raw formats require a seekable file");
2169          return;
2170      }
2171  
2172      if (!dump_migration_blocker) {
2173          error_setg(&dump_migration_blocker,
2174                     "Live migration disabled: dump-guest-memory in progress");
2175      }
2176  
2177      /*
2178       * Allows even for -only-migratable, but forbid migration during the
2179       * process of dump guest memory.
2180       */
2181      if (migrate_add_blocker_internal(&dump_migration_blocker, errp)) {
2182          /* Remember to release the fd before passing it over to dump state */
2183          close(fd);
2184          return;
2185      }
2186  
2187      s = &dump_state_global;
2188      dump_state_prepare(s);
2189  
2190      dump_init(s, fd, has_format, format, paging, has_begin,
2191                begin, length, kdump_raw, errp);
2192      if (*errp) {
2193          qatomic_set(&s->status, DUMP_STATUS_FAILED);
2194          return;
2195      }
2196  
2197      if (detach_p) {
2198          /* detached dump */
2199          s->detached = true;
2200          qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
2201                             s, QEMU_THREAD_DETACHED);
2202      } else {
2203          /* sync dump */
2204          dump_process(s, errp);
2205      }
2206  }
2207  
2208  DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2209  {
2210      DumpGuestMemoryCapability *cap =
2211                                    g_new0(DumpGuestMemoryCapability, 1);
2212      DumpGuestMemoryFormatList **tail = &cap->formats;
2213  
2214      /* elf is always available */
2215      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2216  
2217      /* kdump-zlib is always available */
2218      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2219      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB);
2220  
2221      /* add new item if kdump-lzo is available */
2222  #ifdef CONFIG_LZO
2223      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2224      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO);
2225  #endif
2226  
2227      /* add new item if kdump-snappy is available */
2228  #ifdef CONFIG_SNAPPY
2229      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2230      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY);
2231  #endif
2232  
2233      if (win_dump_available(NULL)) {
2234          QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2235      }
2236  
2237      return cap;
2238  }
2239