1 /* 2 * QEMU dump 3 * 4 * Copyright Fujitsu, Corp. 2011, 2012 5 * 6 * Authors: 7 * Wen Congyang <wency@cn.fujitsu.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 14 #include "qemu/osdep.h" 15 #include "qemu-common.h" 16 #include "qemu/cutils.h" 17 #include "elf.h" 18 #include "cpu.h" 19 #include "exec/hwaddr.h" 20 #include "monitor/monitor.h" 21 #include "sysemu/kvm.h" 22 #include "sysemu/dump.h" 23 #include "sysemu/memory_mapping.h" 24 #include "sysemu/runstate.h" 25 #include "sysemu/cpus.h" 26 #include "qapi/error.h" 27 #include "qapi/qapi-commands-dump.h" 28 #include "qapi/qapi-events-dump.h" 29 #include "qapi/qmp/qerror.h" 30 #include "qemu/error-report.h" 31 #include "qemu/main-loop.h" 32 #include "hw/misc/vmcoreinfo.h" 33 34 #ifdef TARGET_X86_64 35 #include "win_dump.h" 36 #endif 37 38 #include <zlib.h> 39 #ifdef CONFIG_LZO 40 #include <lzo/lzo1x.h> 41 #endif 42 #ifdef CONFIG_SNAPPY 43 #include <snappy-c.h> 44 #endif 45 #ifndef ELF_MACHINE_UNAME 46 #define ELF_MACHINE_UNAME "Unknown" 47 #endif 48 49 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */ 50 51 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \ 52 ((DIV_ROUND_UP((hdr_size), 4) + \ 53 DIV_ROUND_UP((name_size), 4) + \ 54 DIV_ROUND_UP((desc_size), 4)) * 4) 55 56 uint16_t cpu_to_dump16(DumpState *s, uint16_t val) 57 { 58 if (s->dump_info.d_endian == ELFDATA2LSB) { 59 val = cpu_to_le16(val); 60 } else { 61 val = cpu_to_be16(val); 62 } 63 64 return val; 65 } 66 67 uint32_t cpu_to_dump32(DumpState *s, uint32_t val) 68 { 69 if (s->dump_info.d_endian == ELFDATA2LSB) { 70 val = cpu_to_le32(val); 71 } else { 72 val = cpu_to_be32(val); 73 } 74 75 return val; 76 } 77 78 uint64_t cpu_to_dump64(DumpState *s, uint64_t val) 79 { 80 if (s->dump_info.d_endian == ELFDATA2LSB) { 81 val = cpu_to_le64(val); 82 } else { 83 val = cpu_to_be64(val); 84 } 85 86 return val; 87 } 88 89 static int dump_cleanup(DumpState *s) 90 { 91 guest_phys_blocks_free(&s->guest_phys_blocks); 92 memory_mapping_list_free(&s->list); 93 close(s->fd); 94 g_free(s->guest_note); 95 s->guest_note = NULL; 96 if (s->resume) { 97 if (s->detached) { 98 qemu_mutex_lock_iothread(); 99 } 100 vm_start(); 101 if (s->detached) { 102 qemu_mutex_unlock_iothread(); 103 } 104 } 105 106 return 0; 107 } 108 109 static int fd_write_vmcore(const void *buf, size_t size, void *opaque) 110 { 111 DumpState *s = opaque; 112 size_t written_size; 113 114 written_size = qemu_write_full(s->fd, buf, size); 115 if (written_size != size) { 116 return -errno; 117 } 118 119 return 0; 120 } 121 122 static void write_elf64_header(DumpState *s, Error **errp) 123 { 124 Elf64_Ehdr elf_header; 125 int ret; 126 127 memset(&elf_header, 0, sizeof(Elf64_Ehdr)); 128 memcpy(&elf_header, ELFMAG, SELFMAG); 129 elf_header.e_ident[EI_CLASS] = ELFCLASS64; 130 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; 131 elf_header.e_ident[EI_VERSION] = EV_CURRENT; 132 elf_header.e_type = cpu_to_dump16(s, ET_CORE); 133 elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 134 elf_header.e_version = cpu_to_dump32(s, EV_CURRENT); 135 elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 136 elf_header.e_phoff = cpu_to_dump64(s, sizeof(Elf64_Ehdr)); 137 elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr)); 138 elf_header.e_phnum = cpu_to_dump16(s, s->phdr_num); 139 if (s->have_section) { 140 uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info; 141 142 elf_header.e_shoff = cpu_to_dump64(s, shoff); 143 elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr)); 144 elf_header.e_shnum = cpu_to_dump16(s, 1); 145 } 146 147 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); 148 if (ret < 0) { 149 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 150 } 151 } 152 153 static void write_elf32_header(DumpState *s, Error **errp) 154 { 155 Elf32_Ehdr elf_header; 156 int ret; 157 158 memset(&elf_header, 0, sizeof(Elf32_Ehdr)); 159 memcpy(&elf_header, ELFMAG, SELFMAG); 160 elf_header.e_ident[EI_CLASS] = ELFCLASS32; 161 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; 162 elf_header.e_ident[EI_VERSION] = EV_CURRENT; 163 elf_header.e_type = cpu_to_dump16(s, ET_CORE); 164 elf_header.e_machine = cpu_to_dump16(s, s->dump_info.d_machine); 165 elf_header.e_version = cpu_to_dump32(s, EV_CURRENT); 166 elf_header.e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); 167 elf_header.e_phoff = cpu_to_dump32(s, sizeof(Elf32_Ehdr)); 168 elf_header.e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr)); 169 elf_header.e_phnum = cpu_to_dump16(s, s->phdr_num); 170 if (s->have_section) { 171 uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info; 172 173 elf_header.e_shoff = cpu_to_dump32(s, shoff); 174 elf_header.e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr)); 175 elf_header.e_shnum = cpu_to_dump16(s, 1); 176 } 177 178 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); 179 if (ret < 0) { 180 error_setg_errno(errp, -ret, "dump: failed to write elf header"); 181 } 182 } 183 184 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, 185 int phdr_index, hwaddr offset, 186 hwaddr filesz, Error **errp) 187 { 188 Elf64_Phdr phdr; 189 int ret; 190 191 memset(&phdr, 0, sizeof(Elf64_Phdr)); 192 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 193 phdr.p_offset = cpu_to_dump64(s, offset); 194 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr); 195 phdr.p_filesz = cpu_to_dump64(s, filesz); 196 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length); 197 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 198 199 assert(memory_mapping->length >= filesz); 200 201 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 202 if (ret < 0) { 203 error_setg_errno(errp, -ret, 204 "dump: failed to write program header table"); 205 } 206 } 207 208 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, 209 int phdr_index, hwaddr offset, 210 hwaddr filesz, Error **errp) 211 { 212 Elf32_Phdr phdr; 213 int ret; 214 215 memset(&phdr, 0, sizeof(Elf32_Phdr)); 216 phdr.p_type = cpu_to_dump32(s, PT_LOAD); 217 phdr.p_offset = cpu_to_dump32(s, offset); 218 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr); 219 phdr.p_filesz = cpu_to_dump32(s, filesz); 220 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length); 221 phdr.p_vaddr = 222 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr; 223 224 assert(memory_mapping->length >= filesz); 225 226 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 227 if (ret < 0) { 228 error_setg_errno(errp, -ret, 229 "dump: failed to write program header table"); 230 } 231 } 232 233 static void write_elf64_note(DumpState *s, Error **errp) 234 { 235 Elf64_Phdr phdr; 236 hwaddr begin = s->memory_offset - s->note_size; 237 int ret; 238 239 memset(&phdr, 0, sizeof(Elf64_Phdr)); 240 phdr.p_type = cpu_to_dump32(s, PT_NOTE); 241 phdr.p_offset = cpu_to_dump64(s, begin); 242 phdr.p_paddr = 0; 243 phdr.p_filesz = cpu_to_dump64(s, s->note_size); 244 phdr.p_memsz = cpu_to_dump64(s, s->note_size); 245 phdr.p_vaddr = 0; 246 247 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); 248 if (ret < 0) { 249 error_setg_errno(errp, -ret, 250 "dump: failed to write program header table"); 251 } 252 } 253 254 static inline int cpu_index(CPUState *cpu) 255 { 256 return cpu->cpu_index + 1; 257 } 258 259 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s, 260 Error **errp) 261 { 262 int ret; 263 264 if (s->guest_note) { 265 ret = f(s->guest_note, s->guest_note_size, s); 266 if (ret < 0) { 267 error_setg(errp, "dump: failed to write guest note"); 268 } 269 } 270 } 271 272 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s, 273 Error **errp) 274 { 275 CPUState *cpu; 276 int ret; 277 int id; 278 279 CPU_FOREACH(cpu) { 280 id = cpu_index(cpu); 281 ret = cpu_write_elf64_note(f, cpu, id, s); 282 if (ret < 0) { 283 error_setg(errp, "dump: failed to write elf notes"); 284 return; 285 } 286 } 287 288 CPU_FOREACH(cpu) { 289 ret = cpu_write_elf64_qemunote(f, cpu, s); 290 if (ret < 0) { 291 error_setg(errp, "dump: failed to write CPU status"); 292 return; 293 } 294 } 295 296 write_guest_note(f, s, errp); 297 } 298 299 static void write_elf32_note(DumpState *s, Error **errp) 300 { 301 hwaddr begin = s->memory_offset - s->note_size; 302 Elf32_Phdr phdr; 303 int ret; 304 305 memset(&phdr, 0, sizeof(Elf32_Phdr)); 306 phdr.p_type = cpu_to_dump32(s, PT_NOTE); 307 phdr.p_offset = cpu_to_dump32(s, begin); 308 phdr.p_paddr = 0; 309 phdr.p_filesz = cpu_to_dump32(s, s->note_size); 310 phdr.p_memsz = cpu_to_dump32(s, s->note_size); 311 phdr.p_vaddr = 0; 312 313 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); 314 if (ret < 0) { 315 error_setg_errno(errp, -ret, 316 "dump: failed to write program header table"); 317 } 318 } 319 320 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s, 321 Error **errp) 322 { 323 CPUState *cpu; 324 int ret; 325 int id; 326 327 CPU_FOREACH(cpu) { 328 id = cpu_index(cpu); 329 ret = cpu_write_elf32_note(f, cpu, id, s); 330 if (ret < 0) { 331 error_setg(errp, "dump: failed to write elf notes"); 332 return; 333 } 334 } 335 336 CPU_FOREACH(cpu) { 337 ret = cpu_write_elf32_qemunote(f, cpu, s); 338 if (ret < 0) { 339 error_setg(errp, "dump: failed to write CPU status"); 340 return; 341 } 342 } 343 344 write_guest_note(f, s, errp); 345 } 346 347 static void write_elf_section(DumpState *s, int type, Error **errp) 348 { 349 Elf32_Shdr shdr32; 350 Elf64_Shdr shdr64; 351 int shdr_size; 352 void *shdr; 353 int ret; 354 355 if (type == 0) { 356 shdr_size = sizeof(Elf32_Shdr); 357 memset(&shdr32, 0, shdr_size); 358 shdr32.sh_info = cpu_to_dump32(s, s->sh_info); 359 shdr = &shdr32; 360 } else { 361 shdr_size = sizeof(Elf64_Shdr); 362 memset(&shdr64, 0, shdr_size); 363 shdr64.sh_info = cpu_to_dump32(s, s->sh_info); 364 shdr = &shdr64; 365 } 366 367 ret = fd_write_vmcore(shdr, shdr_size, s); 368 if (ret < 0) { 369 error_setg_errno(errp, -ret, 370 "dump: failed to write section header table"); 371 } 372 } 373 374 static void write_data(DumpState *s, void *buf, int length, Error **errp) 375 { 376 int ret; 377 378 ret = fd_write_vmcore(buf, length, s); 379 if (ret < 0) { 380 error_setg_errno(errp, -ret, "dump: failed to save memory"); 381 } else { 382 s->written_size += length; 383 } 384 } 385 386 /* write the memory to vmcore. 1 page per I/O. */ 387 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, 388 int64_t size, Error **errp) 389 { 390 int64_t i; 391 Error *local_err = NULL; 392 393 for (i = 0; i < size / s->dump_info.page_size; i++) { 394 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 395 s->dump_info.page_size, &local_err); 396 if (local_err) { 397 error_propagate(errp, local_err); 398 return; 399 } 400 } 401 402 if ((size % s->dump_info.page_size) != 0) { 403 write_data(s, block->host_addr + start + i * s->dump_info.page_size, 404 size % s->dump_info.page_size, &local_err); 405 if (local_err) { 406 error_propagate(errp, local_err); 407 return; 408 } 409 } 410 } 411 412 /* get the memory's offset and size in the vmcore */ 413 static void get_offset_range(hwaddr phys_addr, 414 ram_addr_t mapping_length, 415 DumpState *s, 416 hwaddr *p_offset, 417 hwaddr *p_filesz) 418 { 419 GuestPhysBlock *block; 420 hwaddr offset = s->memory_offset; 421 int64_t size_in_block, start; 422 423 /* When the memory is not stored into vmcore, offset will be -1 */ 424 *p_offset = -1; 425 *p_filesz = 0; 426 427 if (s->has_filter) { 428 if (phys_addr < s->begin || phys_addr >= s->begin + s->length) { 429 return; 430 } 431 } 432 433 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 434 if (s->has_filter) { 435 if (block->target_start >= s->begin + s->length || 436 block->target_end <= s->begin) { 437 /* This block is out of the range */ 438 continue; 439 } 440 441 if (s->begin <= block->target_start) { 442 start = block->target_start; 443 } else { 444 start = s->begin; 445 } 446 447 size_in_block = block->target_end - start; 448 if (s->begin + s->length < block->target_end) { 449 size_in_block -= block->target_end - (s->begin + s->length); 450 } 451 } else { 452 start = block->target_start; 453 size_in_block = block->target_end - block->target_start; 454 } 455 456 if (phys_addr >= start && phys_addr < start + size_in_block) { 457 *p_offset = phys_addr - start + offset; 458 459 /* The offset range mapped from the vmcore file must not spill over 460 * the GuestPhysBlock, clamp it. The rest of the mapping will be 461 * zero-filled in memory at load time; see 462 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. 463 */ 464 *p_filesz = phys_addr + mapping_length <= start + size_in_block ? 465 mapping_length : 466 size_in_block - (phys_addr - start); 467 return; 468 } 469 470 offset += size_in_block; 471 } 472 } 473 474 static void write_elf_loads(DumpState *s, Error **errp) 475 { 476 hwaddr offset, filesz; 477 MemoryMapping *memory_mapping; 478 uint32_t phdr_index = 1; 479 uint32_t max_index; 480 Error *local_err = NULL; 481 482 if (s->have_section) { 483 max_index = s->sh_info; 484 } else { 485 max_index = s->phdr_num; 486 } 487 488 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { 489 get_offset_range(memory_mapping->phys_addr, 490 memory_mapping->length, 491 s, &offset, &filesz); 492 if (s->dump_info.d_class == ELFCLASS64) { 493 write_elf64_load(s, memory_mapping, phdr_index++, offset, 494 filesz, &local_err); 495 } else { 496 write_elf32_load(s, memory_mapping, phdr_index++, offset, 497 filesz, &local_err); 498 } 499 500 if (local_err) { 501 error_propagate(errp, local_err); 502 return; 503 } 504 505 if (phdr_index >= max_index) { 506 break; 507 } 508 } 509 } 510 511 /* write elf header, PT_NOTE and elf note to vmcore. */ 512 static void dump_begin(DumpState *s, Error **errp) 513 { 514 Error *local_err = NULL; 515 516 /* 517 * the vmcore's format is: 518 * -------------- 519 * | elf header | 520 * -------------- 521 * | PT_NOTE | 522 * -------------- 523 * | PT_LOAD | 524 * -------------- 525 * | ...... | 526 * -------------- 527 * | PT_LOAD | 528 * -------------- 529 * | sec_hdr | 530 * -------------- 531 * | elf note | 532 * -------------- 533 * | memory | 534 * -------------- 535 * 536 * we only know where the memory is saved after we write elf note into 537 * vmcore. 538 */ 539 540 /* write elf header to vmcore */ 541 if (s->dump_info.d_class == ELFCLASS64) { 542 write_elf64_header(s, &local_err); 543 } else { 544 write_elf32_header(s, &local_err); 545 } 546 if (local_err) { 547 error_propagate(errp, local_err); 548 return; 549 } 550 551 if (s->dump_info.d_class == ELFCLASS64) { 552 /* write PT_NOTE to vmcore */ 553 write_elf64_note(s, &local_err); 554 if (local_err) { 555 error_propagate(errp, local_err); 556 return; 557 } 558 559 /* write all PT_LOAD to vmcore */ 560 write_elf_loads(s, &local_err); 561 if (local_err) { 562 error_propagate(errp, local_err); 563 return; 564 } 565 566 /* write section to vmcore */ 567 if (s->have_section) { 568 write_elf_section(s, 1, &local_err); 569 if (local_err) { 570 error_propagate(errp, local_err); 571 return; 572 } 573 } 574 575 /* write notes to vmcore */ 576 write_elf64_notes(fd_write_vmcore, s, &local_err); 577 if (local_err) { 578 error_propagate(errp, local_err); 579 return; 580 } 581 } else { 582 /* write PT_NOTE to vmcore */ 583 write_elf32_note(s, &local_err); 584 if (local_err) { 585 error_propagate(errp, local_err); 586 return; 587 } 588 589 /* write all PT_LOAD to vmcore */ 590 write_elf_loads(s, &local_err); 591 if (local_err) { 592 error_propagate(errp, local_err); 593 return; 594 } 595 596 /* write section to vmcore */ 597 if (s->have_section) { 598 write_elf_section(s, 0, &local_err); 599 if (local_err) { 600 error_propagate(errp, local_err); 601 return; 602 } 603 } 604 605 /* write notes to vmcore */ 606 write_elf32_notes(fd_write_vmcore, s, &local_err); 607 if (local_err) { 608 error_propagate(errp, local_err); 609 return; 610 } 611 } 612 } 613 614 static int get_next_block(DumpState *s, GuestPhysBlock *block) 615 { 616 while (1) { 617 block = QTAILQ_NEXT(block, next); 618 if (!block) { 619 /* no more block */ 620 return 1; 621 } 622 623 s->start = 0; 624 s->next_block = block; 625 if (s->has_filter) { 626 if (block->target_start >= s->begin + s->length || 627 block->target_end <= s->begin) { 628 /* This block is out of the range */ 629 continue; 630 } 631 632 if (s->begin > block->target_start) { 633 s->start = s->begin - block->target_start; 634 } 635 } 636 637 return 0; 638 } 639 } 640 641 /* write all memory to vmcore */ 642 static void dump_iterate(DumpState *s, Error **errp) 643 { 644 GuestPhysBlock *block; 645 int64_t size; 646 Error *local_err = NULL; 647 648 do { 649 block = s->next_block; 650 651 size = block->target_end - block->target_start; 652 if (s->has_filter) { 653 size -= s->start; 654 if (s->begin + s->length < block->target_end) { 655 size -= block->target_end - (s->begin + s->length); 656 } 657 } 658 write_memory(s, block, s->start, size, &local_err); 659 if (local_err) { 660 error_propagate(errp, local_err); 661 return; 662 } 663 664 } while (!get_next_block(s, block)); 665 } 666 667 static void create_vmcore(DumpState *s, Error **errp) 668 { 669 Error *local_err = NULL; 670 671 dump_begin(s, &local_err); 672 if (local_err) { 673 error_propagate(errp, local_err); 674 return; 675 } 676 677 dump_iterate(s, errp); 678 } 679 680 static int write_start_flat_header(int fd) 681 { 682 MakedumpfileHeader *mh; 683 int ret = 0; 684 685 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); 686 mh = g_malloc0(MAX_SIZE_MDF_HEADER); 687 688 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, 689 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); 690 691 mh->type = cpu_to_be64(TYPE_FLAT_HEADER); 692 mh->version = cpu_to_be64(VERSION_FLAT_HEADER); 693 694 size_t written_size; 695 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER); 696 if (written_size != MAX_SIZE_MDF_HEADER) { 697 ret = -1; 698 } 699 700 g_free(mh); 701 return ret; 702 } 703 704 static int write_end_flat_header(int fd) 705 { 706 MakedumpfileDataHeader mdh; 707 708 mdh.offset = END_FLAG_FLAT_HEADER; 709 mdh.buf_size = END_FLAG_FLAT_HEADER; 710 711 size_t written_size; 712 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 713 if (written_size != sizeof(mdh)) { 714 return -1; 715 } 716 717 return 0; 718 } 719 720 static int write_buffer(int fd, off_t offset, const void *buf, size_t size) 721 { 722 size_t written_size; 723 MakedumpfileDataHeader mdh; 724 725 mdh.offset = cpu_to_be64(offset); 726 mdh.buf_size = cpu_to_be64(size); 727 728 written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); 729 if (written_size != sizeof(mdh)) { 730 return -1; 731 } 732 733 written_size = qemu_write_full(fd, buf, size); 734 if (written_size != size) { 735 return -1; 736 } 737 738 return 0; 739 } 740 741 static int buf_write_note(const void *buf, size_t size, void *opaque) 742 { 743 DumpState *s = opaque; 744 745 /* note_buf is not enough */ 746 if (s->note_buf_offset + size > s->note_size) { 747 return -1; 748 } 749 750 memcpy(s->note_buf + s->note_buf_offset, buf, size); 751 752 s->note_buf_offset += size; 753 754 return 0; 755 } 756 757 /* 758 * This function retrieves various sizes from an elf header. 759 * 760 * @note has to be a valid ELF note. The return sizes are unmodified 761 * (not padded or rounded up to be multiple of 4). 762 */ 763 static void get_note_sizes(DumpState *s, const void *note, 764 uint64_t *note_head_size, 765 uint64_t *name_size, 766 uint64_t *desc_size) 767 { 768 uint64_t note_head_sz; 769 uint64_t name_sz; 770 uint64_t desc_sz; 771 772 if (s->dump_info.d_class == ELFCLASS64) { 773 const Elf64_Nhdr *hdr = note; 774 note_head_sz = sizeof(Elf64_Nhdr); 775 name_sz = tswap64(hdr->n_namesz); 776 desc_sz = tswap64(hdr->n_descsz); 777 } else { 778 const Elf32_Nhdr *hdr = note; 779 note_head_sz = sizeof(Elf32_Nhdr); 780 name_sz = tswap32(hdr->n_namesz); 781 desc_sz = tswap32(hdr->n_descsz); 782 } 783 784 if (note_head_size) { 785 *note_head_size = note_head_sz; 786 } 787 if (name_size) { 788 *name_size = name_sz; 789 } 790 if (desc_size) { 791 *desc_size = desc_sz; 792 } 793 } 794 795 static bool note_name_equal(DumpState *s, 796 const uint8_t *note, const char *name) 797 { 798 int len = strlen(name) + 1; 799 uint64_t head_size, name_size; 800 801 get_note_sizes(s, note, &head_size, &name_size, NULL); 802 head_size = ROUND_UP(head_size, 4); 803 804 return name_size == len && memcmp(note + head_size, name, len) == 0; 805 } 806 807 /* write common header, sub header and elf note to vmcore */ 808 static void create_header32(DumpState *s, Error **errp) 809 { 810 DiskDumpHeader32 *dh = NULL; 811 KdumpSubHeader32 *kh = NULL; 812 size_t size; 813 uint32_t block_size; 814 uint32_t sub_hdr_size; 815 uint32_t bitmap_blocks; 816 uint32_t status = 0; 817 uint64_t offset_note; 818 Error *local_err = NULL; 819 820 /* write common header, the version of kdump-compressed format is 6th */ 821 size = sizeof(DiskDumpHeader32); 822 dh = g_malloc0(size); 823 824 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 825 dh->header_version = cpu_to_dump32(s, 6); 826 block_size = s->dump_info.page_size; 827 dh->block_size = cpu_to_dump32(s, block_size); 828 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; 829 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 830 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 831 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 832 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 833 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 834 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 835 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 836 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 837 838 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 839 status |= DUMP_DH_COMPRESSED_ZLIB; 840 } 841 #ifdef CONFIG_LZO 842 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 843 status |= DUMP_DH_COMPRESSED_LZO; 844 } 845 #endif 846 #ifdef CONFIG_SNAPPY 847 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 848 status |= DUMP_DH_COMPRESSED_SNAPPY; 849 } 850 #endif 851 dh->status = cpu_to_dump32(s, status); 852 853 if (write_buffer(s->fd, 0, dh, size) < 0) { 854 error_setg(errp, "dump: failed to write disk dump header"); 855 goto out; 856 } 857 858 /* write sub header */ 859 size = sizeof(KdumpSubHeader32); 860 kh = g_malloc0(size); 861 862 /* 64bit max_mapnr_64 */ 863 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 864 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base); 865 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 866 867 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 868 if (s->guest_note && 869 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 870 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 871 872 get_note_sizes(s, s->guest_note, 873 &hsize, &name_size, &size_vmcoreinfo_desc); 874 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 875 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 876 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 877 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc); 878 } 879 880 kh->offset_note = cpu_to_dump64(s, offset_note); 881 kh->note_size = cpu_to_dump32(s, s->note_size); 882 883 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 884 block_size, kh, size) < 0) { 885 error_setg(errp, "dump: failed to write kdump sub header"); 886 goto out; 887 } 888 889 /* write note */ 890 s->note_buf = g_malloc0(s->note_size); 891 s->note_buf_offset = 0; 892 893 /* use s->note_buf to store notes temporarily */ 894 write_elf32_notes(buf_write_note, s, &local_err); 895 if (local_err) { 896 error_propagate(errp, local_err); 897 goto out; 898 } 899 if (write_buffer(s->fd, offset_note, s->note_buf, 900 s->note_size) < 0) { 901 error_setg(errp, "dump: failed to write notes"); 902 goto out; 903 } 904 905 /* get offset of dump_bitmap */ 906 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 907 block_size; 908 909 /* get offset of page */ 910 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 911 block_size; 912 913 out: 914 g_free(dh); 915 g_free(kh); 916 g_free(s->note_buf); 917 } 918 919 /* write common header, sub header and elf note to vmcore */ 920 static void create_header64(DumpState *s, Error **errp) 921 { 922 DiskDumpHeader64 *dh = NULL; 923 KdumpSubHeader64 *kh = NULL; 924 size_t size; 925 uint32_t block_size; 926 uint32_t sub_hdr_size; 927 uint32_t bitmap_blocks; 928 uint32_t status = 0; 929 uint64_t offset_note; 930 Error *local_err = NULL; 931 932 /* write common header, the version of kdump-compressed format is 6th */ 933 size = sizeof(DiskDumpHeader64); 934 dh = g_malloc0(size); 935 936 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); 937 dh->header_version = cpu_to_dump32(s, 6); 938 block_size = s->dump_info.page_size; 939 dh->block_size = cpu_to_dump32(s, block_size); 940 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; 941 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); 942 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); 943 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ 944 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); 945 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); 946 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; 947 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); 948 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); 949 950 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { 951 status |= DUMP_DH_COMPRESSED_ZLIB; 952 } 953 #ifdef CONFIG_LZO 954 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { 955 status |= DUMP_DH_COMPRESSED_LZO; 956 } 957 #endif 958 #ifdef CONFIG_SNAPPY 959 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { 960 status |= DUMP_DH_COMPRESSED_SNAPPY; 961 } 962 #endif 963 dh->status = cpu_to_dump32(s, status); 964 965 if (write_buffer(s->fd, 0, dh, size) < 0) { 966 error_setg(errp, "dump: failed to write disk dump header"); 967 goto out; 968 } 969 970 /* write sub header */ 971 size = sizeof(KdumpSubHeader64); 972 kh = g_malloc0(size); 973 974 /* 64bit max_mapnr_64 */ 975 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); 976 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base); 977 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); 978 979 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; 980 if (s->guest_note && 981 note_name_equal(s, s->guest_note, "VMCOREINFO")) { 982 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; 983 984 get_note_sizes(s, s->guest_note, 985 &hsize, &name_size, &size_vmcoreinfo_desc); 986 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + 987 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; 988 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); 989 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc); 990 } 991 992 kh->offset_note = cpu_to_dump64(s, offset_note); 993 kh->note_size = cpu_to_dump64(s, s->note_size); 994 995 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * 996 block_size, kh, size) < 0) { 997 error_setg(errp, "dump: failed to write kdump sub header"); 998 goto out; 999 } 1000 1001 /* write note */ 1002 s->note_buf = g_malloc0(s->note_size); 1003 s->note_buf_offset = 0; 1004 1005 /* use s->note_buf to store notes temporarily */ 1006 write_elf64_notes(buf_write_note, s, &local_err); 1007 if (local_err) { 1008 error_propagate(errp, local_err); 1009 goto out; 1010 } 1011 1012 if (write_buffer(s->fd, offset_note, s->note_buf, 1013 s->note_size) < 0) { 1014 error_setg(errp, "dump: failed to write notes"); 1015 goto out; 1016 } 1017 1018 /* get offset of dump_bitmap */ 1019 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * 1020 block_size; 1021 1022 /* get offset of page */ 1023 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * 1024 block_size; 1025 1026 out: 1027 g_free(dh); 1028 g_free(kh); 1029 g_free(s->note_buf); 1030 } 1031 1032 static void write_dump_header(DumpState *s, Error **errp) 1033 { 1034 Error *local_err = NULL; 1035 1036 if (s->dump_info.d_class == ELFCLASS32) { 1037 create_header32(s, &local_err); 1038 } else { 1039 create_header64(s, &local_err); 1040 } 1041 error_propagate(errp, local_err); 1042 } 1043 1044 static size_t dump_bitmap_get_bufsize(DumpState *s) 1045 { 1046 return s->dump_info.page_size; 1047 } 1048 1049 /* 1050 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be 1051 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. 1052 * set_dump_bitmap will always leave the recently set bit un-sync. And setting 1053 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into 1054 * vmcore, ie. synchronizing un-sync bit into vmcore. 1055 */ 1056 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, 1057 uint8_t *buf, DumpState *s) 1058 { 1059 off_t old_offset, new_offset; 1060 off_t offset_bitmap1, offset_bitmap2; 1061 uint32_t byte, bit; 1062 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1063 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1064 1065 /* should not set the previous place */ 1066 assert(last_pfn <= pfn); 1067 1068 /* 1069 * if the bit needed to be set is not cached in buf, flush the data in buf 1070 * to vmcore firstly. 1071 * making new_offset be bigger than old_offset can also sync remained data 1072 * into vmcore. 1073 */ 1074 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf); 1075 new_offset = bitmap_bufsize * (pfn / bits_per_buf); 1076 1077 while (old_offset < new_offset) { 1078 /* calculate the offset and write dump_bitmap */ 1079 offset_bitmap1 = s->offset_dump_bitmap + old_offset; 1080 if (write_buffer(s->fd, offset_bitmap1, buf, 1081 bitmap_bufsize) < 0) { 1082 return -1; 1083 } 1084 1085 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ 1086 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + 1087 old_offset; 1088 if (write_buffer(s->fd, offset_bitmap2, buf, 1089 bitmap_bufsize) < 0) { 1090 return -1; 1091 } 1092 1093 memset(buf, 0, bitmap_bufsize); 1094 old_offset += bitmap_bufsize; 1095 } 1096 1097 /* get the exact place of the bit in the buf, and set it */ 1098 byte = (pfn % bits_per_buf) / CHAR_BIT; 1099 bit = (pfn % bits_per_buf) % CHAR_BIT; 1100 if (value) { 1101 buf[byte] |= 1u << bit; 1102 } else { 1103 buf[byte] &= ~(1u << bit); 1104 } 1105 1106 return 0; 1107 } 1108 1109 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr) 1110 { 1111 int target_page_shift = ctz32(s->dump_info.page_size); 1112 1113 return (addr >> target_page_shift) - ARCH_PFN_OFFSET; 1114 } 1115 1116 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn) 1117 { 1118 int target_page_shift = ctz32(s->dump_info.page_size); 1119 1120 return (pfn + ARCH_PFN_OFFSET) << target_page_shift; 1121 } 1122 1123 /* 1124 * exam every page and return the page frame number and the address of the page. 1125 * bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys 1126 * blocks, so block->target_start and block->target_end should be interal 1127 * multiples of the target page size. 1128 */ 1129 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, 1130 uint8_t **bufptr, DumpState *s) 1131 { 1132 GuestPhysBlock *block = *blockptr; 1133 hwaddr addr, target_page_mask = ~((hwaddr)s->dump_info.page_size - 1); 1134 uint8_t *buf; 1135 1136 /* block == NULL means the start of the iteration */ 1137 if (!block) { 1138 block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1139 *blockptr = block; 1140 assert((block->target_start & ~target_page_mask) == 0); 1141 assert((block->target_end & ~target_page_mask) == 0); 1142 *pfnptr = dump_paddr_to_pfn(s, block->target_start); 1143 if (bufptr) { 1144 *bufptr = block->host_addr; 1145 } 1146 return true; 1147 } 1148 1149 *pfnptr = *pfnptr + 1; 1150 addr = dump_pfn_to_paddr(s, *pfnptr); 1151 1152 if ((addr >= block->target_start) && 1153 (addr + s->dump_info.page_size <= block->target_end)) { 1154 buf = block->host_addr + (addr - block->target_start); 1155 } else { 1156 /* the next page is in the next block */ 1157 block = QTAILQ_NEXT(block, next); 1158 *blockptr = block; 1159 if (!block) { 1160 return false; 1161 } 1162 assert((block->target_start & ~target_page_mask) == 0); 1163 assert((block->target_end & ~target_page_mask) == 0); 1164 *pfnptr = dump_paddr_to_pfn(s, block->target_start); 1165 buf = block->host_addr; 1166 } 1167 1168 if (bufptr) { 1169 *bufptr = buf; 1170 } 1171 1172 return true; 1173 } 1174 1175 static void write_dump_bitmap(DumpState *s, Error **errp) 1176 { 1177 int ret = 0; 1178 uint64_t last_pfn, pfn; 1179 void *dump_bitmap_buf; 1180 size_t num_dumpable; 1181 GuestPhysBlock *block_iter = NULL; 1182 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); 1183 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; 1184 1185 /* dump_bitmap_buf is used to store dump_bitmap temporarily */ 1186 dump_bitmap_buf = g_malloc0(bitmap_bufsize); 1187 1188 num_dumpable = 0; 1189 last_pfn = 0; 1190 1191 /* 1192 * exam memory page by page, and set the bit in dump_bitmap corresponded 1193 * to the existing page. 1194 */ 1195 while (get_next_page(&block_iter, &pfn, NULL, s)) { 1196 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); 1197 if (ret < 0) { 1198 error_setg(errp, "dump: failed to set dump_bitmap"); 1199 goto out; 1200 } 1201 1202 last_pfn = pfn; 1203 num_dumpable++; 1204 } 1205 1206 /* 1207 * set_dump_bitmap will always leave the recently set bit un-sync. Here we 1208 * set the remaining bits from last_pfn to the end of the bitmap buffer to 1209 * 0. With those set, the un-sync bit will be synchronized into the vmcore. 1210 */ 1211 if (num_dumpable > 0) { 1212 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false, 1213 dump_bitmap_buf, s); 1214 if (ret < 0) { 1215 error_setg(errp, "dump: failed to sync dump_bitmap"); 1216 goto out; 1217 } 1218 } 1219 1220 /* number of dumpable pages that will be dumped later */ 1221 s->num_dumpable = num_dumpable; 1222 1223 out: 1224 g_free(dump_bitmap_buf); 1225 } 1226 1227 static void prepare_data_cache(DataCache *data_cache, DumpState *s, 1228 off_t offset) 1229 { 1230 data_cache->fd = s->fd; 1231 data_cache->data_size = 0; 1232 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s); 1233 data_cache->buf = g_malloc0(data_cache->buf_size); 1234 data_cache->offset = offset; 1235 } 1236 1237 static int write_cache(DataCache *dc, const void *buf, size_t size, 1238 bool flag_sync) 1239 { 1240 /* 1241 * dc->buf_size should not be less than size, otherwise dc will never be 1242 * enough 1243 */ 1244 assert(size <= dc->buf_size); 1245 1246 /* 1247 * if flag_sync is set, synchronize data in dc->buf into vmcore. 1248 * otherwise check if the space is enough for caching data in buf, if not, 1249 * write the data in dc->buf to dc->fd and reset dc->buf 1250 */ 1251 if ((!flag_sync && dc->data_size + size > dc->buf_size) || 1252 (flag_sync && dc->data_size > 0)) { 1253 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) { 1254 return -1; 1255 } 1256 1257 dc->offset += dc->data_size; 1258 dc->data_size = 0; 1259 } 1260 1261 if (!flag_sync) { 1262 memcpy(dc->buf + dc->data_size, buf, size); 1263 dc->data_size += size; 1264 } 1265 1266 return 0; 1267 } 1268 1269 static void free_data_cache(DataCache *data_cache) 1270 { 1271 g_free(data_cache->buf); 1272 } 1273 1274 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) 1275 { 1276 switch (flag_compress) { 1277 case DUMP_DH_COMPRESSED_ZLIB: 1278 return compressBound(page_size); 1279 1280 case DUMP_DH_COMPRESSED_LZO: 1281 /* 1282 * LZO will expand incompressible data by a little amount. Please check 1283 * the following URL to see the expansion calculation: 1284 * http://www.oberhumer.com/opensource/lzo/lzofaq.php 1285 */ 1286 return page_size + page_size / 16 + 64 + 3; 1287 1288 #ifdef CONFIG_SNAPPY 1289 case DUMP_DH_COMPRESSED_SNAPPY: 1290 return snappy_max_compressed_length(page_size); 1291 #endif 1292 } 1293 return 0; 1294 } 1295 1296 /* 1297 * check if the page is all 0 1298 */ 1299 static inline bool is_zero_page(const uint8_t *buf, size_t page_size) 1300 { 1301 return buffer_is_zero(buf, page_size); 1302 } 1303 1304 static void write_dump_pages(DumpState *s, Error **errp) 1305 { 1306 int ret = 0; 1307 DataCache page_desc, page_data; 1308 size_t len_buf_out, size_out; 1309 #ifdef CONFIG_LZO 1310 lzo_bytep wrkmem = NULL; 1311 #endif 1312 uint8_t *buf_out = NULL; 1313 off_t offset_desc, offset_data; 1314 PageDescriptor pd, pd_zero; 1315 uint8_t *buf; 1316 GuestPhysBlock *block_iter = NULL; 1317 uint64_t pfn_iter; 1318 1319 /* get offset of page_desc and page_data in dump file */ 1320 offset_desc = s->offset_page; 1321 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; 1322 1323 prepare_data_cache(&page_desc, s, offset_desc); 1324 prepare_data_cache(&page_data, s, offset_data); 1325 1326 /* prepare buffer to store compressed data */ 1327 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress); 1328 assert(len_buf_out != 0); 1329 1330 #ifdef CONFIG_LZO 1331 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); 1332 #endif 1333 1334 buf_out = g_malloc(len_buf_out); 1335 1336 /* 1337 * init zero page's page_desc and page_data, because every zero page 1338 * uses the same page_data 1339 */ 1340 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size); 1341 pd_zero.flags = cpu_to_dump32(s, 0); 1342 pd_zero.offset = cpu_to_dump64(s, offset_data); 1343 pd_zero.page_flags = cpu_to_dump64(s, 0); 1344 buf = g_malloc0(s->dump_info.page_size); 1345 ret = write_cache(&page_data, buf, s->dump_info.page_size, false); 1346 g_free(buf); 1347 if (ret < 0) { 1348 error_setg(errp, "dump: failed to write page data (zero page)"); 1349 goto out; 1350 } 1351 1352 offset_data += s->dump_info.page_size; 1353 1354 /* 1355 * dump memory to vmcore page by page. zero page will all be resided in the 1356 * first page of page section 1357 */ 1358 while (get_next_page(&block_iter, &pfn_iter, &buf, s)) { 1359 /* check zero page */ 1360 if (is_zero_page(buf, s->dump_info.page_size)) { 1361 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), 1362 false); 1363 if (ret < 0) { 1364 error_setg(errp, "dump: failed to write page desc"); 1365 goto out; 1366 } 1367 } else { 1368 /* 1369 * not zero page, then: 1370 * 1. compress the page 1371 * 2. write the compressed page into the cache of page_data 1372 * 3. get page desc of the compressed page and write it into the 1373 * cache of page_desc 1374 * 1375 * only one compression format will be used here, for 1376 * s->flag_compress is set. But when compression fails to work, 1377 * we fall back to save in plaintext. 1378 */ 1379 size_out = len_buf_out; 1380 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && 1381 (compress2(buf_out, (uLongf *)&size_out, buf, 1382 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) && 1383 (size_out < s->dump_info.page_size)) { 1384 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB); 1385 pd.size = cpu_to_dump32(s, size_out); 1386 1387 ret = write_cache(&page_data, buf_out, size_out, false); 1388 if (ret < 0) { 1389 error_setg(errp, "dump: failed to write page data"); 1390 goto out; 1391 } 1392 #ifdef CONFIG_LZO 1393 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && 1394 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out, 1395 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && 1396 (size_out < s->dump_info.page_size)) { 1397 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO); 1398 pd.size = cpu_to_dump32(s, size_out); 1399 1400 ret = write_cache(&page_data, buf_out, size_out, false); 1401 if (ret < 0) { 1402 error_setg(errp, "dump: failed to write page data"); 1403 goto out; 1404 } 1405 #endif 1406 #ifdef CONFIG_SNAPPY 1407 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && 1408 (snappy_compress((char *)buf, s->dump_info.page_size, 1409 (char *)buf_out, &size_out) == SNAPPY_OK) && 1410 (size_out < s->dump_info.page_size)) { 1411 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY); 1412 pd.size = cpu_to_dump32(s, size_out); 1413 1414 ret = write_cache(&page_data, buf_out, size_out, false); 1415 if (ret < 0) { 1416 error_setg(errp, "dump: failed to write page data"); 1417 goto out; 1418 } 1419 #endif 1420 } else { 1421 /* 1422 * fall back to save in plaintext, size_out should be 1423 * assigned the target's page size 1424 */ 1425 pd.flags = cpu_to_dump32(s, 0); 1426 size_out = s->dump_info.page_size; 1427 pd.size = cpu_to_dump32(s, size_out); 1428 1429 ret = write_cache(&page_data, buf, 1430 s->dump_info.page_size, false); 1431 if (ret < 0) { 1432 error_setg(errp, "dump: failed to write page data"); 1433 goto out; 1434 } 1435 } 1436 1437 /* get and write page desc here */ 1438 pd.page_flags = cpu_to_dump64(s, 0); 1439 pd.offset = cpu_to_dump64(s, offset_data); 1440 offset_data += size_out; 1441 1442 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); 1443 if (ret < 0) { 1444 error_setg(errp, "dump: failed to write page desc"); 1445 goto out; 1446 } 1447 } 1448 s->written_size += s->dump_info.page_size; 1449 } 1450 1451 ret = write_cache(&page_desc, NULL, 0, true); 1452 if (ret < 0) { 1453 error_setg(errp, "dump: failed to sync cache for page_desc"); 1454 goto out; 1455 } 1456 ret = write_cache(&page_data, NULL, 0, true); 1457 if (ret < 0) { 1458 error_setg(errp, "dump: failed to sync cache for page_data"); 1459 goto out; 1460 } 1461 1462 out: 1463 free_data_cache(&page_desc); 1464 free_data_cache(&page_data); 1465 1466 #ifdef CONFIG_LZO 1467 g_free(wrkmem); 1468 #endif 1469 1470 g_free(buf_out); 1471 } 1472 1473 static void create_kdump_vmcore(DumpState *s, Error **errp) 1474 { 1475 int ret; 1476 Error *local_err = NULL; 1477 1478 /* 1479 * the kdump-compressed format is: 1480 * File offset 1481 * +------------------------------------------+ 0x0 1482 * | main header (struct disk_dump_header) | 1483 * |------------------------------------------+ block 1 1484 * | sub header (struct kdump_sub_header) | 1485 * |------------------------------------------+ block 2 1486 * | 1st-dump_bitmap | 1487 * |------------------------------------------+ block 2 + X blocks 1488 * | 2nd-dump_bitmap | (aligned by block) 1489 * |------------------------------------------+ block 2 + 2 * X blocks 1490 * | page desc for pfn 0 (struct page_desc) | (aligned by block) 1491 * | page desc for pfn 1 (struct page_desc) | 1492 * | : | 1493 * |------------------------------------------| (not aligned by block) 1494 * | page data (pfn 0) | 1495 * | page data (pfn 1) | 1496 * | : | 1497 * +------------------------------------------+ 1498 */ 1499 1500 ret = write_start_flat_header(s->fd); 1501 if (ret < 0) { 1502 error_setg(errp, "dump: failed to write start flat header"); 1503 return; 1504 } 1505 1506 write_dump_header(s, &local_err); 1507 if (local_err) { 1508 error_propagate(errp, local_err); 1509 return; 1510 } 1511 1512 write_dump_bitmap(s, &local_err); 1513 if (local_err) { 1514 error_propagate(errp, local_err); 1515 return; 1516 } 1517 1518 write_dump_pages(s, &local_err); 1519 if (local_err) { 1520 error_propagate(errp, local_err); 1521 return; 1522 } 1523 1524 ret = write_end_flat_header(s->fd); 1525 if (ret < 0) { 1526 error_setg(errp, "dump: failed to write end flat header"); 1527 return; 1528 } 1529 } 1530 1531 static ram_addr_t get_start_block(DumpState *s) 1532 { 1533 GuestPhysBlock *block; 1534 1535 if (!s->has_filter) { 1536 s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head); 1537 return 0; 1538 } 1539 1540 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1541 if (block->target_start >= s->begin + s->length || 1542 block->target_end <= s->begin) { 1543 /* This block is out of the range */ 1544 continue; 1545 } 1546 1547 s->next_block = block; 1548 if (s->begin > block->target_start) { 1549 s->start = s->begin - block->target_start; 1550 } else { 1551 s->start = 0; 1552 } 1553 return s->start; 1554 } 1555 1556 return -1; 1557 } 1558 1559 static void get_max_mapnr(DumpState *s) 1560 { 1561 GuestPhysBlock *last_block; 1562 1563 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head); 1564 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end); 1565 } 1566 1567 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE }; 1568 1569 static void dump_state_prepare(DumpState *s) 1570 { 1571 /* zero the struct, setting status to active */ 1572 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE }; 1573 } 1574 1575 bool dump_in_progress(void) 1576 { 1577 DumpState *state = &dump_state_global; 1578 return (atomic_read(&state->status) == DUMP_STATUS_ACTIVE); 1579 } 1580 1581 /* calculate total size of memory to be dumped (taking filter into 1582 * acoount.) */ 1583 static int64_t dump_calculate_size(DumpState *s) 1584 { 1585 GuestPhysBlock *block; 1586 int64_t size = 0, total = 0, left = 0, right = 0; 1587 1588 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { 1589 if (s->has_filter) { 1590 /* calculate the overlapped region. */ 1591 left = MAX(s->begin, block->target_start); 1592 right = MIN(s->begin + s->length, block->target_end); 1593 size = right - left; 1594 size = size > 0 ? size : 0; 1595 } else { 1596 /* count the whole region in */ 1597 size = (block->target_end - block->target_start); 1598 } 1599 total += size; 1600 } 1601 1602 return total; 1603 } 1604 1605 static void vmcoreinfo_update_phys_base(DumpState *s) 1606 { 1607 uint64_t size, note_head_size, name_size, phys_base; 1608 char **lines; 1609 uint8_t *vmci; 1610 size_t i; 1611 1612 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) { 1613 return; 1614 } 1615 1616 get_note_sizes(s, s->guest_note, ¬e_head_size, &name_size, &size); 1617 note_head_size = ROUND_UP(note_head_size, 4); 1618 1619 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4); 1620 *(vmci + size) = '\0'; 1621 1622 lines = g_strsplit((char *)vmci, "\n", -1); 1623 for (i = 0; lines[i]; i++) { 1624 const char *prefix = NULL; 1625 1626 if (s->dump_info.d_machine == EM_X86_64) { 1627 prefix = "NUMBER(phys_base)="; 1628 } else if (s->dump_info.d_machine == EM_AARCH64) { 1629 prefix = "NUMBER(PHYS_OFFSET)="; 1630 } 1631 1632 if (prefix && g_str_has_prefix(lines[i], prefix)) { 1633 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16, 1634 &phys_base) < 0) { 1635 warn_report("Failed to read %s", prefix); 1636 } else { 1637 s->dump_info.phys_base = phys_base; 1638 } 1639 break; 1640 } 1641 } 1642 1643 g_strfreev(lines); 1644 } 1645 1646 static void dump_init(DumpState *s, int fd, bool has_format, 1647 DumpGuestMemoryFormat format, bool paging, bool has_filter, 1648 int64_t begin, int64_t length, Error **errp) 1649 { 1650 VMCoreInfoState *vmci = vmcoreinfo_find(); 1651 CPUState *cpu; 1652 int nr_cpus; 1653 Error *err = NULL; 1654 int ret; 1655 1656 s->has_format = has_format; 1657 s->format = format; 1658 s->written_size = 0; 1659 1660 /* kdump-compressed is conflict with paging and filter */ 1661 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1662 assert(!paging && !has_filter); 1663 } 1664 1665 if (runstate_is_running()) { 1666 vm_stop(RUN_STATE_SAVE_VM); 1667 s->resume = true; 1668 } else { 1669 s->resume = false; 1670 } 1671 1672 /* If we use KVM, we should synchronize the registers before we get dump 1673 * info or physmap info. 1674 */ 1675 cpu_synchronize_all_states(); 1676 nr_cpus = 0; 1677 CPU_FOREACH(cpu) { 1678 nr_cpus++; 1679 } 1680 1681 s->fd = fd; 1682 s->has_filter = has_filter; 1683 s->begin = begin; 1684 s->length = length; 1685 1686 memory_mapping_list_init(&s->list); 1687 1688 guest_phys_blocks_init(&s->guest_phys_blocks); 1689 guest_phys_blocks_append(&s->guest_phys_blocks); 1690 s->total_size = dump_calculate_size(s); 1691 #ifdef DEBUG_DUMP_GUEST_MEMORY 1692 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size); 1693 #endif 1694 1695 /* it does not make sense to dump non-existent memory */ 1696 if (!s->total_size) { 1697 error_setg(errp, "dump: no guest memory to dump"); 1698 goto cleanup; 1699 } 1700 1701 s->start = get_start_block(s); 1702 if (s->start == -1) { 1703 error_setg(errp, QERR_INVALID_PARAMETER, "begin"); 1704 goto cleanup; 1705 } 1706 1707 /* get dump info: endian, class and architecture. 1708 * If the target architecture is not supported, cpu_get_dump_info() will 1709 * return -1. 1710 */ 1711 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); 1712 if (ret < 0) { 1713 error_setg(errp, QERR_UNSUPPORTED); 1714 goto cleanup; 1715 } 1716 1717 if (!s->dump_info.page_size) { 1718 s->dump_info.page_size = TARGET_PAGE_SIZE; 1719 } 1720 1721 s->note_size = cpu_get_note_size(s->dump_info.d_class, 1722 s->dump_info.d_machine, nr_cpus); 1723 if (s->note_size < 0) { 1724 error_setg(errp, QERR_UNSUPPORTED); 1725 goto cleanup; 1726 } 1727 1728 /* 1729 * The goal of this block is to (a) update the previously guessed 1730 * phys_base, (b) copy the guest note out of the guest. 1731 * Failure to do so is not fatal for dumping. 1732 */ 1733 if (vmci) { 1734 uint64_t addr, note_head_size, name_size, desc_size; 1735 uint32_t size; 1736 uint16_t format; 1737 1738 note_head_size = s->dump_info.d_class == ELFCLASS32 ? 1739 sizeof(Elf32_Nhdr) : sizeof(Elf64_Nhdr); 1740 1741 format = le16_to_cpu(vmci->vmcoreinfo.guest_format); 1742 size = le32_to_cpu(vmci->vmcoreinfo.size); 1743 addr = le64_to_cpu(vmci->vmcoreinfo.paddr); 1744 if (!vmci->has_vmcoreinfo) { 1745 warn_report("guest note is not present"); 1746 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) { 1747 warn_report("guest note size is invalid: %" PRIu32, size); 1748 } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) { 1749 warn_report("guest note format is unsupported: %" PRIu16, format); 1750 } else { 1751 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */ 1752 cpu_physical_memory_read(addr, s->guest_note, size); 1753 1754 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size); 1755 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size, 1756 desc_size); 1757 if (name_size > MAX_GUEST_NOTE_SIZE || 1758 desc_size > MAX_GUEST_NOTE_SIZE || 1759 s->guest_note_size > size) { 1760 warn_report("Invalid guest note header"); 1761 g_free(s->guest_note); 1762 s->guest_note = NULL; 1763 } else { 1764 vmcoreinfo_update_phys_base(s); 1765 s->note_size += s->guest_note_size; 1766 } 1767 } 1768 } 1769 1770 /* get memory mapping */ 1771 if (paging) { 1772 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err); 1773 if (err != NULL) { 1774 error_propagate(errp, err); 1775 goto cleanup; 1776 } 1777 } else { 1778 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); 1779 } 1780 1781 s->nr_cpus = nr_cpus; 1782 1783 get_max_mapnr(s); 1784 1785 uint64_t tmp; 1786 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), 1787 s->dump_info.page_size); 1788 s->len_dump_bitmap = tmp * s->dump_info.page_size; 1789 1790 /* init for kdump-compressed format */ 1791 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1792 switch (format) { 1793 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: 1794 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; 1795 break; 1796 1797 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: 1798 #ifdef CONFIG_LZO 1799 if (lzo_init() != LZO_E_OK) { 1800 error_setg(errp, "failed to initialize the LZO library"); 1801 goto cleanup; 1802 } 1803 #endif 1804 s->flag_compress = DUMP_DH_COMPRESSED_LZO; 1805 break; 1806 1807 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: 1808 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; 1809 break; 1810 1811 default: 1812 s->flag_compress = 0; 1813 } 1814 1815 return; 1816 } 1817 1818 if (s->has_filter) { 1819 memory_mapping_filter(&s->list, s->begin, s->length); 1820 } 1821 1822 /* 1823 * calculate phdr_num 1824 * 1825 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow 1826 */ 1827 s->phdr_num = 1; /* PT_NOTE */ 1828 if (s->list.num < UINT16_MAX - 2) { 1829 s->phdr_num += s->list.num; 1830 s->have_section = false; 1831 } else { 1832 s->have_section = true; 1833 s->phdr_num = PN_XNUM; 1834 s->sh_info = 1; /* PT_NOTE */ 1835 1836 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */ 1837 if (s->list.num <= UINT32_MAX - 1) { 1838 s->sh_info += s->list.num; 1839 } else { 1840 s->sh_info = UINT32_MAX; 1841 } 1842 } 1843 1844 if (s->dump_info.d_class == ELFCLASS64) { 1845 if (s->have_section) { 1846 s->memory_offset = sizeof(Elf64_Ehdr) + 1847 sizeof(Elf64_Phdr) * s->sh_info + 1848 sizeof(Elf64_Shdr) + s->note_size; 1849 } else { 1850 s->memory_offset = sizeof(Elf64_Ehdr) + 1851 sizeof(Elf64_Phdr) * s->phdr_num + s->note_size; 1852 } 1853 } else { 1854 if (s->have_section) { 1855 s->memory_offset = sizeof(Elf32_Ehdr) + 1856 sizeof(Elf32_Phdr) * s->sh_info + 1857 sizeof(Elf32_Shdr) + s->note_size; 1858 } else { 1859 s->memory_offset = sizeof(Elf32_Ehdr) + 1860 sizeof(Elf32_Phdr) * s->phdr_num + s->note_size; 1861 } 1862 } 1863 1864 return; 1865 1866 cleanup: 1867 dump_cleanup(s); 1868 } 1869 1870 /* this operation might be time consuming. */ 1871 static void dump_process(DumpState *s, Error **errp) 1872 { 1873 Error *local_err = NULL; 1874 DumpQueryResult *result = NULL; 1875 1876 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 1877 #ifdef TARGET_X86_64 1878 create_win_dump(s, &local_err); 1879 #endif 1880 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) { 1881 create_kdump_vmcore(s, &local_err); 1882 } else { 1883 create_vmcore(s, &local_err); 1884 } 1885 1886 /* make sure status is written after written_size updates */ 1887 smp_wmb(); 1888 atomic_set(&s->status, 1889 (local_err ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED)); 1890 1891 /* send DUMP_COMPLETED message (unconditionally) */ 1892 result = qmp_query_dump(NULL); 1893 /* should never fail */ 1894 assert(result); 1895 qapi_event_send_dump_completed(result, !!local_err, (local_err ? \ 1896 error_get_pretty(local_err) : NULL)); 1897 qapi_free_DumpQueryResult(result); 1898 1899 error_propagate(errp, local_err); 1900 dump_cleanup(s); 1901 } 1902 1903 static void *dump_thread(void *data) 1904 { 1905 DumpState *s = (DumpState *)data; 1906 dump_process(s, NULL); 1907 return NULL; 1908 } 1909 1910 DumpQueryResult *qmp_query_dump(Error **errp) 1911 { 1912 DumpQueryResult *result = g_new(DumpQueryResult, 1); 1913 DumpState *state = &dump_state_global; 1914 result->status = atomic_read(&state->status); 1915 /* make sure we are reading status and written_size in order */ 1916 smp_rmb(); 1917 result->completed = state->written_size; 1918 result->total = state->total_size; 1919 return result; 1920 } 1921 1922 void qmp_dump_guest_memory(bool paging, const char *file, 1923 bool has_detach, bool detach, 1924 bool has_begin, int64_t begin, bool has_length, 1925 int64_t length, bool has_format, 1926 DumpGuestMemoryFormat format, Error **errp) 1927 { 1928 const char *p; 1929 int fd = -1; 1930 DumpState *s; 1931 Error *local_err = NULL; 1932 bool detach_p = false; 1933 1934 if (runstate_check(RUN_STATE_INMIGRATE)) { 1935 error_setg(errp, "Dump not allowed during incoming migration."); 1936 return; 1937 } 1938 1939 /* if there is a dump in background, we should wait until the dump 1940 * finished */ 1941 if (dump_in_progress()) { 1942 error_setg(errp, "There is a dump in process, please wait."); 1943 return; 1944 } 1945 1946 /* 1947 * kdump-compressed format need the whole memory dumped, so paging or 1948 * filter is not supported here. 1949 */ 1950 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && 1951 (paging || has_begin || has_length)) { 1952 error_setg(errp, "kdump-compressed format doesn't support paging or " 1953 "filter"); 1954 return; 1955 } 1956 if (has_begin && !has_length) { 1957 error_setg(errp, QERR_MISSING_PARAMETER, "length"); 1958 return; 1959 } 1960 if (!has_begin && has_length) { 1961 error_setg(errp, QERR_MISSING_PARAMETER, "begin"); 1962 return; 1963 } 1964 if (has_detach) { 1965 detach_p = detach; 1966 } 1967 1968 /* check whether lzo/snappy is supported */ 1969 #ifndef CONFIG_LZO 1970 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { 1971 error_setg(errp, "kdump-lzo is not available now"); 1972 return; 1973 } 1974 #endif 1975 1976 #ifndef CONFIG_SNAPPY 1977 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { 1978 error_setg(errp, "kdump-snappy is not available now"); 1979 return; 1980 } 1981 #endif 1982 1983 #ifndef TARGET_X86_64 1984 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { 1985 error_setg(errp, "Windows dump is only available for x86-64"); 1986 return; 1987 } 1988 #endif 1989 1990 #if !defined(WIN32) 1991 if (strstart(file, "fd:", &p)) { 1992 fd = monitor_get_fd(cur_mon, p, errp); 1993 if (fd == -1) { 1994 return; 1995 } 1996 } 1997 #endif 1998 1999 if (strstart(file, "file:", &p)) { 2000 fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); 2001 if (fd < 0) { 2002 error_setg_file_open(errp, errno, p); 2003 return; 2004 } 2005 } 2006 2007 if (fd == -1) { 2008 error_setg(errp, QERR_INVALID_PARAMETER, "protocol"); 2009 return; 2010 } 2011 2012 s = &dump_state_global; 2013 dump_state_prepare(s); 2014 2015 dump_init(s, fd, has_format, format, paging, has_begin, 2016 begin, length, &local_err); 2017 if (local_err) { 2018 error_propagate(errp, local_err); 2019 atomic_set(&s->status, DUMP_STATUS_FAILED); 2020 return; 2021 } 2022 2023 if (detach_p) { 2024 /* detached dump */ 2025 s->detached = true; 2026 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread, 2027 s, QEMU_THREAD_DETACHED); 2028 } else { 2029 /* sync dump */ 2030 dump_process(s, errp); 2031 } 2032 } 2033 2034 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) 2035 { 2036 DumpGuestMemoryFormatList *item; 2037 DumpGuestMemoryCapability *cap = 2038 g_malloc0(sizeof(DumpGuestMemoryCapability)); 2039 2040 /* elf is always available */ 2041 item = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2042 cap->formats = item; 2043 item->value = DUMP_GUEST_MEMORY_FORMAT_ELF; 2044 2045 /* kdump-zlib is always available */ 2046 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2047 item = item->next; 2048 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB; 2049 2050 /* add new item if kdump-lzo is available */ 2051 #ifdef CONFIG_LZO 2052 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2053 item = item->next; 2054 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO; 2055 #endif 2056 2057 /* add new item if kdump-snappy is available */ 2058 #ifdef CONFIG_SNAPPY 2059 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2060 item = item->next; 2061 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY; 2062 #endif 2063 2064 /* Windows dump is available only if target is x86_64 */ 2065 #ifdef TARGET_X86_64 2066 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); 2067 item = item->next; 2068 item->value = DUMP_GUEST_MEMORY_FORMAT_WIN_DMP; 2069 #endif 2070 2071 return cap; 2072 } 2073