xref: /openbmc/qemu/docs/system/riscv/virt.rst (revision 2b74dd918007d91f5fee94ad0034b5e7a30ed777)
1'virt' Generic Virtual Platform (``virt``)
2==========================================
3
4The ``virt`` board is a platform which does not correspond to any real hardware;
5it is designed for use in virtual machines. It is the recommended board type
6if you simply want to run a guest such as Linux and do not care about
7reproducing the idiosyncrasies and limitations of a particular bit of
8real-world hardware.
9
10Supported devices
11-----------------
12
13The ``virt`` machine supports the following devices:
14
15* Up to 512 generic RV32GC/RV64GC cores, with optional extensions
16* Core Local Interruptor (CLINT)
17* Platform-Level Interrupt Controller (PLIC)
18* CFI parallel NOR flash memory
19* 1 NS16550 compatible UART
20* 1 Google Goldfish RTC
21* 1 SiFive Test device
22* 8 virtio-mmio transport devices
23* 1 generic PCIe host bridge
24* The fw_cfg device that allows a guest to obtain data from QEMU
25
26The hypervisor extension has been enabled for the default CPU, so virtual
27machines with hypervisor extension can simply be used without explicitly
28declaring.
29
30Hardware configuration information
31----------------------------------
32
33The ``virt`` machine automatically generates a device tree blob ("dtb")
34which it passes to the guest, if there is no ``-dtb`` option. This provides
35information about the addresses, interrupt lines and other configuration of
36the various devices in the system. Guest software should discover the devices
37that are present in the generated DTB.
38
39If users want to provide their own DTB, they can use the ``-dtb`` option.
40These DTBs should have the following requirements:
41
42* The number of subnodes of the /cpus node should match QEMU's ``-smp`` option
43* The /memory reg size should match QEMU’s selected ram_size via ``-m``
44* Should contain a node for the CLINT device with a compatible string
45  "riscv,clint0" if using with OpenSBI BIOS images
46
47Boot options
48------------
49
50The ``virt`` machine can start using the standard -kernel functionality
51for loading a Linux kernel, a VxWorks kernel, an S-mode U-Boot bootloader
52with the default OpenSBI firmware image as the -bios. It also supports
53the recommended RISC-V bootflow: U-Boot SPL (M-mode) loads OpenSBI fw_dynamic
54firmware and U-Boot proper (S-mode), using the standard -bios functionality.
55
56Using flash devices
57-------------------
58
59By default, the first flash device (pflash0) is expected to contain
60S-mode firmware code. It can be configured as read-only, with the
61second flash device (pflash1) available to store configuration data.
62
63For example, booting edk2 looks like
64
65.. code-block:: bash
66
67  $ qemu-system-riscv64 \
68     -blockdev node-name=pflash0,driver=file,read-only=on,filename=<edk2_code> \
69     -blockdev node-name=pflash1,driver=file,filename=<edk2_vars> \
70     -M virt,pflash0=pflash0,pflash1=pflash1 \
71     ... other args ....
72
73For TCG guests only, it is also possible to boot M-mode firmware from
74the first flash device (pflash0) by additionally passing ``-bios
75none``, as in
76
77.. code-block:: bash
78
79  $ qemu-system-riscv64 \
80     -bios none \
81     -blockdev node-name=pflash0,driver=file,read-only=on,filename=<m_mode_code> \
82     -M virt,pflash0=pflash0 \
83     ... other args ....
84
85Firmware images used for pflash must be exactly 32 MiB in size.
86
87Machine-specific options
88------------------------
89
90The following machine-specific options are supported:
91
92- aclint=[on|off]
93
94  When this option is "on", ACLINT devices will be emulated instead of
95  SiFive CLINT. When not specified, this option is assumed to be "off".
96  This option is restricted to the TCG accelerator.
97
98- acpi=[on|off|auto]
99
100  When this option is "on" (which is the default), ACPI tables are generated and
101  exposed as firmware tables etc/acpi/rsdp and etc/acpi/tables.
102
103- aia=[none|aplic|aplic-imsic]
104
105  This option allows selecting interrupt controller defined by the AIA
106  (advanced interrupt architecture) specification. The "aia=aplic" selects
107  APLIC (advanced platform level interrupt controller) to handle wired
108  interrupts whereas the "aia=aplic-imsic" selects APLIC and IMSIC (incoming
109  message signaled interrupt controller) to handle both wired interrupts and
110  MSIs. When not specified, this option is assumed to be "none" which selects
111  SiFive PLIC to handle wired interrupts.
112
113- aia-guests=nnn
114
115  The number of per-HART VS-level AIA IMSIC pages to be emulated for a guest
116  having AIA IMSIC (i.e. "aia=aplic-imsic" selected). When not specified,
117  the default number of per-HART VS-level AIA IMSIC pages is 0.
118
119Running Linux kernel
120--------------------
121
122Linux mainline v5.12 release is tested at the time of writing. To build a
123Linux mainline kernel that can be booted by the ``virt`` machine in
12464-bit mode, simply configure the kernel using the defconfig configuration:
125
126.. code-block:: bash
127
128  $ export ARCH=riscv
129  $ export CROSS_COMPILE=riscv64-linux-
130  $ make defconfig
131  $ make
132
133To boot the newly built Linux kernel in QEMU with the ``virt`` machine:
134
135.. code-block:: bash
136
137  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
138      -display none -serial stdio \
139      -kernel arch/riscv/boot/Image \
140      -initrd /path/to/rootfs.cpio \
141      -append "root=/dev/ram"
142
143To build a Linux mainline kernel that can be booted by the ``virt`` machine
144in 32-bit mode, use the rv32_defconfig configuration. A patch is required to
145fix the 32-bit boot issue for Linux kernel v5.12.
146
147.. code-block:: bash
148
149  $ export ARCH=riscv
150  $ export CROSS_COMPILE=riscv64-linux-
151  $ curl https://patchwork.kernel.org/project/linux-riscv/patch/20210627135117.28641-1-bmeng.cn@gmail.com/mbox/ > riscv.patch
152  $ git am riscv.patch
153  $ make rv32_defconfig
154  $ make
155
156Replace ``qemu-system-riscv64`` with ``qemu-system-riscv32`` in the command
157line above to boot the 32-bit Linux kernel. A rootfs image containing 32-bit
158applications shall be used in order for kernel to boot to user space.
159
160Running U-Boot
161--------------
162
163U-Boot mainline v2021.04 release is tested at the time of writing. To build an
164S-mode U-Boot bootloader that can be booted by the ``virt`` machine, use
165the qemu-riscv64_smode_defconfig with similar commands as described above for Linux:
166
167.. code-block:: bash
168
169  $ export CROSS_COMPILE=riscv64-linux-
170  $ make qemu-riscv64_smode_defconfig
171
172Boot the 64-bit U-Boot S-mode image directly:
173
174.. code-block:: bash
175
176  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
177      -display none -serial stdio \
178      -kernel /path/to/u-boot.bin
179
180To test booting U-Boot SPL which in M-mode, which in turn loads a FIT image
181that bundles OpenSBI fw_dynamic firmware and U-Boot proper (S-mode) together,
182build the U-Boot images using riscv64_spl_defconfig:
183
184.. code-block:: bash
185
186  $ export CROSS_COMPILE=riscv64-linux-
187  $ export OPENSBI=/path/to/opensbi-riscv64-generic-fw_dynamic.bin
188  $ make qemu-riscv64_spl_defconfig
189
190The minimal QEMU commands to run U-Boot SPL are:
191
192.. code-block:: bash
193
194  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
195      -display none -serial stdio \
196      -bios /path/to/u-boot-spl \
197      -device loader,file=/path/to/u-boot.itb,addr=0x80200000
198
199To test 32-bit U-Boot images, switch to use qemu-riscv32_smode_defconfig and
200riscv32_spl_defconfig builds, and replace ``qemu-system-riscv64`` with
201``qemu-system-riscv32`` in the command lines above to boot the 32-bit U-Boot.
202
203Enabling TPM
204------------
205
206A TPM device can be connected to the virt board by following the steps below.
207
208First launch the TPM emulator:
209
210.. code-block:: bash
211
212  $ swtpm socket --tpm2 -t -d --tpmstate dir=/tmp/tpm \
213        --ctrl type=unixio,path=swtpm-sock
214
215Then launch QEMU with some additional arguments to link a TPM device to the backend:
216
217.. code-block:: bash
218
219  $ qemu-system-riscv64 \
220    ... other args .... \
221    -chardev socket,id=chrtpm,path=swtpm-sock \
222    -tpmdev emulator,id=tpm0,chardev=chrtpm \
223    -device tpm-tis-device,tpmdev=tpm0
224
225The TPM device can be seen in the memory tree and the generated device
226tree and should be accessible from the guest software.
227