xref: /openbmc/qemu/docs/system/riscv/virt.rst (revision 1d76437b45ab9982307b95d325d627f7b6f06088)
1'virt' Generic Virtual Platform (``virt``)
2==========================================
3
4The ``virt`` board is a platform which does not correspond to any real hardware;
5it is designed for use in virtual machines. It is the recommended board type
6if you simply want to run a guest such as Linux and do not care about
7reproducing the idiosyncrasies and limitations of a particular bit of
8real-world hardware.
9
10Supported devices
11-----------------
12
13The ``virt`` machine supports the following devices:
14
15* Up to 8 generic RV32GC/RV64GC cores, with optional extensions
16* Core Local Interruptor (CLINT)
17* Platform-Level Interrupt Controller (PLIC)
18* CFI parallel NOR flash memory
19* 1 NS16550 compatible UART
20* 1 Google Goldfish RTC
21* 1 SiFive Test device
22* 8 virtio-mmio transport devices
23* 1 generic PCIe host bridge
24* The fw_cfg device that allows a guest to obtain data from QEMU
25
26Note that the default CPU is a generic RV32GC/RV64GC. Optional extensions
27can be enabled via command line parameters, e.g.: ``-cpu rv64,x-h=true``
28enables the hypervisor extension for RV64.
29
30Hardware configuration information
31----------------------------------
32
33The ``virt`` machine automatically generates a device tree blob ("dtb")
34which it passes to the guest, if there is no ``-dtb`` option. This provides
35information about the addresses, interrupt lines and other configuration of
36the various devices in the system. Guest software should discover the devices
37that are present in the generated DTB.
38
39If users want to provide their own DTB, they can use the ``-dtb`` option.
40These DTBs should have the following requirements:
41
42* The number of subnodes of the /cpus node should match QEMU's ``-smp`` option
43* The /memory reg size should match QEMU’s selected ram_size via ``-m``
44* Should contain a node for the CLINT device with a compatible string
45  "riscv,clint0" if using with OpenSBI BIOS images
46
47Boot options
48------------
49
50The ``virt`` machine can start using the standard -kernel functionality
51for loading a Linux kernel, a VxWorks kernel, an S-mode U-Boot bootloader
52with the default OpenSBI firmware image as the -bios. It also supports
53the recommended RISC-V bootflow: U-Boot SPL (M-mode) loads OpenSBI fw_dynamic
54firmware and U-Boot proper (S-mode), using the standard -bios functionality.
55
56Running Linux kernel
57--------------------
58
59Linux mainline v5.12 release is tested at the time of writing. To build a
60Linux mainline kernel that can be booted by the ``virt`` machine in
6164-bit mode, simply configure the kernel using the defconfig configuration:
62
63.. code-block:: bash
64
65  $ export ARCH=riscv
66  $ export CROSS_COMPILE=riscv64-linux-
67  $ make defconfig
68  $ make
69
70To boot the newly built Linux kernel in QEMU with the ``virt`` machine:
71
72.. code-block:: bash
73
74  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
75      -display none -serial stdio \
76      -kernel arch/riscv/boot/Image \
77      -initrd /path/to/rootfs.cpio \
78      -append "root=/dev/ram"
79
80To build a Linux mainline kernel that can be booted by the ``virt`` machine
81in 32-bit mode, use the rv32_defconfig configuration. A patch is required to
82fix the 32-bit boot issue for Linux kernel v5.12.
83
84.. code-block:: bash
85
86  $ export ARCH=riscv
87  $ export CROSS_COMPILE=riscv64-linux-
88  $ curl https://patchwork.kernel.org/project/linux-riscv/patch/20210627135117.28641-1-bmeng.cn@gmail.com/mbox/ > riscv.patch
89  $ git am riscv.patch
90  $ make rv32_defconfig
91  $ make
92
93Replace ``qemu-system-riscv64`` with ``qemu-system-riscv32`` in the command
94line above to boot the 32-bit Linux kernel. A rootfs image containing 32-bit
95applications shall be used in order for kernel to boot to user space.
96
97Running U-Boot
98--------------
99
100U-Boot mainline v2021.04 release is tested at the time of writing. To build an
101S-mode U-Boot bootloader that can be booted by the ``virt`` machine, use
102the qemu-riscv64_smode_defconfig with similar commands as described above for Linux:
103
104.. code-block:: bash
105
106  $ export CROSS_COMPILE=riscv64-linux-
107  $ make qemu-riscv64_smode_defconfig
108
109Boot the 64-bit U-Boot S-mode image directly:
110
111.. code-block:: bash
112
113  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
114      -display none -serial stdio \
115      -kernel /path/to/u-boot.bin
116
117To test booting U-Boot SPL which in M-mode, which in turn loads a FIT image
118that bundles OpenSBI fw_dynamic firmware and U-Boot proper (S-mode) together,
119build the U-Boot images using riscv64_spl_defconfig:
120
121.. code-block:: bash
122
123  $ export CROSS_COMPILE=riscv64-linux-
124  $ export OPENSBI=/path/to/opensbi-riscv64-generic-fw_dynamic.bin
125  $ make qemu-riscv64_spl_defconfig
126
127The minimal QEMU commands to run U-Boot SPL are:
128
129.. code-block:: bash
130
131  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
132      -display none -serial stdio \
133      -bios /path/to/u-boot-spl \
134      -device loader,file=/path/to/u-boot.itb,addr=0x80200000
135
136To test 32-bit U-Boot images, switch to use qemu-riscv32_smode_defconfig and
137riscv32_spl_defconfig builds, and replace ``qemu-system-riscv64`` with
138``qemu-system-riscv32`` in the command lines above to boot the 32-bit U-Boot.
139