xref: /openbmc/qemu/dump/dump.c (revision 1d2cb5a8)
1 /*
2  * QEMU dump
3  *
4  * Copyright Fujitsu, Corp. 2011, 2012
5  *
6  * Authors:
7  *     Wen Congyang <wency@cn.fujitsu.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #include "qemu/osdep.h"
15 #include "qemu/cutils.h"
16 #include "elf.h"
17 #include "qemu/bswap.h"
18 #include "exec/target_page.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/dump.h"
21 #include "sysemu/runstate.h"
22 #include "sysemu/cpus.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-dump.h"
25 #include "qapi/qapi-events-dump.h"
26 #include "qapi/qmp/qerror.h"
27 #include "qemu/main-loop.h"
28 #include "hw/misc/vmcoreinfo.h"
29 #include "migration/blocker.h"
30 #include "hw/core/cpu.h"
31 #include "win_dump.h"
32 
33 #include <zlib.h>
34 #ifdef CONFIG_LZO
35 #include <lzo/lzo1x.h>
36 #endif
37 #ifdef CONFIG_SNAPPY
38 #include <snappy-c.h>
39 #endif
40 #ifndef ELF_MACHINE_UNAME
41 #define ELF_MACHINE_UNAME "Unknown"
42 #endif
43 
44 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
45 
46 static Error *dump_migration_blocker;
47 
48 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size)   \
49     ((DIV_ROUND_UP((hdr_size), 4) +                     \
50       DIV_ROUND_UP((name_size), 4) +                    \
51       DIV_ROUND_UP((desc_size), 4)) * 4)
52 
53 static inline bool dump_is_64bit(DumpState *s)
54 {
55     return s->dump_info.d_class == ELFCLASS64;
56 }
57 
58 static inline bool dump_has_filter(DumpState *s)
59 {
60     return s->filter_area_length > 0;
61 }
62 
63 uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
64 {
65     if (s->dump_info.d_endian == ELFDATA2LSB) {
66         val = cpu_to_le16(val);
67     } else {
68         val = cpu_to_be16(val);
69     }
70 
71     return val;
72 }
73 
74 uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
75 {
76     if (s->dump_info.d_endian == ELFDATA2LSB) {
77         val = cpu_to_le32(val);
78     } else {
79         val = cpu_to_be32(val);
80     }
81 
82     return val;
83 }
84 
85 uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
86 {
87     if (s->dump_info.d_endian == ELFDATA2LSB) {
88         val = cpu_to_le64(val);
89     } else {
90         val = cpu_to_be64(val);
91     }
92 
93     return val;
94 }
95 
96 static int dump_cleanup(DumpState *s)
97 {
98     guest_phys_blocks_free(&s->guest_phys_blocks);
99     memory_mapping_list_free(&s->list);
100     close(s->fd);
101     g_free(s->guest_note);
102     g_array_unref(s->string_table_buf);
103     s->guest_note = NULL;
104     if (s->resume) {
105         if (s->detached) {
106             qemu_mutex_lock_iothread();
107         }
108         vm_start();
109         if (s->detached) {
110             qemu_mutex_unlock_iothread();
111         }
112     }
113     migrate_del_blocker(dump_migration_blocker);
114 
115     return 0;
116 }
117 
118 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
119 {
120     DumpState *s = opaque;
121     size_t written_size;
122 
123     written_size = qemu_write_full(s->fd, buf, size);
124     if (written_size != size) {
125         return -errno;
126     }
127 
128     return 0;
129 }
130 
131 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
132 {
133     /*
134      * phnum in the elf header is 16 bit, if we have more segments we
135      * set phnum to PN_XNUM and write the real number of segments to a
136      * special section.
137      */
138     uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
139 
140     memset(elf_header, 0, sizeof(Elf64_Ehdr));
141     memcpy(elf_header, ELFMAG, SELFMAG);
142     elf_header->e_ident[EI_CLASS] = ELFCLASS64;
143     elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
144     elf_header->e_ident[EI_VERSION] = EV_CURRENT;
145     elf_header->e_type = cpu_to_dump16(s, ET_CORE);
146     elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
147     elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
148     elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
149     elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
150     elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
151     elf_header->e_phnum = cpu_to_dump16(s, phnum);
152     elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
153     elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
154     elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
155     elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
156 }
157 
158 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
159 {
160     /*
161      * phnum in the elf header is 16 bit, if we have more segments we
162      * set phnum to PN_XNUM and write the real number of segments to a
163      * special section.
164      */
165     uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
166 
167     memset(elf_header, 0, sizeof(Elf32_Ehdr));
168     memcpy(elf_header, ELFMAG, SELFMAG);
169     elf_header->e_ident[EI_CLASS] = ELFCLASS32;
170     elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
171     elf_header->e_ident[EI_VERSION] = EV_CURRENT;
172     elf_header->e_type = cpu_to_dump16(s, ET_CORE);
173     elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
174     elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
175     elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
176     elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
177     elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
178     elf_header->e_phnum = cpu_to_dump16(s, phnum);
179     elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
180     elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
181     elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
182     elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
183 }
184 
185 static void write_elf_header(DumpState *s, Error **errp)
186 {
187     Elf32_Ehdr elf32_header;
188     Elf64_Ehdr elf64_header;
189     size_t header_size;
190     void *header_ptr;
191     int ret;
192 
193     /* The NULL header and the shstrtab are always defined */
194     assert(s->shdr_num >= 2);
195     if (dump_is_64bit(s)) {
196         prepare_elf64_header(s, &elf64_header);
197         header_size = sizeof(elf64_header);
198         header_ptr = &elf64_header;
199     } else {
200         prepare_elf32_header(s, &elf32_header);
201         header_size = sizeof(elf32_header);
202         header_ptr = &elf32_header;
203     }
204 
205     ret = fd_write_vmcore(header_ptr, header_size, s);
206     if (ret < 0) {
207         error_setg_errno(errp, -ret, "dump: failed to write elf header");
208     }
209 }
210 
211 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
212                              int phdr_index, hwaddr offset,
213                              hwaddr filesz, Error **errp)
214 {
215     Elf64_Phdr phdr;
216     int ret;
217 
218     memset(&phdr, 0, sizeof(Elf64_Phdr));
219     phdr.p_type = cpu_to_dump32(s, PT_LOAD);
220     phdr.p_offset = cpu_to_dump64(s, offset);
221     phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
222     phdr.p_filesz = cpu_to_dump64(s, filesz);
223     phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
224     phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
225 
226     assert(memory_mapping->length >= filesz);
227 
228     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
229     if (ret < 0) {
230         error_setg_errno(errp, -ret,
231                          "dump: failed to write program header table");
232     }
233 }
234 
235 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
236                              int phdr_index, hwaddr offset,
237                              hwaddr filesz, Error **errp)
238 {
239     Elf32_Phdr phdr;
240     int ret;
241 
242     memset(&phdr, 0, sizeof(Elf32_Phdr));
243     phdr.p_type = cpu_to_dump32(s, PT_LOAD);
244     phdr.p_offset = cpu_to_dump32(s, offset);
245     phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
246     phdr.p_filesz = cpu_to_dump32(s, filesz);
247     phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
248     phdr.p_vaddr =
249         cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
250 
251     assert(memory_mapping->length >= filesz);
252 
253     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
254     if (ret < 0) {
255         error_setg_errno(errp, -ret,
256                          "dump: failed to write program header table");
257     }
258 }
259 
260 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
261 {
262     memset(phdr, 0, sizeof(*phdr));
263     phdr->p_type = cpu_to_dump32(s, PT_NOTE);
264     phdr->p_offset = cpu_to_dump64(s, s->note_offset);
265     phdr->p_paddr = 0;
266     phdr->p_filesz = cpu_to_dump64(s, s->note_size);
267     phdr->p_memsz = cpu_to_dump64(s, s->note_size);
268     phdr->p_vaddr = 0;
269 }
270 
271 static inline int cpu_index(CPUState *cpu)
272 {
273     return cpu->cpu_index + 1;
274 }
275 
276 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
277                              Error **errp)
278 {
279     int ret;
280 
281     if (s->guest_note) {
282         ret = f(s->guest_note, s->guest_note_size, s);
283         if (ret < 0) {
284             error_setg(errp, "dump: failed to write guest note");
285         }
286     }
287 }
288 
289 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
290                               Error **errp)
291 {
292     CPUState *cpu;
293     int ret;
294     int id;
295 
296     CPU_FOREACH(cpu) {
297         id = cpu_index(cpu);
298         ret = cpu_write_elf64_note(f, cpu, id, s);
299         if (ret < 0) {
300             error_setg(errp, "dump: failed to write elf notes");
301             return;
302         }
303     }
304 
305     CPU_FOREACH(cpu) {
306         ret = cpu_write_elf64_qemunote(f, cpu, s);
307         if (ret < 0) {
308             error_setg(errp, "dump: failed to write CPU status");
309             return;
310         }
311     }
312 
313     write_guest_note(f, s, errp);
314 }
315 
316 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
317 {
318     memset(phdr, 0, sizeof(*phdr));
319     phdr->p_type = cpu_to_dump32(s, PT_NOTE);
320     phdr->p_offset = cpu_to_dump32(s, s->note_offset);
321     phdr->p_paddr = 0;
322     phdr->p_filesz = cpu_to_dump32(s, s->note_size);
323     phdr->p_memsz = cpu_to_dump32(s, s->note_size);
324     phdr->p_vaddr = 0;
325 }
326 
327 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
328                               Error **errp)
329 {
330     CPUState *cpu;
331     int ret;
332     int id;
333 
334     CPU_FOREACH(cpu) {
335         id = cpu_index(cpu);
336         ret = cpu_write_elf32_note(f, cpu, id, s);
337         if (ret < 0) {
338             error_setg(errp, "dump: failed to write elf notes");
339             return;
340         }
341     }
342 
343     CPU_FOREACH(cpu) {
344         ret = cpu_write_elf32_qemunote(f, cpu, s);
345         if (ret < 0) {
346             error_setg(errp, "dump: failed to write CPU status");
347             return;
348         }
349     }
350 
351     write_guest_note(f, s, errp);
352 }
353 
354 static void write_elf_phdr_note(DumpState *s, Error **errp)
355 {
356     Elf32_Phdr phdr32;
357     Elf64_Phdr phdr64;
358     void *phdr;
359     size_t size;
360     int ret;
361 
362     if (dump_is_64bit(s)) {
363         prepare_elf64_phdr_note(s, &phdr64);
364         size = sizeof(phdr64);
365         phdr = &phdr64;
366     } else {
367         prepare_elf32_phdr_note(s, &phdr32);
368         size = sizeof(phdr32);
369         phdr = &phdr32;
370     }
371 
372     ret = fd_write_vmcore(phdr, size, s);
373     if (ret < 0) {
374         error_setg_errno(errp, -ret,
375                          "dump: failed to write program header table");
376     }
377 }
378 
379 static void prepare_elf_section_hdr_zero(DumpState *s)
380 {
381     if (dump_is_64bit(s)) {
382         Elf64_Shdr *shdr64 = s->elf_section_hdrs;
383 
384         shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
385     } else {
386         Elf32_Shdr *shdr32 = s->elf_section_hdrs;
387 
388         shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
389     }
390 }
391 
392 static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
393 {
394     uint64_t index = s->string_table_buf->len;
395     const char strtab[] = ".shstrtab";
396     Elf32_Shdr shdr32 = {};
397     Elf64_Shdr shdr64 = {};
398     int shdr_size;
399     void *shdr;
400 
401     g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
402     if (dump_is_64bit(s)) {
403         shdr_size = sizeof(Elf64_Shdr);
404         shdr64.sh_type = SHT_STRTAB;
405         shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
406         shdr64.sh_name = index;
407         shdr64.sh_size = s->string_table_buf->len;
408         shdr = &shdr64;
409     } else {
410         shdr_size = sizeof(Elf32_Shdr);
411         shdr32.sh_type = SHT_STRTAB;
412         shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
413         shdr32.sh_name = index;
414         shdr32.sh_size = s->string_table_buf->len;
415         shdr = &shdr32;
416     }
417     memcpy(buff, shdr, shdr_size);
418 }
419 
420 static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
421 {
422     size_t len, sizeof_shdr;
423     void *buff_hdr;
424 
425     /*
426      * Section ordering:
427      * - HDR zero
428      * - Arch section hdrs
429      * - String table hdr
430      */
431     sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
432     len = sizeof_shdr * s->shdr_num;
433     s->elf_section_hdrs = g_malloc0(len);
434     buff_hdr = s->elf_section_hdrs;
435 
436     /*
437      * The first section header is ALWAYS a special initial section
438      * header.
439      *
440      * The header should be 0 with one exception being that if
441      * phdr_num is PN_XNUM then the sh_info field contains the real
442      * number of segment entries.
443      *
444      * As we zero allocate the buffer we will only need to modify
445      * sh_info for the PN_XNUM case.
446      */
447     if (s->phdr_num >= PN_XNUM) {
448         prepare_elf_section_hdr_zero(s);
449     }
450     buff_hdr += sizeof_shdr;
451 
452     /* Add architecture defined section headers */
453     if (s->dump_info.arch_sections_write_hdr_fn
454         && s->shdr_num > 2) {
455         buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
456 
457         if (s->shdr_num >= SHN_LORESERVE) {
458             error_setg_errno(errp, EINVAL,
459                              "dump: too many architecture defined sections");
460             return false;
461         }
462     }
463 
464     /*
465      * String table is the last section since strings are added via
466      * arch_sections_write_hdr().
467      */
468     prepare_elf_section_hdr_string(s, buff_hdr);
469     return true;
470 }
471 
472 static void write_elf_section_headers(DumpState *s, Error **errp)
473 {
474     size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
475     int ret;
476 
477     if (!prepare_elf_section_hdrs(s, errp)) {
478         return;
479     }
480 
481     ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
482     if (ret < 0) {
483         error_setg_errno(errp, -ret, "dump: failed to write section headers");
484     }
485 
486     g_free(s->elf_section_hdrs);
487 }
488 
489 static void write_elf_sections(DumpState *s, Error **errp)
490 {
491     int ret;
492 
493     if (s->elf_section_data_size) {
494         /* Write architecture section data */
495         ret = fd_write_vmcore(s->elf_section_data,
496                               s->elf_section_data_size, s);
497         if (ret < 0) {
498             error_setg_errno(errp, -ret,
499                              "dump: failed to write architecture section data");
500             return;
501         }
502     }
503 
504     /* Write string table */
505     ret = fd_write_vmcore(s->string_table_buf->data,
506                           s->string_table_buf->len, s);
507     if (ret < 0) {
508         error_setg_errno(errp, -ret, "dump: failed to write string table data");
509     }
510 }
511 
512 static void write_data(DumpState *s, void *buf, int length, Error **errp)
513 {
514     int ret;
515 
516     ret = fd_write_vmcore(buf, length, s);
517     if (ret < 0) {
518         error_setg_errno(errp, -ret, "dump: failed to save memory");
519     } else {
520         s->written_size += length;
521     }
522 }
523 
524 /* write the memory to vmcore. 1 page per I/O. */
525 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
526                          int64_t size, Error **errp)
527 {
528     ERRP_GUARD();
529     int64_t i;
530 
531     for (i = 0; i < size / s->dump_info.page_size; i++) {
532         write_data(s, block->host_addr + start + i * s->dump_info.page_size,
533                    s->dump_info.page_size, errp);
534         if (*errp) {
535             return;
536         }
537     }
538 
539     if ((size % s->dump_info.page_size) != 0) {
540         write_data(s, block->host_addr + start + i * s->dump_info.page_size,
541                    size % s->dump_info.page_size, errp);
542         if (*errp) {
543             return;
544         }
545     }
546 }
547 
548 /* get the memory's offset and size in the vmcore */
549 static void get_offset_range(hwaddr phys_addr,
550                              ram_addr_t mapping_length,
551                              DumpState *s,
552                              hwaddr *p_offset,
553                              hwaddr *p_filesz)
554 {
555     GuestPhysBlock *block;
556     hwaddr offset = s->memory_offset;
557     int64_t size_in_block, start;
558 
559     /* When the memory is not stored into vmcore, offset will be -1 */
560     *p_offset = -1;
561     *p_filesz = 0;
562 
563     if (dump_has_filter(s)) {
564         if (phys_addr < s->filter_area_begin ||
565             phys_addr >= s->filter_area_begin + s->filter_area_length) {
566             return;
567         }
568     }
569 
570     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
571         if (dump_has_filter(s)) {
572             if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
573                 block->target_end <= s->filter_area_begin) {
574                 /* This block is out of the range */
575                 continue;
576             }
577 
578             if (s->filter_area_begin <= block->target_start) {
579                 start = block->target_start;
580             } else {
581                 start = s->filter_area_begin;
582             }
583 
584             size_in_block = block->target_end - start;
585             if (s->filter_area_begin + s->filter_area_length < block->target_end) {
586                 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
587             }
588         } else {
589             start = block->target_start;
590             size_in_block = block->target_end - block->target_start;
591         }
592 
593         if (phys_addr >= start && phys_addr < start + size_in_block) {
594             *p_offset = phys_addr - start + offset;
595 
596             /* The offset range mapped from the vmcore file must not spill over
597              * the GuestPhysBlock, clamp it. The rest of the mapping will be
598              * zero-filled in memory at load time; see
599              * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
600              */
601             *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
602                         mapping_length :
603                         size_in_block - (phys_addr - start);
604             return;
605         }
606 
607         offset += size_in_block;
608     }
609 }
610 
611 static void write_elf_phdr_loads(DumpState *s, Error **errp)
612 {
613     ERRP_GUARD();
614     hwaddr offset, filesz;
615     MemoryMapping *memory_mapping;
616     uint32_t phdr_index = 1;
617 
618     QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
619         get_offset_range(memory_mapping->phys_addr,
620                          memory_mapping->length,
621                          s, &offset, &filesz);
622         if (dump_is_64bit(s)) {
623             write_elf64_load(s, memory_mapping, phdr_index++, offset,
624                              filesz, errp);
625         } else {
626             write_elf32_load(s, memory_mapping, phdr_index++, offset,
627                              filesz, errp);
628         }
629 
630         if (*errp) {
631             return;
632         }
633 
634         if (phdr_index >= s->phdr_num) {
635             break;
636         }
637     }
638 }
639 
640 static void write_elf_notes(DumpState *s, Error **errp)
641 {
642     if (dump_is_64bit(s)) {
643         write_elf64_notes(fd_write_vmcore, s, errp);
644     } else {
645         write_elf32_notes(fd_write_vmcore, s, errp);
646     }
647 }
648 
649 /* write elf header, PT_NOTE and elf note to vmcore. */
650 static void dump_begin(DumpState *s, Error **errp)
651 {
652     ERRP_GUARD();
653 
654     /*
655      * the vmcore's format is:
656      *   --------------
657      *   |  elf header |
658      *   --------------
659      *   |  sctn_hdr   |
660      *   --------------
661      *   |  PT_NOTE    |
662      *   --------------
663      *   |  PT_LOAD    |
664      *   --------------
665      *   |  ......     |
666      *   --------------
667      *   |  PT_LOAD    |
668      *   --------------
669      *   |  elf note   |
670      *   --------------
671      *   |  memory     |
672      *   --------------
673      *
674      * we only know where the memory is saved after we write elf note into
675      * vmcore.
676      */
677 
678     /* write elf header to vmcore */
679     write_elf_header(s, errp);
680     if (*errp) {
681         return;
682     }
683 
684     /* write section headers to vmcore */
685     write_elf_section_headers(s, errp);
686     if (*errp) {
687         return;
688     }
689 
690     /* write PT_NOTE to vmcore */
691     write_elf_phdr_note(s, errp);
692     if (*errp) {
693         return;
694     }
695 
696     /* write all PT_LOADs to vmcore */
697     write_elf_phdr_loads(s, errp);
698     if (*errp) {
699         return;
700     }
701 
702     /* write notes to vmcore */
703     write_elf_notes(s, errp);
704 }
705 
706 int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
707                                     int64_t filter_area_start,
708                                     int64_t filter_area_length)
709 {
710     int64_t size, left, right;
711 
712     /* No filter, return full size */
713     if (!filter_area_length) {
714         return block->target_end - block->target_start;
715     }
716 
717     /* calculate the overlapped region. */
718     left = MAX(filter_area_start, block->target_start);
719     right = MIN(filter_area_start + filter_area_length, block->target_end);
720     size = right - left;
721     size = size > 0 ? size : 0;
722 
723     return size;
724 }
725 
726 int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
727                                      int64_t filter_area_start,
728                                      int64_t filter_area_length)
729 {
730     if (filter_area_length) {
731         /* return -1 if the block is not within filter area */
732         if (block->target_start >= filter_area_start + filter_area_length ||
733             block->target_end <= filter_area_start) {
734             return -1;
735         }
736 
737         if (filter_area_start > block->target_start) {
738             return filter_area_start - block->target_start;
739         }
740     }
741 
742     return 0;
743 }
744 
745 /* write all memory to vmcore */
746 static void dump_iterate(DumpState *s, Error **errp)
747 {
748     ERRP_GUARD();
749     GuestPhysBlock *block;
750     int64_t memblock_size, memblock_start;
751 
752     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
753         memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
754         if (memblock_start == -1) {
755             continue;
756         }
757 
758         memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
759 
760         /* Write the memory to file */
761         write_memory(s, block, memblock_start, memblock_size, errp);
762         if (*errp) {
763             return;
764         }
765     }
766 }
767 
768 static void dump_end(DumpState *s, Error **errp)
769 {
770     int rc;
771 
772     if (s->elf_section_data_size) {
773         s->elf_section_data = g_malloc0(s->elf_section_data_size);
774     }
775 
776     /* Adds the architecture defined section data to s->elf_section_data  */
777     if (s->dump_info.arch_sections_write_fn &&
778         s->elf_section_data_size) {
779         rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
780         if (rc) {
781             error_setg_errno(errp, rc,
782                              "dump: failed to get arch section data");
783             g_free(s->elf_section_data);
784             return;
785         }
786     }
787 
788     /* write sections to vmcore */
789     write_elf_sections(s, errp);
790 }
791 
792 static void create_vmcore(DumpState *s, Error **errp)
793 {
794     ERRP_GUARD();
795 
796     dump_begin(s, errp);
797     if (*errp) {
798         return;
799     }
800 
801     /* Iterate over memory and dump it to file */
802     dump_iterate(s, errp);
803     if (*errp) {
804         return;
805     }
806 
807     /* Write the section data */
808     dump_end(s, errp);
809 }
810 
811 static int write_start_flat_header(int fd)
812 {
813     MakedumpfileHeader *mh;
814     int ret = 0;
815 
816     QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
817     mh = g_malloc0(MAX_SIZE_MDF_HEADER);
818 
819     memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
820            MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
821 
822     mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
823     mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
824 
825     size_t written_size;
826     written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER);
827     if (written_size != MAX_SIZE_MDF_HEADER) {
828         ret = -1;
829     }
830 
831     g_free(mh);
832     return ret;
833 }
834 
835 static int write_end_flat_header(int fd)
836 {
837     MakedumpfileDataHeader mdh;
838 
839     mdh.offset = END_FLAG_FLAT_HEADER;
840     mdh.buf_size = END_FLAG_FLAT_HEADER;
841 
842     size_t written_size;
843     written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
844     if (written_size != sizeof(mdh)) {
845         return -1;
846     }
847 
848     return 0;
849 }
850 
851 static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
852 {
853     size_t written_size;
854     MakedumpfileDataHeader mdh;
855 
856     mdh.offset = cpu_to_be64(offset);
857     mdh.buf_size = cpu_to_be64(size);
858 
859     written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
860     if (written_size != sizeof(mdh)) {
861         return -1;
862     }
863 
864     written_size = qemu_write_full(fd, buf, size);
865     if (written_size != size) {
866         return -1;
867     }
868 
869     return 0;
870 }
871 
872 static int buf_write_note(const void *buf, size_t size, void *opaque)
873 {
874     DumpState *s = opaque;
875 
876     /* note_buf is not enough */
877     if (s->note_buf_offset + size > s->note_size) {
878         return -1;
879     }
880 
881     memcpy(s->note_buf + s->note_buf_offset, buf, size);
882 
883     s->note_buf_offset += size;
884 
885     return 0;
886 }
887 
888 /*
889  * This function retrieves various sizes from an elf header.
890  *
891  * @note has to be a valid ELF note. The return sizes are unmodified
892  * (not padded or rounded up to be multiple of 4).
893  */
894 static void get_note_sizes(DumpState *s, const void *note,
895                            uint64_t *note_head_size,
896                            uint64_t *name_size,
897                            uint64_t *desc_size)
898 {
899     uint64_t note_head_sz;
900     uint64_t name_sz;
901     uint64_t desc_sz;
902 
903     if (dump_is_64bit(s)) {
904         const Elf64_Nhdr *hdr = note;
905         note_head_sz = sizeof(Elf64_Nhdr);
906         name_sz = cpu_to_dump64(s, hdr->n_namesz);
907         desc_sz = cpu_to_dump64(s, hdr->n_descsz);
908     } else {
909         const Elf32_Nhdr *hdr = note;
910         note_head_sz = sizeof(Elf32_Nhdr);
911         name_sz = cpu_to_dump32(s, hdr->n_namesz);
912         desc_sz = cpu_to_dump32(s, hdr->n_descsz);
913     }
914 
915     if (note_head_size) {
916         *note_head_size = note_head_sz;
917     }
918     if (name_size) {
919         *name_size = name_sz;
920     }
921     if (desc_size) {
922         *desc_size = desc_sz;
923     }
924 }
925 
926 static bool note_name_equal(DumpState *s,
927                             const uint8_t *note, const char *name)
928 {
929     int len = strlen(name) + 1;
930     uint64_t head_size, name_size;
931 
932     get_note_sizes(s, note, &head_size, &name_size, NULL);
933     head_size = ROUND_UP(head_size, 4);
934 
935     return name_size == len && memcmp(note + head_size, name, len) == 0;
936 }
937 
938 /* write common header, sub header and elf note to vmcore */
939 static void create_header32(DumpState *s, Error **errp)
940 {
941     ERRP_GUARD();
942     DiskDumpHeader32 *dh = NULL;
943     KdumpSubHeader32 *kh = NULL;
944     size_t size;
945     uint32_t block_size;
946     uint32_t sub_hdr_size;
947     uint32_t bitmap_blocks;
948     uint32_t status = 0;
949     uint64_t offset_note;
950 
951     /* write common header, the version of kdump-compressed format is 6th */
952     size = sizeof(DiskDumpHeader32);
953     dh = g_malloc0(size);
954 
955     memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
956     dh->header_version = cpu_to_dump32(s, 6);
957     block_size = s->dump_info.page_size;
958     dh->block_size = cpu_to_dump32(s, block_size);
959     sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
960     sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
961     dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
962     /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
963     dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
964     dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
965     bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
966     dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
967     strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
968 
969     if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
970         status |= DUMP_DH_COMPRESSED_ZLIB;
971     }
972 #ifdef CONFIG_LZO
973     if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
974         status |= DUMP_DH_COMPRESSED_LZO;
975     }
976 #endif
977 #ifdef CONFIG_SNAPPY
978     if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
979         status |= DUMP_DH_COMPRESSED_SNAPPY;
980     }
981 #endif
982     dh->status = cpu_to_dump32(s, status);
983 
984     if (write_buffer(s->fd, 0, dh, size) < 0) {
985         error_setg(errp, "dump: failed to write disk dump header");
986         goto out;
987     }
988 
989     /* write sub header */
990     size = sizeof(KdumpSubHeader32);
991     kh = g_malloc0(size);
992 
993     /* 64bit max_mapnr_64 */
994     kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
995     kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
996     kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
997 
998     offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
999     if (s->guest_note &&
1000         note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1001         uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1002 
1003         get_note_sizes(s, s->guest_note,
1004                        &hsize, &name_size, &size_vmcoreinfo_desc);
1005         offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1006             (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1007         kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1008         kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
1009     }
1010 
1011     kh->offset_note = cpu_to_dump64(s, offset_note);
1012     kh->note_size = cpu_to_dump32(s, s->note_size);
1013 
1014     if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
1015                      block_size, kh, size) < 0) {
1016         error_setg(errp, "dump: failed to write kdump sub header");
1017         goto out;
1018     }
1019 
1020     /* write note */
1021     s->note_buf = g_malloc0(s->note_size);
1022     s->note_buf_offset = 0;
1023 
1024     /* use s->note_buf to store notes temporarily */
1025     write_elf32_notes(buf_write_note, s, errp);
1026     if (*errp) {
1027         goto out;
1028     }
1029     if (write_buffer(s->fd, offset_note, s->note_buf,
1030                      s->note_size) < 0) {
1031         error_setg(errp, "dump: failed to write notes");
1032         goto out;
1033     }
1034 
1035     /* get offset of dump_bitmap */
1036     s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1037                              block_size;
1038 
1039     /* get offset of page */
1040     s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1041                      block_size;
1042 
1043 out:
1044     g_free(dh);
1045     g_free(kh);
1046     g_free(s->note_buf);
1047 }
1048 
1049 /* write common header, sub header and elf note to vmcore */
1050 static void create_header64(DumpState *s, Error **errp)
1051 {
1052     ERRP_GUARD();
1053     DiskDumpHeader64 *dh = NULL;
1054     KdumpSubHeader64 *kh = NULL;
1055     size_t size;
1056     uint32_t block_size;
1057     uint32_t sub_hdr_size;
1058     uint32_t bitmap_blocks;
1059     uint32_t status = 0;
1060     uint64_t offset_note;
1061 
1062     /* write common header, the version of kdump-compressed format is 6th */
1063     size = sizeof(DiskDumpHeader64);
1064     dh = g_malloc0(size);
1065 
1066     memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
1067     dh->header_version = cpu_to_dump32(s, 6);
1068     block_size = s->dump_info.page_size;
1069     dh->block_size = cpu_to_dump32(s, block_size);
1070     sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
1071     sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
1072     dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
1073     /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1074     dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
1075     dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
1076     bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
1077     dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
1078     strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
1079 
1080     if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
1081         status |= DUMP_DH_COMPRESSED_ZLIB;
1082     }
1083 #ifdef CONFIG_LZO
1084     if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
1085         status |= DUMP_DH_COMPRESSED_LZO;
1086     }
1087 #endif
1088 #ifdef CONFIG_SNAPPY
1089     if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1090         status |= DUMP_DH_COMPRESSED_SNAPPY;
1091     }
1092 #endif
1093     dh->status = cpu_to_dump32(s, status);
1094 
1095     if (write_buffer(s->fd, 0, dh, size) < 0) {
1096         error_setg(errp, "dump: failed to write disk dump header");
1097         goto out;
1098     }
1099 
1100     /* write sub header */
1101     size = sizeof(KdumpSubHeader64);
1102     kh = g_malloc0(size);
1103 
1104     /* 64bit max_mapnr_64 */
1105     kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1106     kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
1107     kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1108 
1109     offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1110     if (s->guest_note &&
1111         note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1112         uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1113 
1114         get_note_sizes(s, s->guest_note,
1115                        &hsize, &name_size, &size_vmcoreinfo_desc);
1116         offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1117             (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1118         kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1119         kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
1120     }
1121 
1122     kh->offset_note = cpu_to_dump64(s, offset_note);
1123     kh->note_size = cpu_to_dump64(s, s->note_size);
1124 
1125     if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
1126                      block_size, kh, size) < 0) {
1127         error_setg(errp, "dump: failed to write kdump sub header");
1128         goto out;
1129     }
1130 
1131     /* write note */
1132     s->note_buf = g_malloc0(s->note_size);
1133     s->note_buf_offset = 0;
1134 
1135     /* use s->note_buf to store notes temporarily */
1136     write_elf64_notes(buf_write_note, s, errp);
1137     if (*errp) {
1138         goto out;
1139     }
1140 
1141     if (write_buffer(s->fd, offset_note, s->note_buf,
1142                      s->note_size) < 0) {
1143         error_setg(errp, "dump: failed to write notes");
1144         goto out;
1145     }
1146 
1147     /* get offset of dump_bitmap */
1148     s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1149                              block_size;
1150 
1151     /* get offset of page */
1152     s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1153                      block_size;
1154 
1155 out:
1156     g_free(dh);
1157     g_free(kh);
1158     g_free(s->note_buf);
1159 }
1160 
1161 static void write_dump_header(DumpState *s, Error **errp)
1162 {
1163     if (dump_is_64bit(s)) {
1164         create_header64(s, errp);
1165     } else {
1166         create_header32(s, errp);
1167     }
1168 }
1169 
1170 static size_t dump_bitmap_get_bufsize(DumpState *s)
1171 {
1172     return s->dump_info.page_size;
1173 }
1174 
1175 /*
1176  * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1177  * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1178  * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1179  * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1180  * vmcore, ie. synchronizing un-sync bit into vmcore.
1181  */
1182 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1183                            uint8_t *buf, DumpState *s)
1184 {
1185     off_t old_offset, new_offset;
1186     off_t offset_bitmap1, offset_bitmap2;
1187     uint32_t byte, bit;
1188     size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1189     size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1190 
1191     /* should not set the previous place */
1192     assert(last_pfn <= pfn);
1193 
1194     /*
1195      * if the bit needed to be set is not cached in buf, flush the data in buf
1196      * to vmcore firstly.
1197      * making new_offset be bigger than old_offset can also sync remained data
1198      * into vmcore.
1199      */
1200     old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1201     new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1202 
1203     while (old_offset < new_offset) {
1204         /* calculate the offset and write dump_bitmap */
1205         offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1206         if (write_buffer(s->fd, offset_bitmap1, buf,
1207                          bitmap_bufsize) < 0) {
1208             return -1;
1209         }
1210 
1211         /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1212         offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1213                          old_offset;
1214         if (write_buffer(s->fd, offset_bitmap2, buf,
1215                          bitmap_bufsize) < 0) {
1216             return -1;
1217         }
1218 
1219         memset(buf, 0, bitmap_bufsize);
1220         old_offset += bitmap_bufsize;
1221     }
1222 
1223     /* get the exact place of the bit in the buf, and set it */
1224     byte = (pfn % bits_per_buf) / CHAR_BIT;
1225     bit = (pfn % bits_per_buf) % CHAR_BIT;
1226     if (value) {
1227         buf[byte] |= 1u << bit;
1228     } else {
1229         buf[byte] &= ~(1u << bit);
1230     }
1231 
1232     return 0;
1233 }
1234 
1235 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1236 {
1237     int target_page_shift = ctz32(s->dump_info.page_size);
1238 
1239     return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1240 }
1241 
1242 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1243 {
1244     int target_page_shift = ctz32(s->dump_info.page_size);
1245 
1246     return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1247 }
1248 
1249 /*
1250  * Return the page frame number and the page content in *bufptr. bufptr can be
1251  * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1252  * memory. This is not necessarily the memory returned.
1253  */
1254 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1255                           uint8_t **bufptr, DumpState *s)
1256 {
1257     GuestPhysBlock *block = *blockptr;
1258     uint32_t page_size = s->dump_info.page_size;
1259     uint8_t *buf = NULL, *hbuf;
1260     hwaddr addr;
1261 
1262     /* block == NULL means the start of the iteration */
1263     if (!block) {
1264         block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1265         *blockptr = block;
1266         addr = block->target_start;
1267         *pfnptr = dump_paddr_to_pfn(s, addr);
1268     } else {
1269         *pfnptr += 1;
1270         addr = dump_pfn_to_paddr(s, *pfnptr);
1271     }
1272     assert(block != NULL);
1273 
1274     while (1) {
1275         if (addr >= block->target_start && addr < block->target_end) {
1276             size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
1277             hbuf = block->host_addr + (addr - block->target_start);
1278             if (!buf) {
1279                 if (n == page_size) {
1280                     /* this is a whole target page, go for it */
1281                     assert(addr % page_size == 0);
1282                     buf = hbuf;
1283                     break;
1284                 } else if (bufptr) {
1285                     assert(*bufptr);
1286                     buf = *bufptr;
1287                     memset(buf, 0, page_size);
1288                 } else {
1289                     return true;
1290                 }
1291             }
1292 
1293             memcpy(buf + addr % page_size, hbuf, n);
1294             addr += n;
1295             if (addr % page_size == 0) {
1296                 /* we filled up the page */
1297                 break;
1298             }
1299         } else {
1300             /* the next page is in the next block */
1301             *blockptr = block = QTAILQ_NEXT(block, next);
1302             if (!block) {
1303                 break;
1304             }
1305 
1306             addr = block->target_start;
1307             /* are we still in the same page? */
1308             if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
1309                 if (buf) {
1310                     /* no, but we already filled something earlier, return it */
1311                     break;
1312                 } else {
1313                     /* else continue from there */
1314                     *pfnptr = dump_paddr_to_pfn(s, addr);
1315                 }
1316             }
1317         }
1318     }
1319 
1320     if (bufptr) {
1321         *bufptr = buf;
1322     }
1323 
1324     return buf != NULL;
1325 }
1326 
1327 static void write_dump_bitmap(DumpState *s, Error **errp)
1328 {
1329     int ret = 0;
1330     uint64_t last_pfn, pfn;
1331     void *dump_bitmap_buf;
1332     size_t num_dumpable;
1333     GuestPhysBlock *block_iter = NULL;
1334     size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1335     size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1336 
1337     /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1338     dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1339 
1340     num_dumpable = 0;
1341     last_pfn = 0;
1342 
1343     /*
1344      * exam memory page by page, and set the bit in dump_bitmap corresponded
1345      * to the existing page.
1346      */
1347     while (get_next_page(&block_iter, &pfn, NULL, s)) {
1348         ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1349         if (ret < 0) {
1350             error_setg(errp, "dump: failed to set dump_bitmap");
1351             goto out;
1352         }
1353 
1354         last_pfn = pfn;
1355         num_dumpable++;
1356     }
1357 
1358     /*
1359      * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1360      * set the remaining bits from last_pfn to the end of the bitmap buffer to
1361      * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1362      */
1363     if (num_dumpable > 0) {
1364         ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1365                               dump_bitmap_buf, s);
1366         if (ret < 0) {
1367             error_setg(errp, "dump: failed to sync dump_bitmap");
1368             goto out;
1369         }
1370     }
1371 
1372     /* number of dumpable pages that will be dumped later */
1373     s->num_dumpable = num_dumpable;
1374 
1375 out:
1376     g_free(dump_bitmap_buf);
1377 }
1378 
1379 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1380                                off_t offset)
1381 {
1382     data_cache->fd = s->fd;
1383     data_cache->data_size = 0;
1384     data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1385     data_cache->buf = g_malloc0(data_cache->buf_size);
1386     data_cache->offset = offset;
1387 }
1388 
1389 static int write_cache(DataCache *dc, const void *buf, size_t size,
1390                        bool flag_sync)
1391 {
1392     /*
1393      * dc->buf_size should not be less than size, otherwise dc will never be
1394      * enough
1395      */
1396     assert(size <= dc->buf_size);
1397 
1398     /*
1399      * if flag_sync is set, synchronize data in dc->buf into vmcore.
1400      * otherwise check if the space is enough for caching data in buf, if not,
1401      * write the data in dc->buf to dc->fd and reset dc->buf
1402      */
1403     if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1404         (flag_sync && dc->data_size > 0)) {
1405         if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
1406             return -1;
1407         }
1408 
1409         dc->offset += dc->data_size;
1410         dc->data_size = 0;
1411     }
1412 
1413     if (!flag_sync) {
1414         memcpy(dc->buf + dc->data_size, buf, size);
1415         dc->data_size += size;
1416     }
1417 
1418     return 0;
1419 }
1420 
1421 static void free_data_cache(DataCache *data_cache)
1422 {
1423     g_free(data_cache->buf);
1424 }
1425 
1426 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1427 {
1428     switch (flag_compress) {
1429     case DUMP_DH_COMPRESSED_ZLIB:
1430         return compressBound(page_size);
1431 
1432     case DUMP_DH_COMPRESSED_LZO:
1433         /*
1434          * LZO will expand incompressible data by a little amount. Please check
1435          * the following URL to see the expansion calculation:
1436          * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1437          */
1438         return page_size + page_size / 16 + 64 + 3;
1439 
1440 #ifdef CONFIG_SNAPPY
1441     case DUMP_DH_COMPRESSED_SNAPPY:
1442         return snappy_max_compressed_length(page_size);
1443 #endif
1444     }
1445     return 0;
1446 }
1447 
1448 static void write_dump_pages(DumpState *s, Error **errp)
1449 {
1450     int ret = 0;
1451     DataCache page_desc, page_data;
1452     size_t len_buf_out, size_out;
1453 #ifdef CONFIG_LZO
1454     lzo_bytep wrkmem = NULL;
1455 #endif
1456     uint8_t *buf_out = NULL;
1457     off_t offset_desc, offset_data;
1458     PageDescriptor pd, pd_zero;
1459     uint8_t *buf;
1460     GuestPhysBlock *block_iter = NULL;
1461     uint64_t pfn_iter;
1462     g_autofree uint8_t *page = NULL;
1463 
1464     /* get offset of page_desc and page_data in dump file */
1465     offset_desc = s->offset_page;
1466     offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1467 
1468     prepare_data_cache(&page_desc, s, offset_desc);
1469     prepare_data_cache(&page_data, s, offset_data);
1470 
1471     /* prepare buffer to store compressed data */
1472     len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1473     assert(len_buf_out != 0);
1474 
1475 #ifdef CONFIG_LZO
1476     wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1477 #endif
1478 
1479     buf_out = g_malloc(len_buf_out);
1480 
1481     /*
1482      * init zero page's page_desc and page_data, because every zero page
1483      * uses the same page_data
1484      */
1485     pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1486     pd_zero.flags = cpu_to_dump32(s, 0);
1487     pd_zero.offset = cpu_to_dump64(s, offset_data);
1488     pd_zero.page_flags = cpu_to_dump64(s, 0);
1489     buf = g_malloc0(s->dump_info.page_size);
1490     ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1491     g_free(buf);
1492     if (ret < 0) {
1493         error_setg(errp, "dump: failed to write page data (zero page)");
1494         goto out;
1495     }
1496 
1497     offset_data += s->dump_info.page_size;
1498     page = g_malloc(s->dump_info.page_size);
1499 
1500     /*
1501      * dump memory to vmcore page by page. zero page will all be resided in the
1502      * first page of page section
1503      */
1504     for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
1505         /* check zero page */
1506         if (buffer_is_zero(buf, s->dump_info.page_size)) {
1507             ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1508                               false);
1509             if (ret < 0) {
1510                 error_setg(errp, "dump: failed to write page desc");
1511                 goto out;
1512             }
1513         } else {
1514             /*
1515              * not zero page, then:
1516              * 1. compress the page
1517              * 2. write the compressed page into the cache of page_data
1518              * 3. get page desc of the compressed page and write it into the
1519              *    cache of page_desc
1520              *
1521              * only one compression format will be used here, for
1522              * s->flag_compress is set. But when compression fails to work,
1523              * we fall back to save in plaintext.
1524              */
1525              size_out = len_buf_out;
1526              if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1527                     (compress2(buf_out, (uLongf *)&size_out, buf,
1528                                s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1529                     (size_out < s->dump_info.page_size)) {
1530                 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1531                 pd.size  = cpu_to_dump32(s, size_out);
1532 
1533                 ret = write_cache(&page_data, buf_out, size_out, false);
1534                 if (ret < 0) {
1535                     error_setg(errp, "dump: failed to write page data");
1536                     goto out;
1537                 }
1538 #ifdef CONFIG_LZO
1539             } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1540                     (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1541                     (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1542                     (size_out < s->dump_info.page_size)) {
1543                 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1544                 pd.size  = cpu_to_dump32(s, size_out);
1545 
1546                 ret = write_cache(&page_data, buf_out, size_out, false);
1547                 if (ret < 0) {
1548                     error_setg(errp, "dump: failed to write page data");
1549                     goto out;
1550                 }
1551 #endif
1552 #ifdef CONFIG_SNAPPY
1553             } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1554                     (snappy_compress((char *)buf, s->dump_info.page_size,
1555                     (char *)buf_out, &size_out) == SNAPPY_OK) &&
1556                     (size_out < s->dump_info.page_size)) {
1557                 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1558                 pd.size  = cpu_to_dump32(s, size_out);
1559 
1560                 ret = write_cache(&page_data, buf_out, size_out, false);
1561                 if (ret < 0) {
1562                     error_setg(errp, "dump: failed to write page data");
1563                     goto out;
1564                 }
1565 #endif
1566             } else {
1567                 /*
1568                  * fall back to save in plaintext, size_out should be
1569                  * assigned the target's page size
1570                  */
1571                 pd.flags = cpu_to_dump32(s, 0);
1572                 size_out = s->dump_info.page_size;
1573                 pd.size = cpu_to_dump32(s, size_out);
1574 
1575                 ret = write_cache(&page_data, buf,
1576                                   s->dump_info.page_size, false);
1577                 if (ret < 0) {
1578                     error_setg(errp, "dump: failed to write page data");
1579                     goto out;
1580                 }
1581             }
1582 
1583             /* get and write page desc here */
1584             pd.page_flags = cpu_to_dump64(s, 0);
1585             pd.offset = cpu_to_dump64(s, offset_data);
1586             offset_data += size_out;
1587 
1588             ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1589             if (ret < 0) {
1590                 error_setg(errp, "dump: failed to write page desc");
1591                 goto out;
1592             }
1593         }
1594         s->written_size += s->dump_info.page_size;
1595     }
1596 
1597     ret = write_cache(&page_desc, NULL, 0, true);
1598     if (ret < 0) {
1599         error_setg(errp, "dump: failed to sync cache for page_desc");
1600         goto out;
1601     }
1602     ret = write_cache(&page_data, NULL, 0, true);
1603     if (ret < 0) {
1604         error_setg(errp, "dump: failed to sync cache for page_data");
1605         goto out;
1606     }
1607 
1608 out:
1609     free_data_cache(&page_desc);
1610     free_data_cache(&page_data);
1611 
1612 #ifdef CONFIG_LZO
1613     g_free(wrkmem);
1614 #endif
1615 
1616     g_free(buf_out);
1617 }
1618 
1619 static void create_kdump_vmcore(DumpState *s, Error **errp)
1620 {
1621     ERRP_GUARD();
1622     int ret;
1623 
1624     /*
1625      * the kdump-compressed format is:
1626      *                                               File offset
1627      *  +------------------------------------------+ 0x0
1628      *  |    main header (struct disk_dump_header) |
1629      *  |------------------------------------------+ block 1
1630      *  |    sub header (struct kdump_sub_header)  |
1631      *  |------------------------------------------+ block 2
1632      *  |            1st-dump_bitmap               |
1633      *  |------------------------------------------+ block 2 + X blocks
1634      *  |            2nd-dump_bitmap               | (aligned by block)
1635      *  |------------------------------------------+ block 2 + 2 * X blocks
1636      *  |  page desc for pfn 0 (struct page_desc)  | (aligned by block)
1637      *  |  page desc for pfn 1 (struct page_desc)  |
1638      *  |                    :                     |
1639      *  |------------------------------------------| (not aligned by block)
1640      *  |         page data (pfn 0)                |
1641      *  |         page data (pfn 1)                |
1642      *  |                    :                     |
1643      *  +------------------------------------------+
1644      */
1645 
1646     ret = write_start_flat_header(s->fd);
1647     if (ret < 0) {
1648         error_setg(errp, "dump: failed to write start flat header");
1649         return;
1650     }
1651 
1652     write_dump_header(s, errp);
1653     if (*errp) {
1654         return;
1655     }
1656 
1657     write_dump_bitmap(s, errp);
1658     if (*errp) {
1659         return;
1660     }
1661 
1662     write_dump_pages(s, errp);
1663     if (*errp) {
1664         return;
1665     }
1666 
1667     ret = write_end_flat_header(s->fd);
1668     if (ret < 0) {
1669         error_setg(errp, "dump: failed to write end flat header");
1670         return;
1671     }
1672 }
1673 
1674 static int validate_start_block(DumpState *s)
1675 {
1676     GuestPhysBlock *block;
1677 
1678     if (!dump_has_filter(s)) {
1679         return 0;
1680     }
1681 
1682     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1683         /* This block is out of the range */
1684         if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
1685             block->target_end <= s->filter_area_begin) {
1686             continue;
1687         }
1688         return 0;
1689    }
1690 
1691     return -1;
1692 }
1693 
1694 static void get_max_mapnr(DumpState *s)
1695 {
1696     GuestPhysBlock *last_block;
1697 
1698     last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1699     s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1700 }
1701 
1702 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1703 
1704 static void dump_state_prepare(DumpState *s)
1705 {
1706     /* zero the struct, setting status to active */
1707     *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1708 }
1709 
1710 bool qemu_system_dump_in_progress(void)
1711 {
1712     DumpState *state = &dump_state_global;
1713     return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1714 }
1715 
1716 /*
1717  * calculate total size of memory to be dumped (taking filter into
1718  * account.)
1719  */
1720 static int64_t dump_calculate_size(DumpState *s)
1721 {
1722     GuestPhysBlock *block;
1723     int64_t total = 0;
1724 
1725     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1726         total += dump_filtered_memblock_size(block,
1727                                              s->filter_area_begin,
1728                                              s->filter_area_length);
1729     }
1730 
1731     return total;
1732 }
1733 
1734 static void vmcoreinfo_update_phys_base(DumpState *s)
1735 {
1736     uint64_t size, note_head_size, name_size, phys_base;
1737     char **lines;
1738     uint8_t *vmci;
1739     size_t i;
1740 
1741     if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1742         return;
1743     }
1744 
1745     get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1746     note_head_size = ROUND_UP(note_head_size, 4);
1747 
1748     vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1749     *(vmci + size) = '\0';
1750 
1751     lines = g_strsplit((char *)vmci, "\n", -1);
1752     for (i = 0; lines[i]; i++) {
1753         const char *prefix = NULL;
1754 
1755         if (s->dump_info.d_machine == EM_X86_64) {
1756             prefix = "NUMBER(phys_base)=";
1757         } else if (s->dump_info.d_machine == EM_AARCH64) {
1758             prefix = "NUMBER(PHYS_OFFSET)=";
1759         }
1760 
1761         if (prefix && g_str_has_prefix(lines[i], prefix)) {
1762             if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1763                               &phys_base) < 0) {
1764                 warn_report("Failed to read %s", prefix);
1765             } else {
1766                 s->dump_info.phys_base = phys_base;
1767             }
1768             break;
1769         }
1770     }
1771 
1772     g_strfreev(lines);
1773 }
1774 
1775 static void dump_init(DumpState *s, int fd, bool has_format,
1776                       DumpGuestMemoryFormat format, bool paging, bool has_filter,
1777                       int64_t begin, int64_t length, Error **errp)
1778 {
1779     ERRP_GUARD();
1780     VMCoreInfoState *vmci = vmcoreinfo_find();
1781     CPUState *cpu;
1782     int nr_cpus;
1783     int ret;
1784 
1785     s->has_format = has_format;
1786     s->format = format;
1787     s->written_size = 0;
1788 
1789     /* kdump-compressed is conflict with paging and filter */
1790     if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1791         assert(!paging && !has_filter);
1792     }
1793 
1794     if (runstate_is_running()) {
1795         vm_stop(RUN_STATE_SAVE_VM);
1796         s->resume = true;
1797     } else {
1798         s->resume = false;
1799     }
1800 
1801     /* If we use KVM, we should synchronize the registers before we get dump
1802      * info or physmap info.
1803      */
1804     cpu_synchronize_all_states();
1805     nr_cpus = 0;
1806     CPU_FOREACH(cpu) {
1807         nr_cpus++;
1808     }
1809 
1810     s->fd = fd;
1811     if (has_filter && !length) {
1812         error_setg(errp, QERR_INVALID_PARAMETER, "length");
1813         goto cleanup;
1814     }
1815     s->filter_area_begin = begin;
1816     s->filter_area_length = length;
1817 
1818     /* First index is 0, it's the special null name */
1819     s->string_table_buf = g_array_new(FALSE, TRUE, 1);
1820     /*
1821      * Allocate the null name, due to the clearing option set to true
1822      * it will be 0.
1823      */
1824     g_array_set_size(s->string_table_buf, 1);
1825 
1826     memory_mapping_list_init(&s->list);
1827 
1828     guest_phys_blocks_init(&s->guest_phys_blocks);
1829     guest_phys_blocks_append(&s->guest_phys_blocks);
1830     s->total_size = dump_calculate_size(s);
1831 #ifdef DEBUG_DUMP_GUEST_MEMORY
1832     fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1833 #endif
1834 
1835     /* it does not make sense to dump non-existent memory */
1836     if (!s->total_size) {
1837         error_setg(errp, "dump: no guest memory to dump");
1838         goto cleanup;
1839     }
1840 
1841     /* Is the filter filtering everything? */
1842     if (validate_start_block(s) == -1) {
1843         error_setg(errp, QERR_INVALID_PARAMETER, "begin");
1844         goto cleanup;
1845     }
1846 
1847     /* get dump info: endian, class and architecture.
1848      * If the target architecture is not supported, cpu_get_dump_info() will
1849      * return -1.
1850      */
1851     ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1852     if (ret < 0) {
1853         error_setg(errp,
1854                    "dumping guest memory is not supported on this target");
1855         goto cleanup;
1856     }
1857 
1858     if (!s->dump_info.page_size) {
1859         s->dump_info.page_size = qemu_target_page_size();
1860     }
1861 
1862     s->note_size = cpu_get_note_size(s->dump_info.d_class,
1863                                      s->dump_info.d_machine, nr_cpus);
1864     assert(s->note_size >= 0);
1865 
1866     /*
1867      * The goal of this block is to (a) update the previously guessed
1868      * phys_base, (b) copy the guest note out of the guest.
1869      * Failure to do so is not fatal for dumping.
1870      */
1871     if (vmci) {
1872         uint64_t addr, note_head_size, name_size, desc_size;
1873         uint32_t size;
1874         uint16_t format;
1875 
1876         note_head_size = dump_is_64bit(s) ?
1877             sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1878 
1879         format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1880         size = le32_to_cpu(vmci->vmcoreinfo.size);
1881         addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1882         if (!vmci->has_vmcoreinfo) {
1883             warn_report("guest note is not present");
1884         } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1885             warn_report("guest note size is invalid: %" PRIu32, size);
1886         } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1887             warn_report("guest note format is unsupported: %" PRIu16, format);
1888         } else {
1889             s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1890             cpu_physical_memory_read(addr, s->guest_note, size);
1891 
1892             get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1893             s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1894                                                desc_size);
1895             if (name_size > MAX_GUEST_NOTE_SIZE ||
1896                 desc_size > MAX_GUEST_NOTE_SIZE ||
1897                 s->guest_note_size > size) {
1898                 warn_report("Invalid guest note header");
1899                 g_free(s->guest_note);
1900                 s->guest_note = NULL;
1901             } else {
1902                 vmcoreinfo_update_phys_base(s);
1903                 s->note_size += s->guest_note_size;
1904             }
1905         }
1906     }
1907 
1908     /* get memory mapping */
1909     if (paging) {
1910         qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1911         if (*errp) {
1912             goto cleanup;
1913         }
1914     } else {
1915         qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1916     }
1917 
1918     s->nr_cpus = nr_cpus;
1919 
1920     get_max_mapnr(s);
1921 
1922     uint64_t tmp;
1923     tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1924                        s->dump_info.page_size);
1925     s->len_dump_bitmap = tmp * s->dump_info.page_size;
1926 
1927     /* init for kdump-compressed format */
1928     if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1929         switch (format) {
1930         case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1931             s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1932             break;
1933 
1934         case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1935 #ifdef CONFIG_LZO
1936             if (lzo_init() != LZO_E_OK) {
1937                 error_setg(errp, "failed to initialize the LZO library");
1938                 goto cleanup;
1939             }
1940 #endif
1941             s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1942             break;
1943 
1944         case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1945             s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1946             break;
1947 
1948         default:
1949             s->flag_compress = 0;
1950         }
1951 
1952         return;
1953     }
1954 
1955     if (dump_has_filter(s)) {
1956         memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
1957     }
1958 
1959     /*
1960      * The first section header is always a special one in which most
1961      * fields are 0. The section header string table is also always
1962      * set.
1963      */
1964     s->shdr_num = 2;
1965 
1966     /*
1967      * Adds the number of architecture sections to shdr_num and sets
1968      * elf_section_data_size so we know the offsets and sizes of all
1969      * parts.
1970      */
1971     if (s->dump_info.arch_sections_add_fn) {
1972         s->dump_info.arch_sections_add_fn(s);
1973     }
1974 
1975     /*
1976      * calculate shdr_num so we know the offsets and sizes of all
1977      * parts.
1978      * Calculate phdr_num
1979      *
1980      * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1981      * sh_info is 32 bit. There's special handling once we go over
1982      * UINT16_MAX - 1 but that is handled in the ehdr and section
1983      * code.
1984      */
1985     s->phdr_num = 1; /* Reserve PT_NOTE */
1986     if (s->list.num <= UINT32_MAX - 1) {
1987         s->phdr_num += s->list.num;
1988     } else {
1989         s->phdr_num = UINT32_MAX;
1990     }
1991 
1992     /*
1993      * Now that the number of section and program headers is known we
1994      * can calculate the offsets of the headers and data.
1995      */
1996     if (dump_is_64bit(s)) {
1997         s->shdr_offset = sizeof(Elf64_Ehdr);
1998         s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
1999         s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
2000     } else {
2001         s->shdr_offset = sizeof(Elf32_Ehdr);
2002         s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
2003         s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
2004     }
2005     s->memory_offset = s->note_offset + s->note_size;
2006     s->section_offset = s->memory_offset + s->total_size;
2007 
2008     return;
2009 
2010 cleanup:
2011     dump_cleanup(s);
2012 }
2013 
2014 /* this operation might be time consuming. */
2015 static void dump_process(DumpState *s, Error **errp)
2016 {
2017     ERRP_GUARD();
2018     DumpQueryResult *result = NULL;
2019 
2020     if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2021         create_win_dump(s, errp);
2022     } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
2023         create_kdump_vmcore(s, errp);
2024     } else {
2025         create_vmcore(s, errp);
2026     }
2027 
2028     /* make sure status is written after written_size updates */
2029     smp_wmb();
2030     qatomic_set(&s->status,
2031                (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
2032 
2033     /* send DUMP_COMPLETED message (unconditionally) */
2034     result = qmp_query_dump(NULL);
2035     /* should never fail */
2036     assert(result);
2037     qapi_event_send_dump_completed(result,
2038                                    *errp ? error_get_pretty(*errp) : NULL);
2039     qapi_free_DumpQueryResult(result);
2040 
2041     dump_cleanup(s);
2042 }
2043 
2044 static void *dump_thread(void *data)
2045 {
2046     DumpState *s = (DumpState *)data;
2047     dump_process(s, NULL);
2048     return NULL;
2049 }
2050 
2051 DumpQueryResult *qmp_query_dump(Error **errp)
2052 {
2053     DumpQueryResult *result = g_new(DumpQueryResult, 1);
2054     DumpState *state = &dump_state_global;
2055     result->status = qatomic_read(&state->status);
2056     /* make sure we are reading status and written_size in order */
2057     smp_rmb();
2058     result->completed = state->written_size;
2059     result->total = state->total_size;
2060     return result;
2061 }
2062 
2063 void qmp_dump_guest_memory(bool paging, const char *file,
2064                            bool has_detach, bool detach,
2065                            bool has_begin, int64_t begin, bool has_length,
2066                            int64_t length, bool has_format,
2067                            DumpGuestMemoryFormat format, Error **errp)
2068 {
2069     ERRP_GUARD();
2070     const char *p;
2071     int fd = -1;
2072     DumpState *s;
2073     bool detach_p = false;
2074 
2075     if (runstate_check(RUN_STATE_INMIGRATE)) {
2076         error_setg(errp, "Dump not allowed during incoming migration.");
2077         return;
2078     }
2079 
2080     /* if there is a dump in background, we should wait until the dump
2081      * finished */
2082     if (qemu_system_dump_in_progress()) {
2083         error_setg(errp, "There is a dump in process, please wait.");
2084         return;
2085     }
2086 
2087     /*
2088      * kdump-compressed format need the whole memory dumped, so paging or
2089      * filter is not supported here.
2090      */
2091     if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
2092         (paging || has_begin || has_length)) {
2093         error_setg(errp, "kdump-compressed format doesn't support paging or "
2094                          "filter");
2095         return;
2096     }
2097     if (has_begin && !has_length) {
2098         error_setg(errp, QERR_MISSING_PARAMETER, "length");
2099         return;
2100     }
2101     if (!has_begin && has_length) {
2102         error_setg(errp, QERR_MISSING_PARAMETER, "begin");
2103         return;
2104     }
2105     if (has_detach) {
2106         detach_p = detach;
2107     }
2108 
2109     /* check whether lzo/snappy is supported */
2110 #ifndef CONFIG_LZO
2111     if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
2112         error_setg(errp, "kdump-lzo is not available now");
2113         return;
2114     }
2115 #endif
2116 
2117 #ifndef CONFIG_SNAPPY
2118     if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
2119         error_setg(errp, "kdump-snappy is not available now");
2120         return;
2121     }
2122 #endif
2123 
2124     if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
2125         && !win_dump_available(errp)) {
2126         return;
2127     }
2128 
2129 #if !defined(WIN32)
2130     if (strstart(file, "fd:", &p)) {
2131         fd = monitor_get_fd(monitor_cur(), p, errp);
2132         if (fd == -1) {
2133             return;
2134         }
2135     }
2136 #endif
2137 
2138     if  (strstart(file, "file:", &p)) {
2139         fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
2140         if (fd < 0) {
2141             error_setg_file_open(errp, errno, p);
2142             return;
2143         }
2144     }
2145 
2146     if (fd == -1) {
2147         error_setg(errp, QERR_INVALID_PARAMETER, "protocol");
2148         return;
2149     }
2150 
2151     if (!dump_migration_blocker) {
2152         error_setg(&dump_migration_blocker,
2153                    "Live migration disabled: dump-guest-memory in progress");
2154     }
2155 
2156     /*
2157      * Allows even for -only-migratable, but forbid migration during the
2158      * process of dump guest memory.
2159      */
2160     if (migrate_add_blocker_internal(dump_migration_blocker, errp)) {
2161         /* Remember to release the fd before passing it over to dump state */
2162         close(fd);
2163         return;
2164     }
2165 
2166     s = &dump_state_global;
2167     dump_state_prepare(s);
2168 
2169     dump_init(s, fd, has_format, format, paging, has_begin,
2170               begin, length, errp);
2171     if (*errp) {
2172         qatomic_set(&s->status, DUMP_STATUS_FAILED);
2173         return;
2174     }
2175 
2176     if (detach_p) {
2177         /* detached dump */
2178         s->detached = true;
2179         qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
2180                            s, QEMU_THREAD_DETACHED);
2181     } else {
2182         /* sync dump */
2183         dump_process(s, errp);
2184     }
2185 }
2186 
2187 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2188 {
2189     DumpGuestMemoryCapability *cap =
2190                                   g_new0(DumpGuestMemoryCapability, 1);
2191     DumpGuestMemoryFormatList **tail = &cap->formats;
2192 
2193     /* elf is always available */
2194     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2195 
2196     /* kdump-zlib is always available */
2197     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2198 
2199     /* add new item if kdump-lzo is available */
2200 #ifdef CONFIG_LZO
2201     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2202 #endif
2203 
2204     /* add new item if kdump-snappy is available */
2205 #ifdef CONFIG_SNAPPY
2206     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2207 #endif
2208 
2209     if (win_dump_available(NULL)) {
2210         QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2211     }
2212 
2213     return cap;
2214 }
2215