1Microchip PolarFire SoC Icicle Kit (``microchip-icicle-kit``) 2============================================================= 3 4Microchip PolarFire SoC Icicle Kit integrates a PolarFire SoC, with one 5SiFive's E51 plus four U54 cores and many on-chip peripherals and an FPGA. 6 7For more details about Microchip PolarFire SoC, please see: 8https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga 9 10The Icicle Kit board information can be found here: 11https://www.microsemi.com/existing-parts/parts/152514 12 13Supported devices 14----------------- 15 16The ``microchip-icicle-kit`` machine supports the following devices: 17 18* 1 E51 core 19* 4 U54 cores 20* Core Level Interruptor (CLINT) 21* Platform-Level Interrupt Controller (PLIC) 22* L2 Loosely Integrated Memory (L2-LIM) 23* DDR memory controller 24* 5 MMUARTs 25* 1 DMA controller 26* 2 GEM Ethernet controllers 27* 1 SDHC storage controller 28 29Boot options 30------------ 31 32The ``microchip-icicle-kit`` machine can start using the standard -bios 33functionality for loading its BIOS image, aka Hart Software Services (HSS_). 34HSS loads the second stage bootloader U-Boot from an SD card. Then a kernel 35can be loaded from U-Boot. It also supports direct kernel booting via the 36-kernel option along with the device tree blob via -dtb. When direct kernel 37boot is used, the OpenSBI fw_dynamic BIOS image is used to boot a payload 38like U-Boot or OS kernel directly. 39 40The user provided DTB should have the following requirements: 41 42* The /cpus node should contain at least one subnode for E51 and the number 43 of subnodes should match QEMU's ``-smp`` option 44* The /memory reg size should match QEMU’s selected ram_size via ``-m`` 45* Should contain a node for the CLINT device with a compatible string 46 "riscv,clint0" 47 48QEMU follows below truth table to select which payload to execute: 49 50===== ========== ========== ======= 51-bios -kernel -dtb payload 52===== ========== ========== ======= 53 N N don't care HSS 54 Y don't care don't care HSS 55 N Y Y kernel 56===== ========== ========== ======= 57 58The memory is set to 1537 MiB by default which is the minimum required high 59memory size by HSS. A sanity check on ram size is performed in the machine 60init routine to prompt user to increase the RAM size to > 1537 MiB when less 61than 1537 MiB ram is detected. 62 63Running HSS 64----------- 65 66HSS 2020.12 release is tested at the time of writing. To build an HSS image 67that can be booted by the ``microchip-icicle-kit`` machine, type the following 68in the HSS source tree: 69 70.. code-block:: bash 71 72 $ export CROSS_COMPILE=riscv64-linux- 73 $ cp boards/mpfs-icicle-kit-es/def_config .config 74 $ make BOARD=mpfs-icicle-kit-es 75 76Download the official SD card image released by Microchip and prepare it for 77QEMU usage: 78 79.. code-block:: bash 80 81 $ wget ftp://ftpsoc.microsemi.com/outgoing/core-image-minimal-dev-icicle-kit-es-sd-20201009141623.rootfs.wic.gz 82 $ gunzip core-image-minimal-dev-icicle-kit-es-sd-20201009141623.rootfs.wic.gz 83 $ qemu-img resize core-image-minimal-dev-icicle-kit-es-sd-20201009141623.rootfs.wic 4G 84 85Then we can boot the machine by: 86 87.. code-block:: bash 88 89 $ qemu-system-riscv64 -M microchip-icicle-kit -smp 5 \ 90 -bios path/to/hss.bin -sd path/to/sdcard.img \ 91 -nic user,model=cadence_gem \ 92 -nic tap,ifname=tap,model=cadence_gem,script=no \ 93 -display none -serial stdio \ 94 -chardev socket,id=serial1,path=serial1.sock,server=on,wait=on \ 95 -serial chardev:serial1 96 97With above command line, current terminal session will be used for the first 98serial port. Open another terminal window, and use `minicom` to connect the 99second serial port. 100 101.. code-block:: bash 102 103 $ minicom -D unix\#serial1.sock 104 105HSS output is on the first serial port (stdio) and U-Boot outputs on the 106second serial port. U-Boot will automatically load the Linux kernel from 107the SD card image. 108 109Direct Kernel Boot 110------------------ 111 112Sometimes we just want to test booting a new kernel, and transforming the 113kernel image to the format required by the HSS bootflow is tedious. We can 114use '-kernel' for direct kernel booting just like other RISC-V machines do. 115 116In this mode, the OpenSBI fw_dynamic BIOS image for 'generic' platform is 117used to boot an S-mode payload like U-Boot or OS kernel directly. 118 119For example, the following commands show building a U-Boot image from U-Boot 120mainline v2021.07 for the Microchip Icicle Kit board: 121 122.. code-block:: bash 123 124 $ export CROSS_COMPILE=riscv64-linux- 125 $ make microchip_mpfs_icicle_defconfig 126 127Then we can boot the machine by: 128 129.. code-block:: bash 130 131 $ qemu-system-riscv64 -M microchip-icicle-kit -smp 5 -m 2G \ 132 -sd path/to/sdcard.img \ 133 -nic user,model=cadence_gem \ 134 -nic tap,ifname=tap,model=cadence_gem,script=no \ 135 -display none -serial stdio \ 136 -kernel path/to/u-boot/build/dir/u-boot.bin \ 137 -dtb path/to/u-boot/build/dir/u-boot.dtb 138 139CAVEATS: 140 141* Check the "stdout-path" property in the /chosen node in the DTB to determine 142 which serial port is used for the serial console, e.g.: if the console is set 143 to the second serial port, change to use "-serial null -serial stdio". 144* The default U-Boot configuration uses CONFIG_OF_SEPARATE hence the ELF image 145 ``u-boot`` cannot be passed to "-kernel" as it does not contain the DTB hence 146 ``u-boot.bin`` has to be used which does contain one. To use the ELF image, 147 we need to change to CONFIG_OF_EMBED or CONFIG_OF_PRIOR_STAGE. 148 149.. _HSS: https://github.com/polarfire-soc/hart-software-services 150