xref: /openbmc/qemu/docs/system/riscv/virt.rst (revision b278b60d)
1'virt' Generic Virtual Platform (``virt``)
2==========================================
3
4The ``virt`` board is a platform which does not correspond to any real hardware;
5it is designed for use in virtual machines. It is the recommended board type
6if you simply want to run a guest such as Linux and do not care about
7reproducing the idiosyncrasies and limitations of a particular bit of
8real-world hardware.
9
10Supported devices
11-----------------
12
13The ``virt`` machine supports the following devices:
14
15* Up to 512 generic RV32GC/RV64GC cores, with optional extensions
16* Core Local Interruptor (CLINT)
17* Platform-Level Interrupt Controller (PLIC)
18* CFI parallel NOR flash memory
19* 1 NS16550 compatible UART
20* 1 Google Goldfish RTC
21* 1 SiFive Test device
22* 8 virtio-mmio transport devices
23* 1 generic PCIe host bridge
24* The fw_cfg device that allows a guest to obtain data from QEMU
25
26The hypervisor extension has been enabled for the default CPU, so virtual
27machines with hypervisor extension can simply be used without explicitly
28declaring.
29
30Hardware configuration information
31----------------------------------
32
33The ``virt`` machine automatically generates a device tree blob ("dtb")
34which it passes to the guest, if there is no ``-dtb`` option. This provides
35information about the addresses, interrupt lines and other configuration of
36the various devices in the system. Guest software should discover the devices
37that are present in the generated DTB.
38
39If users want to provide their own DTB, they can use the ``-dtb`` option.
40These DTBs should have the following requirements:
41
42* The number of subnodes of the /cpus node should match QEMU's ``-smp`` option
43* The /memory reg size should match QEMU’s selected ram_size via ``-m``
44* Should contain a node for the CLINT device with a compatible string
45  "riscv,clint0" if using with OpenSBI BIOS images
46
47Boot options
48------------
49
50The ``virt`` machine can start using the standard -kernel functionality
51for loading a Linux kernel, a VxWorks kernel, an S-mode U-Boot bootloader
52with the default OpenSBI firmware image as the -bios. It also supports
53the recommended RISC-V bootflow: U-Boot SPL (M-mode) loads OpenSBI fw_dynamic
54firmware and U-Boot proper (S-mode), using the standard -bios functionality.
55
56Using flash devices
57-------------------
58
59By default, the first flash device (pflash0) is expected to contain
60S-mode firmware code. It can be configured as read-only, with the
61second flash device (pflash1) available to store configuration data.
62
63For example, booting edk2 looks like
64
65.. code-block:: bash
66
67  $ qemu-system-riscv64 \
68     -blockdev node-name=pflash0,driver=file,read-only=on,filename=<edk2_code> \
69     -blockdev node-name=pflash1,driver=file,filename=<edk2_vars> \
70     -M virt,pflash0=pflash0,pflash1=pflash1 \
71     ... other args ....
72
73For TCG guests only, it is also possible to boot M-mode firmware from
74the first flash device (pflash0) by additionally passing ``-bios
75none``, as in
76
77.. code-block:: bash
78
79  $ qemu-system-riscv64 \
80     -bios none \
81     -blockdev node-name=pflash0,driver=file,read-only=on,filename=<m_mode_code> \
82     -M virt,pflash0=pflash0 \
83     ... other args ....
84
85Firmware images used for pflash must be exactly 32 MiB in size.
86
87riscv-iommu support
88-------------------
89
90The board has support for the riscv-iommu-pci device by using the following
91command line:
92
93.. code-block:: bash
94
95  $ qemu-system-riscv64 -M virt -device riscv-iommu-pci (...)
96
97Refer to :ref:`riscv-iommu` for more information on how the RISC-V IOMMU support
98works.
99
100Machine-specific options
101------------------------
102
103The following machine-specific options are supported:
104
105- aclint=[on|off]
106
107  When this option is "on", ACLINT devices will be emulated instead of
108  SiFive CLINT. When not specified, this option is assumed to be "off".
109  This option is restricted to the TCG accelerator.
110
111- acpi=[on|off|auto]
112
113  When this option is "on" (which is the default), ACPI tables are generated and
114  exposed as firmware tables etc/acpi/rsdp and etc/acpi/tables.
115
116- aia=[none|aplic|aplic-imsic]
117
118  This option allows selecting interrupt controller defined by the AIA
119  (advanced interrupt architecture) specification. The "aia=aplic" selects
120  APLIC (advanced platform level interrupt controller) to handle wired
121  interrupts whereas the "aia=aplic-imsic" selects APLIC and IMSIC (incoming
122  message signaled interrupt controller) to handle both wired interrupts and
123  MSIs. When not specified, this option is assumed to be "none" which selects
124  SiFive PLIC to handle wired interrupts.
125
126- aia-guests=nnn
127
128  The number of per-HART VS-level AIA IMSIC pages to be emulated for a guest
129  having AIA IMSIC (i.e. "aia=aplic-imsic" selected). When not specified,
130  the default number of per-HART VS-level AIA IMSIC pages is 0.
131
132Running Linux kernel
133--------------------
134
135Linux mainline v5.12 release is tested at the time of writing. To build a
136Linux mainline kernel that can be booted by the ``virt`` machine in
13764-bit mode, simply configure the kernel using the defconfig configuration:
138
139.. code-block:: bash
140
141  $ export ARCH=riscv
142  $ export CROSS_COMPILE=riscv64-linux-
143  $ make defconfig
144  $ make
145
146To boot the newly built Linux kernel in QEMU with the ``virt`` machine:
147
148.. code-block:: bash
149
150  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
151      -display none -serial stdio \
152      -kernel arch/riscv/boot/Image \
153      -initrd /path/to/rootfs.cpio \
154      -append "root=/dev/ram"
155
156To build a Linux mainline kernel that can be booted by the ``virt`` machine
157in 32-bit mode, use the rv32_defconfig configuration. A patch is required to
158fix the 32-bit boot issue for Linux kernel v5.12.
159
160.. code-block:: bash
161
162  $ export ARCH=riscv
163  $ export CROSS_COMPILE=riscv64-linux-
164  $ curl https://patchwork.kernel.org/project/linux-riscv/patch/20210627135117.28641-1-bmeng.cn@gmail.com/mbox/ > riscv.patch
165  $ git am riscv.patch
166  $ make rv32_defconfig
167  $ make
168
169Replace ``qemu-system-riscv64`` with ``qemu-system-riscv32`` in the command
170line above to boot the 32-bit Linux kernel. A rootfs image containing 32-bit
171applications shall be used in order for kernel to boot to user space.
172
173Running U-Boot
174--------------
175
176U-Boot mainline v2021.04 release is tested at the time of writing. To build an
177S-mode U-Boot bootloader that can be booted by the ``virt`` machine, use
178the qemu-riscv64_smode_defconfig with similar commands as described above for Linux:
179
180.. code-block:: bash
181
182  $ export CROSS_COMPILE=riscv64-linux-
183  $ make qemu-riscv64_smode_defconfig
184
185Boot the 64-bit U-Boot S-mode image directly:
186
187.. code-block:: bash
188
189  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
190      -display none -serial stdio \
191      -kernel /path/to/u-boot.bin
192
193To test booting U-Boot SPL which in M-mode, which in turn loads a FIT image
194that bundles OpenSBI fw_dynamic firmware and U-Boot proper (S-mode) together,
195build the U-Boot images using riscv64_spl_defconfig:
196
197.. code-block:: bash
198
199  $ export CROSS_COMPILE=riscv64-linux-
200  $ export OPENSBI=/path/to/opensbi-riscv64-generic-fw_dynamic.bin
201  $ make qemu-riscv64_spl_defconfig
202
203The minimal QEMU commands to run U-Boot SPL are:
204
205.. code-block:: bash
206
207  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
208      -display none -serial stdio \
209      -bios /path/to/u-boot-spl \
210      -device loader,file=/path/to/u-boot.itb,addr=0x80200000
211
212To test 32-bit U-Boot images, switch to use qemu-riscv32_smode_defconfig and
213riscv32_spl_defconfig builds, and replace ``qemu-system-riscv64`` with
214``qemu-system-riscv32`` in the command lines above to boot the 32-bit U-Boot.
215
216Enabling TPM
217------------
218
219A TPM device can be connected to the virt board by following the steps below.
220
221First launch the TPM emulator:
222
223.. code-block:: bash
224
225  $ swtpm socket --tpm2 -t -d --tpmstate dir=/tmp/tpm \
226        --ctrl type=unixio,path=swtpm-sock
227
228Then launch QEMU with some additional arguments to link a TPM device to the backend:
229
230.. code-block:: bash
231
232  $ qemu-system-riscv64 \
233    ... other args .... \
234    -chardev socket,id=chrtpm,path=swtpm-sock \
235    -tpmdev emulator,id=tpm0,chardev=chrtpm \
236    -device tpm-tis-device,tpmdev=tpm0
237
238The TPM device can be seen in the memory tree and the generated device
239tree and should be accessible from the guest software.
240