xref: /openbmc/qemu/disas/alpha.c (revision a719a27c)
1 /* alpha-dis.c -- Disassemble Alpha AXP instructions
2    Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3    Contributed by Richard Henderson <rth@tamu.edu>,
4    patterned after the PPC opcode handling written by Ian Lance Taylor.
5 
6 This file is part of GDB, GAS, and the GNU binutils.
7 
8 GDB, GAS, and the GNU binutils are free software; you can redistribute
9 them and/or modify them under the terms of the GNU General Public
10 License as published by the Free Software Foundation; either version
11 2, or (at your option) any later version.
12 
13 GDB, GAS, and the GNU binutils are distributed in the hope that they
14 will be useful, but WITHOUT ANY WARRANTY; without even the implied
15 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16 the GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with this file; see the file COPYING.  If not, see
20 <http://www.gnu.org/licenses/>. */
21 
22 #include <stdio.h>
23 #include "disas/bfd.h"
24 
25 /* MAX is redefined below, so remove any previous definition. */
26 #undef MAX
27 
28 /* The opcode table is an array of struct alpha_opcode.  */
29 
30 struct alpha_opcode
31 {
32   /* The opcode name.  */
33   const char *name;
34 
35   /* The opcode itself.  Those bits which will be filled in with
36      operands are zeroes.  */
37   unsigned opcode;
38 
39   /* The opcode mask.  This is used by the disassembler.  This is a
40      mask containing ones indicating those bits which must match the
41      opcode field, and zeroes indicating those bits which need not
42      match (and are presumably filled in by operands).  */
43   unsigned mask;
44 
45   /* One bit flags for the opcode.  These are primarily used to
46      indicate specific processors and environments support the
47      instructions.  The defined values are listed below. */
48   unsigned flags;
49 
50   /* An array of operand codes.  Each code is an index into the
51      operand table.  They appear in the order which the operands must
52      appear in assembly code, and are terminated by a zero.  */
53   unsigned char operands[4];
54 };
55 
56 /* The table itself is sorted by major opcode number, and is otherwise
57    in the order in which the disassembler should consider
58    instructions.  */
59 extern const struct alpha_opcode alpha_opcodes[];
60 extern const unsigned alpha_num_opcodes;
61 
62 /* Values defined for the flags field of a struct alpha_opcode.  */
63 
64 /* CPU Availability */
65 #define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
66 #define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
67 #define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
68 #define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
69 #define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
70 #define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
71 #define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
72 
73 #define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
74 
75 /* A macro to extract the major opcode from an instruction.  */
76 #define AXP_OP(i)	(((i) >> 26) & 0x3F)
77 
78 /* The total number of major opcodes. */
79 #define AXP_NOPS	0x40
80 
81 
82 /* The operands table is an array of struct alpha_operand.  */
83 
84 struct alpha_operand
85 {
86   /* The number of bits in the operand.  */
87   unsigned int bits : 5;
88 
89   /* How far the operand is left shifted in the instruction.  */
90   unsigned int shift : 5;
91 
92   /* The default relocation type for this operand.  */
93   signed int default_reloc : 16;
94 
95   /* One bit syntax flags.  */
96   unsigned int flags : 16;
97 
98   /* Insertion function.  This is used by the assembler.  To insert an
99      operand value into an instruction, check this field.
100 
101      If it is NULL, execute
102          i |= (op & ((1 << o->bits) - 1)) << o->shift;
103      (i is the instruction which we are filling in, o is a pointer to
104      this structure, and op is the opcode value; this assumes twos
105      complement arithmetic).
106 
107      If this field is not NULL, then simply call it with the
108      instruction and the operand value.  It will return the new value
109      of the instruction.  If the ERRMSG argument is not NULL, then if
110      the operand value is illegal, *ERRMSG will be set to a warning
111      string (the operand will be inserted in any case).  If the
112      operand value is legal, *ERRMSG will be unchanged (most operands
113      can accept any value).  */
114   unsigned (*insert) (unsigned instruction, int op,
115                       const char **errmsg);
116 
117   /* Extraction function.  This is used by the disassembler.  To
118      extract this operand type from an instruction, check this field.
119 
120      If it is NULL, compute
121          op = ((i) >> o->shift) & ((1 << o->bits) - 1);
122 	 if ((o->flags & AXP_OPERAND_SIGNED) != 0
123 	     && (op & (1 << (o->bits - 1))) != 0)
124 	   op -= 1 << o->bits;
125      (i is the instruction, o is a pointer to this structure, and op
126      is the result; this assumes twos complement arithmetic).
127 
128      If this field is not NULL, then simply call it with the
129      instruction value.  It will return the value of the operand.  If
130      the INVALID argument is not NULL, *INVALID will be set to
131      non-zero if this operand type can not actually be extracted from
132      this operand (i.e., the instruction does not match).  If the
133      operand is valid, *INVALID will not be changed.  */
134   int (*extract) (unsigned instruction, int *invalid);
135 };
136 
137 /* Elements in the table are retrieved by indexing with values from
138    the operands field of the alpha_opcodes table.  */
139 
140 extern const struct alpha_operand alpha_operands[];
141 extern const unsigned alpha_num_operands;
142 
143 /* Values defined for the flags field of a struct alpha_operand.  */
144 
145 /* Mask for selecting the type for typecheck purposes */
146 #define AXP_OPERAND_TYPECHECK_MASK					\
147   (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |		\
148    AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED | 	\
149    AXP_OPERAND_UNSIGNED)
150 
151 /* This operand does not actually exist in the assembler input.  This
152    is used to support extended mnemonics, for which two operands fields
153    are identical.  The assembler should call the insert function with
154    any op value.  The disassembler should call the extract function,
155    ignore the return value, and check the value placed in the invalid
156    argument.  */
157 #define AXP_OPERAND_FAKE	01
158 
159 /* The operand should be wrapped in parentheses rather than separated
160    from the previous by a comma.  This is used for the load and store
161    instructions which want their operands to look like "Ra,disp(Rb)".  */
162 #define AXP_OPERAND_PARENS	02
163 
164 /* Used in combination with PARENS, this suppresses the suppression of
165    the comma.  This is used for "jmp Ra,(Rb),hint".  */
166 #define AXP_OPERAND_COMMA	04
167 
168 /* This operand names an integer register.  */
169 #define AXP_OPERAND_IR		010
170 
171 /* This operand names a floating point register.  */
172 #define AXP_OPERAND_FPR		020
173 
174 /* This operand is a relative branch displacement.  The disassembler
175    prints these symbolically if possible.  */
176 #define AXP_OPERAND_RELATIVE	040
177 
178 /* This operand takes signed values.  */
179 #define AXP_OPERAND_SIGNED	0100
180 
181 /* This operand takes unsigned values.  This exists primarily so that
182    a flags value of 0 can be treated as end-of-arguments.  */
183 #define AXP_OPERAND_UNSIGNED	0200
184 
185 /* Suppress overflow detection on this field.  This is used for hints. */
186 #define AXP_OPERAND_NOOVERFLOW	0400
187 
188 /* Mask for optional argument default value.  */
189 #define AXP_OPERAND_OPTIONAL_MASK 07000
190 
191 /* This operand defaults to zero.  This is used for jump hints.  */
192 #define AXP_OPERAND_DEFAULT_ZERO 01000
193 
194 /* This operand should default to the first (real) operand and is used
195    in conjunction with AXP_OPERAND_OPTIONAL.  This allows
196    "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
197    it, but it's what DEC does.  */
198 #define AXP_OPERAND_DEFAULT_FIRST 02000
199 
200 /* Similarly, this operand should default to the second (real) operand.
201    This allows "negl $0" instead of "negl $0,$0".  */
202 #define AXP_OPERAND_DEFAULT_SECOND 04000
203 
204 
205 /* Register common names */
206 
207 #define AXP_REG_V0	0
208 #define AXP_REG_T0	1
209 #define AXP_REG_T1	2
210 #define AXP_REG_T2	3
211 #define AXP_REG_T3	4
212 #define AXP_REG_T4	5
213 #define AXP_REG_T5	6
214 #define AXP_REG_T6	7
215 #define AXP_REG_T7	8
216 #define AXP_REG_S0	9
217 #define AXP_REG_S1	10
218 #define AXP_REG_S2	11
219 #define AXP_REG_S3	12
220 #define AXP_REG_S4	13
221 #define AXP_REG_S5	14
222 #define AXP_REG_FP	15
223 #define AXP_REG_A0	16
224 #define AXP_REG_A1	17
225 #define AXP_REG_A2	18
226 #define AXP_REG_A3	19
227 #define AXP_REG_A4	20
228 #define AXP_REG_A5	21
229 #define AXP_REG_T8	22
230 #define AXP_REG_T9	23
231 #define AXP_REG_T10	24
232 #define AXP_REG_T11	25
233 #define AXP_REG_RA	26
234 #define AXP_REG_PV	27
235 #define AXP_REG_T12	27
236 #define AXP_REG_AT	28
237 #define AXP_REG_GP	29
238 #define AXP_REG_SP	30
239 #define AXP_REG_ZERO	31
240 
241 enum bfd_reloc_code_real {
242     BFD_RELOC_23_PCREL_S2,
243     BFD_RELOC_ALPHA_HINT
244 };
245 
246 /* This file holds the Alpha AXP opcode table.  The opcode table includes
247    almost all of the extended instruction mnemonics.  This permits the
248    disassembler to use them, and simplifies the assembler logic, at the
249    cost of increasing the table size.  The table is strictly constant
250    data, so the compiler should be able to put it in the text segment.
251 
252    This file also holds the operand table.  All knowledge about inserting
253    and extracting operands from instructions is kept in this file.
254 
255    The information for the base instruction set was compiled from the
256    _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
257    version 2.
258 
259    The information for the post-ev5 architecture extensions BWX, CIX and
260    MAX came from version 3 of this same document, which is also available
261    on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
262    /literature/alphahb2.pdf
263 
264    The information for the EV4 PALcode instructions was compiled from
265    _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
266    Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
267    revision dated June 1994.
268 
269    The information for the EV5 PALcode instructions was compiled from
270    _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
271    Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
272 
273 /* Local insertion and extraction functions */
274 
275 static unsigned insert_rba (unsigned, int, const char **);
276 static unsigned insert_rca (unsigned, int, const char **);
277 static unsigned insert_za (unsigned, int, const char **);
278 static unsigned insert_zb (unsigned, int, const char **);
279 static unsigned insert_zc (unsigned, int, const char **);
280 static unsigned insert_bdisp (unsigned, int, const char **);
281 static unsigned insert_jhint (unsigned, int, const char **);
282 static unsigned insert_ev6hwjhint (unsigned, int, const char **);
283 
284 static int extract_rba (unsigned, int *);
285 static int extract_rca (unsigned, int *);
286 static int extract_za (unsigned, int *);
287 static int extract_zb (unsigned, int *);
288 static int extract_zc (unsigned, int *);
289 static int extract_bdisp (unsigned, int *);
290 static int extract_jhint (unsigned, int *);
291 static int extract_ev6hwjhint (unsigned, int *);
292 
293 
294 /* The operands table  */
295 
296 const struct alpha_operand alpha_operands[] =
297 {
298   /* The fields are bits, shift, insert, extract, flags */
299   /* The zero index is used to indicate end-of-list */
300 #define UNUSED		0
301   { 0, 0, 0, 0, 0, 0 },
302 
303   /* The plain integer register fields */
304 #define RA		(UNUSED + 1)
305   { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
306 #define RB		(RA + 1)
307   { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
308 #define RC		(RB + 1)
309   { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
310 
311   /* The plain fp register fields */
312 #define FA		(RC + 1)
313   { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
314 #define FB		(FA + 1)
315   { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
316 #define FC		(FB + 1)
317   { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
318 
319   /* The integer registers when they are ZERO */
320 #define ZA		(FC + 1)
321   { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
322 #define ZB		(ZA + 1)
323   { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
324 #define ZC		(ZB + 1)
325   { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
326 
327   /* The RB field when it needs parentheses */
328 #define PRB		(ZC + 1)
329   { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
330 
331   /* The RB field when it needs parentheses _and_ a preceding comma */
332 #define CPRB		(PRB + 1)
333   { 5, 16, 0,
334     AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
335 
336   /* The RB field when it must be the same as the RA field */
337 #define RBA		(CPRB + 1)
338   { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
339 
340   /* The RC field when it must be the same as the RB field */
341 #define RCA		(RBA + 1)
342   { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
343 
344   /* The RC field when it can *default* to RA */
345 #define DRC1		(RCA + 1)
346   { 5, 0, 0,
347     AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
348 
349   /* The RC field when it can *default* to RB */
350 #define DRC2		(DRC1 + 1)
351   { 5, 0, 0,
352     AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
353 
354   /* The FC field when it can *default* to RA */
355 #define DFC1		(DRC2 + 1)
356   { 5, 0, 0,
357     AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
358 
359   /* The FC field when it can *default* to RB */
360 #define DFC2		(DFC1 + 1)
361   { 5, 0, 0,
362     AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
363 
364   /* The unsigned 8-bit literal of Operate format insns */
365 #define LIT		(DFC2 + 1)
366   { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
367 
368   /* The signed 16-bit displacement of Memory format insns.  From here
369      we can't tell what relocation should be used, so don't use a default. */
370 #define MDISP		(LIT + 1)
371   { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
372 
373   /* The signed "23-bit" aligned displacement of Branch format insns */
374 #define BDISP		(MDISP + 1)
375   { 21, 0, BFD_RELOC_23_PCREL_S2,
376     AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
377 
378   /* The 26-bit PALcode function */
379 #define PALFN		(BDISP + 1)
380   { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
381 
382   /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
383 #define JMPHINT		(PALFN + 1)
384   { 14, 0, BFD_RELOC_ALPHA_HINT,
385     AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
386     insert_jhint, extract_jhint },
387 
388   /* The optional hint to RET/JSR_COROUTINE */
389 #define RETHINT		(JMPHINT + 1)
390   { 14, 0, -RETHINT,
391     AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
392 
393   /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
394 #define EV4HWDISP	(RETHINT + 1)
395 #define EV6HWDISP	(EV4HWDISP)
396   { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
397 
398   /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
399 #define EV4HWINDEX	(EV4HWDISP + 1)
400   { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
401 
402   /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
403      that occur in DEC PALcode.  */
404 #define EV4EXTHWINDEX	(EV4HWINDEX + 1)
405   { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
406 
407   /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
408 #define EV5HWDISP	(EV4EXTHWINDEX + 1)
409   { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
410 
411   /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
412 #define EV5HWINDEX	(EV5HWDISP + 1)
413   { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
414 
415   /* The 16-bit combined index/scoreboard mask for the ev6
416      hw_m[ft]pr (pal19/pal1d) insns */
417 #define EV6HWINDEX	(EV5HWINDEX + 1)
418   { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
419 
420   /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
421 #define EV6HWJMPHINT	(EV6HWINDEX+ 1)
422   { 8, 0, -EV6HWJMPHINT,
423     AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
424     insert_ev6hwjhint, extract_ev6hwjhint }
425 };
426 
427 const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
428 
429 /* The RB field when it is the same as the RA field in the same insn.
430    This operand is marked fake.  The insertion function just copies
431    the RA field into the RB field, and the extraction function just
432    checks that the fields are the same. */
433 
434 /*ARGSUSED*/
435 static unsigned
436 insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
437 {
438   return insn | (((insn >> 21) & 0x1f) << 16);
439 }
440 
441 static int
442 extract_rba(unsigned insn, int *invalid)
443 {
444   if (invalid != (int *) NULL
445       && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
446     *invalid = 1;
447   return 0;
448 }
449 
450 
451 /* The same for the RC field */
452 
453 /*ARGSUSED*/
454 static unsigned
455 insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
456 {
457   return insn | ((insn >> 21) & 0x1f);
458 }
459 
460 static int
461 extract_rca(unsigned insn, int *invalid)
462 {
463   if (invalid != (int *) NULL
464       && ((insn >> 21) & 0x1f) != (insn & 0x1f))
465     *invalid = 1;
466   return 0;
467 }
468 
469 
470 /* Fake arguments in which the registers must be set to ZERO */
471 
472 /*ARGSUSED*/
473 static unsigned
474 insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
475 {
476   return insn | (31 << 21);
477 }
478 
479 static int
480 extract_za(unsigned insn, int *invalid)
481 {
482   if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
483     *invalid = 1;
484   return 0;
485 }
486 
487 /*ARGSUSED*/
488 static unsigned
489 insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
490 {
491   return insn | (31 << 16);
492 }
493 
494 static int
495 extract_zb(unsigned insn, int *invalid)
496 {
497   if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
498     *invalid = 1;
499   return 0;
500 }
501 
502 /*ARGSUSED*/
503 static unsigned
504 insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
505 {
506   return insn | 31;
507 }
508 
509 static int
510 extract_zc(unsigned insn, int *invalid)
511 {
512   if (invalid != (int *) NULL && (insn & 0x1f) != 31)
513     *invalid = 1;
514   return 0;
515 }
516 
517 
518 /* The displacement field of a Branch format insn.  */
519 
520 static unsigned
521 insert_bdisp(unsigned insn, int value, const char **errmsg)
522 {
523   if (errmsg != (const char **)NULL && (value & 3))
524     *errmsg = _("branch operand unaligned");
525   return insn | ((value / 4) & 0x1FFFFF);
526 }
527 
528 /*ARGSUSED*/
529 static int
530 extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
531 {
532   return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
533 }
534 
535 
536 /* The hint field of a JMP/JSR insn.  */
537 
538 static unsigned
539 insert_jhint(unsigned insn, int value, const char **errmsg)
540 {
541   if (errmsg != (const char **)NULL && (value & 3))
542     *errmsg = _("jump hint unaligned");
543   return insn | ((value / 4) & 0x3FFF);
544 }
545 
546 /*ARGSUSED*/
547 static int
548 extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
549 {
550   return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
551 }
552 
553 /* The hint field of an EV6 HW_JMP/JSR insn.  */
554 
555 static unsigned
556 insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
557 {
558   if (errmsg != (const char **)NULL && (value & 3))
559     *errmsg = _("jump hint unaligned");
560   return insn | ((value / 4) & 0x1FFF);
561 }
562 
563 /*ARGSUSED*/
564 static int
565 extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
566 {
567   return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
568 }
569 
570 
571 /* Macros used to form opcodes */
572 
573 /* The main opcode */
574 #define OP(x)		(((x) & 0x3F) << 26)
575 #define OP_MASK		0xFC000000
576 
577 /* Branch format instructions */
578 #define BRA_(oo)	OP(oo)
579 #define BRA_MASK	OP_MASK
580 #define BRA(oo)		BRA_(oo), BRA_MASK
581 
582 /* Floating point format instructions */
583 #define FP_(oo,fff)	(OP(oo) | (((fff) & 0x7FF) << 5))
584 #define FP_MASK		(OP_MASK | 0xFFE0)
585 #define FP(oo,fff)	FP_(oo,fff), FP_MASK
586 
587 /* Memory format instructions */
588 #define MEM_(oo)	OP(oo)
589 #define MEM_MASK	OP_MASK
590 #define MEM(oo)		MEM_(oo), MEM_MASK
591 
592 /* Memory/Func Code format instructions */
593 #define MFC_(oo,ffff)	(OP(oo) | ((ffff) & 0xFFFF))
594 #define MFC_MASK	(OP_MASK | 0xFFFF)
595 #define MFC(oo,ffff)	MFC_(oo,ffff), MFC_MASK
596 
597 /* Memory/Branch format instructions */
598 #define MBR_(oo,h)	(OP(oo) | (((h) & 3) << 14))
599 #define MBR_MASK	(OP_MASK | 0xC000)
600 #define MBR(oo,h)	MBR_(oo,h), MBR_MASK
601 
602 /* Operate format instructions.  The OPRL variant specifies a
603    literal second argument. */
604 #define OPR_(oo,ff)	(OP(oo) | (((ff) & 0x7F) << 5))
605 #define OPRL_(oo,ff)	(OPR_((oo),(ff)) | 0x1000)
606 #define OPR_MASK	(OP_MASK | 0x1FE0)
607 #define OPR(oo,ff)	OPR_(oo,ff), OPR_MASK
608 #define OPRL(oo,ff)	OPRL_(oo,ff), OPR_MASK
609 
610 /* Generic PALcode format instructions */
611 #define PCD_(oo)	OP(oo)
612 #define PCD_MASK	OP_MASK
613 #define PCD(oo)		PCD_(oo), PCD_MASK
614 
615 /* Specific PALcode instructions */
616 #define SPCD_(oo,ffff)	(OP(oo) | ((ffff) & 0x3FFFFFF))
617 #define SPCD_MASK	0xFFFFFFFF
618 #define SPCD(oo,ffff)	SPCD_(oo,ffff), SPCD_MASK
619 
620 /* Hardware memory (hw_{ld,st}) instructions */
621 #define EV4HWMEM_(oo,f)	(OP(oo) | (((f) & 0xF) << 12))
622 #define EV4HWMEM_MASK	(OP_MASK | 0xF000)
623 #define EV4HWMEM(oo,f)	EV4HWMEM_(oo,f), EV4HWMEM_MASK
624 
625 #define EV5HWMEM_(oo,f)	(OP(oo) | (((f) & 0x3F) << 10))
626 #define EV5HWMEM_MASK	(OP_MASK | 0xF800)
627 #define EV5HWMEM(oo,f)	EV5HWMEM_(oo,f), EV5HWMEM_MASK
628 
629 #define EV6HWMEM_(oo,f)	(OP(oo) | (((f) & 0xF) << 12))
630 #define EV6HWMEM_MASK	(OP_MASK | 0xF000)
631 #define EV6HWMEM(oo,f)	EV6HWMEM_(oo,f), EV6HWMEM_MASK
632 
633 #define EV6HWMBR_(oo,h)	(OP(oo) | (((h) & 7) << 13))
634 #define EV6HWMBR_MASK	(OP_MASK | 0xE000)
635 #define EV6HWMBR(oo,h)	EV6HWMBR_(oo,h), EV6HWMBR_MASK
636 
637 /* Abbreviations for instruction subsets.  */
638 #define BASE			AXP_OPCODE_BASE
639 #define EV4			AXP_OPCODE_EV4
640 #define EV5			AXP_OPCODE_EV5
641 #define EV6			AXP_OPCODE_EV6
642 #define BWX			AXP_OPCODE_BWX
643 #define CIX			AXP_OPCODE_CIX
644 #define MAX			AXP_OPCODE_MAX
645 
646 /* Common combinations of arguments */
647 #define ARG_NONE		{ 0 }
648 #define ARG_BRA			{ RA, BDISP }
649 #define ARG_FBRA		{ FA, BDISP }
650 #define ARG_FP			{ FA, FB, DFC1 }
651 #define ARG_FPZ1		{ ZA, FB, DFC1 }
652 #define ARG_MEM			{ RA, MDISP, PRB }
653 #define ARG_FMEM		{ FA, MDISP, PRB }
654 #define ARG_OPR			{ RA, RB, DRC1 }
655 #define ARG_OPRL		{ RA, LIT, DRC1 }
656 #define ARG_OPRZ1		{ ZA, RB, DRC1 }
657 #define ARG_OPRLZ1		{ ZA, LIT, RC }
658 #define ARG_PCD			{ PALFN }
659 #define ARG_EV4HWMEM		{ RA, EV4HWDISP, PRB }
660 #define ARG_EV4HWMPR		{ RA, RBA, EV4HWINDEX }
661 #define ARG_EV5HWMEM		{ RA, EV5HWDISP, PRB }
662 #define ARG_EV6HWMEM		{ RA, EV6HWDISP, PRB }
663 
664 /* The opcode table.
665 
666    The format of the opcode table is:
667 
668    NAME OPCODE MASK { OPERANDS }
669 
670    NAME		is the name of the instruction.
671 
672    OPCODE	is the instruction opcode.
673 
674    MASK		is the opcode mask; this is used to tell the disassembler
675             	which bits in the actual opcode must match OPCODE.
676 
677    OPERANDS	is the list of operands.
678 
679    The preceding macros merge the text of the OPCODE and MASK fields.
680 
681    The disassembler reads the table in order and prints the first
682    instruction which matches, so this table is sorted to put more
683    specific instructions before more general instructions.
684 
685    Otherwise, it is sorted by major opcode and minor function code.
686 
687    There are three classes of not-really-instructions in this table:
688 
689    ALIAS	is another name for another instruction.  Some of
690 		these come from the Architecture Handbook, some
691 		come from the original gas opcode tables.  In all
692 		cases, the functionality of the opcode is unchanged.
693 
694    PSEUDO	a stylized code form endorsed by Chapter A.4 of the
695 		Architecture Handbook.
696 
697    EXTRA	a stylized code form found in the original gas tables.
698 
699    And two annotations:
700 
701    EV56 BUT	opcodes that are officially introduced as of the ev56,
702    		but with defined results on previous implementations.
703 
704    EV56 UNA	opcodes that were introduced as of the ev56 with
705    		presumably undefined results on previous implementations
706 		that were not assigned to a particular extension.
707 */
708 
709 const struct alpha_opcode alpha_opcodes[] = {
710   { "halt",		SPCD(0x00,0x0000), BASE, ARG_NONE },
711   { "draina",		SPCD(0x00,0x0002), BASE, ARG_NONE },
712   { "bpt",		SPCD(0x00,0x0080), BASE, ARG_NONE },
713   { "bugchk",		SPCD(0x00,0x0081), BASE, ARG_NONE },
714   { "callsys",		SPCD(0x00,0x0083), BASE, ARG_NONE },
715   { "chmk", 		SPCD(0x00,0x0083), BASE, ARG_NONE },
716   { "imb",		SPCD(0x00,0x0086), BASE, ARG_NONE },
717   { "rduniq",		SPCD(0x00,0x009e), BASE, ARG_NONE },
718   { "wruniq",		SPCD(0x00,0x009f), BASE, ARG_NONE },
719   { "gentrap",		SPCD(0x00,0x00aa), BASE, ARG_NONE },
720   { "call_pal",		PCD(0x00), BASE, ARG_PCD },
721   { "pal",		PCD(0x00), BASE, ARG_PCD },		/* alias */
722 
723   { "lda",		MEM(0x08), BASE, { RA, MDISP, ZB } },	/* pseudo */
724   { "lda",		MEM(0x08), BASE, ARG_MEM },
725   { "ldah",		MEM(0x09), BASE, { RA, MDISP, ZB } },	/* pseudo */
726   { "ldah",		MEM(0x09), BASE, ARG_MEM },
727   { "ldbu",		MEM(0x0A), BWX, ARG_MEM },
728   { "unop",		MEM_(0x0B) | (30 << 16),
729 			MEM_MASK, BASE, { ZA } },		/* pseudo */
730   { "ldq_u",		MEM(0x0B), BASE, ARG_MEM },
731   { "ldwu",		MEM(0x0C), BWX, ARG_MEM },
732   { "stw",		MEM(0x0D), BWX, ARG_MEM },
733   { "stb",		MEM(0x0E), BWX, ARG_MEM },
734   { "stq_u",		MEM(0x0F), BASE, ARG_MEM },
735 
736   { "sextl",		OPR(0x10,0x00), BASE, ARG_OPRZ1 },	/* pseudo */
737   { "sextl",		OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },	/* pseudo */
738   { "addl",		OPR(0x10,0x00), BASE, ARG_OPR },
739   { "addl",		OPRL(0x10,0x00), BASE, ARG_OPRL },
740   { "s4addl",		OPR(0x10,0x02), BASE, ARG_OPR },
741   { "s4addl",		OPRL(0x10,0x02), BASE, ARG_OPRL },
742   { "negl",		OPR(0x10,0x09), BASE, ARG_OPRZ1 },	/* pseudo */
743   { "negl",		OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },	/* pseudo */
744   { "subl",		OPR(0x10,0x09), BASE, ARG_OPR },
745   { "subl",		OPRL(0x10,0x09), BASE, ARG_OPRL },
746   { "s4subl",		OPR(0x10,0x0B), BASE, ARG_OPR },
747   { "s4subl",		OPRL(0x10,0x0B), BASE, ARG_OPRL },
748   { "cmpbge",		OPR(0x10,0x0F), BASE, ARG_OPR },
749   { "cmpbge",		OPRL(0x10,0x0F), BASE, ARG_OPRL },
750   { "s8addl",		OPR(0x10,0x12), BASE, ARG_OPR },
751   { "s8addl",		OPRL(0x10,0x12), BASE, ARG_OPRL },
752   { "s8subl",		OPR(0x10,0x1B), BASE, ARG_OPR },
753   { "s8subl",		OPRL(0x10,0x1B), BASE, ARG_OPRL },
754   { "cmpult",		OPR(0x10,0x1D), BASE, ARG_OPR },
755   { "cmpult",		OPRL(0x10,0x1D), BASE, ARG_OPRL },
756   { "addq",		OPR(0x10,0x20), BASE, ARG_OPR },
757   { "addq",		OPRL(0x10,0x20), BASE, ARG_OPRL },
758   { "s4addq",		OPR(0x10,0x22), BASE, ARG_OPR },
759   { "s4addq",		OPRL(0x10,0x22), BASE, ARG_OPRL },
760   { "negq", 		OPR(0x10,0x29), BASE, ARG_OPRZ1 },	/* pseudo */
761   { "negq", 		OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },	/* pseudo */
762   { "subq",		OPR(0x10,0x29), BASE, ARG_OPR },
763   { "subq",		OPRL(0x10,0x29), BASE, ARG_OPRL },
764   { "s4subq",		OPR(0x10,0x2B), BASE, ARG_OPR },
765   { "s4subq",		OPRL(0x10,0x2B), BASE, ARG_OPRL },
766   { "cmpeq",		OPR(0x10,0x2D), BASE, ARG_OPR },
767   { "cmpeq",		OPRL(0x10,0x2D), BASE, ARG_OPRL },
768   { "s8addq",		OPR(0x10,0x32), BASE, ARG_OPR },
769   { "s8addq",		OPRL(0x10,0x32), BASE, ARG_OPRL },
770   { "s8subq",		OPR(0x10,0x3B), BASE, ARG_OPR },
771   { "s8subq",		OPRL(0x10,0x3B), BASE, ARG_OPRL },
772   { "cmpule",		OPR(0x10,0x3D), BASE, ARG_OPR },
773   { "cmpule",		OPRL(0x10,0x3D), BASE, ARG_OPRL },
774   { "addl/v",		OPR(0x10,0x40), BASE, ARG_OPR },
775   { "addl/v",		OPRL(0x10,0x40), BASE, ARG_OPRL },
776   { "negl/v",		OPR(0x10,0x49), BASE, ARG_OPRZ1 },	/* pseudo */
777   { "negl/v",		OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },	/* pseudo */
778   { "subl/v",		OPR(0x10,0x49), BASE, ARG_OPR },
779   { "subl/v",		OPRL(0x10,0x49), BASE, ARG_OPRL },
780   { "cmplt",		OPR(0x10,0x4D), BASE, ARG_OPR },
781   { "cmplt",		OPRL(0x10,0x4D), BASE, ARG_OPRL },
782   { "addq/v",		OPR(0x10,0x60), BASE, ARG_OPR },
783   { "addq/v",		OPRL(0x10,0x60), BASE, ARG_OPRL },
784   { "negq/v",		OPR(0x10,0x69), BASE, ARG_OPRZ1 },	/* pseudo */
785   { "negq/v",		OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },	/* pseudo */
786   { "subq/v",		OPR(0x10,0x69), BASE, ARG_OPR },
787   { "subq/v",		OPRL(0x10,0x69), BASE, ARG_OPRL },
788   { "cmple",		OPR(0x10,0x6D), BASE, ARG_OPR },
789   { "cmple",		OPRL(0x10,0x6D), BASE, ARG_OPRL },
790 
791   { "and",		OPR(0x11,0x00), BASE, ARG_OPR },
792   { "and",		OPRL(0x11,0x00), BASE, ARG_OPRL },
793   { "andnot",		OPR(0x11,0x08), BASE, ARG_OPR },	/* alias */
794   { "andnot",		OPRL(0x11,0x08), BASE, ARG_OPRL },	/* alias */
795   { "bic",		OPR(0x11,0x08), BASE, ARG_OPR },
796   { "bic",		OPRL(0x11,0x08), BASE, ARG_OPRL },
797   { "cmovlbs",		OPR(0x11,0x14), BASE, ARG_OPR },
798   { "cmovlbs",		OPRL(0x11,0x14), BASE, ARG_OPRL },
799   { "cmovlbc",		OPR(0x11,0x16), BASE, ARG_OPR },
800   { "cmovlbc",		OPRL(0x11,0x16), BASE, ARG_OPRL },
801   { "nop",		OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
802   { "clr",		OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
803   { "mov",		OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
804   { "mov",		OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
805   { "mov",		OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
806   { "or",		OPR(0x11,0x20), BASE, ARG_OPR },	/* alias */
807   { "or",		OPRL(0x11,0x20), BASE, ARG_OPRL },	/* alias */
808   { "bis",		OPR(0x11,0x20), BASE, ARG_OPR },
809   { "bis",		OPRL(0x11,0x20), BASE, ARG_OPRL },
810   { "cmoveq",		OPR(0x11,0x24), BASE, ARG_OPR },
811   { "cmoveq",		OPRL(0x11,0x24), BASE, ARG_OPRL },
812   { "cmovne",		OPR(0x11,0x26), BASE, ARG_OPR },
813   { "cmovne",		OPRL(0x11,0x26), BASE, ARG_OPRL },
814   { "not",		OPR(0x11,0x28), BASE, ARG_OPRZ1 },	/* pseudo */
815   { "not",		OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },	/* pseudo */
816   { "ornot",		OPR(0x11,0x28), BASE, ARG_OPR },
817   { "ornot",		OPRL(0x11,0x28), BASE, ARG_OPRL },
818   { "xor",		OPR(0x11,0x40), BASE, ARG_OPR },
819   { "xor",		OPRL(0x11,0x40), BASE, ARG_OPRL },
820   { "cmovlt",		OPR(0x11,0x44), BASE, ARG_OPR },
821   { "cmovlt",		OPRL(0x11,0x44), BASE, ARG_OPRL },
822   { "cmovge",		OPR(0x11,0x46), BASE, ARG_OPR },
823   { "cmovge",		OPRL(0x11,0x46), BASE, ARG_OPRL },
824   { "eqv",		OPR(0x11,0x48), BASE, ARG_OPR },
825   { "eqv",		OPRL(0x11,0x48), BASE, ARG_OPRL },
826   { "xornot",		OPR(0x11,0x48), BASE, ARG_OPR },	/* alias */
827   { "xornot",		OPRL(0x11,0x48), BASE, ARG_OPRL },	/* alias */
828   { "amask",		OPR(0x11,0x61), BASE, ARG_OPRZ1 },	/* ev56 but */
829   { "amask",		OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },	/* ev56 but */
830   { "cmovle",		OPR(0x11,0x64), BASE, ARG_OPR },
831   { "cmovle",		OPRL(0x11,0x64), BASE, ARG_OPRL },
832   { "cmovgt",		OPR(0x11,0x66), BASE, ARG_OPR },
833   { "cmovgt",		OPRL(0x11,0x66), BASE, ARG_OPRL },
834   { "implver",		OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
835     			0xFFFFFFE0, BASE, { RC } },		/* ev56 but */
836 
837   { "mskbl",		OPR(0x12,0x02), BASE, ARG_OPR },
838   { "mskbl",		OPRL(0x12,0x02), BASE, ARG_OPRL },
839   { "extbl",		OPR(0x12,0x06), BASE, ARG_OPR },
840   { "extbl",		OPRL(0x12,0x06), BASE, ARG_OPRL },
841   { "insbl",		OPR(0x12,0x0B), BASE, ARG_OPR },
842   { "insbl",		OPRL(0x12,0x0B), BASE, ARG_OPRL },
843   { "mskwl",		OPR(0x12,0x12), BASE, ARG_OPR },
844   { "mskwl",		OPRL(0x12,0x12), BASE, ARG_OPRL },
845   { "extwl",		OPR(0x12,0x16), BASE, ARG_OPR },
846   { "extwl",		OPRL(0x12,0x16), BASE, ARG_OPRL },
847   { "inswl",		OPR(0x12,0x1B), BASE, ARG_OPR },
848   { "inswl",		OPRL(0x12,0x1B), BASE, ARG_OPRL },
849   { "mskll",		OPR(0x12,0x22), BASE, ARG_OPR },
850   { "mskll",		OPRL(0x12,0x22), BASE, ARG_OPRL },
851   { "extll",		OPR(0x12,0x26), BASE, ARG_OPR },
852   { "extll",		OPRL(0x12,0x26), BASE, ARG_OPRL },
853   { "insll",		OPR(0x12,0x2B), BASE, ARG_OPR },
854   { "insll",		OPRL(0x12,0x2B), BASE, ARG_OPRL },
855   { "zap",		OPR(0x12,0x30), BASE, ARG_OPR },
856   { "zap",		OPRL(0x12,0x30), BASE, ARG_OPRL },
857   { "zapnot",		OPR(0x12,0x31), BASE, ARG_OPR },
858   { "zapnot",		OPRL(0x12,0x31), BASE, ARG_OPRL },
859   { "mskql",		OPR(0x12,0x32), BASE, ARG_OPR },
860   { "mskql",		OPRL(0x12,0x32), BASE, ARG_OPRL },
861   { "srl",		OPR(0x12,0x34), BASE, ARG_OPR },
862   { "srl",		OPRL(0x12,0x34), BASE, ARG_OPRL },
863   { "extql",		OPR(0x12,0x36), BASE, ARG_OPR },
864   { "extql",		OPRL(0x12,0x36), BASE, ARG_OPRL },
865   { "sll",		OPR(0x12,0x39), BASE, ARG_OPR },
866   { "sll",		OPRL(0x12,0x39), BASE, ARG_OPRL },
867   { "insql",		OPR(0x12,0x3B), BASE, ARG_OPR },
868   { "insql",		OPRL(0x12,0x3B), BASE, ARG_OPRL },
869   { "sra",		OPR(0x12,0x3C), BASE, ARG_OPR },
870   { "sra",		OPRL(0x12,0x3C), BASE, ARG_OPRL },
871   { "mskwh",		OPR(0x12,0x52), BASE, ARG_OPR },
872   { "mskwh",		OPRL(0x12,0x52), BASE, ARG_OPRL },
873   { "inswh",		OPR(0x12,0x57), BASE, ARG_OPR },
874   { "inswh",		OPRL(0x12,0x57), BASE, ARG_OPRL },
875   { "extwh",		OPR(0x12,0x5A), BASE, ARG_OPR },
876   { "extwh",		OPRL(0x12,0x5A), BASE, ARG_OPRL },
877   { "msklh",		OPR(0x12,0x62), BASE, ARG_OPR },
878   { "msklh",		OPRL(0x12,0x62), BASE, ARG_OPRL },
879   { "inslh",		OPR(0x12,0x67), BASE, ARG_OPR },
880   { "inslh",		OPRL(0x12,0x67), BASE, ARG_OPRL },
881   { "extlh",		OPR(0x12,0x6A), BASE, ARG_OPR },
882   { "extlh",		OPRL(0x12,0x6A), BASE, ARG_OPRL },
883   { "mskqh",		OPR(0x12,0x72), BASE, ARG_OPR },
884   { "mskqh",		OPRL(0x12,0x72), BASE, ARG_OPRL },
885   { "insqh",		OPR(0x12,0x77), BASE, ARG_OPR },
886   { "insqh",		OPRL(0x12,0x77), BASE, ARG_OPRL },
887   { "extqh",		OPR(0x12,0x7A), BASE, ARG_OPR },
888   { "extqh",		OPRL(0x12,0x7A), BASE, ARG_OPRL },
889 
890   { "mull",		OPR(0x13,0x00), BASE, ARG_OPR },
891   { "mull",		OPRL(0x13,0x00), BASE, ARG_OPRL },
892   { "mulq",		OPR(0x13,0x20), BASE, ARG_OPR },
893   { "mulq",		OPRL(0x13,0x20), BASE, ARG_OPRL },
894   { "umulh",		OPR(0x13,0x30), BASE, ARG_OPR },
895   { "umulh",		OPRL(0x13,0x30), BASE, ARG_OPRL },
896   { "mull/v",		OPR(0x13,0x40), BASE, ARG_OPR },
897   { "mull/v",		OPRL(0x13,0x40), BASE, ARG_OPRL },
898   { "mulq/v",		OPR(0x13,0x60), BASE, ARG_OPR },
899   { "mulq/v",		OPRL(0x13,0x60), BASE, ARG_OPRL },
900 
901   { "itofs",		FP(0x14,0x004), CIX, { RA, ZB, FC } },
902   { "sqrtf/c",		FP(0x14,0x00A), CIX, ARG_FPZ1 },
903   { "sqrts/c",		FP(0x14,0x00B), CIX, ARG_FPZ1 },
904   { "itoff",		FP(0x14,0x014), CIX, { RA, ZB, FC } },
905   { "itoft",		FP(0x14,0x024), CIX, { RA, ZB, FC } },
906   { "sqrtg/c",		FP(0x14,0x02A), CIX, ARG_FPZ1 },
907   { "sqrtt/c",		FP(0x14,0x02B), CIX, ARG_FPZ1 },
908   { "sqrts/m",		FP(0x14,0x04B), CIX, ARG_FPZ1 },
909   { "sqrtt/m",		FP(0x14,0x06B), CIX, ARG_FPZ1 },
910   { "sqrtf",		FP(0x14,0x08A), CIX, ARG_FPZ1 },
911   { "sqrts",		FP(0x14,0x08B), CIX, ARG_FPZ1 },
912   { "sqrtg",		FP(0x14,0x0AA), CIX, ARG_FPZ1 },
913   { "sqrtt",		FP(0x14,0x0AB), CIX, ARG_FPZ1 },
914   { "sqrts/d",		FP(0x14,0x0CB), CIX, ARG_FPZ1 },
915   { "sqrtt/d",		FP(0x14,0x0EB), CIX, ARG_FPZ1 },
916   { "sqrtf/uc",		FP(0x14,0x10A), CIX, ARG_FPZ1 },
917   { "sqrts/uc",		FP(0x14,0x10B), CIX, ARG_FPZ1 },
918   { "sqrtg/uc",		FP(0x14,0x12A), CIX, ARG_FPZ1 },
919   { "sqrtt/uc",		FP(0x14,0x12B), CIX, ARG_FPZ1 },
920   { "sqrts/um",		FP(0x14,0x14B), CIX, ARG_FPZ1 },
921   { "sqrtt/um",		FP(0x14,0x16B), CIX, ARG_FPZ1 },
922   { "sqrtf/u",		FP(0x14,0x18A), CIX, ARG_FPZ1 },
923   { "sqrts/u",		FP(0x14,0x18B), CIX, ARG_FPZ1 },
924   { "sqrtg/u",		FP(0x14,0x1AA), CIX, ARG_FPZ1 },
925   { "sqrtt/u",		FP(0x14,0x1AB), CIX, ARG_FPZ1 },
926   { "sqrts/ud",		FP(0x14,0x1CB), CIX, ARG_FPZ1 },
927   { "sqrtt/ud",		FP(0x14,0x1EB), CIX, ARG_FPZ1 },
928   { "sqrtf/sc",		FP(0x14,0x40A), CIX, ARG_FPZ1 },
929   { "sqrtg/sc",		FP(0x14,0x42A), CIX, ARG_FPZ1 },
930   { "sqrtf/s",		FP(0x14,0x48A), CIX, ARG_FPZ1 },
931   { "sqrtg/s",		FP(0x14,0x4AA), CIX, ARG_FPZ1 },
932   { "sqrtf/suc",	FP(0x14,0x50A), CIX, ARG_FPZ1 },
933   { "sqrts/suc",	FP(0x14,0x50B), CIX, ARG_FPZ1 },
934   { "sqrtg/suc",	FP(0x14,0x52A), CIX, ARG_FPZ1 },
935   { "sqrtt/suc",	FP(0x14,0x52B), CIX, ARG_FPZ1 },
936   { "sqrts/sum",	FP(0x14,0x54B), CIX, ARG_FPZ1 },
937   { "sqrtt/sum",	FP(0x14,0x56B), CIX, ARG_FPZ1 },
938   { "sqrtf/su",		FP(0x14,0x58A), CIX, ARG_FPZ1 },
939   { "sqrts/su",		FP(0x14,0x58B), CIX, ARG_FPZ1 },
940   { "sqrtg/su",		FP(0x14,0x5AA), CIX, ARG_FPZ1 },
941   { "sqrtt/su",		FP(0x14,0x5AB), CIX, ARG_FPZ1 },
942   { "sqrts/sud",	FP(0x14,0x5CB), CIX, ARG_FPZ1 },
943   { "sqrtt/sud",	FP(0x14,0x5EB), CIX, ARG_FPZ1 },
944   { "sqrts/suic",	FP(0x14,0x70B), CIX, ARG_FPZ1 },
945   { "sqrtt/suic",	FP(0x14,0x72B), CIX, ARG_FPZ1 },
946   { "sqrts/suim",	FP(0x14,0x74B), CIX, ARG_FPZ1 },
947   { "sqrtt/suim",	FP(0x14,0x76B), CIX, ARG_FPZ1 },
948   { "sqrts/sui",	FP(0x14,0x78B), CIX, ARG_FPZ1 },
949   { "sqrtt/sui",	FP(0x14,0x7AB), CIX, ARG_FPZ1 },
950   { "sqrts/suid",	FP(0x14,0x7CB), CIX, ARG_FPZ1 },
951   { "sqrtt/suid",	FP(0x14,0x7EB), CIX, ARG_FPZ1 },
952 
953   { "addf/c",		FP(0x15,0x000), BASE, ARG_FP },
954   { "subf/c",		FP(0x15,0x001), BASE, ARG_FP },
955   { "mulf/c",		FP(0x15,0x002), BASE, ARG_FP },
956   { "divf/c",		FP(0x15,0x003), BASE, ARG_FP },
957   { "cvtdg/c",		FP(0x15,0x01E), BASE, ARG_FPZ1 },
958   { "addg/c",		FP(0x15,0x020), BASE, ARG_FP },
959   { "subg/c",		FP(0x15,0x021), BASE, ARG_FP },
960   { "mulg/c",		FP(0x15,0x022), BASE, ARG_FP },
961   { "divg/c",		FP(0x15,0x023), BASE, ARG_FP },
962   { "cvtgf/c",		FP(0x15,0x02C), BASE, ARG_FPZ1 },
963   { "cvtgd/c",		FP(0x15,0x02D), BASE, ARG_FPZ1 },
964   { "cvtgq/c",		FP(0x15,0x02F), BASE, ARG_FPZ1 },
965   { "cvtqf/c",		FP(0x15,0x03C), BASE, ARG_FPZ1 },
966   { "cvtqg/c",		FP(0x15,0x03E), BASE, ARG_FPZ1 },
967   { "addf",		FP(0x15,0x080), BASE, ARG_FP },
968   { "negf",		FP(0x15,0x081), BASE, ARG_FPZ1 },	/* pseudo */
969   { "subf",		FP(0x15,0x081), BASE, ARG_FP },
970   { "mulf",		FP(0x15,0x082), BASE, ARG_FP },
971   { "divf",		FP(0x15,0x083), BASE, ARG_FP },
972   { "cvtdg",		FP(0x15,0x09E), BASE, ARG_FPZ1 },
973   { "addg",		FP(0x15,0x0A0), BASE, ARG_FP },
974   { "negg",		FP(0x15,0x0A1), BASE, ARG_FPZ1 },	/* pseudo */
975   { "subg",		FP(0x15,0x0A1), BASE, ARG_FP },
976   { "mulg",		FP(0x15,0x0A2), BASE, ARG_FP },
977   { "divg",		FP(0x15,0x0A3), BASE, ARG_FP },
978   { "cmpgeq",		FP(0x15,0x0A5), BASE, ARG_FP },
979   { "cmpglt",		FP(0x15,0x0A6), BASE, ARG_FP },
980   { "cmpgle",		FP(0x15,0x0A7), BASE, ARG_FP },
981   { "cvtgf",		FP(0x15,0x0AC), BASE, ARG_FPZ1 },
982   { "cvtgd",		FP(0x15,0x0AD), BASE, ARG_FPZ1 },
983   { "cvtgq",		FP(0x15,0x0AF), BASE, ARG_FPZ1 },
984   { "cvtqf",		FP(0x15,0x0BC), BASE, ARG_FPZ1 },
985   { "cvtqg",		FP(0x15,0x0BE), BASE, ARG_FPZ1 },
986   { "addf/uc",		FP(0x15,0x100), BASE, ARG_FP },
987   { "subf/uc",		FP(0x15,0x101), BASE, ARG_FP },
988   { "mulf/uc",		FP(0x15,0x102), BASE, ARG_FP },
989   { "divf/uc",		FP(0x15,0x103), BASE, ARG_FP },
990   { "cvtdg/uc",		FP(0x15,0x11E), BASE, ARG_FPZ1 },
991   { "addg/uc",		FP(0x15,0x120), BASE, ARG_FP },
992   { "subg/uc",		FP(0x15,0x121), BASE, ARG_FP },
993   { "mulg/uc",		FP(0x15,0x122), BASE, ARG_FP },
994   { "divg/uc",		FP(0x15,0x123), BASE, ARG_FP },
995   { "cvtgf/uc",		FP(0x15,0x12C), BASE, ARG_FPZ1 },
996   { "cvtgd/uc",		FP(0x15,0x12D), BASE, ARG_FPZ1 },
997   { "cvtgq/vc",		FP(0x15,0x12F), BASE, ARG_FPZ1 },
998   { "addf/u",		FP(0x15,0x180), BASE, ARG_FP },
999   { "subf/u",		FP(0x15,0x181), BASE, ARG_FP },
1000   { "mulf/u",		FP(0x15,0x182), BASE, ARG_FP },
1001   { "divf/u",		FP(0x15,0x183), BASE, ARG_FP },
1002   { "cvtdg/u",		FP(0x15,0x19E), BASE, ARG_FPZ1 },
1003   { "addg/u",		FP(0x15,0x1A0), BASE, ARG_FP },
1004   { "subg/u",		FP(0x15,0x1A1), BASE, ARG_FP },
1005   { "mulg/u",		FP(0x15,0x1A2), BASE, ARG_FP },
1006   { "divg/u",		FP(0x15,0x1A3), BASE, ARG_FP },
1007   { "cvtgf/u",		FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1008   { "cvtgd/u",		FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1009   { "cvtgq/v",		FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1010   { "addf/sc",		FP(0x15,0x400), BASE, ARG_FP },
1011   { "subf/sc",		FP(0x15,0x401), BASE, ARG_FP },
1012   { "mulf/sc",		FP(0x15,0x402), BASE, ARG_FP },
1013   { "divf/sc",		FP(0x15,0x403), BASE, ARG_FP },
1014   { "cvtdg/sc",		FP(0x15,0x41E), BASE, ARG_FPZ1 },
1015   { "addg/sc",		FP(0x15,0x420), BASE, ARG_FP },
1016   { "subg/sc",		FP(0x15,0x421), BASE, ARG_FP },
1017   { "mulg/sc",		FP(0x15,0x422), BASE, ARG_FP },
1018   { "divg/sc",		FP(0x15,0x423), BASE, ARG_FP },
1019   { "cvtgf/sc",		FP(0x15,0x42C), BASE, ARG_FPZ1 },
1020   { "cvtgd/sc",		FP(0x15,0x42D), BASE, ARG_FPZ1 },
1021   { "cvtgq/sc",		FP(0x15,0x42F), BASE, ARG_FPZ1 },
1022   { "addf/s",		FP(0x15,0x480), BASE, ARG_FP },
1023   { "negf/s",		FP(0x15,0x481), BASE, ARG_FPZ1 },	/* pseudo */
1024   { "subf/s",		FP(0x15,0x481), BASE, ARG_FP },
1025   { "mulf/s",		FP(0x15,0x482), BASE, ARG_FP },
1026   { "divf/s",		FP(0x15,0x483), BASE, ARG_FP },
1027   { "cvtdg/s",		FP(0x15,0x49E), BASE, ARG_FPZ1 },
1028   { "addg/s",		FP(0x15,0x4A0), BASE, ARG_FP },
1029   { "negg/s",		FP(0x15,0x4A1), BASE, ARG_FPZ1 },	/* pseudo */
1030   { "subg/s",		FP(0x15,0x4A1), BASE, ARG_FP },
1031   { "mulg/s",		FP(0x15,0x4A2), BASE, ARG_FP },
1032   { "divg/s",		FP(0x15,0x4A3), BASE, ARG_FP },
1033   { "cmpgeq/s",		FP(0x15,0x4A5), BASE, ARG_FP },
1034   { "cmpglt/s",		FP(0x15,0x4A6), BASE, ARG_FP },
1035   { "cmpgle/s",		FP(0x15,0x4A7), BASE, ARG_FP },
1036   { "cvtgf/s",		FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1037   { "cvtgd/s",		FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1038   { "cvtgq/s",		FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1039   { "addf/suc",		FP(0x15,0x500), BASE, ARG_FP },
1040   { "subf/suc",		FP(0x15,0x501), BASE, ARG_FP },
1041   { "mulf/suc",		FP(0x15,0x502), BASE, ARG_FP },
1042   { "divf/suc",		FP(0x15,0x503), BASE, ARG_FP },
1043   { "cvtdg/suc",	FP(0x15,0x51E), BASE, ARG_FPZ1 },
1044   { "addg/suc",		FP(0x15,0x520), BASE, ARG_FP },
1045   { "subg/suc",		FP(0x15,0x521), BASE, ARG_FP },
1046   { "mulg/suc",		FP(0x15,0x522), BASE, ARG_FP },
1047   { "divg/suc",		FP(0x15,0x523), BASE, ARG_FP },
1048   { "cvtgf/suc",	FP(0x15,0x52C), BASE, ARG_FPZ1 },
1049   { "cvtgd/suc",	FP(0x15,0x52D), BASE, ARG_FPZ1 },
1050   { "cvtgq/svc",	FP(0x15,0x52F), BASE, ARG_FPZ1 },
1051   { "addf/su",		FP(0x15,0x580), BASE, ARG_FP },
1052   { "subf/su",		FP(0x15,0x581), BASE, ARG_FP },
1053   { "mulf/su",		FP(0x15,0x582), BASE, ARG_FP },
1054   { "divf/su",		FP(0x15,0x583), BASE, ARG_FP },
1055   { "cvtdg/su",		FP(0x15,0x59E), BASE, ARG_FPZ1 },
1056   { "addg/su",		FP(0x15,0x5A0), BASE, ARG_FP },
1057   { "subg/su",		FP(0x15,0x5A1), BASE, ARG_FP },
1058   { "mulg/su",		FP(0x15,0x5A2), BASE, ARG_FP },
1059   { "divg/su",		FP(0x15,0x5A3), BASE, ARG_FP },
1060   { "cvtgf/su",		FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1061   { "cvtgd/su",		FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1062   { "cvtgq/sv",		FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1063 
1064   { "adds/c",		FP(0x16,0x000), BASE, ARG_FP },
1065   { "subs/c",		FP(0x16,0x001), BASE, ARG_FP },
1066   { "muls/c",		FP(0x16,0x002), BASE, ARG_FP },
1067   { "divs/c",		FP(0x16,0x003), BASE, ARG_FP },
1068   { "addt/c",		FP(0x16,0x020), BASE, ARG_FP },
1069   { "subt/c",		FP(0x16,0x021), BASE, ARG_FP },
1070   { "mult/c",		FP(0x16,0x022), BASE, ARG_FP },
1071   { "divt/c",		FP(0x16,0x023), BASE, ARG_FP },
1072   { "cvtts/c",		FP(0x16,0x02C), BASE, ARG_FPZ1 },
1073   { "cvttq/c",		FP(0x16,0x02F), BASE, ARG_FPZ1 },
1074   { "cvtqs/c",		FP(0x16,0x03C), BASE, ARG_FPZ1 },
1075   { "cvtqt/c",		FP(0x16,0x03E), BASE, ARG_FPZ1 },
1076   { "adds/m",		FP(0x16,0x040), BASE, ARG_FP },
1077   { "subs/m",		FP(0x16,0x041), BASE, ARG_FP },
1078   { "muls/m",		FP(0x16,0x042), BASE, ARG_FP },
1079   { "divs/m",		FP(0x16,0x043), BASE, ARG_FP },
1080   { "addt/m",		FP(0x16,0x060), BASE, ARG_FP },
1081   { "subt/m",		FP(0x16,0x061), BASE, ARG_FP },
1082   { "mult/m",		FP(0x16,0x062), BASE, ARG_FP },
1083   { "divt/m",		FP(0x16,0x063), BASE, ARG_FP },
1084   { "cvtts/m",		FP(0x16,0x06C), BASE, ARG_FPZ1 },
1085   { "cvttq/m",		FP(0x16,0x06F), BASE, ARG_FPZ1 },
1086   { "cvtqs/m",		FP(0x16,0x07C), BASE, ARG_FPZ1 },
1087   { "cvtqt/m",		FP(0x16,0x07E), BASE, ARG_FPZ1 },
1088   { "adds",		FP(0x16,0x080), BASE, ARG_FP },
1089   { "negs", 		FP(0x16,0x081), BASE, ARG_FPZ1 },	/* pseudo */
1090   { "subs",		FP(0x16,0x081), BASE, ARG_FP },
1091   { "muls",		FP(0x16,0x082), BASE, ARG_FP },
1092   { "divs",		FP(0x16,0x083), BASE, ARG_FP },
1093   { "addt",		FP(0x16,0x0A0), BASE, ARG_FP },
1094   { "negt", 		FP(0x16,0x0A1), BASE, ARG_FPZ1 },	/* pseudo */
1095   { "subt",		FP(0x16,0x0A1), BASE, ARG_FP },
1096   { "mult",		FP(0x16,0x0A2), BASE, ARG_FP },
1097   { "divt",		FP(0x16,0x0A3), BASE, ARG_FP },
1098   { "cmptun",		FP(0x16,0x0A4), BASE, ARG_FP },
1099   { "cmpteq",		FP(0x16,0x0A5), BASE, ARG_FP },
1100   { "cmptlt",		FP(0x16,0x0A6), BASE, ARG_FP },
1101   { "cmptle",		FP(0x16,0x0A7), BASE, ARG_FP },
1102   { "cvtts",		FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1103   { "cvttq",		FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1104   { "cvtqs",		FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1105   { "cvtqt",		FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1106   { "adds/d",		FP(0x16,0x0C0), BASE, ARG_FP },
1107   { "subs/d",		FP(0x16,0x0C1), BASE, ARG_FP },
1108   { "muls/d",		FP(0x16,0x0C2), BASE, ARG_FP },
1109   { "divs/d",		FP(0x16,0x0C3), BASE, ARG_FP },
1110   { "addt/d",		FP(0x16,0x0E0), BASE, ARG_FP },
1111   { "subt/d",		FP(0x16,0x0E1), BASE, ARG_FP },
1112   { "mult/d",		FP(0x16,0x0E2), BASE, ARG_FP },
1113   { "divt/d",		FP(0x16,0x0E3), BASE, ARG_FP },
1114   { "cvtts/d",		FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1115   { "cvttq/d",		FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1116   { "cvtqs/d",		FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1117   { "cvtqt/d",		FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1118   { "adds/uc",		FP(0x16,0x100), BASE, ARG_FP },
1119   { "subs/uc",		FP(0x16,0x101), BASE, ARG_FP },
1120   { "muls/uc",		FP(0x16,0x102), BASE, ARG_FP },
1121   { "divs/uc",		FP(0x16,0x103), BASE, ARG_FP },
1122   { "addt/uc",		FP(0x16,0x120), BASE, ARG_FP },
1123   { "subt/uc",		FP(0x16,0x121), BASE, ARG_FP },
1124   { "mult/uc",		FP(0x16,0x122), BASE, ARG_FP },
1125   { "divt/uc",		FP(0x16,0x123), BASE, ARG_FP },
1126   { "cvtts/uc",		FP(0x16,0x12C), BASE, ARG_FPZ1 },
1127   { "cvttq/vc",		FP(0x16,0x12F), BASE, ARG_FPZ1 },
1128   { "adds/um",		FP(0x16,0x140), BASE, ARG_FP },
1129   { "subs/um",		FP(0x16,0x141), BASE, ARG_FP },
1130   { "muls/um",		FP(0x16,0x142), BASE, ARG_FP },
1131   { "divs/um",		FP(0x16,0x143), BASE, ARG_FP },
1132   { "addt/um",		FP(0x16,0x160), BASE, ARG_FP },
1133   { "subt/um",		FP(0x16,0x161), BASE, ARG_FP },
1134   { "mult/um",		FP(0x16,0x162), BASE, ARG_FP },
1135   { "divt/um",		FP(0x16,0x163), BASE, ARG_FP },
1136   { "cvtts/um",		FP(0x16,0x16C), BASE, ARG_FPZ1 },
1137   { "cvttq/vm",		FP(0x16,0x16F), BASE, ARG_FPZ1 },
1138   { "adds/u",		FP(0x16,0x180), BASE, ARG_FP },
1139   { "subs/u",		FP(0x16,0x181), BASE, ARG_FP },
1140   { "muls/u",		FP(0x16,0x182), BASE, ARG_FP },
1141   { "divs/u",		FP(0x16,0x183), BASE, ARG_FP },
1142   { "addt/u",		FP(0x16,0x1A0), BASE, ARG_FP },
1143   { "subt/u",		FP(0x16,0x1A1), BASE, ARG_FP },
1144   { "mult/u",		FP(0x16,0x1A2), BASE, ARG_FP },
1145   { "divt/u",		FP(0x16,0x1A3), BASE, ARG_FP },
1146   { "cvtts/u",		FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1147   { "cvttq/v",		FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1148   { "adds/ud",		FP(0x16,0x1C0), BASE, ARG_FP },
1149   { "subs/ud",		FP(0x16,0x1C1), BASE, ARG_FP },
1150   { "muls/ud",		FP(0x16,0x1C2), BASE, ARG_FP },
1151   { "divs/ud",		FP(0x16,0x1C3), BASE, ARG_FP },
1152   { "addt/ud",		FP(0x16,0x1E0), BASE, ARG_FP },
1153   { "subt/ud",		FP(0x16,0x1E1), BASE, ARG_FP },
1154   { "mult/ud",		FP(0x16,0x1E2), BASE, ARG_FP },
1155   { "divt/ud",		FP(0x16,0x1E3), BASE, ARG_FP },
1156   { "cvtts/ud",		FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1157   { "cvttq/vd",		FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1158   { "cvtst",		FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1159   { "adds/suc",		FP(0x16,0x500), BASE, ARG_FP },
1160   { "subs/suc",		FP(0x16,0x501), BASE, ARG_FP },
1161   { "muls/suc",		FP(0x16,0x502), BASE, ARG_FP },
1162   { "divs/suc",		FP(0x16,0x503), BASE, ARG_FP },
1163   { "addt/suc",		FP(0x16,0x520), BASE, ARG_FP },
1164   { "subt/suc",		FP(0x16,0x521), BASE, ARG_FP },
1165   { "mult/suc",		FP(0x16,0x522), BASE, ARG_FP },
1166   { "divt/suc",		FP(0x16,0x523), BASE, ARG_FP },
1167   { "cvtts/suc",	FP(0x16,0x52C), BASE, ARG_FPZ1 },
1168   { "cvttq/svc",	FP(0x16,0x52F), BASE, ARG_FPZ1 },
1169   { "adds/sum",		FP(0x16,0x540), BASE, ARG_FP },
1170   { "subs/sum",		FP(0x16,0x541), BASE, ARG_FP },
1171   { "muls/sum",		FP(0x16,0x542), BASE, ARG_FP },
1172   { "divs/sum",		FP(0x16,0x543), BASE, ARG_FP },
1173   { "addt/sum",		FP(0x16,0x560), BASE, ARG_FP },
1174   { "subt/sum",		FP(0x16,0x561), BASE, ARG_FP },
1175   { "mult/sum",		FP(0x16,0x562), BASE, ARG_FP },
1176   { "divt/sum",		FP(0x16,0x563), BASE, ARG_FP },
1177   { "cvtts/sum",	FP(0x16,0x56C), BASE, ARG_FPZ1 },
1178   { "cvttq/svm",	FP(0x16,0x56F), BASE, ARG_FPZ1 },
1179   { "adds/su",		FP(0x16,0x580), BASE, ARG_FP },
1180   { "negs/su",		FP(0x16,0x581), BASE, ARG_FPZ1 },	/* pseudo */
1181   { "subs/su",		FP(0x16,0x581), BASE, ARG_FP },
1182   { "muls/su",		FP(0x16,0x582), BASE, ARG_FP },
1183   { "divs/su",		FP(0x16,0x583), BASE, ARG_FP },
1184   { "addt/su",		FP(0x16,0x5A0), BASE, ARG_FP },
1185   { "negt/su",		FP(0x16,0x5A1), BASE, ARG_FPZ1 },	/* pseudo */
1186   { "subt/su",		FP(0x16,0x5A1), BASE, ARG_FP },
1187   { "mult/su",		FP(0x16,0x5A2), BASE, ARG_FP },
1188   { "divt/su",		FP(0x16,0x5A3), BASE, ARG_FP },
1189   { "cmptun/su",	FP(0x16,0x5A4), BASE, ARG_FP },
1190   { "cmpteq/su",	FP(0x16,0x5A5), BASE, ARG_FP },
1191   { "cmptlt/su",	FP(0x16,0x5A6), BASE, ARG_FP },
1192   { "cmptle/su",	FP(0x16,0x5A7), BASE, ARG_FP },
1193   { "cvtts/su",		FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1194   { "cvttq/sv",		FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1195   { "adds/sud",		FP(0x16,0x5C0), BASE, ARG_FP },
1196   { "subs/sud",		FP(0x16,0x5C1), BASE, ARG_FP },
1197   { "muls/sud",		FP(0x16,0x5C2), BASE, ARG_FP },
1198   { "divs/sud",		FP(0x16,0x5C3), BASE, ARG_FP },
1199   { "addt/sud",		FP(0x16,0x5E0), BASE, ARG_FP },
1200   { "subt/sud",		FP(0x16,0x5E1), BASE, ARG_FP },
1201   { "mult/sud",		FP(0x16,0x5E2), BASE, ARG_FP },
1202   { "divt/sud",		FP(0x16,0x5E3), BASE, ARG_FP },
1203   { "cvtts/sud",	FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1204   { "cvttq/svd",	FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1205   { "cvtst/s",		FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1206   { "adds/suic",	FP(0x16,0x700), BASE, ARG_FP },
1207   { "subs/suic",	FP(0x16,0x701), BASE, ARG_FP },
1208   { "muls/suic",	FP(0x16,0x702), BASE, ARG_FP },
1209   { "divs/suic",	FP(0x16,0x703), BASE, ARG_FP },
1210   { "addt/suic",	FP(0x16,0x720), BASE, ARG_FP },
1211   { "subt/suic",	FP(0x16,0x721), BASE, ARG_FP },
1212   { "mult/suic",	FP(0x16,0x722), BASE, ARG_FP },
1213   { "divt/suic",	FP(0x16,0x723), BASE, ARG_FP },
1214   { "cvtts/suic",	FP(0x16,0x72C), BASE, ARG_FPZ1 },
1215   { "cvttq/svic",	FP(0x16,0x72F), BASE, ARG_FPZ1 },
1216   { "cvtqs/suic",	FP(0x16,0x73C), BASE, ARG_FPZ1 },
1217   { "cvtqt/suic",	FP(0x16,0x73E), BASE, ARG_FPZ1 },
1218   { "adds/suim",	FP(0x16,0x740), BASE, ARG_FP },
1219   { "subs/suim",	FP(0x16,0x741), BASE, ARG_FP },
1220   { "muls/suim",	FP(0x16,0x742), BASE, ARG_FP },
1221   { "divs/suim",	FP(0x16,0x743), BASE, ARG_FP },
1222   { "addt/suim",	FP(0x16,0x760), BASE, ARG_FP },
1223   { "subt/suim",	FP(0x16,0x761), BASE, ARG_FP },
1224   { "mult/suim",	FP(0x16,0x762), BASE, ARG_FP },
1225   { "divt/suim",	FP(0x16,0x763), BASE, ARG_FP },
1226   { "cvtts/suim",	FP(0x16,0x76C), BASE, ARG_FPZ1 },
1227   { "cvttq/svim",	FP(0x16,0x76F), BASE, ARG_FPZ1 },
1228   { "cvtqs/suim",	FP(0x16,0x77C), BASE, ARG_FPZ1 },
1229   { "cvtqt/suim",	FP(0x16,0x77E), BASE, ARG_FPZ1 },
1230   { "adds/sui",		FP(0x16,0x780), BASE, ARG_FP },
1231   { "negs/sui", 	FP(0x16,0x781), BASE, ARG_FPZ1 },	/* pseudo */
1232   { "subs/sui",		FP(0x16,0x781), BASE, ARG_FP },
1233   { "muls/sui",		FP(0x16,0x782), BASE, ARG_FP },
1234   { "divs/sui",		FP(0x16,0x783), BASE, ARG_FP },
1235   { "addt/sui",		FP(0x16,0x7A0), BASE, ARG_FP },
1236   { "negt/sui", 	FP(0x16,0x7A1), BASE, ARG_FPZ1 },	/* pseudo */
1237   { "subt/sui",		FP(0x16,0x7A1), BASE, ARG_FP },
1238   { "mult/sui",		FP(0x16,0x7A2), BASE, ARG_FP },
1239   { "divt/sui",		FP(0x16,0x7A3), BASE, ARG_FP },
1240   { "cvtts/sui",	FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1241   { "cvttq/svi",	FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1242   { "cvtqs/sui",	FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1243   { "cvtqt/sui",	FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1244   { "adds/suid",	FP(0x16,0x7C0), BASE, ARG_FP },
1245   { "subs/suid",	FP(0x16,0x7C1), BASE, ARG_FP },
1246   { "muls/suid",	FP(0x16,0x7C2), BASE, ARG_FP },
1247   { "divs/suid",	FP(0x16,0x7C3), BASE, ARG_FP },
1248   { "addt/suid",	FP(0x16,0x7E0), BASE, ARG_FP },
1249   { "subt/suid",	FP(0x16,0x7E1), BASE, ARG_FP },
1250   { "mult/suid",	FP(0x16,0x7E2), BASE, ARG_FP },
1251   { "divt/suid",	FP(0x16,0x7E3), BASE, ARG_FP },
1252   { "cvtts/suid",	FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1253   { "cvttq/svid",	FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1254   { "cvtqs/suid",	FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1255   { "cvtqt/suid",	FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1256 
1257   { "cvtlq",		FP(0x17,0x010), BASE, ARG_FPZ1 },
1258   { "fnop",		FP(0x17,0x020), BASE, { ZA, ZB, ZC } },	/* pseudo */
1259   { "fclr",		FP(0x17,0x020), BASE, { ZA, ZB, FC } },	/* pseudo */
1260   { "fabs",		FP(0x17,0x020), BASE, ARG_FPZ1 },	/* pseudo */
1261   { "fmov",		FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1262   { "cpys",		FP(0x17,0x020), BASE, ARG_FP },
1263   { "fneg",		FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1264   { "cpysn",		FP(0x17,0x021), BASE, ARG_FP },
1265   { "cpyse",		FP(0x17,0x022), BASE, ARG_FP },
1266   { "mt_fpcr",		FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1267   { "mf_fpcr",		FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1268   { "fcmoveq",		FP(0x17,0x02A), BASE, ARG_FP },
1269   { "fcmovne",		FP(0x17,0x02B), BASE, ARG_FP },
1270   { "fcmovlt",		FP(0x17,0x02C), BASE, ARG_FP },
1271   { "fcmovge",		FP(0x17,0x02D), BASE, ARG_FP },
1272   { "fcmovle",		FP(0x17,0x02E), BASE, ARG_FP },
1273   { "fcmovgt",		FP(0x17,0x02F), BASE, ARG_FP },
1274   { "cvtql",		FP(0x17,0x030), BASE, ARG_FPZ1 },
1275   { "cvtql/v",		FP(0x17,0x130), BASE, ARG_FPZ1 },
1276   { "cvtql/sv",		FP(0x17,0x530), BASE, ARG_FPZ1 },
1277 
1278   { "trapb",		MFC(0x18,0x0000), BASE, ARG_NONE },
1279   { "draint",		MFC(0x18,0x0000), BASE, ARG_NONE },	/* alias */
1280   { "excb",		MFC(0x18,0x0400), BASE, ARG_NONE },
1281   { "mb",		MFC(0x18,0x4000), BASE, ARG_NONE },
1282   { "wmb",		MFC(0x18,0x4400), BASE, ARG_NONE },
1283   { "fetch",		MFC(0x18,0x8000), BASE, { ZA, PRB } },
1284   { "fetch_m",		MFC(0x18,0xA000), BASE, { ZA, PRB } },
1285   { "rpcc",		MFC(0x18,0xC000), BASE, { RA } },
1286   { "rc",		MFC(0x18,0xE000), BASE, { RA } },
1287   { "ecb",		MFC(0x18,0xE800), BASE, { ZA, PRB } },	/* ev56 una */
1288   { "rs",		MFC(0x18,0xF000), BASE, { RA } },
1289   { "wh64",		MFC(0x18,0xF800), BASE, { ZA, PRB } },	/* ev56 una */
1290   { "wh64en",		MFC(0x18,0xFC00), BASE, { ZA, PRB } },	/* ev7 una */
1291 
1292   { "hw_mfpr",		OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1293   { "hw_mfpr",		OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1294   { "hw_mfpr",		OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1295   { "hw_mfpr/i",	OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1296   { "hw_mfpr/a",	OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1297   { "hw_mfpr/ai",	OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1298   { "hw_mfpr/p",	OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1299   { "hw_mfpr/pi",	OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1300   { "hw_mfpr/pa",	OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1301   { "hw_mfpr/pai",	OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1302   { "pal19",		PCD(0x19), BASE, ARG_PCD },
1303 
1304   { "jmp",		MBR_(0x1A,0), MBR_MASK | 0x3FFF,	/* pseudo */
1305 			BASE, { ZA, CPRB } },
1306   { "jmp",		MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1307   { "jsr",		MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1308   { "ret",		MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1309 			0xFFFFFFFF, BASE, { 0 } },
1310   { "ret",		MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1311   { "jcr",		MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1312   { "jsr_coroutine",	MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1313 
1314   { "hw_ldl",		EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1315   { "hw_ldl",		EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1316   { "hw_ldl",		EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1317   { "hw_ldl/a",		EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1318   { "hw_ldl/a",		EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1319   { "hw_ldl/a",		EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1320   { "hw_ldl/al",	EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1321   { "hw_ldl/ar",	EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1322   { "hw_ldl/av",	EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1323   { "hw_ldl/avl",	EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1324   { "hw_ldl/aw",	EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1325   { "hw_ldl/awl",	EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1326   { "hw_ldl/awv",	EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1327   { "hw_ldl/awvl",	EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1328   { "hw_ldl/l",		EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1329   { "hw_ldl/p",		EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1330   { "hw_ldl/p",		EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1331   { "hw_ldl/p",		EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1332   { "hw_ldl/pa",	EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1333   { "hw_ldl/pa",	EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1334   { "hw_ldl/pal",	EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1335   { "hw_ldl/par",	EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1336   { "hw_ldl/pav",	EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1337   { "hw_ldl/pavl",	EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1338   { "hw_ldl/paw",	EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1339   { "hw_ldl/pawl",	EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1340   { "hw_ldl/pawv",	EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1341   { "hw_ldl/pawvl",	EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1342   { "hw_ldl/pl",	EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1343   { "hw_ldl/pr",	EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1344   { "hw_ldl/pv",	EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1345   { "hw_ldl/pvl",	EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1346   { "hw_ldl/pw",	EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1347   { "hw_ldl/pwl",	EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1348   { "hw_ldl/pwv",	EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1349   { "hw_ldl/pwvl",	EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1350   { "hw_ldl/r",		EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1351   { "hw_ldl/v",		EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1352   { "hw_ldl/v",		EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1353   { "hw_ldl/vl",	EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1354   { "hw_ldl/w",		EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1355   { "hw_ldl/w",		EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1356   { "hw_ldl/wa",	EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1357   { "hw_ldl/wl",	EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1358   { "hw_ldl/wv",	EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1359   { "hw_ldl/wvl",	EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1360   { "hw_ldl_l",		EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1361   { "hw_ldl_l/a",	EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1362   { "hw_ldl_l/av",	EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1363   { "hw_ldl_l/aw",	EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1364   { "hw_ldl_l/awv",	EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1365   { "hw_ldl_l/p",	EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1366   { "hw_ldl_l/p",	EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1367   { "hw_ldl_l/pa",	EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1368   { "hw_ldl_l/pav",	EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1369   { "hw_ldl_l/paw",	EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1370   { "hw_ldl_l/pawv",	EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1371   { "hw_ldl_l/pv",	EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1372   { "hw_ldl_l/pw",	EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1373   { "hw_ldl_l/pwv",	EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1374   { "hw_ldl_l/v",	EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1375   { "hw_ldl_l/w",	EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1376   { "hw_ldl_l/wv",	EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1377   { "hw_ldq",		EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1378   { "hw_ldq",		EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1379   { "hw_ldq",		EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1380   { "hw_ldq/a",		EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1381   { "hw_ldq/a",		EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1382   { "hw_ldq/a",		EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1383   { "hw_ldq/al",	EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1384   { "hw_ldq/ar",	EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1385   { "hw_ldq/av",	EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1386   { "hw_ldq/avl",	EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1387   { "hw_ldq/aw",	EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1388   { "hw_ldq/awl",	EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1389   { "hw_ldq/awv",	EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1390   { "hw_ldq/awvl",	EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1391   { "hw_ldq/l",		EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1392   { "hw_ldq/p",		EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1393   { "hw_ldq/p",		EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1394   { "hw_ldq/p",		EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1395   { "hw_ldq/pa",	EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1396   { "hw_ldq/pa",	EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1397   { "hw_ldq/pal",	EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1398   { "hw_ldq/par",	EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1399   { "hw_ldq/pav",	EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1400   { "hw_ldq/pavl",	EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1401   { "hw_ldq/paw",	EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1402   { "hw_ldq/pawl",	EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1403   { "hw_ldq/pawv",	EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1404   { "hw_ldq/pawvl",	EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1405   { "hw_ldq/pl",	EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1406   { "hw_ldq/pr",	EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1407   { "hw_ldq/pv",	EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1408   { "hw_ldq/pvl",	EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1409   { "hw_ldq/pw",	EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1410   { "hw_ldq/pwl",	EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1411   { "hw_ldq/pwv",	EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1412   { "hw_ldq/pwvl",	EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1413   { "hw_ldq/r",		EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1414   { "hw_ldq/v",		EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1415   { "hw_ldq/v",		EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1416   { "hw_ldq/vl",	EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1417   { "hw_ldq/w",		EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1418   { "hw_ldq/w",		EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1419   { "hw_ldq/wa",	EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1420   { "hw_ldq/wl",	EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1421   { "hw_ldq/wv",	EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1422   { "hw_ldq/wvl",	EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1423   { "hw_ldq_l",		EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1424   { "hw_ldq_l/a",	EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1425   { "hw_ldq_l/av",	EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1426   { "hw_ldq_l/aw",	EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1427   { "hw_ldq_l/awv",	EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1428   { "hw_ldq_l/p",	EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1429   { "hw_ldq_l/p",	EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1430   { "hw_ldq_l/pa",	EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1431   { "hw_ldq_l/pav",	EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1432   { "hw_ldq_l/paw",	EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1433   { "hw_ldq_l/pawv",	EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1434   { "hw_ldq_l/pv",	EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1435   { "hw_ldq_l/pw",	EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1436   { "hw_ldq_l/pwv",	EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1437   { "hw_ldq_l/v",	EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1438   { "hw_ldq_l/w",	EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1439   { "hw_ldq_l/wv",	EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1440   { "hw_ld",		EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1441   { "hw_ld",		EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1442   { "hw_ld/a",		EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1443   { "hw_ld/a",		EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1444   { "hw_ld/al",		EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1445   { "hw_ld/aq",		EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1446   { "hw_ld/aq",		EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1447   { "hw_ld/aql",	EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1448   { "hw_ld/aqv",	EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1449   { "hw_ld/aqvl",	EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1450   { "hw_ld/ar",		EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1451   { "hw_ld/arq",	EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1452   { "hw_ld/av",		EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1453   { "hw_ld/avl",	EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1454   { "hw_ld/aw",		EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1455   { "hw_ld/awl",	EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1456   { "hw_ld/awq",	EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1457   { "hw_ld/awql",	EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1458   { "hw_ld/awqv",	EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1459   { "hw_ld/awqvl",	EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1460   { "hw_ld/awv",	EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1461   { "hw_ld/awvl",	EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1462   { "hw_ld/l",		EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1463   { "hw_ld/p",		EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1464   { "hw_ld/p",		EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1465   { "hw_ld/pa",		EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1466   { "hw_ld/pa",		EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1467   { "hw_ld/pal",	EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1468   { "hw_ld/paq",	EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1469   { "hw_ld/paq",	EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1470   { "hw_ld/paql",	EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1471   { "hw_ld/paqv",	EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1472   { "hw_ld/paqvl",	EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1473   { "hw_ld/par",	EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1474   { "hw_ld/parq",	EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1475   { "hw_ld/pav",	EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1476   { "hw_ld/pavl",	EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1477   { "hw_ld/paw",	EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1478   { "hw_ld/pawl",	EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1479   { "hw_ld/pawq",	EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1480   { "hw_ld/pawql",	EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1481   { "hw_ld/pawqv",	EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1482   { "hw_ld/pawqvl",	EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1483   { "hw_ld/pawv",	EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1484   { "hw_ld/pawvl",	EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1485   { "hw_ld/pl",		EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1486   { "hw_ld/pq",		EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1487   { "hw_ld/pq",		EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1488   { "hw_ld/pql",	EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1489   { "hw_ld/pqv",	EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1490   { "hw_ld/pqvl",	EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1491   { "hw_ld/pr",		EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1492   { "hw_ld/prq",	EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1493   { "hw_ld/pv",		EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1494   { "hw_ld/pvl",	EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1495   { "hw_ld/pw",		EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1496   { "hw_ld/pwl",	EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1497   { "hw_ld/pwq",	EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1498   { "hw_ld/pwql",	EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1499   { "hw_ld/pwqv",	EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1500   { "hw_ld/pwqvl",	EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1501   { "hw_ld/pwv",	EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1502   { "hw_ld/pwvl",	EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1503   { "hw_ld/q",		EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1504   { "hw_ld/q",		EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1505   { "hw_ld/ql",		EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1506   { "hw_ld/qv",		EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1507   { "hw_ld/qvl",	EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1508   { "hw_ld/r",		EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1509   { "hw_ld/rq",		EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1510   { "hw_ld/v",		EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1511   { "hw_ld/vl",		EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1512   { "hw_ld/w",		EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1513   { "hw_ld/wl",		EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1514   { "hw_ld/wq",		EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1515   { "hw_ld/wql",	EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1516   { "hw_ld/wqv",	EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1517   { "hw_ld/wqvl",	EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1518   { "hw_ld/wv",		EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1519   { "hw_ld/wvl",	EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1520   { "pal1b",		PCD(0x1B), BASE, ARG_PCD },
1521 
1522   { "sextb",		OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1523   { "sextw",		OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1524   { "ctpop",		OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1525   { "perr",		OPR(0x1C, 0x31), MAX, ARG_OPR },
1526   { "ctlz",		OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1527   { "cttz",		OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1528   { "unpkbw",		OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1529   { "unpkbl",		OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1530   { "pkwb",		OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1531   { "pklb",		OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1532   { "minsb8", 		OPR(0x1C, 0x38), MAX, ARG_OPR },
1533   { "minsb8", 		OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1534   { "minsw4", 		OPR(0x1C, 0x39), MAX, ARG_OPR },
1535   { "minsw4", 		OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1536   { "minub8", 		OPR(0x1C, 0x3A), MAX, ARG_OPR },
1537   { "minub8", 		OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1538   { "minuw4", 		OPR(0x1C, 0x3B), MAX, ARG_OPR },
1539   { "minuw4", 		OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1540   { "maxub8",		OPR(0x1C, 0x3C), MAX, ARG_OPR },
1541   { "maxub8",		OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1542   { "maxuw4",		OPR(0x1C, 0x3D), MAX, ARG_OPR },
1543   { "maxuw4",		OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1544   { "maxsb8",		OPR(0x1C, 0x3E), MAX, ARG_OPR },
1545   { "maxsb8",		OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1546   { "maxsw4",		OPR(0x1C, 0x3F), MAX, ARG_OPR },
1547   { "maxsw4",		OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1548   { "ftoit",		FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1549   { "ftois",		FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1550 
1551   { "hw_mtpr",		OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1552   { "hw_mtpr",		OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1553   { "hw_mtpr",		OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1554   { "hw_mtpr/i", 	OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1555   { "hw_mtpr/a", 	OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1556   { "hw_mtpr/ai",	OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1557   { "hw_mtpr/p", 	OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1558   { "hw_mtpr/pi",	OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1559   { "hw_mtpr/pa",	OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1560   { "hw_mtpr/pai",	OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1561   { "pal1d",		PCD(0x1D), BASE, ARG_PCD },
1562 
1563   { "hw_rei",		SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1564   { "hw_rei_stall",	SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1565   { "hw_jmp", 		EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1566   { "hw_jsr", 		EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1567   { "hw_ret", 		EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1568   { "hw_jcr", 		EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1569   { "hw_coroutine",	EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1570   { "hw_jmp/stall",	EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1571   { "hw_jsr/stall", 	EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1572   { "hw_ret/stall",	EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1573   { "hw_jcr/stall", 	EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1574   { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1575   { "pal1e",		PCD(0x1E), BASE, ARG_PCD },
1576 
1577   { "hw_stl",		EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1578   { "hw_stl",		EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1579   { "hw_stl",		EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1580   { "hw_stl/a",		EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1581   { "hw_stl/a",		EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1582   { "hw_stl/a",		EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1583   { "hw_stl/ac",	EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1584   { "hw_stl/ar",	EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1585   { "hw_stl/av",	EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1586   { "hw_stl/avc",	EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1587   { "hw_stl/c",		EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1588   { "hw_stl/p",		EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1589   { "hw_stl/p",		EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1590   { "hw_stl/p",		EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1591   { "hw_stl/pa",	EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1592   { "hw_stl/pa",	EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1593   { "hw_stl/pac",	EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1594   { "hw_stl/pav",	EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1595   { "hw_stl/pavc",	EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1596   { "hw_stl/pc",	EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1597   { "hw_stl/pr",	EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1598   { "hw_stl/pv",	EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1599   { "hw_stl/pvc",	EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1600   { "hw_stl/r",		EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1601   { "hw_stl/v",		EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1602   { "hw_stl/vc",	EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1603   { "hw_stl_c",		EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1604   { "hw_stl_c/a",	EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1605   { "hw_stl_c/av",	EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1606   { "hw_stl_c/p",	EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1607   { "hw_stl_c/p",	EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1608   { "hw_stl_c/pa",	EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1609   { "hw_stl_c/pav",	EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1610   { "hw_stl_c/pv",	EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1611   { "hw_stl_c/v",	EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1612   { "hw_stq",		EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1613   { "hw_stq",		EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1614   { "hw_stq",		EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1615   { "hw_stq/a",		EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1616   { "hw_stq/a",		EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1617   { "hw_stq/a",		EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1618   { "hw_stq/ac",	EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1619   { "hw_stq/ar",	EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1620   { "hw_stq/av",	EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1621   { "hw_stq/avc",	EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1622   { "hw_stq/c",		EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1623   { "hw_stq/p",		EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1624   { "hw_stq/p",		EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1625   { "hw_stq/p",		EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1626   { "hw_stq/pa",	EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1627   { "hw_stq/pa",	EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1628   { "hw_stq/pac",	EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1629   { "hw_stq/par",	EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1630   { "hw_stq/par",	EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1631   { "hw_stq/pav",	EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1632   { "hw_stq/pavc",	EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1633   { "hw_stq/pc",	EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1634   { "hw_stq/pr",	EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1635   { "hw_stq/pv",	EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1636   { "hw_stq/pvc",	EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1637   { "hw_stq/r",		EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1638   { "hw_stq/v",		EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1639   { "hw_stq/vc",	EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1640   { "hw_stq_c",		EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1641   { "hw_stq_c/a",	EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1642   { "hw_stq_c/av",	EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1643   { "hw_stq_c/p",	EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1644   { "hw_stq_c/p",	EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1645   { "hw_stq_c/pa",	EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1646   { "hw_stq_c/pav",	EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1647   { "hw_stq_c/pv",	EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1648   { "hw_stq_c/v",	EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1649   { "hw_st",		EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1650   { "hw_st",		EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1651   { "hw_st/a",		EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1652   { "hw_st/a",		EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1653   { "hw_st/ac",		EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1654   { "hw_st/aq",		EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1655   { "hw_st/aq",		EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1656   { "hw_st/aqc",	EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1657   { "hw_st/aqv",	EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1658   { "hw_st/aqvc",	EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1659   { "hw_st/ar",		EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1660   { "hw_st/arq",	EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1661   { "hw_st/av",		EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1662   { "hw_st/avc",	EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1663   { "hw_st/c",		EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1664   { "hw_st/p",		EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1665   { "hw_st/p",		EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1666   { "hw_st/pa",		EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1667   { "hw_st/pa",		EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1668   { "hw_st/pac",	EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1669   { "hw_st/paq",	EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1670   { "hw_st/paq",	EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1671   { "hw_st/paqc",	EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1672   { "hw_st/paqv",	EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1673   { "hw_st/paqvc",	EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1674   { "hw_st/par",	EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1675   { "hw_st/parq",	EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1676   { "hw_st/pav",	EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1677   { "hw_st/pavc",	EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1678   { "hw_st/pc",		EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1679   { "hw_st/pq",		EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1680   { "hw_st/pq",		EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1681   { "hw_st/pqc",	EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1682   { "hw_st/pqv",	EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1683   { "hw_st/pqvc",	EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1684   { "hw_st/pr",		EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1685   { "hw_st/prq",	EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1686   { "hw_st/pv",		EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1687   { "hw_st/pvc",	EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1688   { "hw_st/q",		EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1689   { "hw_st/q",		EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1690   { "hw_st/qc",		EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1691   { "hw_st/qv",		EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1692   { "hw_st/qvc",	EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1693   { "hw_st/r",		EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1694   { "hw_st/v",		EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1695   { "hw_st/vc",		EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1696   { "pal1f",		PCD(0x1F), BASE, ARG_PCD },
1697 
1698   { "ldf",		MEM(0x20), BASE, ARG_FMEM },
1699   { "ldg",		MEM(0x21), BASE, ARG_FMEM },
1700   { "lds",		MEM(0x22), BASE, ARG_FMEM },
1701   { "ldt",		MEM(0x23), BASE, ARG_FMEM },
1702   { "stf",		MEM(0x24), BASE, ARG_FMEM },
1703   { "stg",		MEM(0x25), BASE, ARG_FMEM },
1704   { "sts",		MEM(0x26), BASE, ARG_FMEM },
1705   { "stt",		MEM(0x27), BASE, ARG_FMEM },
1706 
1707   { "ldl",		MEM(0x28), BASE, ARG_MEM },
1708   { "ldq",		MEM(0x29), BASE, ARG_MEM },
1709   { "ldl_l",		MEM(0x2A), BASE, ARG_MEM },
1710   { "ldq_l",		MEM(0x2B), BASE, ARG_MEM },
1711   { "stl",		MEM(0x2C), BASE, ARG_MEM },
1712   { "stq",		MEM(0x2D), BASE, ARG_MEM },
1713   { "stl_c",		MEM(0x2E), BASE, ARG_MEM },
1714   { "stq_c",		MEM(0x2F), BASE, ARG_MEM },
1715 
1716   { "br",		BRA(0x30), BASE, { ZA, BDISP } },	/* pseudo */
1717   { "br",		BRA(0x30), BASE, ARG_BRA },
1718   { "fbeq",		BRA(0x31), BASE, ARG_FBRA },
1719   { "fblt",		BRA(0x32), BASE, ARG_FBRA },
1720   { "fble",		BRA(0x33), BASE, ARG_FBRA },
1721   { "bsr",		BRA(0x34), BASE, ARG_BRA },
1722   { "fbne",		BRA(0x35), BASE, ARG_FBRA },
1723   { "fbge",		BRA(0x36), BASE, ARG_FBRA },
1724   { "fbgt",		BRA(0x37), BASE, ARG_FBRA },
1725   { "blbc",		BRA(0x38), BASE, ARG_BRA },
1726   { "beq",		BRA(0x39), BASE, ARG_BRA },
1727   { "blt",		BRA(0x3A), BASE, ARG_BRA },
1728   { "ble",		BRA(0x3B), BASE, ARG_BRA },
1729   { "blbs",		BRA(0x3C), BASE, ARG_BRA },
1730   { "bne",		BRA(0x3D), BASE, ARG_BRA },
1731   { "bge",		BRA(0x3E), BASE, ARG_BRA },
1732   { "bgt",		BRA(0x3F), BASE, ARG_BRA },
1733 };
1734 
1735 const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1736 
1737 /* OSF register names.  */
1738 
1739 static const char * const osf_regnames[64] = {
1740   "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1741   "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1742   "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1743   "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1744   "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1745   "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1746   "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1747   "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1748 };
1749 
1750 /* VMS register names.  */
1751 
1752 static const char * const vms_regnames[64] = {
1753   "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1754   "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1755   "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1756   "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1757   "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1758   "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1759   "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1760   "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1761 };
1762 
1763 /* Disassemble Alpha instructions.  */
1764 
1765 int
1766 print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
1767 {
1768   static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1769   const char * const * regnames;
1770   const struct alpha_opcode *opcode, *opcode_end;
1771   const unsigned char *opindex;
1772   unsigned insn, op, isa_mask;
1773   int need_comma;
1774 
1775   /* Initialize the majorop table the first time through */
1776   if (!opcode_index[0])
1777     {
1778       opcode = alpha_opcodes;
1779       opcode_end = opcode + alpha_num_opcodes;
1780 
1781       for (op = 0; op < AXP_NOPS; ++op)
1782 	{
1783 	  opcode_index[op] = opcode;
1784 	  while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1785 	    ++opcode;
1786 	}
1787       opcode_index[op] = opcode;
1788     }
1789 
1790   if (info->flavour == bfd_target_evax_flavour)
1791     regnames = vms_regnames;
1792   else
1793     regnames = osf_regnames;
1794 
1795   isa_mask = AXP_OPCODE_NOPAL;
1796   switch (info->mach)
1797     {
1798     case bfd_mach_alpha_ev4:
1799       isa_mask |= AXP_OPCODE_EV4;
1800       break;
1801     case bfd_mach_alpha_ev5:
1802       isa_mask |= AXP_OPCODE_EV5;
1803       break;
1804     case bfd_mach_alpha_ev6:
1805       isa_mask |= AXP_OPCODE_EV6;
1806       break;
1807     }
1808 
1809   /* Read the insn into a host word */
1810   {
1811     bfd_byte buffer[4];
1812     int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1813     if (status != 0)
1814       {
1815 	(*info->memory_error_func) (status, memaddr, info);
1816 	return -1;
1817       }
1818     insn = bfd_getl32 (buffer);
1819   }
1820 
1821   /* Get the major opcode of the instruction.  */
1822   op = AXP_OP (insn);
1823 
1824   /* Find the first match in the opcode table.  */
1825   opcode_end = opcode_index[op + 1];
1826   for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1827     {
1828       if ((insn ^ opcode->opcode) & opcode->mask)
1829 	continue;
1830 
1831       if (!(opcode->flags & isa_mask))
1832 	continue;
1833 
1834       /* Make two passes over the operands.  First see if any of them
1835 	 have extraction functions, and, if they do, make sure the
1836 	 instruction is valid.  */
1837       {
1838 	int invalid = 0;
1839 	for (opindex = opcode->operands; *opindex != 0; opindex++)
1840 	  {
1841 	    const struct alpha_operand *operand = alpha_operands + *opindex;
1842 	    if (operand->extract)
1843 	      (*operand->extract) (insn, &invalid);
1844 	  }
1845 	if (invalid)
1846 	  continue;
1847       }
1848 
1849       /* The instruction is valid.  */
1850       goto found;
1851     }
1852 
1853   /* No instruction found */
1854   (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1855 
1856   return 4;
1857 
1858 found:
1859   (*info->fprintf_func) (info->stream, "%s", opcode->name);
1860   if (opcode->operands[0] != 0)
1861     (*info->fprintf_func) (info->stream, "\t");
1862 
1863   /* Now extract and print the operands.  */
1864   need_comma = 0;
1865   for (opindex = opcode->operands; *opindex != 0; opindex++)
1866     {
1867       const struct alpha_operand *operand = alpha_operands + *opindex;
1868       int value;
1869 
1870       /* Operands that are marked FAKE are simply ignored.  We
1871 	 already made sure that the extract function considered
1872 	 the instruction to be valid.  */
1873       if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1874 	continue;
1875 
1876       /* Extract the value from the instruction.  */
1877       if (operand->extract)
1878 	value = (*operand->extract) (insn, (int *) NULL);
1879       else
1880 	{
1881 	  value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1882 	  if (operand->flags & AXP_OPERAND_SIGNED)
1883 	    {
1884 	      int signbit = 1 << (operand->bits - 1);
1885 	      value = (value ^ signbit) - signbit;
1886 	    }
1887 	}
1888 
1889       if (need_comma &&
1890 	  ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1891 	   != AXP_OPERAND_PARENS))
1892 	{
1893 	  (*info->fprintf_func) (info->stream, ",");
1894 	}
1895       if (operand->flags & AXP_OPERAND_PARENS)
1896 	(*info->fprintf_func) (info->stream, "(");
1897 
1898       /* Print the operand as directed by the flags.  */
1899       if (operand->flags & AXP_OPERAND_IR)
1900 	(*info->fprintf_func) (info->stream, "%s", regnames[value]);
1901       else if (operand->flags & AXP_OPERAND_FPR)
1902 	(*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1903       else if (operand->flags & AXP_OPERAND_RELATIVE)
1904 	(*info->print_address_func) (memaddr + 4 + value, info);
1905       else if (operand->flags & AXP_OPERAND_SIGNED)
1906 	(*info->fprintf_func) (info->stream, "%d", value);
1907       else
1908 	(*info->fprintf_func) (info->stream, "%#x", value);
1909 
1910       if (operand->flags & AXP_OPERAND_PARENS)
1911 	(*info->fprintf_func) (info->stream, ")");
1912       need_comma = 1;
1913     }
1914 
1915   return 4;
1916 }
1917