xref: /openbmc/qemu/docs/block-replication.txt (revision 5dd0be53e89acfc367944489a364b0ec835dee9a)
1Block replication
2----------------------------------------
3Copyright Fujitsu, Corp. 2016
4Copyright (c) 2016 Intel Corporation
5Copyright (c) 2016 HUAWEI TECHNOLOGIES CO., LTD.
6
7This work is licensed under the terms of the GNU GPL, version 2 or later.
8See the COPYING file in the top-level directory.
9
10Block replication is used for continuous checkpoints. It is designed
11for COLO (COarse-grain LOck-stepping) where the Secondary VM is running.
12It can also be applied for FT/HA (Fault-tolerance/High Assurance) scenario,
13where the Secondary VM is not running.
14
15This document gives an overview of block replication's design.
16
17== Background ==
18High availability solutions such as micro checkpoint and COLO will do
19consecutive checkpoints. The VM state of the Primary and Secondary VM is
20identical right after a VM checkpoint, but becomes different as the VM
21executes till the next checkpoint. To support disk contents checkpoint,
22the modified disk contents in the Secondary VM must be buffered, and are
23only dropped at next checkpoint time. To reduce the network transportation
24effort during a vmstate checkpoint, the disk modification operations of
25the Primary disk are asynchronously forwarded to the Secondary node.
26
27== Workflow ==
28The following is the image of block replication workflow:
29
30        +----------------------+            +------------------------+
31        |Primary Write Requests|            |Secondary Write Requests|
32        +----------------------+            +------------------------+
33                  |                                       |
34                  |                                      (4)
35                  |                                       V
36                  |                              /-------------\
37                  |      Copy and Forward        |             |
38                  |---------(1)----------+       | Disk Buffer |
39                  |                      |       |             |
40                  |                     (3)      \-------------/
41                  |                 speculative      ^
42                  |                write through    (2)
43                  |                      |           |
44                  V                      V           |
45           +--------------+           +----------------+
46           | Primary Disk |           | Secondary Disk |
47           +--------------+           +----------------+
48
49    1) Primary write requests will be copied and forwarded to Secondary
50       QEMU.
51    2) Before Primary write requests are written to Secondary disk, the
52       original sector content will be read from Secondary disk and
53       buffered in the Disk buffer, but it will not overwrite the existing
54       sector content (it could be from either "Secondary Write Requests" or
55       previous COW of "Primary Write Requests") in the Disk buffer.
56    3) Primary write requests will be written to Secondary disk.
57    4) Secondary write requests will be buffered in the Disk buffer and it
58       will overwrite the existing sector content in the buffer.
59
60== Architecture ==
61We are going to implement block replication from many basic
62blocks that are already in QEMU.
63
64         virtio-blk       ||
65             ^            ||                            .----------
66             |            ||                            | Secondary
67        1 Quorum          ||                            '----------
68         /      \         ||                                                           virtio-blk
69        /        \        ||                                                               ^
70   Primary    2 filter                                                                     |
71     disk         ^                                                                   7 Quorum
72                  |                                                                    /
73                3 NBD  ------->  3 NBD                                                /
74                client    ||     server                                          2 filter
75                          ||        ^                                                ^
76--------.                 ||        |                                                |
77Primary |                 ||  Secondary disk <--------- hidden-disk 5 <--------- active-disk 4
78--------'                 ||        |          backing        ^       backing
79                          ||        |                         |
80                          ||        |                         |
81                          ||        '-------------------------'
82                          ||         blockdev-backup sync=none 6
83
841) The disk on the primary is represented by a block device with two
85children, providing replication between a primary disk and the host that
86runs the secondary VM. The read pattern (fifo) for quorum can be extended
87to make the primary always read from the local disk instead of going through
88NBD.
89
902) The new block filter (the name is replication) will control the block
91replication.
92
933) The secondary disk receives writes from the primary VM through QEMU's
94embedded NBD server (speculative write-through).
95
964) The disk on the secondary is represented by a custom block device
97(called active-disk). It should start as an empty disk, and the format
98should support bdrv_make_empty() and backing file.
99
1005) The hidden-disk is created automatically. It buffers the original content
101that is modified by the primary VM. It should also start as an empty disk,
102and the driver supports bdrv_make_empty() and backing file.
103
1046) The blockdev-backup job (sync=none) is run to allow hidden-disk to buffer
105any state that would otherwise be lost by the speculative write-through
106of the NBD server into the secondary disk. So before block replication,
107the primary disk and secondary disk should contain the same data.
108
1097) The secondary also has a quorum node, so after secondary failover it
110can become the new primary and continue replication.
111
112
113== Failure Handling ==
114There are 7 internal errors when block replication is running:
1151. I/O error on primary disk
1162. Forwarding primary write requests failed
1173. Backup failed
1184. I/O error on secondary disk
1195. I/O error on active disk
1206. Making active disk or hidden disk empty failed
1217. Doing failover failed
122In case 1 and 5, we just report the error to the disk layer. In case 2, 3,
1234 and 6, we just report block replication's error to FT/HA manager (which
124decides when to do a new checkpoint, when to do failover).
125In case 7, if active commit failed, we use replication failover failed state
126in Secondary's write operation (what decides which target to write).
127
128== New block driver interface ==
129We add four block driver interfaces to control block replication:
130a. replication_start_all()
131   Start block replication, called in migration/checkpoint thread.
132   We must call block_replication_start_all() in secondary QEMU before
133   calling block_replication_start_all() in primary QEMU. The caller
134   must hold the I/O mutex lock if it is in migration/checkpoint
135   thread.
136b. replication_do_checkpoint_all()
137   This interface is called after all VM state is transferred to
138   Secondary QEMU. The Disk buffer will be dropped in this interface.
139   The caller must hold the I/O mutex lock if it is in migration/checkpoint
140   thread.
141c. replication_get_error_all()
142   This interface is called to check if error happened in replication.
143   The caller must hold the I/O mutex lock if it is in migration/checkpoint
144   thread.
145d. replication_stop_all()
146   It is called on failover. We will flush the Disk buffer into
147   Secondary Disk and stop block replication. The vm should be stopped
148   before calling it if you use this API to shutdown the guest, or other
149   things except failover. The caller must hold the I/O mutex lock if it is
150   in migration/checkpoint thread.
151
152== Usage ==
153Primary:
154  -drive if=xxx,driver=quorum,read-pattern=fifo,id=colo1,vote-threshold=1,\
155         children.0.file.filename=1.raw,\
156         children.0.driver=raw
157
158  Run qmp command in primary qemu:
159    { "execute": "human-monitor-command",
160      "arguments": {
161          "command-line": "drive_add -n buddy driver=replication,mode=primary,file.driver=nbd,file.host=xxxx,file.port=xxxx,file.export=colo1,node-name=nbd_client1"
162      }
163    }
164    { "execute": "x-blockdev-change",
165      "arguments": {
166          "parent": "colo1",
167          "node": "nbd_client1"
168      }
169    }
170  Note:
171  1. There should be only one NBD Client for each primary disk.
172  2. host is the secondary physical machine's hostname or IP
173  3. Each disk must have its own export name.
174  4. It is all a single argument to -drive and you should ignore the
175     leading whitespace.
176  5. The qmp command line must be run after running qmp command line in
177     secondary qemu.
178  6. After primary failover we need remove children.1 (replication driver).
179
180Secondary:
181  -drive if=none,driver=raw,file.filename=1.raw,id=colo1 \
182  -drive if=none,id=childs1,driver=replication,mode=secondary,top-id=top-disk1
183         file.file.filename=active_disk.qcow2,\
184         file.driver=qcow2,\
185         file.backing.file.filename=hidden_disk.qcow2,\
186         file.backing.driver=qcow2,\
187         file.backing.backing=colo1
188  -drive if=xxx,driver=quorum,read-pattern=fifo,id=top-disk1,\
189         vote-threshold=1,children.0=childs1
190
191  Then run qmp command in secondary qemu:
192    { "execute": "nbd-server-start",
193      "arguments": {
194          "addr": {
195              "type": "inet",
196              "data": {
197                  "host": "xxx",
198                  "port": "xxx"
199              }
200          }
201      }
202    }
203    { "execute": "nbd-server-add",
204      "arguments": {
205          "device": "colo1",
206          "writable": true
207      }
208    }
209
210  Note:
211  1. The export name in secondary QEMU command line is the secondary
212     disk's id.
213  2. The export name for the same disk must be the same
214  3. The qmp command nbd-server-start and nbd-server-add must be run
215     before running the qmp command migrate on primary QEMU
216  4. Active disk, hidden disk and nbd target's length should be the
217     same.
218  5. It is better to put active disk and hidden disk in ramdisk.
219  6. It is all a single argument to -drive, and you should ignore
220     the leading whitespace.
221
222After Failover:
223Primary:
224  The secondary host is down, so we should run the following qmp command
225  to remove the nbd child from the quorum:
226  { "execute": "x-blockdev-change",
227    "arguments": {
228        "parent": "colo1",
229        "child": "children.1"
230    }
231  }
232  { "execute": "human-monitor-command",
233    "arguments": {
234        "command-line": "drive_del xxxx"
235    }
236  }
237  Note: there is no qmp command to remove the blockdev now
238
239Secondary:
240  The primary host is down, so we should do the following thing:
241  { "execute": "nbd-server-stop" }
242
243Promote Secondary to Primary:
244  see COLO-FT.txt
245
246TODO:
2471. Shared disk
248