1 /* 2 * CPU thread main loop - common bits for user and system mode emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "exec/cpu-common.h" 23 #include "hw/core/cpu.h" 24 #include "sysemu/cpus.h" 25 #include "qemu/lockable.h" 26 #include "trace/trace-root.h" 27 28 QemuMutex qemu_cpu_list_lock; 29 static QemuCond exclusive_cond; 30 static QemuCond exclusive_resume; 31 static QemuCond qemu_work_cond; 32 33 /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written 34 * under qemu_cpu_list_lock, read with atomic operations. 35 */ 36 static int pending_cpus; 37 38 void qemu_init_cpu_list(void) 39 { 40 /* This is needed because qemu_init_cpu_list is also called by the 41 * child process in a fork. */ 42 pending_cpus = 0; 43 44 qemu_mutex_init(&qemu_cpu_list_lock); 45 qemu_cond_init(&exclusive_cond); 46 qemu_cond_init(&exclusive_resume); 47 qemu_cond_init(&qemu_work_cond); 48 } 49 50 void cpu_list_lock(void) 51 { 52 qemu_mutex_lock(&qemu_cpu_list_lock); 53 } 54 55 void cpu_list_unlock(void) 56 { 57 qemu_mutex_unlock(&qemu_cpu_list_lock); 58 } 59 60 61 int cpu_get_free_index(void) 62 { 63 CPUState *some_cpu; 64 int max_cpu_index = 0; 65 66 CPU_FOREACH(some_cpu) { 67 if (some_cpu->cpu_index >= max_cpu_index) { 68 max_cpu_index = some_cpu->cpu_index + 1; 69 } 70 } 71 return max_cpu_index; 72 } 73 74 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue); 75 static unsigned int cpu_list_generation_id; 76 77 unsigned int cpu_list_generation_id_get(void) 78 { 79 return cpu_list_generation_id; 80 } 81 82 void cpu_list_add(CPUState *cpu) 83 { 84 static bool cpu_index_auto_assigned; 85 86 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 87 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { 88 cpu_index_auto_assigned = true; 89 cpu->cpu_index = cpu_get_free_index(); 90 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); 91 } else { 92 assert(!cpu_index_auto_assigned); 93 } 94 QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node); 95 cpu_list_generation_id++; 96 } 97 98 void cpu_list_remove(CPUState *cpu) 99 { 100 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 101 if (!QTAILQ_IN_USE(cpu, node)) { 102 /* there is nothing to undo since cpu_exec_init() hasn't been called */ 103 return; 104 } 105 106 QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node); 107 cpu->cpu_index = UNASSIGNED_CPU_INDEX; 108 cpu_list_generation_id++; 109 } 110 111 CPUState *qemu_get_cpu(int index) 112 { 113 CPUState *cpu; 114 115 CPU_FOREACH(cpu) { 116 if (cpu->cpu_index == index) { 117 return cpu; 118 } 119 } 120 121 return NULL; 122 } 123 124 /* current CPU in the current thread. It is only valid inside cpu_exec() */ 125 __thread CPUState *current_cpu; 126 127 struct qemu_work_item { 128 QSIMPLEQ_ENTRY(qemu_work_item) node; 129 run_on_cpu_func func; 130 run_on_cpu_data data; 131 bool free, exclusive, done; 132 }; 133 134 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi) 135 { 136 qemu_mutex_lock(&cpu->work_mutex); 137 QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node); 138 wi->done = false; 139 qemu_mutex_unlock(&cpu->work_mutex); 140 141 qemu_cpu_kick(cpu); 142 } 143 144 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 145 QemuMutex *mutex) 146 { 147 struct qemu_work_item wi; 148 149 if (qemu_cpu_is_self(cpu)) { 150 func(cpu, data); 151 return; 152 } 153 154 wi.func = func; 155 wi.data = data; 156 wi.done = false; 157 wi.free = false; 158 wi.exclusive = false; 159 160 queue_work_on_cpu(cpu, &wi); 161 while (!qatomic_load_acquire(&wi.done)) { 162 CPUState *self_cpu = current_cpu; 163 164 qemu_cond_wait(&qemu_work_cond, mutex); 165 current_cpu = self_cpu; 166 } 167 } 168 169 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) 170 { 171 struct qemu_work_item *wi; 172 173 wi = g_new0(struct qemu_work_item, 1); 174 wi->func = func; 175 wi->data = data; 176 wi->free = true; 177 178 queue_work_on_cpu(cpu, wi); 179 } 180 181 /* Wait for pending exclusive operations to complete. The CPU list lock 182 must be held. */ 183 static inline void exclusive_idle(void) 184 { 185 while (pending_cpus) { 186 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock); 187 } 188 } 189 190 /* Start an exclusive operation. 191 Must only be called from outside cpu_exec. */ 192 void start_exclusive(void) 193 { 194 CPUState *other_cpu; 195 int running_cpus; 196 197 /* Ensure we are not running, or start_exclusive will be blocked. */ 198 g_assert(!current_cpu->running); 199 200 if (current_cpu->exclusive_context_count) { 201 current_cpu->exclusive_context_count++; 202 return; 203 } 204 205 qemu_mutex_lock(&qemu_cpu_list_lock); 206 exclusive_idle(); 207 208 /* Make all other cpus stop executing. */ 209 qatomic_set(&pending_cpus, 1); 210 211 /* Write pending_cpus before reading other_cpu->running. */ 212 smp_mb(); 213 running_cpus = 0; 214 CPU_FOREACH(other_cpu) { 215 if (qatomic_read(&other_cpu->running)) { 216 other_cpu->has_waiter = true; 217 running_cpus++; 218 qemu_cpu_kick(other_cpu); 219 } 220 } 221 222 qatomic_set(&pending_cpus, running_cpus + 1); 223 while (pending_cpus > 1) { 224 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock); 225 } 226 227 /* Can release mutex, no one will enter another exclusive 228 * section until end_exclusive resets pending_cpus to 0. 229 */ 230 qemu_mutex_unlock(&qemu_cpu_list_lock); 231 232 current_cpu->exclusive_context_count = 1; 233 } 234 235 /* Finish an exclusive operation. */ 236 void end_exclusive(void) 237 { 238 current_cpu->exclusive_context_count--; 239 if (current_cpu->exclusive_context_count) { 240 return; 241 } 242 243 qemu_mutex_lock(&qemu_cpu_list_lock); 244 qatomic_set(&pending_cpus, 0); 245 qemu_cond_broadcast(&exclusive_resume); 246 qemu_mutex_unlock(&qemu_cpu_list_lock); 247 } 248 249 /* Wait for exclusive ops to finish, and begin cpu execution. */ 250 void cpu_exec_start(CPUState *cpu) 251 { 252 qatomic_set(&cpu->running, true); 253 254 /* Write cpu->running before reading pending_cpus. */ 255 smp_mb(); 256 257 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1. 258 * After taking the lock we'll see cpu->has_waiter == true and run---not 259 * for long because start_exclusive kicked us. cpu_exec_end will 260 * decrement pending_cpus and signal the waiter. 261 * 262 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1. 263 * This includes the case when an exclusive item is running now. 264 * Then we'll see cpu->has_waiter == false and wait for the item to 265 * complete. 266 * 267 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 268 * see cpu->running == true, and it will kick the CPU. 269 */ 270 if (unlikely(qatomic_read(&pending_cpus))) { 271 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 272 if (!cpu->has_waiter) { 273 /* Not counted in pending_cpus, let the exclusive item 274 * run. Since we have the lock, just set cpu->running to true 275 * while holding it; no need to check pending_cpus again. 276 */ 277 qatomic_set(&cpu->running, false); 278 exclusive_idle(); 279 /* Now pending_cpus is zero. */ 280 qatomic_set(&cpu->running, true); 281 } else { 282 /* Counted in pending_cpus, go ahead and release the 283 * waiter at cpu_exec_end. 284 */ 285 } 286 } 287 } 288 289 /* Mark cpu as not executing, and release pending exclusive ops. */ 290 void cpu_exec_end(CPUState *cpu) 291 { 292 qatomic_set(&cpu->running, false); 293 294 /* Write cpu->running before reading pending_cpus. */ 295 smp_mb(); 296 297 /* 1. start_exclusive saw cpu->running == true. Then it will increment 298 * pending_cpus and wait for exclusive_cond. After taking the lock 299 * we'll see cpu->has_waiter == true. 300 * 301 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1. 302 * This includes the case when an exclusive item started after setting 303 * cpu->running to false and before we read pending_cpus. Then we'll see 304 * cpu->has_waiter == false and not touch pending_cpus. The next call to 305 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting 306 * for the item to complete. 307 * 308 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 309 * see cpu->running == false, and it can ignore this CPU until the 310 * next cpu_exec_start. 311 */ 312 if (unlikely(qatomic_read(&pending_cpus))) { 313 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 314 if (cpu->has_waiter) { 315 cpu->has_waiter = false; 316 qatomic_set(&pending_cpus, pending_cpus - 1); 317 if (pending_cpus == 1) { 318 qemu_cond_signal(&exclusive_cond); 319 } 320 } 321 } 322 } 323 324 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, 325 run_on_cpu_data data) 326 { 327 struct qemu_work_item *wi; 328 329 wi = g_new0(struct qemu_work_item, 1); 330 wi->func = func; 331 wi->data = data; 332 wi->free = true; 333 wi->exclusive = true; 334 335 queue_work_on_cpu(cpu, wi); 336 } 337 338 void free_queued_cpu_work(CPUState *cpu) 339 { 340 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { 341 struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list); 342 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); 343 if (wi->free) { 344 g_free(wi); 345 } 346 } 347 } 348 349 void process_queued_cpu_work(CPUState *cpu) 350 { 351 struct qemu_work_item *wi; 352 353 qemu_mutex_lock(&cpu->work_mutex); 354 if (QSIMPLEQ_EMPTY(&cpu->work_list)) { 355 qemu_mutex_unlock(&cpu->work_mutex); 356 return; 357 } 358 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { 359 wi = QSIMPLEQ_FIRST(&cpu->work_list); 360 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); 361 qemu_mutex_unlock(&cpu->work_mutex); 362 if (wi->exclusive) { 363 /* Running work items outside the BQL avoids the following deadlock: 364 * 1) start_exclusive() is called with the BQL taken while another 365 * CPU is running; 2) cpu_exec in the other CPU tries to takes the 366 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so 367 * neither CPU can proceed. 368 */ 369 bql_unlock(); 370 start_exclusive(); 371 wi->func(cpu, wi->data); 372 end_exclusive(); 373 bql_lock(); 374 } else { 375 wi->func(cpu, wi->data); 376 } 377 qemu_mutex_lock(&cpu->work_mutex); 378 if (wi->free) { 379 g_free(wi); 380 } else { 381 qatomic_store_release(&wi->done, true); 382 } 383 } 384 qemu_mutex_unlock(&cpu->work_mutex); 385 qemu_cond_broadcast(&qemu_work_cond); 386 } 387 388 /* Add a breakpoint. */ 389 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 390 CPUBreakpoint **breakpoint) 391 { 392 CPUClass *cc = CPU_GET_CLASS(cpu); 393 CPUBreakpoint *bp; 394 395 if (cc->gdb_adjust_breakpoint) { 396 pc = cc->gdb_adjust_breakpoint(cpu, pc); 397 } 398 399 bp = g_malloc(sizeof(*bp)); 400 401 bp->pc = pc; 402 bp->flags = flags; 403 404 /* keep all GDB-injected breakpoints in front */ 405 if (flags & BP_GDB) { 406 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); 407 } else { 408 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); 409 } 410 411 if (breakpoint) { 412 *breakpoint = bp; 413 } 414 415 trace_breakpoint_insert(cpu->cpu_index, pc, flags); 416 return 0; 417 } 418 419 /* Remove a specific breakpoint. */ 420 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) 421 { 422 CPUClass *cc = CPU_GET_CLASS(cpu); 423 CPUBreakpoint *bp; 424 425 if (cc->gdb_adjust_breakpoint) { 426 pc = cc->gdb_adjust_breakpoint(cpu, pc); 427 } 428 429 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 430 if (bp->pc == pc && bp->flags == flags) { 431 cpu_breakpoint_remove_by_ref(cpu, bp); 432 return 0; 433 } 434 } 435 return -ENOENT; 436 } 437 438 /* Remove a specific breakpoint by reference. */ 439 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp) 440 { 441 QTAILQ_REMOVE(&cpu->breakpoints, bp, entry); 442 443 trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags); 444 g_free(bp); 445 } 446 447 /* Remove all matching breakpoints. */ 448 void cpu_breakpoint_remove_all(CPUState *cpu, int mask) 449 { 450 CPUBreakpoint *bp, *next; 451 452 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { 453 if (bp->flags & mask) { 454 cpu_breakpoint_remove_by_ref(cpu, bp); 455 } 456 } 457 } 458