xref: /openbmc/qemu/docs/devel/decodetree.rst (revision f7160f32)
1========================
2Decodetree Specification
3========================
4
5A *decodetree* is built from instruction *patterns*.  A pattern may
6represent a single architectural instruction or a group of same, depending
7on what is convenient for further processing.
8
9Each pattern has both *fixedbits* and *fixedmask*, the combination of which
10describes the condition under which the pattern is matched::
11
12  (insn & fixedmask) == fixedbits
13
14Each pattern may have *fields*, which are extracted from the insn and
15passed along to the translator.  Examples of such are registers,
16immediates, and sub-opcodes.
17
18In support of patterns, one may declare *fields*, *argument sets*, and
19*formats*, each of which may be re-used to simplify further definitions.
20
21Fields
22======
23
24Syntax::
25
26  field_def     := '%' identifier ( unnamed_field )* ( !function=identifier )?
27  unnamed_field := number ':' ( 's' ) number
28
29For *unnamed_field*, the first number is the least-significant bit position
30of the field and the second number is the length of the field.  If the 's' is
31present, the field is considered signed.  If multiple ``unnamed_fields`` are
32present, they are concatenated.  In this way one can define disjoint fields.
33
34If ``!function`` is specified, the concatenated result is passed through the
35named function, taking and returning an integral value.
36
37One may use ``!function`` with zero ``unnamed_fields``.  This case is called
38a *parameter*, and the named function is only passed the ``DisasContext``
39and returns an integral value extracted from there.
40
41A field with no ``unnamed_fields`` and no ``!function`` is in error.
42
43FIXME: the fields of the structure into which this result will be stored
44is restricted to ``int``.  Which means that we cannot expand 64-bit items.
45
46Field examples:
47
48+---------------------------+---------------------------------------------+
49| Input                     | Generated code                              |
50+===========================+=============================================+
51| %disp   0:s16             | sextract(i, 0, 16)                          |
52+---------------------------+---------------------------------------------+
53| %imm9   16:6 10:3         | extract(i, 16, 6) << 3 | extract(i, 10, 3)  |
54+---------------------------+---------------------------------------------+
55| %disp12 0:s1 1:1 2:10     | sextract(i, 0, 1) << 11 |                   |
56|                           |    extract(i, 1, 1) << 10 |                 |
57|                           |    extract(i, 2, 10)                        |
58+---------------------------+---------------------------------------------+
59| %shimm8 5:s8 13:1         | expand_shimm8(sextract(i, 5, 8) << 1 |      |
60|   !function=expand_shimm8 |               extract(i, 13, 1))            |
61+---------------------------+---------------------------------------------+
62
63Argument Sets
64=============
65
66Syntax::
67
68  args_def    := '&' identifier ( args_elt )+ ( !extern )?
69  args_elt    := identifier
70
71Each *args_elt* defines an argument within the argument set.
72Each argument set will be rendered as a C structure "arg_$name"
73with each of the fields being one of the member arguments.
74
75If ``!extern`` is specified, the backing structure is assumed
76to have been already declared, typically via a second decoder.
77
78Argument sets are useful when one wants to define helper functions
79for the translator functions that can perform operations on a common
80set of arguments.  This can ensure, for instance, that the ``AND``
81pattern and the ``OR`` pattern put their operands into the same named
82structure, so that a common ``gen_logic_insn`` may be able to handle
83the operations common between the two.
84
85Argument set examples::
86
87  &reg3       ra rb rc
88  &loadstore  reg base offset
89
90
91Formats
92=======
93
94Syntax::
95
96  fmt_def      := '@' identifier ( fmt_elt )+
97  fmt_elt      := fixedbit_elt | field_elt | field_ref | args_ref
98  fixedbit_elt := [01.-]+
99  field_elt    := identifier ':' 's'? number
100  field_ref    := '%' identifier | identifier '=' '%' identifier
101  args_ref     := '&' identifier
102
103Defining a format is a handy way to avoid replicating groups of fields
104across many instruction patterns.
105
106A *fixedbit_elt* describes a contiguous sequence of bits that must
107be 1, 0, or don't care.  The difference between '.' and '-'
108is that '.' means that the bit will be covered with a field or a
109final 0 or 1 from the pattern, and '-' means that the bit is really
110ignored by the cpu and will not be specified.
111
112A *field_elt* describes a simple field only given a width; the position of
113the field is implied by its position with respect to other *fixedbit_elt*
114and *field_elt*.
115
116If any *fixedbit_elt* or *field_elt* appear, then all bits must be defined.
117Padding with a *fixedbit_elt* of all '.' is an easy way to accomplish that.
118
119A *field_ref* incorporates a field by reference.  This is the only way to
120add a complex field to a format.  A field may be renamed in the process
121via assignment to another identifier.  This is intended to allow the
122same argument set be used with disjoint named fields.
123
124A single *args_ref* may specify an argument set to use for the format.
125The set of fields in the format must be a subset of the arguments in
126the argument set.  If an argument set is not specified, one will be
127inferred from the set of fields.
128
129It is recommended, but not required, that all *field_ref* and *args_ref*
130appear at the end of the line, not interleaving with *fixedbit_elf* or
131*field_elt*.
132
133Format examples::
134
135  @opr    ...... ra:5 rb:5 ... 0 ....... rc:5
136  @opi    ...... ra:5 lit:8    1 ....... rc:5
137
138Patterns
139========
140
141Syntax::
142
143  pat_def      := identifier ( pat_elt )+
144  pat_elt      := fixedbit_elt | field_elt | field_ref | args_ref | fmt_ref | const_elt
145  fmt_ref      := '@' identifier
146  const_elt    := identifier '=' number
147
148The *fixedbit_elt* and *field_elt* specifiers are unchanged from formats.
149A pattern that does not specify a named format will have one inferred
150from a referenced argument set (if present) and the set of fields.
151
152A *const_elt* allows a argument to be set to a constant value.  This may
153come in handy when fields overlap between patterns and one has to
154include the values in the *fixedbit_elt* instead.
155
156The decoder will call a translator function for each pattern matched.
157
158Pattern examples::
159
160  addl_r   010000 ..... ..... .... 0000000 ..... @opr
161  addl_i   010000 ..... ..... .... 0000000 ..... @opi
162
163which will, in part, invoke::
164
165  trans_addl_r(ctx, &arg_opr, insn)
166
167and::
168
169  trans_addl_i(ctx, &arg_opi, insn)
170
171Pattern Groups
172==============
173
174Syntax::
175
176  group    := '{' ( pat_def | group )+ '}'
177
178A *group* begins with a lone open-brace, with all subsequent lines
179indented two spaces, and ending with a lone close-brace.  Groups
180may be nested, increasing the required indentation of the lines
181within the nested group to two spaces per nesting level.
182
183Unlike ungrouped patterns, grouped patterns are allowed to overlap.
184Conflicts are resolved by selecting the patterns in order.  If all
185of the fixedbits for a pattern match, its translate function will
186be called.  If the translate function returns false, then subsequent
187patterns within the group will be matched.
188
189The following example from PA-RISC shows specialization of the *or*
190instruction::
191
192  {
193    {
194      nop   000010 ----- ----- 0000 001001 0 00000
195      copy  000010 00000 r1:5  0000 001001 0 rt:5
196    }
197    or      000010 rt2:5 r1:5  cf:4 001001 0 rt:5
198  }
199
200When the *cf* field is zero, the instruction has no side effects,
201and may be specialized.  When the *rt* field is zero, the output
202is discarded and so the instruction has no effect.  When the *rt2*
203field is zero, the operation is ``reg[rt] | 0`` and so encodes
204the canonical register copy operation.
205
206The output from the generator might look like::
207
208  switch (insn & 0xfc000fe0) {
209  case 0x08000240:
210    /* 000010.. ........ ....0010 010..... */
211    if ((insn & 0x0000f000) == 0x00000000) {
212        /* 000010.. ........ 00000010 010..... */
213        if ((insn & 0x0000001f) == 0x00000000) {
214            /* 000010.. ........ 00000010 01000000 */
215            extract_decode_Fmt_0(&u.f_decode0, insn);
216            if (trans_nop(ctx, &u.f_decode0)) return true;
217        }
218        if ((insn & 0x03e00000) == 0x00000000) {
219            /* 00001000 000..... 00000010 010..... */
220            extract_decode_Fmt_1(&u.f_decode1, insn);
221            if (trans_copy(ctx, &u.f_decode1)) return true;
222        }
223    }
224    extract_decode_Fmt_2(&u.f_decode2, insn);
225    if (trans_or(ctx, &u.f_decode2)) return true;
226    return false;
227  }
228