1 /* 2 * CPU thread main loop - common bits for user and system mode emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "exec/cpu-common.h" 23 #include "hw/core/cpu.h" 24 #include "sysemu/cpus.h" 25 #include "qemu/lockable.h" 26 #include "trace/trace-root.h" 27 28 QemuMutex qemu_cpu_list_lock; 29 static QemuCond exclusive_cond; 30 static QemuCond exclusive_resume; 31 static QemuCond qemu_work_cond; 32 33 /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written 34 * under qemu_cpu_list_lock, read with atomic operations. 35 */ 36 static int pending_cpus; 37 38 void qemu_init_cpu_list(void) 39 { 40 /* This is needed because qemu_init_cpu_list is also called by the 41 * child process in a fork. */ 42 pending_cpus = 0; 43 44 qemu_mutex_init(&qemu_cpu_list_lock); 45 qemu_cond_init(&exclusive_cond); 46 qemu_cond_init(&exclusive_resume); 47 qemu_cond_init(&qemu_work_cond); 48 } 49 50 void cpu_list_lock(void) 51 { 52 qemu_mutex_lock(&qemu_cpu_list_lock); 53 } 54 55 void cpu_list_unlock(void) 56 { 57 qemu_mutex_unlock(&qemu_cpu_list_lock); 58 } 59 60 static bool cpu_index_auto_assigned; 61 62 static int cpu_get_free_index(void) 63 { 64 CPUState *some_cpu; 65 int max_cpu_index = 0; 66 67 cpu_index_auto_assigned = true; 68 CPU_FOREACH(some_cpu) { 69 if (some_cpu->cpu_index >= max_cpu_index) { 70 max_cpu_index = some_cpu->cpu_index + 1; 71 } 72 } 73 return max_cpu_index; 74 } 75 76 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue); 77 static unsigned int cpu_list_generation_id; 78 79 unsigned int cpu_list_generation_id_get(void) 80 { 81 return cpu_list_generation_id; 82 } 83 84 void cpu_list_add(CPUState *cpu) 85 { 86 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 87 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { 88 cpu->cpu_index = cpu_get_free_index(); 89 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); 90 } else { 91 assert(!cpu_index_auto_assigned); 92 } 93 QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node); 94 cpu_list_generation_id++; 95 } 96 97 void cpu_list_remove(CPUState *cpu) 98 { 99 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 100 if (!QTAILQ_IN_USE(cpu, node)) { 101 /* there is nothing to undo since cpu_exec_init() hasn't been called */ 102 return; 103 } 104 105 QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node); 106 cpu->cpu_index = UNASSIGNED_CPU_INDEX; 107 cpu_list_generation_id++; 108 } 109 110 CPUState *qemu_get_cpu(int index) 111 { 112 CPUState *cpu; 113 114 CPU_FOREACH(cpu) { 115 if (cpu->cpu_index == index) { 116 return cpu; 117 } 118 } 119 120 return NULL; 121 } 122 123 /* current CPU in the current thread. It is only valid inside cpu_exec() */ 124 __thread CPUState *current_cpu; 125 126 struct qemu_work_item { 127 QSIMPLEQ_ENTRY(qemu_work_item) node; 128 run_on_cpu_func func; 129 run_on_cpu_data data; 130 bool free, exclusive, done; 131 }; 132 133 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi) 134 { 135 qemu_mutex_lock(&cpu->work_mutex); 136 QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node); 137 wi->done = false; 138 qemu_mutex_unlock(&cpu->work_mutex); 139 140 qemu_cpu_kick(cpu); 141 } 142 143 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 144 QemuMutex *mutex) 145 { 146 struct qemu_work_item wi; 147 148 if (qemu_cpu_is_self(cpu)) { 149 func(cpu, data); 150 return; 151 } 152 153 wi.func = func; 154 wi.data = data; 155 wi.done = false; 156 wi.free = false; 157 wi.exclusive = false; 158 159 queue_work_on_cpu(cpu, &wi); 160 while (!qatomic_load_acquire(&wi.done)) { 161 CPUState *self_cpu = current_cpu; 162 163 qemu_cond_wait(&qemu_work_cond, mutex); 164 current_cpu = self_cpu; 165 } 166 } 167 168 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) 169 { 170 struct qemu_work_item *wi; 171 172 wi = g_new0(struct qemu_work_item, 1); 173 wi->func = func; 174 wi->data = data; 175 wi->free = true; 176 177 queue_work_on_cpu(cpu, wi); 178 } 179 180 /* Wait for pending exclusive operations to complete. The CPU list lock 181 must be held. */ 182 static inline void exclusive_idle(void) 183 { 184 while (pending_cpus) { 185 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock); 186 } 187 } 188 189 /* Start an exclusive operation. 190 Must only be called from outside cpu_exec. */ 191 void start_exclusive(void) 192 { 193 CPUState *other_cpu; 194 int running_cpus; 195 196 if (current_cpu->exclusive_context_count) { 197 current_cpu->exclusive_context_count++; 198 return; 199 } 200 201 qemu_mutex_lock(&qemu_cpu_list_lock); 202 exclusive_idle(); 203 204 /* Make all other cpus stop executing. */ 205 qatomic_set(&pending_cpus, 1); 206 207 /* Write pending_cpus before reading other_cpu->running. */ 208 smp_mb(); 209 running_cpus = 0; 210 CPU_FOREACH(other_cpu) { 211 if (qatomic_read(&other_cpu->running)) { 212 other_cpu->has_waiter = true; 213 running_cpus++; 214 qemu_cpu_kick(other_cpu); 215 } 216 } 217 218 qatomic_set(&pending_cpus, running_cpus + 1); 219 while (pending_cpus > 1) { 220 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock); 221 } 222 223 /* Can release mutex, no one will enter another exclusive 224 * section until end_exclusive resets pending_cpus to 0. 225 */ 226 qemu_mutex_unlock(&qemu_cpu_list_lock); 227 228 current_cpu->exclusive_context_count = 1; 229 } 230 231 /* Finish an exclusive operation. */ 232 void end_exclusive(void) 233 { 234 current_cpu->exclusive_context_count--; 235 if (current_cpu->exclusive_context_count) { 236 return; 237 } 238 239 qemu_mutex_lock(&qemu_cpu_list_lock); 240 qatomic_set(&pending_cpus, 0); 241 qemu_cond_broadcast(&exclusive_resume); 242 qemu_mutex_unlock(&qemu_cpu_list_lock); 243 } 244 245 /* Wait for exclusive ops to finish, and begin cpu execution. */ 246 void cpu_exec_start(CPUState *cpu) 247 { 248 qatomic_set(&cpu->running, true); 249 250 /* Write cpu->running before reading pending_cpus. */ 251 smp_mb(); 252 253 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1. 254 * After taking the lock we'll see cpu->has_waiter == true and run---not 255 * for long because start_exclusive kicked us. cpu_exec_end will 256 * decrement pending_cpus and signal the waiter. 257 * 258 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1. 259 * This includes the case when an exclusive item is running now. 260 * Then we'll see cpu->has_waiter == false and wait for the item to 261 * complete. 262 * 263 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 264 * see cpu->running == true, and it will kick the CPU. 265 */ 266 if (unlikely(qatomic_read(&pending_cpus))) { 267 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 268 if (!cpu->has_waiter) { 269 /* Not counted in pending_cpus, let the exclusive item 270 * run. Since we have the lock, just set cpu->running to true 271 * while holding it; no need to check pending_cpus again. 272 */ 273 qatomic_set(&cpu->running, false); 274 exclusive_idle(); 275 /* Now pending_cpus is zero. */ 276 qatomic_set(&cpu->running, true); 277 } else { 278 /* Counted in pending_cpus, go ahead and release the 279 * waiter at cpu_exec_end. 280 */ 281 } 282 } 283 } 284 285 /* Mark cpu as not executing, and release pending exclusive ops. */ 286 void cpu_exec_end(CPUState *cpu) 287 { 288 qatomic_set(&cpu->running, false); 289 290 /* Write cpu->running before reading pending_cpus. */ 291 smp_mb(); 292 293 /* 1. start_exclusive saw cpu->running == true. Then it will increment 294 * pending_cpus and wait for exclusive_cond. After taking the lock 295 * we'll see cpu->has_waiter == true. 296 * 297 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1. 298 * This includes the case when an exclusive item started after setting 299 * cpu->running to false and before we read pending_cpus. Then we'll see 300 * cpu->has_waiter == false and not touch pending_cpus. The next call to 301 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting 302 * for the item to complete. 303 * 304 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 305 * see cpu->running == false, and it can ignore this CPU until the 306 * next cpu_exec_start. 307 */ 308 if (unlikely(qatomic_read(&pending_cpus))) { 309 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 310 if (cpu->has_waiter) { 311 cpu->has_waiter = false; 312 qatomic_set(&pending_cpus, pending_cpus - 1); 313 if (pending_cpus == 1) { 314 qemu_cond_signal(&exclusive_cond); 315 } 316 } 317 } 318 } 319 320 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, 321 run_on_cpu_data data) 322 { 323 struct qemu_work_item *wi; 324 325 wi = g_new0(struct qemu_work_item, 1); 326 wi->func = func; 327 wi->data = data; 328 wi->free = true; 329 wi->exclusive = true; 330 331 queue_work_on_cpu(cpu, wi); 332 } 333 334 void process_queued_cpu_work(CPUState *cpu) 335 { 336 struct qemu_work_item *wi; 337 338 qemu_mutex_lock(&cpu->work_mutex); 339 if (QSIMPLEQ_EMPTY(&cpu->work_list)) { 340 qemu_mutex_unlock(&cpu->work_mutex); 341 return; 342 } 343 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { 344 wi = QSIMPLEQ_FIRST(&cpu->work_list); 345 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); 346 qemu_mutex_unlock(&cpu->work_mutex); 347 if (wi->exclusive) { 348 /* Running work items outside the BQL avoids the following deadlock: 349 * 1) start_exclusive() is called with the BQL taken while another 350 * CPU is running; 2) cpu_exec in the other CPU tries to takes the 351 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so 352 * neither CPU can proceed. 353 */ 354 qemu_mutex_unlock_iothread(); 355 start_exclusive(); 356 wi->func(cpu, wi->data); 357 end_exclusive(); 358 qemu_mutex_lock_iothread(); 359 } else { 360 wi->func(cpu, wi->data); 361 } 362 qemu_mutex_lock(&cpu->work_mutex); 363 if (wi->free) { 364 g_free(wi); 365 } else { 366 qatomic_store_release(&wi->done, true); 367 } 368 } 369 qemu_mutex_unlock(&cpu->work_mutex); 370 qemu_cond_broadcast(&qemu_work_cond); 371 } 372 373 /* Add a breakpoint. */ 374 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 375 CPUBreakpoint **breakpoint) 376 { 377 CPUClass *cc = CPU_GET_CLASS(cpu); 378 CPUBreakpoint *bp; 379 380 if (cc->gdb_adjust_breakpoint) { 381 pc = cc->gdb_adjust_breakpoint(cpu, pc); 382 } 383 384 bp = g_malloc(sizeof(*bp)); 385 386 bp->pc = pc; 387 bp->flags = flags; 388 389 /* keep all GDB-injected breakpoints in front */ 390 if (flags & BP_GDB) { 391 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); 392 } else { 393 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); 394 } 395 396 if (breakpoint) { 397 *breakpoint = bp; 398 } 399 400 trace_breakpoint_insert(cpu->cpu_index, pc, flags); 401 return 0; 402 } 403 404 /* Remove a specific breakpoint. */ 405 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) 406 { 407 CPUClass *cc = CPU_GET_CLASS(cpu); 408 CPUBreakpoint *bp; 409 410 if (cc->gdb_adjust_breakpoint) { 411 pc = cc->gdb_adjust_breakpoint(cpu, pc); 412 } 413 414 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 415 if (bp->pc == pc && bp->flags == flags) { 416 cpu_breakpoint_remove_by_ref(cpu, bp); 417 return 0; 418 } 419 } 420 return -ENOENT; 421 } 422 423 /* Remove a specific breakpoint by reference. */ 424 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp) 425 { 426 QTAILQ_REMOVE(&cpu->breakpoints, bp, entry); 427 428 trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags); 429 g_free(bp); 430 } 431 432 /* Remove all matching breakpoints. */ 433 void cpu_breakpoint_remove_all(CPUState *cpu, int mask) 434 { 435 CPUBreakpoint *bp, *next; 436 437 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { 438 if (bp->flags & mask) { 439 cpu_breakpoint_remove_by_ref(cpu, bp); 440 } 441 } 442 } 443