xref: /openbmc/qemu/docs/specs/ppc-spapr-xive.rst (revision ffe98631)
1XIVE for sPAPR (pseries machines)
2=================================
3
4The POWER9 processor comes with a new interrupt controller
5architecture, called XIVE as "eXternal Interrupt Virtualization
6Engine". It supports a larger number of interrupt sources and offers
7virtualization features which enables the HW to deliver interrupts
8directly to virtual processors without hypervisor assistance.
9
10A QEMU ``pseries`` machine (which is PAPR compliant) using POWER9
11processors can run under two interrupt modes:
12
13- *Legacy Compatibility Mode*
14
15  the hypervisor provides identical interfaces and similar
16  functionality to PAPR+ Version 2.7.  This is the default mode
17
18  It is also referred as *XICS* in QEMU.
19
20- *XIVE native exploitation mode*
21
22  the hypervisor provides new interfaces to manage the XIVE control
23  structures, and provides direct control for interrupt management
24  through MMIO pages.
25
26Which interrupt modes can be used by the machine is negotiated with
27the guest O/S during the Client Architecture Support negotiation
28sequence. The two modes are mutually exclusive.
29
30Both interrupt mode share the same IRQ number space. See below for the
31layout.
32
33CAS Negotiation
34---------------
35
36QEMU advertises the supported interrupt modes in the device tree
37property ``ibm,arch-vec-5-platform-support`` in byte 23 and the OS
38Selection for XIVE is indicated in the ``ibm,architecture-vec-5``
39property byte 23.
40
41The interrupt modes supported by the machine depend on the CPU type
42(POWER9 is required for XIVE) but also on the machine property
43``ic-mode`` which can be set on the command line. It can take the
44following values: ``xics``, ``xive``, and ``dual`` which is the
45default mode. ``dual`` means that both modes XICS **and** XIVE are
46supported and if the guest OS supports XIVE, this mode will be
47selected.
48
49The chosen interrupt mode is activated after a reconfiguration done
50in a machine reset.
51
52KVM negotiation
53---------------
54
55When the guest starts under KVM, the capabilities of the host kernel
56and QEMU are also negotiated. Depending on the version of the host
57kernel, KVM will advertise the XIVE capability to QEMU or not.
58
59Nevertheless, the available interrupt modes in the machine should not
60depend on the XIVE KVM capability of the host. On older kernels
61without XIVE KVM support, QEMU will use the emulated XIVE device as a
62fallback and on newer kernels (>=5.2), the KVM XIVE device.
63
64XIVE native exploitation mode is not supported for KVM nested guests,
65VMs running under a L1 hypervisor (KVM on pSeries). In that case, the
66hypervisor will not advertise the KVM capability and QEMU will use the
67emulated XIVE device, same as for older versions of KVM.
68
69As a final refinement, the user can also switch the use of the KVM
70device with the machine option ``kernel_irqchip``.
71
72
73XIVE support in KVM
74~~~~~~~~~~~~~~~~~~~
75
76For guest OSes supporting XIVE, the resulting interrupt modes on host
77kernels with XIVE KVM support are the following:
78
79==============  =============  =============  ================
80ic-mode                            kernel_irqchip
81--------------  ----------------------------------------------
82/               allowed        off            on
83                (default)
84==============  =============  =============  ================
85dual (default)  XIVE KVM       XIVE emul.     XIVE KVM
86xive            XIVE KVM       XIVE emul.     XIVE KVM
87xics            XICS KVM       XICS emul.     XICS KVM
88==============  =============  =============  ================
89
90For legacy guest OSes without XIVE support, the resulting interrupt
91modes are the following:
92
93==============  =============  =============  ================
94ic-mode                            kernel_irqchip
95--------------  ----------------------------------------------
96/               allowed        off            on
97                (default)
98==============  =============  =============  ================
99dual (default)  XICS KVM       XICS emul.     XICS KVM
100xive            QEMU error(3)  QEMU error(3)  QEMU error(3)
101xics            XICS KVM       XICS emul.     XICS KVM
102==============  =============  =============  ================
103
104(3) QEMU fails at CAS with ``Guest requested unavailable interrupt
105    mode (XICS), either don't set the ic-mode machine property or try
106    ic-mode=xics or ic-mode=dual``
107
108
109No XIVE support in KVM
110~~~~~~~~~~~~~~~~~~~~~~
111
112For guest OSes supporting XIVE, the resulting interrupt modes on host
113kernels without XIVE KVM support are the following:
114
115==============  =============  =============  ================
116ic-mode                            kernel_irqchip
117--------------  ----------------------------------------------
118/               allowed        off            on
119                (default)
120==============  =============  =============  ================
121dual (default)  XIVE emul.(1)  XIVE emul.     QEMU error (2)
122xive            XIVE emul.(1)  XIVE emul.     QEMU error (2)
123xics            XICS KVM       XICS emul.     XICS KVM
124==============  =============  =============  ================
125
126
127(1) QEMU warns with ``warning: kernel_irqchip requested but unavailable:
128    IRQ_XIVE capability must be present for KVM``
129    In some cases (old host kernels or KVM nested guests), one may hit a
130    QEMU/KVM incompatibility due to device destruction in reset. QEMU fails
131    with ``KVM is incompatible with ic-mode=dual,kernel-irqchip=on``
132(2) QEMU fails with ``kernel_irqchip requested but unavailable:
133    IRQ_XIVE capability must be present for KVM``
134
135
136For legacy guest OSes without XIVE support, the resulting interrupt
137modes are the following:
138
139==============  =============  =============  ================
140ic-mode                            kernel_irqchip
141--------------  ----------------------------------------------
142/               allowed        off            on
143                (default)
144==============  =============  =============  ================
145dual (default)  QEMU error(4)  XICS emul.     QEMU error(4)
146xive            QEMU error(3)  QEMU error(3)  QEMU error(3)
147xics            XICS KVM       XICS emul.     XICS KVM
148==============  =============  =============  ================
149
150(3) QEMU fails at CAS with ``Guest requested unavailable interrupt
151    mode (XICS), either don't set the ic-mode machine property or try
152    ic-mode=xics or ic-mode=dual``
153(4) QEMU/KVM incompatibility due to device destruction in reset. QEMU fails
154    with ``KVM is incompatible with ic-mode=dual,kernel-irqchip=on``
155
156
157XIVE Device tree properties
158---------------------------
159
160The properties for the PAPR interrupt controller node when the *XIVE
161native exploitation mode* is selected should contain:
162
163- ``device_type``
164
165  value should be "power-ivpe".
166
167- ``compatible``
168
169  value should be "ibm,power-ivpe".
170
171- ``reg``
172
173  contains the base address and size of the thread interrupt
174  managnement areas (TIMA), for the User level and for the Guest OS
175  level. Only the Guest OS level is taken into account today.
176
177- ``ibm,xive-eq-sizes``
178
179  the size of the event queues. One cell per size supported, contains
180  log2 of size, in ascending order.
181
182- ``ibm,xive-lisn-ranges``
183
184  the IRQ interrupt number ranges assigned to the guest for the IPIs.
185
186The root node also exports :
187
188- ``ibm,plat-res-int-priorities``
189
190  contains a list of priorities that the hypervisor has reserved for
191  its own use.
192
193IRQ number space
194----------------
195
196IRQ Number space of the ``pseries`` machine is 8K wide and is the same
197for both interrupt mode. The different ranges are defined as follow :
198
199- ``0x0000 .. 0x0FFF`` 4K CPU IPIs (only used under XIVE)
200- ``0x1000 .. 0x1000`` 1 EPOW
201- ``0x1001 .. 0x1001`` 1 HOTPLUG
202- ``0x1002 .. 0x10FF`` unused
203- ``0x1100 .. 0x11FF`` 256 VIO devices
204- ``0x1200 .. 0x127F`` 32x4 LSIs for PHB devices
205- ``0x1280 .. 0x12FF`` unused
206- ``0x1300 .. 0x1FFF`` PHB MSIs (dynamically allocated)
207
208Monitoring XIVE
209---------------
210
211The state of the XIVE interrupt controller can be queried through the
212monitor commands ``info pic``. The output comes in two parts.
213
214First, the state of the thread interrupt context registers is dumped
215for each CPU :
216
217::
218
219   (qemu) info pic
220   CPU[0000]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR  W2
221   CPU[0000]: USER    00   00  00    00   00  00  00   00  00000000
222   CPU[0000]:   OS    00   ff  00    00   ff  00  ff   ff  80000400
223   CPU[0000]: POOL    00   00  00    00   00  00  00   00  00000000
224   CPU[0000]: PHYS    00   00  00    00   00  00  00   ff  00000000
225   ...
226
227In the case of a ``pseries`` machine, QEMU acts as the hypervisor and only
228the O/S and USER register rings make sense. ``W2`` contains the vCPU CAM
229line which is set to the VP identifier.
230
231Then comes the routing information which aggregates the EAS and the
232END configuration:
233
234::
235
236   ...
237   LISN         PQ    EISN     CPU/PRIO EQ
238   00000000 MSI --    00000010   0/6    380/16384 @1fe3e0000 ^1 [ 80000010 ... ]
239   00000001 MSI --    00000010   1/6    305/16384 @1fc230000 ^1 [ 80000010 ... ]
240   00000002 MSI --    00000010   2/6    220/16384 @1fc2f0000 ^1 [ 80000010 ... ]
241   00000003 MSI --    00000010   3/6    201/16384 @1fc390000 ^1 [ 80000010 ... ]
242   00000004 MSI -Q  M 00000000
243   00000005 MSI -Q  M 00000000
244   00000006 MSI -Q  M 00000000
245   00000007 MSI -Q  M 00000000
246   00001000 MSI --    00000012   0/6    380/16384 @1fe3e0000 ^1 [ 80000010 ... ]
247   00001001 MSI --    00000013   0/6    380/16384 @1fe3e0000 ^1 [ 80000010 ... ]
248   00001100 MSI --    00000100   1/6    305/16384 @1fc230000 ^1 [ 80000010 ... ]
249   00001101 MSI -Q  M 00000000
250   00001200 LSI -Q  M 00000000
251   00001201 LSI -Q  M 00000000
252   00001202 LSI -Q  M 00000000
253   00001203 LSI -Q  M 00000000
254   00001300 MSI --    00000102   1/6    305/16384 @1fc230000 ^1 [ 80000010 ... ]
255   00001301 MSI --    00000103   2/6    220/16384 @1fc2f0000 ^1 [ 80000010 ... ]
256   00001302 MSI --    00000104   3/6    201/16384 @1fc390000 ^1 [ 80000010 ... ]
257
258The source information and configuration:
259
260- The ``LISN`` column outputs the interrupt number of the source in
261  range ``[ 0x0 ... 0x1FFF ]`` and its type : ``MSI`` or ``LSI``
262- The ``PQ`` column reflects the state of the PQ bits of the source :
263
264  - ``--`` source is ready to take events
265  - ``P-`` an event was sent and an EOI is PENDING
266  - ``PQ`` an event was QUEUED
267  - ``-Q`` source is OFF
268
269  a ``M`` indicates that source is *MASKED* at the EAS level,
270
271The targeting configuration :
272
273- The ``EISN`` column is the event data that will be queued in the event
274  queue of the O/S.
275- The ``CPU/PRIO`` column is the tuple defining the CPU number and
276  priority queue serving the source.
277- The ``EQ`` column outputs :
278
279  - the current index of the event queue/ the max number of entries
280  - the O/S event queue address
281  - the toggle bit
282  - the last entries that were pushed in the event queue.
283