xref: /openbmc/qemu/docs/devel/qom.rst (revision c79aa350)
1===========================
2The QEMU Object Model (QOM)
3===========================
4
5.. highlight:: c
6
7The QEMU Object Model provides a framework for registering user creatable
8types and instantiating objects from those types.  QOM provides the following
9features:
10
11- System for dynamically registering types
12- Support for single-inheritance of types
13- Multiple inheritance of stateless interfaces
14
15.. code-block:: c
16   :caption: Creating a minimal type
17
18   #include "qdev.h"
19
20   #define TYPE_MY_DEVICE "my-device"
21
22   // No new virtual functions: we can reuse the typedef for the
23   // superclass.
24   typedef DeviceClass MyDeviceClass;
25   typedef struct MyDevice
26   {
27       DeviceState parent;
28
29       int reg0, reg1, reg2;
30   } MyDevice;
31
32   static const TypeInfo my_device_info = {
33       .name = TYPE_MY_DEVICE,
34       .parent = TYPE_DEVICE,
35       .instance_size = sizeof(MyDevice),
36   };
37
38   static void my_device_register_types(void)
39   {
40       type_register_static(&my_device_info);
41   }
42
43   type_init(my_device_register_types)
44
45In the above example, we create a simple type that is described by #TypeInfo.
46#TypeInfo describes information about the type including what it inherits
47from, the instance and class size, and constructor/destructor hooks.
48
49Alternatively several static types could be registered using helper macro
50DEFINE_TYPES()
51
52.. code-block:: c
53
54   static const TypeInfo device_types_info[] = {
55       {
56           .name = TYPE_MY_DEVICE_A,
57           .parent = TYPE_DEVICE,
58           .instance_size = sizeof(MyDeviceA),
59       },
60       {
61           .name = TYPE_MY_DEVICE_B,
62           .parent = TYPE_DEVICE,
63           .instance_size = sizeof(MyDeviceB),
64       },
65   };
66
67   DEFINE_TYPES(device_types_info)
68
69Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
70are instantiated dynamically but there is only ever one instance for any
71given type.  The #ObjectClass typically holds a table of function pointers
72for the virtual methods implemented by this type.
73
74Using object_new(), a new #Object derivative will be instantiated.  You can
75cast an #Object to a subclass (or base-class) type using
76object_dynamic_cast().  You typically want to define macro wrappers around
77OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
78specific type:
79
80.. code-block:: c
81   :caption: Typecasting macros
82
83   #define MY_DEVICE_GET_CLASS(obj) \
84      OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
85   #define MY_DEVICE_CLASS(klass) \
86      OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
87   #define MY_DEVICE(obj) \
88      OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
89
90In case the ObjectClass implementation can be built as module a
91module_obj() line must be added to make sure qemu loads the module
92when the object is needed.
93
94.. code-block:: c
95
96   module_obj(TYPE_MY_DEVICE);
97
98Class Initialization
99====================
100
101Before an object is initialized, the class for the object must be
102initialized.  There is only one class object for all instance objects
103that is created lazily.
104
105Classes are initialized by first initializing any parent classes (if
106necessary).  After the parent class object has initialized, it will be
107copied into the current class object and any additional storage in the
108class object is zero filled.
109
110The effect of this is that classes automatically inherit any virtual
111function pointers that the parent class has already initialized.  All
112other fields will be zero filled.
113
114Once all of the parent classes have been initialized, #TypeInfo::class_init
115is called to let the class being instantiated provide default initialize for
116its virtual functions.  Here is how the above example might be modified
117to introduce an overridden virtual function:
118
119.. code-block:: c
120   :caption: Overriding a virtual function
121
122   #include "qdev.h"
123
124   void my_device_class_init(ObjectClass *klass, void *class_data)
125   {
126       DeviceClass *dc = DEVICE_CLASS(klass);
127       dc->reset = my_device_reset;
128   }
129
130   static const TypeInfo my_device_info = {
131       .name = TYPE_MY_DEVICE,
132       .parent = TYPE_DEVICE,
133       .instance_size = sizeof(MyDevice),
134       .class_init = my_device_class_init,
135   };
136
137Introducing new virtual methods requires a class to define its own
138struct and to add a .class_size member to the #TypeInfo.  Each method
139will also have a wrapper function to call it easily:
140
141.. code-block:: c
142   :caption: Defining an abstract class
143
144   #include "qdev.h"
145
146   typedef struct MyDeviceClass
147   {
148       DeviceClass parent;
149
150       void (*frobnicate) (MyDevice *obj);
151   } MyDeviceClass;
152
153   static const TypeInfo my_device_info = {
154       .name = TYPE_MY_DEVICE,
155       .parent = TYPE_DEVICE,
156       .instance_size = sizeof(MyDevice),
157       .abstract = true, // or set a default in my_device_class_init
158       .class_size = sizeof(MyDeviceClass),
159   };
160
161   void my_device_frobnicate(MyDevice *obj)
162   {
163       MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
164
165       klass->frobnicate(obj);
166   }
167
168Interfaces
169==========
170
171Interfaces allow a limited form of multiple inheritance.  Instances are
172similar to normal types except for the fact that are only defined by
173their classes and never carry any state.  As a consequence, a pointer to
174an interface instance should always be of incomplete type in order to be
175sure it cannot be dereferenced.  That is, you should define the
176'typedef struct SomethingIf SomethingIf' so that you can pass around
177``SomethingIf *si`` arguments, but not define a ``struct SomethingIf { ... }``.
178The only things you can validly do with a ``SomethingIf *`` are to pass it as
179an argument to a method on its corresponding SomethingIfClass, or to
180dynamically cast it to an object that implements the interface.
181
182Methods
183=======
184
185A *method* is a function within the namespace scope of
186a class. It usually operates on the object instance by passing it as a
187strongly-typed first argument.
188If it does not operate on an object instance, it is dubbed
189*class method*.
190
191Methods cannot be overloaded. That is, the #ObjectClass and method name
192uniquely identity the function to be called; the signature does not vary
193except for trailing varargs.
194
195Methods are always *virtual*. Overriding a method in
196#TypeInfo.class_init of a subclass leads to any user of the class obtained
197via OBJECT_GET_CLASS() accessing the overridden function.
198The original function is not automatically invoked. It is the responsibility
199of the overriding class to determine whether and when to invoke the method
200being overridden.
201
202To invoke the method being overridden, the preferred solution is to store
203the original value in the overriding class before overriding the method.
204This corresponds to ``{super,base}.method(...)`` in Java and C#
205respectively; this frees the overriding class from hardcoding its parent
206class, which someone might choose to change at some point.
207
208.. code-block:: c
209   :caption: Overriding a virtual method
210
211   typedef struct MyState MyState;
212
213   typedef void (*MyDoSomething)(MyState *obj);
214
215   typedef struct MyClass {
216       ObjectClass parent_class;
217
218       MyDoSomething do_something;
219   } MyClass;
220
221   static void my_do_something(MyState *obj)
222   {
223       // do something
224   }
225
226   static void my_class_init(ObjectClass *oc, void *data)
227   {
228       MyClass *mc = MY_CLASS(oc);
229
230       mc->do_something = my_do_something;
231   }
232
233   static const TypeInfo my_type_info = {
234       .name = TYPE_MY,
235       .parent = TYPE_OBJECT,
236       .instance_size = sizeof(MyState),
237       .class_size = sizeof(MyClass),
238       .class_init = my_class_init,
239   };
240
241   typedef struct DerivedClass {
242       MyClass parent_class;
243
244       MyDoSomething parent_do_something;
245   } DerivedClass;
246
247   static void derived_do_something(MyState *obj)
248   {
249       DerivedClass *dc = DERIVED_GET_CLASS(obj);
250
251       // do something here
252       dc->parent_do_something(obj);
253       // do something else here
254   }
255
256   static void derived_class_init(ObjectClass *oc, void *data)
257   {
258       MyClass *mc = MY_CLASS(oc);
259       DerivedClass *dc = DERIVED_CLASS(oc);
260
261       dc->parent_do_something = mc->do_something;
262       mc->do_something = derived_do_something;
263   }
264
265   static const TypeInfo derived_type_info = {
266       .name = TYPE_DERIVED,
267       .parent = TYPE_MY,
268       .class_size = sizeof(DerivedClass),
269       .class_init = derived_class_init,
270   };
271
272Alternatively, object_class_by_name() can be used to obtain the class and
273its non-overridden methods for a specific type. This would correspond to
274``MyClass::method(...)`` in C++.
275
276The first example of such a QOM method was #CPUClass.reset,
277another example is #DeviceClass.realize.
278
279Standard type declaration and definition macros
280===============================================
281
282A lot of the code outlined above follows a standard pattern and naming
283convention. To reduce the amount of boilerplate code that needs to be
284written for a new type there are two sets of macros to generate the
285common parts in a standard format.
286
287A type is declared using the OBJECT_DECLARE macro family. In types
288which do not require any virtual functions in the class, the
289OBJECT_DECLARE_SIMPLE_TYPE macro is suitable, and is commonly placed
290in the header file:
291
292.. code-block:: c
293   :caption: Declaring a simple type
294
295   OBJECT_DECLARE_SIMPLE_TYPE(MyDevice, MY_DEVICE)
296
297This is equivalent to the following:
298
299.. code-block:: c
300   :caption: Expansion from declaring a simple type
301
302   typedef struct MyDevice MyDevice;
303   typedef struct MyDeviceClass MyDeviceClass;
304
305   G_DEFINE_AUTOPTR_CLEANUP_FUNC(MyDeviceClass, object_unref)
306
307   #define MY_DEVICE_GET_CLASS(void *obj) \
308           OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
309   #define MY_DEVICE_CLASS(void *klass) \
310           OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
311   #define MY_DEVICE(void *obj)
312           OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
313
314   struct MyDeviceClass {
315       DeviceClass parent_class;
316   };
317
318The 'struct MyDevice' needs to be declared separately.
319If the type requires virtual functions to be declared in the class
320struct, then the alternative OBJECT_DECLARE_TYPE() macro can be
321used. This does the same as OBJECT_DECLARE_SIMPLE_TYPE(), but without
322the 'struct MyDeviceClass' definition.
323
324To implement the type, the OBJECT_DEFINE macro family is available.
325In the simple case the OBJECT_DEFINE_TYPE macro is suitable:
326
327.. code-block:: c
328   :caption: Defining a simple type
329
330   OBJECT_DEFINE_TYPE(MyDevice, my_device, MY_DEVICE, DEVICE)
331
332This is equivalent to the following:
333
334.. code-block:: c
335   :caption: Expansion from defining a simple type
336
337   static void my_device_finalize(Object *obj);
338   static void my_device_class_init(ObjectClass *oc, void *data);
339   static void my_device_init(Object *obj);
340
341   static const TypeInfo my_device_info = {
342       .parent = TYPE_DEVICE,
343       .name = TYPE_MY_DEVICE,
344       .instance_size = sizeof(MyDevice),
345       .instance_init = my_device_init,
346       .instance_finalize = my_device_finalize,
347       .class_size = sizeof(MyDeviceClass),
348       .class_init = my_device_class_init,
349   };
350
351   static void
352   my_device_register_types(void)
353   {
354       type_register_static(&my_device_info);
355   }
356   type_init(my_device_register_types);
357
358This is sufficient to get the type registered with the type
359system, and the three standard methods now need to be implemented
360along with any other logic required for the type.
361
362If the type needs to implement one or more interfaces, then the
363OBJECT_DEFINE_TYPE_WITH_INTERFACES() macro can be used instead.
364This accepts an array of interface type names.
365
366.. code-block:: c
367   :caption: Defining a simple type implementing interfaces
368
369   OBJECT_DEFINE_TYPE_WITH_INTERFACES(MyDevice, my_device,
370                                      MY_DEVICE, DEVICE,
371                                      { TYPE_USER_CREATABLE },
372                                      { NULL })
373
374If the type is not intended to be instantiated, then the
375OBJECT_DEFINE_ABSTRACT_TYPE() macro can be used instead:
376
377.. code-block:: c
378   :caption: Defining a simple abstract type
379
380   OBJECT_DEFINE_ABSTRACT_TYPE(MyDevice, my_device,
381                               MY_DEVICE, DEVICE)
382
383
384
385API Reference
386-------------
387
388.. kernel-doc:: include/qom/object.h
389