xref: /openbmc/qemu/dump/dump.c (revision 125062e791258c68109f3a59cb7aca3dadbdb5a3)
1  /*
2   * QEMU dump
3   *
4   * Copyright Fujitsu, Corp. 2011, 2012
5   *
6   * Authors:
7   *     Wen Congyang <wency@cn.fujitsu.com>
8   *
9   * This work is licensed under the terms of the GNU GPL, version 2 or later.
10   * See the COPYING file in the top-level directory.
11   *
12   */
13  
14  #include "qemu/osdep.h"
15  #include "qemu/cutils.h"
16  #include "elf.h"
17  #include "qemu/bswap.h"
18  #include "exec/target_page.h"
19  #include "monitor/monitor.h"
20  #include "sysemu/dump.h"
21  #include "sysemu/runstate.h"
22  #include "sysemu/cpus.h"
23  #include "qapi/error.h"
24  #include "qapi/qapi-commands-dump.h"
25  #include "qapi/qapi-events-dump.h"
26  #include "qapi/qmp/qerror.h"
27  #include "qemu/error-report.h"
28  #include "qemu/main-loop.h"
29  #include "hw/misc/vmcoreinfo.h"
30  #include "migration/blocker.h"
31  #include "hw/core/cpu.h"
32  #include "win_dump.h"
33  
34  #include <zlib.h>
35  #ifdef CONFIG_LZO
36  #include <lzo/lzo1x.h>
37  #endif
38  #ifdef CONFIG_SNAPPY
39  #include <snappy-c.h>
40  #endif
41  #ifndef ELF_MACHINE_UNAME
42  #define ELF_MACHINE_UNAME "Unknown"
43  #endif
44  
45  #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
46  
47  static Error *dump_migration_blocker;
48  
49  #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size)   \
50      ((DIV_ROUND_UP((hdr_size), 4) +                     \
51        DIV_ROUND_UP((name_size), 4) +                    \
52        DIV_ROUND_UP((desc_size), 4)) * 4)
53  
54  static inline bool dump_is_64bit(DumpState *s)
55  {
56      return s->dump_info.d_class == ELFCLASS64;
57  }
58  
59  static inline bool dump_has_filter(DumpState *s)
60  {
61      return s->filter_area_length > 0;
62  }
63  
64  uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
65  {
66      if (s->dump_info.d_endian == ELFDATA2LSB) {
67          val = cpu_to_le16(val);
68      } else {
69          val = cpu_to_be16(val);
70      }
71  
72      return val;
73  }
74  
75  uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
76  {
77      if (s->dump_info.d_endian == ELFDATA2LSB) {
78          val = cpu_to_le32(val);
79      } else {
80          val = cpu_to_be32(val);
81      }
82  
83      return val;
84  }
85  
86  uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
87  {
88      if (s->dump_info.d_endian == ELFDATA2LSB) {
89          val = cpu_to_le64(val);
90      } else {
91          val = cpu_to_be64(val);
92      }
93  
94      return val;
95  }
96  
97  static int dump_cleanup(DumpState *s)
98  {
99      guest_phys_blocks_free(&s->guest_phys_blocks);
100      memory_mapping_list_free(&s->list);
101      close(s->fd);
102      g_free(s->guest_note);
103      g_clear_pointer(&s->string_table_buf, g_array_unref);
104      s->guest_note = NULL;
105      if (s->resume) {
106          if (s->detached) {
107              qemu_mutex_lock_iothread();
108          }
109          vm_start();
110          if (s->detached) {
111              qemu_mutex_unlock_iothread();
112          }
113      }
114      migrate_del_blocker(&dump_migration_blocker);
115  
116      return 0;
117  }
118  
119  static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
120  {
121      DumpState *s = opaque;
122      size_t written_size;
123  
124      written_size = qemu_write_full(s->fd, buf, size);
125      if (written_size != size) {
126          return -errno;
127      }
128  
129      return 0;
130  }
131  
132  static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
133  {
134      /*
135       * phnum in the elf header is 16 bit, if we have more segments we
136       * set phnum to PN_XNUM and write the real number of segments to a
137       * special section.
138       */
139      uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
140  
141      memset(elf_header, 0, sizeof(Elf64_Ehdr));
142      memcpy(elf_header, ELFMAG, SELFMAG);
143      elf_header->e_ident[EI_CLASS] = ELFCLASS64;
144      elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
145      elf_header->e_ident[EI_VERSION] = EV_CURRENT;
146      elf_header->e_type = cpu_to_dump16(s, ET_CORE);
147      elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
148      elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
149      elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
150      elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
151      elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
152      elf_header->e_phnum = cpu_to_dump16(s, phnum);
153      elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
154      elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
155      elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
156      elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
157  }
158  
159  static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
160  {
161      /*
162       * phnum in the elf header is 16 bit, if we have more segments we
163       * set phnum to PN_XNUM and write the real number of segments to a
164       * special section.
165       */
166      uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
167  
168      memset(elf_header, 0, sizeof(Elf32_Ehdr));
169      memcpy(elf_header, ELFMAG, SELFMAG);
170      elf_header->e_ident[EI_CLASS] = ELFCLASS32;
171      elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
172      elf_header->e_ident[EI_VERSION] = EV_CURRENT;
173      elf_header->e_type = cpu_to_dump16(s, ET_CORE);
174      elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
175      elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
176      elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
177      elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
178      elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
179      elf_header->e_phnum = cpu_to_dump16(s, phnum);
180      elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
181      elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
182      elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
183      elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
184  }
185  
186  static void write_elf_header(DumpState *s, Error **errp)
187  {
188      Elf32_Ehdr elf32_header;
189      Elf64_Ehdr elf64_header;
190      size_t header_size;
191      void *header_ptr;
192      int ret;
193  
194      /* The NULL header and the shstrtab are always defined */
195      assert(s->shdr_num >= 2);
196      if (dump_is_64bit(s)) {
197          prepare_elf64_header(s, &elf64_header);
198          header_size = sizeof(elf64_header);
199          header_ptr = &elf64_header;
200      } else {
201          prepare_elf32_header(s, &elf32_header);
202          header_size = sizeof(elf32_header);
203          header_ptr = &elf32_header;
204      }
205  
206      ret = fd_write_vmcore(header_ptr, header_size, s);
207      if (ret < 0) {
208          error_setg_errno(errp, -ret, "dump: failed to write elf header");
209      }
210  }
211  
212  static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
213                               int phdr_index, hwaddr offset,
214                               hwaddr filesz, Error **errp)
215  {
216      Elf64_Phdr phdr;
217      int ret;
218  
219      memset(&phdr, 0, sizeof(Elf64_Phdr));
220      phdr.p_type = cpu_to_dump32(s, PT_LOAD);
221      phdr.p_offset = cpu_to_dump64(s, offset);
222      phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
223      phdr.p_filesz = cpu_to_dump64(s, filesz);
224      phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
225      phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
226  
227      assert(memory_mapping->length >= filesz);
228  
229      ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
230      if (ret < 0) {
231          error_setg_errno(errp, -ret,
232                           "dump: failed to write program header table");
233      }
234  }
235  
236  static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
237                               int phdr_index, hwaddr offset,
238                               hwaddr filesz, Error **errp)
239  {
240      Elf32_Phdr phdr;
241      int ret;
242  
243      memset(&phdr, 0, sizeof(Elf32_Phdr));
244      phdr.p_type = cpu_to_dump32(s, PT_LOAD);
245      phdr.p_offset = cpu_to_dump32(s, offset);
246      phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
247      phdr.p_filesz = cpu_to_dump32(s, filesz);
248      phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
249      phdr.p_vaddr =
250          cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
251  
252      assert(memory_mapping->length >= filesz);
253  
254      ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
255      if (ret < 0) {
256          error_setg_errno(errp, -ret,
257                           "dump: failed to write program header table");
258      }
259  }
260  
261  static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
262  {
263      memset(phdr, 0, sizeof(*phdr));
264      phdr->p_type = cpu_to_dump32(s, PT_NOTE);
265      phdr->p_offset = cpu_to_dump64(s, s->note_offset);
266      phdr->p_paddr = 0;
267      phdr->p_filesz = cpu_to_dump64(s, s->note_size);
268      phdr->p_memsz = cpu_to_dump64(s, s->note_size);
269      phdr->p_vaddr = 0;
270  }
271  
272  static inline int cpu_index(CPUState *cpu)
273  {
274      return cpu->cpu_index + 1;
275  }
276  
277  static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
278                               Error **errp)
279  {
280      int ret;
281  
282      if (s->guest_note) {
283          ret = f(s->guest_note, s->guest_note_size, s);
284          if (ret < 0) {
285              error_setg(errp, "dump: failed to write guest note");
286          }
287      }
288  }
289  
290  static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
291                                Error **errp)
292  {
293      CPUState *cpu;
294      int ret;
295      int id;
296  
297      CPU_FOREACH(cpu) {
298          id = cpu_index(cpu);
299          ret = cpu_write_elf64_note(f, cpu, id, s);
300          if (ret < 0) {
301              error_setg(errp, "dump: failed to write elf notes");
302              return;
303          }
304      }
305  
306      CPU_FOREACH(cpu) {
307          ret = cpu_write_elf64_qemunote(f, cpu, s);
308          if (ret < 0) {
309              error_setg(errp, "dump: failed to write CPU status");
310              return;
311          }
312      }
313  
314      write_guest_note(f, s, errp);
315  }
316  
317  static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
318  {
319      memset(phdr, 0, sizeof(*phdr));
320      phdr->p_type = cpu_to_dump32(s, PT_NOTE);
321      phdr->p_offset = cpu_to_dump32(s, s->note_offset);
322      phdr->p_paddr = 0;
323      phdr->p_filesz = cpu_to_dump32(s, s->note_size);
324      phdr->p_memsz = cpu_to_dump32(s, s->note_size);
325      phdr->p_vaddr = 0;
326  }
327  
328  static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
329                                Error **errp)
330  {
331      CPUState *cpu;
332      int ret;
333      int id;
334  
335      CPU_FOREACH(cpu) {
336          id = cpu_index(cpu);
337          ret = cpu_write_elf32_note(f, cpu, id, s);
338          if (ret < 0) {
339              error_setg(errp, "dump: failed to write elf notes");
340              return;
341          }
342      }
343  
344      CPU_FOREACH(cpu) {
345          ret = cpu_write_elf32_qemunote(f, cpu, s);
346          if (ret < 0) {
347              error_setg(errp, "dump: failed to write CPU status");
348              return;
349          }
350      }
351  
352      write_guest_note(f, s, errp);
353  }
354  
355  static void write_elf_phdr_note(DumpState *s, Error **errp)
356  {
357      Elf32_Phdr phdr32;
358      Elf64_Phdr phdr64;
359      void *phdr;
360      size_t size;
361      int ret;
362  
363      if (dump_is_64bit(s)) {
364          prepare_elf64_phdr_note(s, &phdr64);
365          size = sizeof(phdr64);
366          phdr = &phdr64;
367      } else {
368          prepare_elf32_phdr_note(s, &phdr32);
369          size = sizeof(phdr32);
370          phdr = &phdr32;
371      }
372  
373      ret = fd_write_vmcore(phdr, size, s);
374      if (ret < 0) {
375          error_setg_errno(errp, -ret,
376                           "dump: failed to write program header table");
377      }
378  }
379  
380  static void prepare_elf_section_hdr_zero(DumpState *s)
381  {
382      if (dump_is_64bit(s)) {
383          Elf64_Shdr *shdr64 = s->elf_section_hdrs;
384  
385          shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
386      } else {
387          Elf32_Shdr *shdr32 = s->elf_section_hdrs;
388  
389          shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
390      }
391  }
392  
393  static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
394  {
395      uint64_t index = s->string_table_buf->len;
396      const char strtab[] = ".shstrtab";
397      Elf32_Shdr shdr32 = {};
398      Elf64_Shdr shdr64 = {};
399      int shdr_size;
400      void *shdr;
401  
402      g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
403      if (dump_is_64bit(s)) {
404          shdr_size = sizeof(Elf64_Shdr);
405          shdr64.sh_type = SHT_STRTAB;
406          shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
407          shdr64.sh_name = index;
408          shdr64.sh_size = s->string_table_buf->len;
409          shdr = &shdr64;
410      } else {
411          shdr_size = sizeof(Elf32_Shdr);
412          shdr32.sh_type = SHT_STRTAB;
413          shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
414          shdr32.sh_name = index;
415          shdr32.sh_size = s->string_table_buf->len;
416          shdr = &shdr32;
417      }
418      memcpy(buff, shdr, shdr_size);
419  }
420  
421  static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
422  {
423      size_t len, sizeof_shdr;
424      void *buff_hdr;
425  
426      /*
427       * Section ordering:
428       * - HDR zero
429       * - Arch section hdrs
430       * - String table hdr
431       */
432      sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
433      len = sizeof_shdr * s->shdr_num;
434      s->elf_section_hdrs = g_malloc0(len);
435      buff_hdr = s->elf_section_hdrs;
436  
437      /*
438       * The first section header is ALWAYS a special initial section
439       * header.
440       *
441       * The header should be 0 with one exception being that if
442       * phdr_num is PN_XNUM then the sh_info field contains the real
443       * number of segment entries.
444       *
445       * As we zero allocate the buffer we will only need to modify
446       * sh_info for the PN_XNUM case.
447       */
448      if (s->phdr_num >= PN_XNUM) {
449          prepare_elf_section_hdr_zero(s);
450      }
451      buff_hdr += sizeof_shdr;
452  
453      /* Add architecture defined section headers */
454      if (s->dump_info.arch_sections_write_hdr_fn
455          && s->shdr_num > 2) {
456          buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
457  
458          if (s->shdr_num >= SHN_LORESERVE) {
459              error_setg_errno(errp, EINVAL,
460                               "dump: too many architecture defined sections");
461              return false;
462          }
463      }
464  
465      /*
466       * String table is the last section since strings are added via
467       * arch_sections_write_hdr().
468       */
469      prepare_elf_section_hdr_string(s, buff_hdr);
470      return true;
471  }
472  
473  static void write_elf_section_headers(DumpState *s, Error **errp)
474  {
475      size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
476      int ret;
477  
478      if (!prepare_elf_section_hdrs(s, errp)) {
479          return;
480      }
481  
482      ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
483      if (ret < 0) {
484          error_setg_errno(errp, -ret, "dump: failed to write section headers");
485      }
486  
487      g_free(s->elf_section_hdrs);
488  }
489  
490  static void write_elf_sections(DumpState *s, Error **errp)
491  {
492      int ret;
493  
494      if (s->elf_section_data_size) {
495          /* Write architecture section data */
496          ret = fd_write_vmcore(s->elf_section_data,
497                                s->elf_section_data_size, s);
498          if (ret < 0) {
499              error_setg_errno(errp, -ret,
500                               "dump: failed to write architecture section data");
501              return;
502          }
503      }
504  
505      /* Write string table */
506      ret = fd_write_vmcore(s->string_table_buf->data,
507                            s->string_table_buf->len, s);
508      if (ret < 0) {
509          error_setg_errno(errp, -ret, "dump: failed to write string table data");
510      }
511  }
512  
513  static void write_data(DumpState *s, void *buf, int length, Error **errp)
514  {
515      int ret;
516  
517      ret = fd_write_vmcore(buf, length, s);
518      if (ret < 0) {
519          error_setg_errno(errp, -ret, "dump: failed to save memory");
520      } else {
521          s->written_size += length;
522      }
523  }
524  
525  /* write the memory to vmcore. 1 page per I/O. */
526  static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
527                           int64_t size, Error **errp)
528  {
529      ERRP_GUARD();
530      int64_t i;
531  
532      for (i = 0; i < size / s->dump_info.page_size; i++) {
533          write_data(s, block->host_addr + start + i * s->dump_info.page_size,
534                     s->dump_info.page_size, errp);
535          if (*errp) {
536              return;
537          }
538      }
539  
540      if ((size % s->dump_info.page_size) != 0) {
541          write_data(s, block->host_addr + start + i * s->dump_info.page_size,
542                     size % s->dump_info.page_size, errp);
543          if (*errp) {
544              return;
545          }
546      }
547  }
548  
549  /* get the memory's offset and size in the vmcore */
550  static void get_offset_range(hwaddr phys_addr,
551                               ram_addr_t mapping_length,
552                               DumpState *s,
553                               hwaddr *p_offset,
554                               hwaddr *p_filesz)
555  {
556      GuestPhysBlock *block;
557      hwaddr offset = s->memory_offset;
558      int64_t size_in_block, start;
559  
560      /* When the memory is not stored into vmcore, offset will be -1 */
561      *p_offset = -1;
562      *p_filesz = 0;
563  
564      if (dump_has_filter(s)) {
565          if (phys_addr < s->filter_area_begin ||
566              phys_addr >= s->filter_area_begin + s->filter_area_length) {
567              return;
568          }
569      }
570  
571      QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
572          if (dump_has_filter(s)) {
573              if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
574                  block->target_end <= s->filter_area_begin) {
575                  /* This block is out of the range */
576                  continue;
577              }
578  
579              if (s->filter_area_begin <= block->target_start) {
580                  start = block->target_start;
581              } else {
582                  start = s->filter_area_begin;
583              }
584  
585              size_in_block = block->target_end - start;
586              if (s->filter_area_begin + s->filter_area_length < block->target_end) {
587                  size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
588              }
589          } else {
590              start = block->target_start;
591              size_in_block = block->target_end - block->target_start;
592          }
593  
594          if (phys_addr >= start && phys_addr < start + size_in_block) {
595              *p_offset = phys_addr - start + offset;
596  
597              /* The offset range mapped from the vmcore file must not spill over
598               * the GuestPhysBlock, clamp it. The rest of the mapping will be
599               * zero-filled in memory at load time; see
600               * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
601               */
602              *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
603                          mapping_length :
604                          size_in_block - (phys_addr - start);
605              return;
606          }
607  
608          offset += size_in_block;
609      }
610  }
611  
612  static void write_elf_phdr_loads(DumpState *s, Error **errp)
613  {
614      ERRP_GUARD();
615      hwaddr offset, filesz;
616      MemoryMapping *memory_mapping;
617      uint32_t phdr_index = 1;
618  
619      QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
620          get_offset_range(memory_mapping->phys_addr,
621                           memory_mapping->length,
622                           s, &offset, &filesz);
623          if (dump_is_64bit(s)) {
624              write_elf64_load(s, memory_mapping, phdr_index++, offset,
625                               filesz, errp);
626          } else {
627              write_elf32_load(s, memory_mapping, phdr_index++, offset,
628                               filesz, errp);
629          }
630  
631          if (*errp) {
632              return;
633          }
634  
635          if (phdr_index >= s->phdr_num) {
636              break;
637          }
638      }
639  }
640  
641  static void write_elf_notes(DumpState *s, Error **errp)
642  {
643      if (dump_is_64bit(s)) {
644          write_elf64_notes(fd_write_vmcore, s, errp);
645      } else {
646          write_elf32_notes(fd_write_vmcore, s, errp);
647      }
648  }
649  
650  /* write elf header, PT_NOTE and elf note to vmcore. */
651  static void dump_begin(DumpState *s, Error **errp)
652  {
653      ERRP_GUARD();
654  
655      /*
656       * the vmcore's format is:
657       *   --------------
658       *   |  elf header |
659       *   --------------
660       *   |  sctn_hdr   |
661       *   --------------
662       *   |  PT_NOTE    |
663       *   --------------
664       *   |  PT_LOAD    |
665       *   --------------
666       *   |  ......     |
667       *   --------------
668       *   |  PT_LOAD    |
669       *   --------------
670       *   |  elf note   |
671       *   --------------
672       *   |  memory     |
673       *   --------------
674       *
675       * we only know where the memory is saved after we write elf note into
676       * vmcore.
677       */
678  
679      /* write elf header to vmcore */
680      write_elf_header(s, errp);
681      if (*errp) {
682          return;
683      }
684  
685      /* write section headers to vmcore */
686      write_elf_section_headers(s, errp);
687      if (*errp) {
688          return;
689      }
690  
691      /* write PT_NOTE to vmcore */
692      write_elf_phdr_note(s, errp);
693      if (*errp) {
694          return;
695      }
696  
697      /* write all PT_LOADs to vmcore */
698      write_elf_phdr_loads(s, errp);
699      if (*errp) {
700          return;
701      }
702  
703      /* write notes to vmcore */
704      write_elf_notes(s, errp);
705  }
706  
707  int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
708                                      int64_t filter_area_start,
709                                      int64_t filter_area_length)
710  {
711      int64_t size, left, right;
712  
713      /* No filter, return full size */
714      if (!filter_area_length) {
715          return block->target_end - block->target_start;
716      }
717  
718      /* calculate the overlapped region. */
719      left = MAX(filter_area_start, block->target_start);
720      right = MIN(filter_area_start + filter_area_length, block->target_end);
721      size = right - left;
722      size = size > 0 ? size : 0;
723  
724      return size;
725  }
726  
727  int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
728                                       int64_t filter_area_start,
729                                       int64_t filter_area_length)
730  {
731      if (filter_area_length) {
732          /* return -1 if the block is not within filter area */
733          if (block->target_start >= filter_area_start + filter_area_length ||
734              block->target_end <= filter_area_start) {
735              return -1;
736          }
737  
738          if (filter_area_start > block->target_start) {
739              return filter_area_start - block->target_start;
740          }
741      }
742  
743      return 0;
744  }
745  
746  /* write all memory to vmcore */
747  static void dump_iterate(DumpState *s, Error **errp)
748  {
749      ERRP_GUARD();
750      GuestPhysBlock *block;
751      int64_t memblock_size, memblock_start;
752  
753      QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
754          memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
755          if (memblock_start == -1) {
756              continue;
757          }
758  
759          memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
760  
761          /* Write the memory to file */
762          write_memory(s, block, memblock_start, memblock_size, errp);
763          if (*errp) {
764              return;
765          }
766      }
767  }
768  
769  static void dump_end(DumpState *s, Error **errp)
770  {
771      int rc;
772  
773      if (s->elf_section_data_size) {
774          s->elf_section_data = g_malloc0(s->elf_section_data_size);
775      }
776  
777      /* Adds the architecture defined section data to s->elf_section_data  */
778      if (s->dump_info.arch_sections_write_fn &&
779          s->elf_section_data_size) {
780          rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
781          if (rc) {
782              error_setg_errno(errp, rc,
783                               "dump: failed to get arch section data");
784              g_free(s->elf_section_data);
785              return;
786          }
787      }
788  
789      /* write sections to vmcore */
790      write_elf_sections(s, errp);
791  }
792  
793  static void create_vmcore(DumpState *s, Error **errp)
794  {
795      ERRP_GUARD();
796  
797      dump_begin(s, errp);
798      if (*errp) {
799          return;
800      }
801  
802      /* Iterate over memory and dump it to file */
803      dump_iterate(s, errp);
804      if (*errp) {
805          return;
806      }
807  
808      /* Write the section data */
809      dump_end(s, errp);
810  }
811  
812  static int write_start_flat_header(DumpState *s)
813  {
814      MakedumpfileHeader *mh;
815      int ret = 0;
816  
817      if (s->kdump_raw) {
818          return 0;
819      }
820  
821      QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
822      mh = g_malloc0(MAX_SIZE_MDF_HEADER);
823  
824      memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
825             MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
826  
827      mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
828      mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
829  
830      size_t written_size;
831      written_size = qemu_write_full(s->fd, mh, MAX_SIZE_MDF_HEADER);
832      if (written_size != MAX_SIZE_MDF_HEADER) {
833          ret = -1;
834      }
835  
836      g_free(mh);
837      return ret;
838  }
839  
840  static int write_end_flat_header(DumpState *s)
841  {
842      MakedumpfileDataHeader mdh;
843  
844      if (s->kdump_raw) {
845          return 0;
846      }
847  
848      mdh.offset = END_FLAG_FLAT_HEADER;
849      mdh.buf_size = END_FLAG_FLAT_HEADER;
850  
851      size_t written_size;
852      written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh));
853      if (written_size != sizeof(mdh)) {
854          return -1;
855      }
856  
857      return 0;
858  }
859  
860  static int write_buffer(DumpState *s, off_t offset, const void *buf, size_t size)
861  {
862      size_t written_size;
863      MakedumpfileDataHeader mdh;
864      off_t seek_loc;
865  
866      if (s->kdump_raw) {
867          seek_loc = lseek(s->fd, offset, SEEK_SET);
868          if (seek_loc == (off_t) -1) {
869              return -1;
870          }
871      } else {
872          mdh.offset = cpu_to_be64(offset);
873          mdh.buf_size = cpu_to_be64(size);
874  
875          written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh));
876          if (written_size != sizeof(mdh)) {
877              return -1;
878          }
879      }
880  
881      written_size = qemu_write_full(s->fd, buf, size);
882      if (written_size != size) {
883          return -1;
884      }
885  
886      return 0;
887  }
888  
889  static int buf_write_note(const void *buf, size_t size, void *opaque)
890  {
891      DumpState *s = opaque;
892  
893      /* note_buf is not enough */
894      if (s->note_buf_offset + size > s->note_size) {
895          return -1;
896      }
897  
898      memcpy(s->note_buf + s->note_buf_offset, buf, size);
899  
900      s->note_buf_offset += size;
901  
902      return 0;
903  }
904  
905  /*
906   * This function retrieves various sizes from an elf header.
907   *
908   * @note has to be a valid ELF note. The return sizes are unmodified
909   * (not padded or rounded up to be multiple of 4).
910   */
911  static void get_note_sizes(DumpState *s, const void *note,
912                             uint64_t *note_head_size,
913                             uint64_t *name_size,
914                             uint64_t *desc_size)
915  {
916      uint64_t note_head_sz;
917      uint64_t name_sz;
918      uint64_t desc_sz;
919  
920      if (dump_is_64bit(s)) {
921          const Elf64_Nhdr *hdr = note;
922          note_head_sz = sizeof(Elf64_Nhdr);
923          name_sz = cpu_to_dump64(s, hdr->n_namesz);
924          desc_sz = cpu_to_dump64(s, hdr->n_descsz);
925      } else {
926          const Elf32_Nhdr *hdr = note;
927          note_head_sz = sizeof(Elf32_Nhdr);
928          name_sz = cpu_to_dump32(s, hdr->n_namesz);
929          desc_sz = cpu_to_dump32(s, hdr->n_descsz);
930      }
931  
932      if (note_head_size) {
933          *note_head_size = note_head_sz;
934      }
935      if (name_size) {
936          *name_size = name_sz;
937      }
938      if (desc_size) {
939          *desc_size = desc_sz;
940      }
941  }
942  
943  static bool note_name_equal(DumpState *s,
944                              const uint8_t *note, const char *name)
945  {
946      int len = strlen(name) + 1;
947      uint64_t head_size, name_size;
948  
949      get_note_sizes(s, note, &head_size, &name_size, NULL);
950      head_size = ROUND_UP(head_size, 4);
951  
952      return name_size == len && memcmp(note + head_size, name, len) == 0;
953  }
954  
955  /* write common header, sub header and elf note to vmcore */
956  static void create_header32(DumpState *s, Error **errp)
957  {
958      ERRP_GUARD();
959      DiskDumpHeader32 *dh = NULL;
960      KdumpSubHeader32 *kh = NULL;
961      size_t size;
962      uint32_t block_size;
963      uint32_t sub_hdr_size;
964      uint32_t bitmap_blocks;
965      uint32_t status = 0;
966      uint64_t offset_note;
967  
968      /* write common header, the version of kdump-compressed format is 6th */
969      size = sizeof(DiskDumpHeader32);
970      dh = g_malloc0(size);
971  
972      memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
973      dh->header_version = cpu_to_dump32(s, 6);
974      block_size = s->dump_info.page_size;
975      dh->block_size = cpu_to_dump32(s, block_size);
976      sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
977      sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
978      dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
979      /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
980      dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
981      dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
982      bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
983      dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
984      strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
985  
986      if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
987          status |= DUMP_DH_COMPRESSED_ZLIB;
988      }
989  #ifdef CONFIG_LZO
990      if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
991          status |= DUMP_DH_COMPRESSED_LZO;
992      }
993  #endif
994  #ifdef CONFIG_SNAPPY
995      if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
996          status |= DUMP_DH_COMPRESSED_SNAPPY;
997      }
998  #endif
999      dh->status = cpu_to_dump32(s, status);
1000  
1001      if (write_buffer(s, 0, dh, size) < 0) {
1002          error_setg(errp, "dump: failed to write disk dump header");
1003          goto out;
1004      }
1005  
1006      /* write sub header */
1007      size = sizeof(KdumpSubHeader32);
1008      kh = g_malloc0(size);
1009  
1010      /* 64bit max_mapnr_64 */
1011      kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1012      kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
1013      kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1014  
1015      offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1016      if (s->guest_note &&
1017          note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1018          uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1019  
1020          get_note_sizes(s, s->guest_note,
1021                         &hsize, &name_size, &size_vmcoreinfo_desc);
1022          offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1023              (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1024          kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1025          kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
1026      }
1027  
1028      kh->offset_note = cpu_to_dump64(s, offset_note);
1029      kh->note_size = cpu_to_dump32(s, s->note_size);
1030  
1031      if (write_buffer(s, DISKDUMP_HEADER_BLOCKS *
1032                       block_size, kh, size) < 0) {
1033          error_setg(errp, "dump: failed to write kdump sub header");
1034          goto out;
1035      }
1036  
1037      /* write note */
1038      s->note_buf = g_malloc0(s->note_size);
1039      s->note_buf_offset = 0;
1040  
1041      /* use s->note_buf to store notes temporarily */
1042      write_elf32_notes(buf_write_note, s, errp);
1043      if (*errp) {
1044          goto out;
1045      }
1046      if (write_buffer(s, offset_note, s->note_buf,
1047                       s->note_size) < 0) {
1048          error_setg(errp, "dump: failed to write notes");
1049          goto out;
1050      }
1051  
1052      /* get offset of dump_bitmap */
1053      s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1054                               block_size;
1055  
1056      /* get offset of page */
1057      s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1058                       block_size;
1059  
1060  out:
1061      g_free(dh);
1062      g_free(kh);
1063      g_free(s->note_buf);
1064  }
1065  
1066  /* write common header, sub header and elf note to vmcore */
1067  static void create_header64(DumpState *s, Error **errp)
1068  {
1069      ERRP_GUARD();
1070      DiskDumpHeader64 *dh = NULL;
1071      KdumpSubHeader64 *kh = NULL;
1072      size_t size;
1073      uint32_t block_size;
1074      uint32_t sub_hdr_size;
1075      uint32_t bitmap_blocks;
1076      uint32_t status = 0;
1077      uint64_t offset_note;
1078  
1079      /* write common header, the version of kdump-compressed format is 6th */
1080      size = sizeof(DiskDumpHeader64);
1081      dh = g_malloc0(size);
1082  
1083      memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
1084      dh->header_version = cpu_to_dump32(s, 6);
1085      block_size = s->dump_info.page_size;
1086      dh->block_size = cpu_to_dump32(s, block_size);
1087      sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
1088      sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
1089      dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
1090      /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1091      dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
1092      dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
1093      bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
1094      dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
1095      strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
1096  
1097      if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
1098          status |= DUMP_DH_COMPRESSED_ZLIB;
1099      }
1100  #ifdef CONFIG_LZO
1101      if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
1102          status |= DUMP_DH_COMPRESSED_LZO;
1103      }
1104  #endif
1105  #ifdef CONFIG_SNAPPY
1106      if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1107          status |= DUMP_DH_COMPRESSED_SNAPPY;
1108      }
1109  #endif
1110      dh->status = cpu_to_dump32(s, status);
1111  
1112      if (write_buffer(s, 0, dh, size) < 0) {
1113          error_setg(errp, "dump: failed to write disk dump header");
1114          goto out;
1115      }
1116  
1117      /* write sub header */
1118      size = sizeof(KdumpSubHeader64);
1119      kh = g_malloc0(size);
1120  
1121      /* 64bit max_mapnr_64 */
1122      kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1123      kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
1124      kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1125  
1126      offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1127      if (s->guest_note &&
1128          note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1129          uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1130  
1131          get_note_sizes(s, s->guest_note,
1132                         &hsize, &name_size, &size_vmcoreinfo_desc);
1133          offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1134              (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1135          kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1136          kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
1137      }
1138  
1139      kh->offset_note = cpu_to_dump64(s, offset_note);
1140      kh->note_size = cpu_to_dump64(s, s->note_size);
1141  
1142      if (write_buffer(s, DISKDUMP_HEADER_BLOCKS *
1143                       block_size, kh, size) < 0) {
1144          error_setg(errp, "dump: failed to write kdump sub header");
1145          goto out;
1146      }
1147  
1148      /* write note */
1149      s->note_buf = g_malloc0(s->note_size);
1150      s->note_buf_offset = 0;
1151  
1152      /* use s->note_buf to store notes temporarily */
1153      write_elf64_notes(buf_write_note, s, errp);
1154      if (*errp) {
1155          goto out;
1156      }
1157  
1158      if (write_buffer(s, offset_note, s->note_buf,
1159                       s->note_size) < 0) {
1160          error_setg(errp, "dump: failed to write notes");
1161          goto out;
1162      }
1163  
1164      /* get offset of dump_bitmap */
1165      s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1166                               block_size;
1167  
1168      /* get offset of page */
1169      s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1170                       block_size;
1171  
1172  out:
1173      g_free(dh);
1174      g_free(kh);
1175      g_free(s->note_buf);
1176  }
1177  
1178  static void write_dump_header(DumpState *s, Error **errp)
1179  {
1180      if (dump_is_64bit(s)) {
1181          create_header64(s, errp);
1182      } else {
1183          create_header32(s, errp);
1184      }
1185  }
1186  
1187  static size_t dump_bitmap_get_bufsize(DumpState *s)
1188  {
1189      return s->dump_info.page_size;
1190  }
1191  
1192  /*
1193   * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1194   * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1195   * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1196   * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1197   * vmcore, ie. synchronizing un-sync bit into vmcore.
1198   */
1199  static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1200                             uint8_t *buf, DumpState *s)
1201  {
1202      off_t old_offset, new_offset;
1203      off_t offset_bitmap1, offset_bitmap2;
1204      uint32_t byte, bit;
1205      size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1206      size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1207  
1208      /* should not set the previous place */
1209      assert(last_pfn <= pfn);
1210  
1211      /*
1212       * if the bit needed to be set is not cached in buf, flush the data in buf
1213       * to vmcore firstly.
1214       * making new_offset be bigger than old_offset can also sync remained data
1215       * into vmcore.
1216       */
1217      old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1218      new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1219  
1220      while (old_offset < new_offset) {
1221          /* calculate the offset and write dump_bitmap */
1222          offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1223          if (write_buffer(s, offset_bitmap1, buf,
1224                           bitmap_bufsize) < 0) {
1225              return -1;
1226          }
1227  
1228          /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1229          offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1230                           old_offset;
1231          if (write_buffer(s, offset_bitmap2, buf,
1232                           bitmap_bufsize) < 0) {
1233              return -1;
1234          }
1235  
1236          memset(buf, 0, bitmap_bufsize);
1237          old_offset += bitmap_bufsize;
1238      }
1239  
1240      /* get the exact place of the bit in the buf, and set it */
1241      byte = (pfn % bits_per_buf) / CHAR_BIT;
1242      bit = (pfn % bits_per_buf) % CHAR_BIT;
1243      if (value) {
1244          buf[byte] |= 1u << bit;
1245      } else {
1246          buf[byte] &= ~(1u << bit);
1247      }
1248  
1249      return 0;
1250  }
1251  
1252  static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1253  {
1254      int target_page_shift = ctz32(s->dump_info.page_size);
1255  
1256      return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1257  }
1258  
1259  static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1260  {
1261      int target_page_shift = ctz32(s->dump_info.page_size);
1262  
1263      return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1264  }
1265  
1266  /*
1267   * Return the page frame number and the page content in *bufptr. bufptr can be
1268   * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1269   * memory. This is not necessarily the memory returned.
1270   */
1271  static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1272                            uint8_t **bufptr, DumpState *s)
1273  {
1274      GuestPhysBlock *block = *blockptr;
1275      uint32_t page_size = s->dump_info.page_size;
1276      uint8_t *buf = NULL, *hbuf;
1277      hwaddr addr;
1278  
1279      /* block == NULL means the start of the iteration */
1280      if (!block) {
1281          block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1282          *blockptr = block;
1283          addr = block->target_start;
1284          *pfnptr = dump_paddr_to_pfn(s, addr);
1285      } else {
1286          *pfnptr += 1;
1287          addr = dump_pfn_to_paddr(s, *pfnptr);
1288      }
1289      assert(block != NULL);
1290  
1291      while (1) {
1292          if (addr >= block->target_start && addr < block->target_end) {
1293              size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
1294              hbuf = block->host_addr + (addr - block->target_start);
1295              if (!buf) {
1296                  if (n == page_size) {
1297                      /* this is a whole target page, go for it */
1298                      assert(addr % page_size == 0);
1299                      buf = hbuf;
1300                      break;
1301                  } else if (bufptr) {
1302                      assert(*bufptr);
1303                      buf = *bufptr;
1304                      memset(buf, 0, page_size);
1305                  } else {
1306                      return true;
1307                  }
1308              }
1309  
1310              memcpy(buf + addr % page_size, hbuf, n);
1311              addr += n;
1312              if (addr % page_size == 0 || addr >= block->target_end) {
1313                  /* we filled up the page or the current block is finished */
1314                  break;
1315              }
1316          } else {
1317              /* the next page is in the next block */
1318              *blockptr = block = QTAILQ_NEXT(block, next);
1319              if (!block) {
1320                  break;
1321              }
1322  
1323              addr = block->target_start;
1324              /* are we still in the same page? */
1325              if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
1326                  if (buf) {
1327                      /* no, but we already filled something earlier, return it */
1328                      break;
1329                  } else {
1330                      /* else continue from there */
1331                      *pfnptr = dump_paddr_to_pfn(s, addr);
1332                  }
1333              }
1334          }
1335      }
1336  
1337      if (bufptr) {
1338          *bufptr = buf;
1339      }
1340  
1341      return buf != NULL;
1342  }
1343  
1344  static void write_dump_bitmap(DumpState *s, Error **errp)
1345  {
1346      int ret = 0;
1347      uint64_t last_pfn, pfn;
1348      void *dump_bitmap_buf;
1349      size_t num_dumpable;
1350      GuestPhysBlock *block_iter = NULL;
1351      size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1352      size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1353  
1354      /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1355      dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1356  
1357      num_dumpable = 0;
1358      last_pfn = 0;
1359  
1360      /*
1361       * exam memory page by page, and set the bit in dump_bitmap corresponded
1362       * to the existing page.
1363       */
1364      while (get_next_page(&block_iter, &pfn, NULL, s)) {
1365          ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1366          if (ret < 0) {
1367              error_setg(errp, "dump: failed to set dump_bitmap");
1368              goto out;
1369          }
1370  
1371          last_pfn = pfn;
1372          num_dumpable++;
1373      }
1374  
1375      /*
1376       * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1377       * set the remaining bits from last_pfn to the end of the bitmap buffer to
1378       * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1379       */
1380      if (num_dumpable > 0) {
1381          ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1382                                dump_bitmap_buf, s);
1383          if (ret < 0) {
1384              error_setg(errp, "dump: failed to sync dump_bitmap");
1385              goto out;
1386          }
1387      }
1388  
1389      /* number of dumpable pages that will be dumped later */
1390      s->num_dumpable = num_dumpable;
1391  
1392  out:
1393      g_free(dump_bitmap_buf);
1394  }
1395  
1396  static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1397                                 off_t offset)
1398  {
1399      data_cache->state = s;
1400      data_cache->data_size = 0;
1401      data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1402      data_cache->buf = g_malloc0(data_cache->buf_size);
1403      data_cache->offset = offset;
1404  }
1405  
1406  static int write_cache(DataCache *dc, const void *buf, size_t size,
1407                         bool flag_sync)
1408  {
1409      /*
1410       * dc->buf_size should not be less than size, otherwise dc will never be
1411       * enough
1412       */
1413      assert(size <= dc->buf_size);
1414  
1415      /*
1416       * if flag_sync is set, synchronize data in dc->buf into vmcore.
1417       * otherwise check if the space is enough for caching data in buf, if not,
1418       * write the data in dc->buf to dc->state->fd and reset dc->buf
1419       */
1420      if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1421          (flag_sync && dc->data_size > 0)) {
1422          if (write_buffer(dc->state, dc->offset, dc->buf, dc->data_size) < 0) {
1423              return -1;
1424          }
1425  
1426          dc->offset += dc->data_size;
1427          dc->data_size = 0;
1428      }
1429  
1430      if (!flag_sync) {
1431          memcpy(dc->buf + dc->data_size, buf, size);
1432          dc->data_size += size;
1433      }
1434  
1435      return 0;
1436  }
1437  
1438  static void free_data_cache(DataCache *data_cache)
1439  {
1440      g_free(data_cache->buf);
1441  }
1442  
1443  static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1444  {
1445      switch (flag_compress) {
1446      case DUMP_DH_COMPRESSED_ZLIB:
1447          return compressBound(page_size);
1448  
1449      case DUMP_DH_COMPRESSED_LZO:
1450          /*
1451           * LZO will expand incompressible data by a little amount. Please check
1452           * the following URL to see the expansion calculation:
1453           * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1454           */
1455          return page_size + page_size / 16 + 64 + 3;
1456  
1457  #ifdef CONFIG_SNAPPY
1458      case DUMP_DH_COMPRESSED_SNAPPY:
1459          return snappy_max_compressed_length(page_size);
1460  #endif
1461      }
1462      return 0;
1463  }
1464  
1465  static void write_dump_pages(DumpState *s, Error **errp)
1466  {
1467      int ret = 0;
1468      DataCache page_desc, page_data;
1469      size_t len_buf_out, size_out;
1470  #ifdef CONFIG_LZO
1471      lzo_bytep wrkmem = NULL;
1472  #endif
1473      uint8_t *buf_out = NULL;
1474      off_t offset_desc, offset_data;
1475      PageDescriptor pd, pd_zero;
1476      uint8_t *buf;
1477      GuestPhysBlock *block_iter = NULL;
1478      uint64_t pfn_iter;
1479      g_autofree uint8_t *page = NULL;
1480  
1481      /* get offset of page_desc and page_data in dump file */
1482      offset_desc = s->offset_page;
1483      offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1484  
1485      prepare_data_cache(&page_desc, s, offset_desc);
1486      prepare_data_cache(&page_data, s, offset_data);
1487  
1488      /* prepare buffer to store compressed data */
1489      len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1490      assert(len_buf_out != 0);
1491  
1492  #ifdef CONFIG_LZO
1493      wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1494  #endif
1495  
1496      buf_out = g_malloc(len_buf_out);
1497  
1498      /*
1499       * init zero page's page_desc and page_data, because every zero page
1500       * uses the same page_data
1501       */
1502      pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1503      pd_zero.flags = cpu_to_dump32(s, 0);
1504      pd_zero.offset = cpu_to_dump64(s, offset_data);
1505      pd_zero.page_flags = cpu_to_dump64(s, 0);
1506      buf = g_malloc0(s->dump_info.page_size);
1507      ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1508      g_free(buf);
1509      if (ret < 0) {
1510          error_setg(errp, "dump: failed to write page data (zero page)");
1511          goto out;
1512      }
1513  
1514      offset_data += s->dump_info.page_size;
1515      page = g_malloc(s->dump_info.page_size);
1516  
1517      /*
1518       * dump memory to vmcore page by page. zero page will all be resided in the
1519       * first page of page section
1520       */
1521      for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
1522          /* check zero page */
1523          if (buffer_is_zero(buf, s->dump_info.page_size)) {
1524              ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1525                                false);
1526              if (ret < 0) {
1527                  error_setg(errp, "dump: failed to write page desc");
1528                  goto out;
1529              }
1530          } else {
1531              /*
1532               * not zero page, then:
1533               * 1. compress the page
1534               * 2. write the compressed page into the cache of page_data
1535               * 3. get page desc of the compressed page and write it into the
1536               *    cache of page_desc
1537               *
1538               * only one compression format will be used here, for
1539               * s->flag_compress is set. But when compression fails to work,
1540               * we fall back to save in plaintext.
1541               */
1542               size_out = len_buf_out;
1543               if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1544                      (compress2(buf_out, (uLongf *)&size_out, buf,
1545                                 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1546                      (size_out < s->dump_info.page_size)) {
1547                  pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1548                  pd.size  = cpu_to_dump32(s, size_out);
1549  
1550                  ret = write_cache(&page_data, buf_out, size_out, false);
1551                  if (ret < 0) {
1552                      error_setg(errp, "dump: failed to write page data");
1553                      goto out;
1554                  }
1555  #ifdef CONFIG_LZO
1556              } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1557                      (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1558                      (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1559                      (size_out < s->dump_info.page_size)) {
1560                  pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1561                  pd.size  = cpu_to_dump32(s, size_out);
1562  
1563                  ret = write_cache(&page_data, buf_out, size_out, false);
1564                  if (ret < 0) {
1565                      error_setg(errp, "dump: failed to write page data");
1566                      goto out;
1567                  }
1568  #endif
1569  #ifdef CONFIG_SNAPPY
1570              } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1571                      (snappy_compress((char *)buf, s->dump_info.page_size,
1572                      (char *)buf_out, &size_out) == SNAPPY_OK) &&
1573                      (size_out < s->dump_info.page_size)) {
1574                  pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1575                  pd.size  = cpu_to_dump32(s, size_out);
1576  
1577                  ret = write_cache(&page_data, buf_out, size_out, false);
1578                  if (ret < 0) {
1579                      error_setg(errp, "dump: failed to write page data");
1580                      goto out;
1581                  }
1582  #endif
1583              } else {
1584                  /*
1585                   * fall back to save in plaintext, size_out should be
1586                   * assigned the target's page size
1587                   */
1588                  pd.flags = cpu_to_dump32(s, 0);
1589                  size_out = s->dump_info.page_size;
1590                  pd.size = cpu_to_dump32(s, size_out);
1591  
1592                  ret = write_cache(&page_data, buf,
1593                                    s->dump_info.page_size, false);
1594                  if (ret < 0) {
1595                      error_setg(errp, "dump: failed to write page data");
1596                      goto out;
1597                  }
1598              }
1599  
1600              /* get and write page desc here */
1601              pd.page_flags = cpu_to_dump64(s, 0);
1602              pd.offset = cpu_to_dump64(s, offset_data);
1603              offset_data += size_out;
1604  
1605              ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1606              if (ret < 0) {
1607                  error_setg(errp, "dump: failed to write page desc");
1608                  goto out;
1609              }
1610          }
1611          s->written_size += s->dump_info.page_size;
1612      }
1613  
1614      ret = write_cache(&page_desc, NULL, 0, true);
1615      if (ret < 0) {
1616          error_setg(errp, "dump: failed to sync cache for page_desc");
1617          goto out;
1618      }
1619      ret = write_cache(&page_data, NULL, 0, true);
1620      if (ret < 0) {
1621          error_setg(errp, "dump: failed to sync cache for page_data");
1622          goto out;
1623      }
1624  
1625  out:
1626      free_data_cache(&page_desc);
1627      free_data_cache(&page_data);
1628  
1629  #ifdef CONFIG_LZO
1630      g_free(wrkmem);
1631  #endif
1632  
1633      g_free(buf_out);
1634  }
1635  
1636  static void create_kdump_vmcore(DumpState *s, Error **errp)
1637  {
1638      ERRP_GUARD();
1639      int ret;
1640  
1641      /*
1642       * the kdump-compressed format is:
1643       *                                               File offset
1644       *  +------------------------------------------+ 0x0
1645       *  |    main header (struct disk_dump_header) |
1646       *  |------------------------------------------+ block 1
1647       *  |    sub header (struct kdump_sub_header)  |
1648       *  |------------------------------------------+ block 2
1649       *  |            1st-dump_bitmap               |
1650       *  |------------------------------------------+ block 2 + X blocks
1651       *  |            2nd-dump_bitmap               | (aligned by block)
1652       *  |------------------------------------------+ block 2 + 2 * X blocks
1653       *  |  page desc for pfn 0 (struct page_desc)  | (aligned by block)
1654       *  |  page desc for pfn 1 (struct page_desc)  |
1655       *  |                    :                     |
1656       *  |------------------------------------------| (not aligned by block)
1657       *  |         page data (pfn 0)                |
1658       *  |         page data (pfn 1)                |
1659       *  |                    :                     |
1660       *  +------------------------------------------+
1661       */
1662  
1663      ret = write_start_flat_header(s);
1664      if (ret < 0) {
1665          error_setg(errp, "dump: failed to write start flat header");
1666          return;
1667      }
1668  
1669      write_dump_header(s, errp);
1670      if (*errp) {
1671          return;
1672      }
1673  
1674      write_dump_bitmap(s, errp);
1675      if (*errp) {
1676          return;
1677      }
1678  
1679      write_dump_pages(s, errp);
1680      if (*errp) {
1681          return;
1682      }
1683  
1684      ret = write_end_flat_header(s);
1685      if (ret < 0) {
1686          error_setg(errp, "dump: failed to write end flat header");
1687          return;
1688      }
1689  }
1690  
1691  static void get_max_mapnr(DumpState *s)
1692  {
1693      GuestPhysBlock *last_block;
1694  
1695      last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1696      s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1697  }
1698  
1699  static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1700  
1701  static void dump_state_prepare(DumpState *s)
1702  {
1703      /* zero the struct, setting status to active */
1704      *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1705  }
1706  
1707  bool qemu_system_dump_in_progress(void)
1708  {
1709      DumpState *state = &dump_state_global;
1710      return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1711  }
1712  
1713  /*
1714   * calculate total size of memory to be dumped (taking filter into
1715   * account.)
1716   */
1717  static int64_t dump_calculate_size(DumpState *s)
1718  {
1719      GuestPhysBlock *block;
1720      int64_t total = 0;
1721  
1722      QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1723          total += dump_filtered_memblock_size(block,
1724                                               s->filter_area_begin,
1725                                               s->filter_area_length);
1726      }
1727  
1728      return total;
1729  }
1730  
1731  static void vmcoreinfo_update_phys_base(DumpState *s)
1732  {
1733      uint64_t size, note_head_size, name_size, phys_base;
1734      char **lines;
1735      uint8_t *vmci;
1736      size_t i;
1737  
1738      if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1739          return;
1740      }
1741  
1742      get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1743      note_head_size = ROUND_UP(note_head_size, 4);
1744  
1745      vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1746      *(vmci + size) = '\0';
1747  
1748      lines = g_strsplit((char *)vmci, "\n", -1);
1749      for (i = 0; lines[i]; i++) {
1750          const char *prefix = NULL;
1751  
1752          if (s->dump_info.d_machine == EM_X86_64) {
1753              prefix = "NUMBER(phys_base)=";
1754          } else if (s->dump_info.d_machine == EM_AARCH64) {
1755              prefix = "NUMBER(PHYS_OFFSET)=";
1756          }
1757  
1758          if (prefix && g_str_has_prefix(lines[i], prefix)) {
1759              if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1760                                &phys_base) < 0) {
1761                  warn_report("Failed to read %s", prefix);
1762              } else {
1763                  s->dump_info.phys_base = phys_base;
1764              }
1765              break;
1766          }
1767      }
1768  
1769      g_strfreev(lines);
1770  }
1771  
1772  static void dump_init(DumpState *s, int fd, bool has_format,
1773                        DumpGuestMemoryFormat format, bool paging, bool has_filter,
1774                        int64_t begin, int64_t length, bool kdump_raw,
1775                        Error **errp)
1776  {
1777      ERRP_GUARD();
1778      VMCoreInfoState *vmci = vmcoreinfo_find();
1779      CPUState *cpu;
1780      int nr_cpus;
1781      int ret;
1782  
1783      s->has_format = has_format;
1784      s->format = format;
1785      s->written_size = 0;
1786      s->kdump_raw = kdump_raw;
1787  
1788      /* kdump-compressed is conflict with paging and filter */
1789      if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1790          assert(!paging && !has_filter);
1791      }
1792  
1793      if (runstate_is_running()) {
1794          vm_stop(RUN_STATE_SAVE_VM);
1795          s->resume = true;
1796      } else {
1797          s->resume = false;
1798      }
1799  
1800      /* If we use KVM, we should synchronize the registers before we get dump
1801       * info or physmap info.
1802       */
1803      cpu_synchronize_all_states();
1804      nr_cpus = 0;
1805      CPU_FOREACH(cpu) {
1806          nr_cpus++;
1807      }
1808  
1809      s->fd = fd;
1810      if (has_filter && !length) {
1811          error_setg(errp, "parameter 'length' expects a non-zero size");
1812          goto cleanup;
1813      }
1814      s->filter_area_begin = begin;
1815      s->filter_area_length = length;
1816  
1817      /* First index is 0, it's the special null name */
1818      s->string_table_buf = g_array_new(FALSE, TRUE, 1);
1819      /*
1820       * Allocate the null name, due to the clearing option set to true
1821       * it will be 0.
1822       */
1823      g_array_set_size(s->string_table_buf, 1);
1824  
1825      memory_mapping_list_init(&s->list);
1826  
1827      guest_phys_blocks_init(&s->guest_phys_blocks);
1828      guest_phys_blocks_append(&s->guest_phys_blocks);
1829      s->total_size = dump_calculate_size(s);
1830  #ifdef DEBUG_DUMP_GUEST_MEMORY
1831      fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1832  #endif
1833  
1834      /* it does not make sense to dump non-existent memory */
1835      if (!s->total_size) {
1836          error_setg(errp, "dump: no guest memory to dump");
1837          goto cleanup;
1838      }
1839  
1840      /* get dump info: endian, class and architecture.
1841       * If the target architecture is not supported, cpu_get_dump_info() will
1842       * return -1.
1843       */
1844      ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1845      if (ret < 0) {
1846          error_setg(errp,
1847                     "dumping guest memory is not supported on this target");
1848          goto cleanup;
1849      }
1850  
1851      if (!s->dump_info.page_size) {
1852          s->dump_info.page_size = qemu_target_page_size();
1853      }
1854  
1855      s->note_size = cpu_get_note_size(s->dump_info.d_class,
1856                                       s->dump_info.d_machine, nr_cpus);
1857      assert(s->note_size >= 0);
1858  
1859      /*
1860       * The goal of this block is to (a) update the previously guessed
1861       * phys_base, (b) copy the guest note out of the guest.
1862       * Failure to do so is not fatal for dumping.
1863       */
1864      if (vmci) {
1865          uint64_t addr, note_head_size, name_size, desc_size;
1866          uint32_t size;
1867          uint16_t guest_format;
1868  
1869          note_head_size = dump_is_64bit(s) ?
1870              sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1871  
1872          guest_format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1873          size = le32_to_cpu(vmci->vmcoreinfo.size);
1874          addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1875          if (!vmci->has_vmcoreinfo) {
1876              warn_report("guest note is not present");
1877          } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1878              warn_report("guest note size is invalid: %" PRIu32, size);
1879          } else if (guest_format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1880              warn_report("guest note format is unsupported: %" PRIu16, guest_format);
1881          } else {
1882              s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1883              cpu_physical_memory_read(addr, s->guest_note, size);
1884  
1885              get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1886              s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1887                                                 desc_size);
1888              if (name_size > MAX_GUEST_NOTE_SIZE ||
1889                  desc_size > MAX_GUEST_NOTE_SIZE ||
1890                  s->guest_note_size > size) {
1891                  warn_report("Invalid guest note header");
1892                  g_free(s->guest_note);
1893                  s->guest_note = NULL;
1894              } else {
1895                  vmcoreinfo_update_phys_base(s);
1896                  s->note_size += s->guest_note_size;
1897              }
1898          }
1899      }
1900  
1901      /* get memory mapping */
1902      if (paging) {
1903          qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1904          if (*errp) {
1905              goto cleanup;
1906          }
1907      } else {
1908          qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1909      }
1910  
1911      s->nr_cpus = nr_cpus;
1912  
1913      get_max_mapnr(s);
1914  
1915      uint64_t tmp;
1916      tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1917                         s->dump_info.page_size);
1918      s->len_dump_bitmap = tmp * s->dump_info.page_size;
1919  
1920      /* init for kdump-compressed format */
1921      if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1922          switch (format) {
1923          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1924              s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1925              break;
1926  
1927          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1928  #ifdef CONFIG_LZO
1929              if (lzo_init() != LZO_E_OK) {
1930                  error_setg(errp, "failed to initialize the LZO library");
1931                  goto cleanup;
1932              }
1933  #endif
1934              s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1935              break;
1936  
1937          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1938              s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1939              break;
1940  
1941          default:
1942              s->flag_compress = 0;
1943          }
1944  
1945          return;
1946      }
1947  
1948      if (dump_has_filter(s)) {
1949          memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
1950      }
1951  
1952      /*
1953       * The first section header is always a special one in which most
1954       * fields are 0. The section header string table is also always
1955       * set.
1956       */
1957      s->shdr_num = 2;
1958  
1959      /*
1960       * Adds the number of architecture sections to shdr_num and sets
1961       * elf_section_data_size so we know the offsets and sizes of all
1962       * parts.
1963       */
1964      if (s->dump_info.arch_sections_add_fn) {
1965          s->dump_info.arch_sections_add_fn(s);
1966      }
1967  
1968      /*
1969       * calculate shdr_num so we know the offsets and sizes of all
1970       * parts.
1971       * Calculate phdr_num
1972       *
1973       * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1974       * sh_info is 32 bit. There's special handling once we go over
1975       * UINT16_MAX - 1 but that is handled in the ehdr and section
1976       * code.
1977       */
1978      s->phdr_num = 1; /* Reserve PT_NOTE */
1979      if (s->list.num <= UINT32_MAX - 1) {
1980          s->phdr_num += s->list.num;
1981      } else {
1982          s->phdr_num = UINT32_MAX;
1983      }
1984  
1985      /*
1986       * Now that the number of section and program headers is known we
1987       * can calculate the offsets of the headers and data.
1988       */
1989      if (dump_is_64bit(s)) {
1990          s->shdr_offset = sizeof(Elf64_Ehdr);
1991          s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
1992          s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
1993      } else {
1994          s->shdr_offset = sizeof(Elf32_Ehdr);
1995          s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
1996          s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
1997      }
1998      s->memory_offset = s->note_offset + s->note_size;
1999      s->section_offset = s->memory_offset + s->total_size;
2000  
2001      return;
2002  
2003  cleanup:
2004      dump_cleanup(s);
2005  }
2006  
2007  /* this operation might be time consuming. */
2008  static void dump_process(DumpState *s, Error **errp)
2009  {
2010      ERRP_GUARD();
2011      DumpQueryResult *result = NULL;
2012  
2013      if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2014          create_win_dump(s, errp);
2015      } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
2016          create_kdump_vmcore(s, errp);
2017      } else {
2018          create_vmcore(s, errp);
2019      }
2020  
2021      /* make sure status is written after written_size updates */
2022      smp_wmb();
2023      qatomic_set(&s->status,
2024                 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
2025  
2026      /* send DUMP_COMPLETED message (unconditionally) */
2027      result = qmp_query_dump(NULL);
2028      /* should never fail */
2029      assert(result);
2030      qapi_event_send_dump_completed(result,
2031                                     *errp ? error_get_pretty(*errp) : NULL);
2032      qapi_free_DumpQueryResult(result);
2033  
2034      dump_cleanup(s);
2035  }
2036  
2037  static void *dump_thread(void *data)
2038  {
2039      DumpState *s = (DumpState *)data;
2040      dump_process(s, NULL);
2041      return NULL;
2042  }
2043  
2044  DumpQueryResult *qmp_query_dump(Error **errp)
2045  {
2046      DumpQueryResult *result = g_new(DumpQueryResult, 1);
2047      DumpState *state = &dump_state_global;
2048      result->status = qatomic_read(&state->status);
2049      /* make sure we are reading status and written_size in order */
2050      smp_rmb();
2051      result->completed = state->written_size;
2052      result->total = state->total_size;
2053      return result;
2054  }
2055  
2056  void qmp_dump_guest_memory(bool paging, const char *protocol,
2057                             bool has_detach, bool detach,
2058                             bool has_begin, int64_t begin,
2059                             bool has_length, int64_t length,
2060                             bool has_format, DumpGuestMemoryFormat format,
2061                             Error **errp)
2062  {
2063      ERRP_GUARD();
2064      const char *p;
2065      int fd;
2066      DumpState *s;
2067      bool detach_p = false;
2068      bool kdump_raw = false;
2069  
2070      if (runstate_check(RUN_STATE_INMIGRATE)) {
2071          error_setg(errp, "Dump not allowed during incoming migration.");
2072          return;
2073      }
2074  
2075      /* if there is a dump in background, we should wait until the dump
2076       * finished */
2077      if (qemu_system_dump_in_progress()) {
2078          error_setg(errp, "There is a dump in process, please wait.");
2079          return;
2080      }
2081  
2082      /*
2083       * externally, we represent kdump-raw-* as separate formats, but internally
2084       * they are handled the same, except for the "raw" flag
2085       */
2086      if (has_format) {
2087          switch (format) {
2088          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB:
2089              format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB;
2090              kdump_raw = true;
2091              break;
2092          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO:
2093              format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO;
2094              kdump_raw = true;
2095              break;
2096          case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY:
2097              format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY;
2098              kdump_raw = true;
2099              break;
2100          default:
2101              break;
2102          }
2103      }
2104  
2105      /*
2106       * kdump-compressed format need the whole memory dumped, so paging or
2107       * filter is not supported here.
2108       */
2109      if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
2110          (paging || has_begin || has_length)) {
2111          error_setg(errp, "kdump-compressed format doesn't support paging or "
2112                           "filter");
2113          return;
2114      }
2115      if (has_begin && !has_length) {
2116          error_setg(errp, QERR_MISSING_PARAMETER, "length");
2117          return;
2118      }
2119      if (!has_begin && has_length) {
2120          error_setg(errp, QERR_MISSING_PARAMETER, "begin");
2121          return;
2122      }
2123      if (has_detach) {
2124          detach_p = detach;
2125      }
2126  
2127      /* check whether lzo/snappy is supported */
2128  #ifndef CONFIG_LZO
2129      if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
2130          error_setg(errp, "kdump-lzo is not available now");
2131          return;
2132      }
2133  #endif
2134  
2135  #ifndef CONFIG_SNAPPY
2136      if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
2137          error_setg(errp, "kdump-snappy is not available now");
2138          return;
2139      }
2140  #endif
2141  
2142      if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
2143          && !win_dump_available(errp)) {
2144          return;
2145      }
2146  
2147      if (strstart(protocol, "fd:", &p)) {
2148          fd = monitor_get_fd(monitor_cur(), p, errp);
2149          if (fd == -1) {
2150              return;
2151          }
2152      } else if  (strstart(protocol, "file:", &p)) {
2153          fd = qemu_create(p, O_WRONLY | O_TRUNC | O_BINARY, S_IRUSR, errp);
2154          if (fd < 0) {
2155              return;
2156          }
2157      } else {
2158          error_setg(errp,
2159                     "parameter 'protocol' must start with 'file:' or 'fd:'");
2160          return;
2161      }
2162      if (kdump_raw && lseek(fd, 0, SEEK_CUR) == (off_t) -1) {
2163          close(fd);
2164          error_setg(errp, "kdump-raw formats require a seekable file");
2165          return;
2166      }
2167  
2168      if (!dump_migration_blocker) {
2169          error_setg(&dump_migration_blocker,
2170                     "Live migration disabled: dump-guest-memory in progress");
2171      }
2172  
2173      /*
2174       * Allows even for -only-migratable, but forbid migration during the
2175       * process of dump guest memory.
2176       */
2177      if (migrate_add_blocker_internal(&dump_migration_blocker, errp)) {
2178          /* Remember to release the fd before passing it over to dump state */
2179          close(fd);
2180          return;
2181      }
2182  
2183      s = &dump_state_global;
2184      dump_state_prepare(s);
2185  
2186      dump_init(s, fd, has_format, format, paging, has_begin,
2187                begin, length, kdump_raw, errp);
2188      if (*errp) {
2189          qatomic_set(&s->status, DUMP_STATUS_FAILED);
2190          return;
2191      }
2192  
2193      if (detach_p) {
2194          /* detached dump */
2195          s->detached = true;
2196          qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
2197                             s, QEMU_THREAD_DETACHED);
2198      } else {
2199          /* sync dump */
2200          dump_process(s, errp);
2201      }
2202  }
2203  
2204  DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2205  {
2206      DumpGuestMemoryCapability *cap =
2207                                    g_new0(DumpGuestMemoryCapability, 1);
2208      DumpGuestMemoryFormatList **tail = &cap->formats;
2209  
2210      /* elf is always available */
2211      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2212  
2213      /* kdump-zlib is always available */
2214      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2215      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB);
2216  
2217      /* add new item if kdump-lzo is available */
2218  #ifdef CONFIG_LZO
2219      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2220      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO);
2221  #endif
2222  
2223      /* add new item if kdump-snappy is available */
2224  #ifdef CONFIG_SNAPPY
2225      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2226      QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY);
2227  #endif
2228  
2229      if (win_dump_available(NULL)) {
2230          QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2231      }
2232  
2233      return cap;
2234  }
2235