1 /* 2 * CPU thread main loop - common bits for user and system mode emulation 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "exec/cpu-common.h" 23 #include "hw/core/cpu.h" 24 #include "sysemu/cpus.h" 25 #include "qemu/lockable.h" 26 #include "trace/trace-root.h" 27 28 QemuMutex qemu_cpu_list_lock; 29 static QemuCond exclusive_cond; 30 static QemuCond exclusive_resume; 31 static QemuCond qemu_work_cond; 32 33 /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written 34 * under qemu_cpu_list_lock, read with atomic operations. 35 */ 36 static int pending_cpus; 37 38 void qemu_init_cpu_list(void) 39 { 40 /* This is needed because qemu_init_cpu_list is also called by the 41 * child process in a fork. */ 42 pending_cpus = 0; 43 44 qemu_mutex_init(&qemu_cpu_list_lock); 45 qemu_cond_init(&exclusive_cond); 46 qemu_cond_init(&exclusive_resume); 47 qemu_cond_init(&qemu_work_cond); 48 } 49 50 void cpu_list_lock(void) 51 { 52 qemu_mutex_lock(&qemu_cpu_list_lock); 53 } 54 55 void cpu_list_unlock(void) 56 { 57 qemu_mutex_unlock(&qemu_cpu_list_lock); 58 } 59 60 61 int cpu_get_free_index(void) 62 { 63 CPUState *some_cpu; 64 int max_cpu_index = 0; 65 66 CPU_FOREACH(some_cpu) { 67 if (some_cpu->cpu_index >= max_cpu_index) { 68 max_cpu_index = some_cpu->cpu_index + 1; 69 } 70 } 71 return max_cpu_index; 72 } 73 74 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue); 75 static unsigned int cpu_list_generation_id; 76 77 unsigned int cpu_list_generation_id_get(void) 78 { 79 return cpu_list_generation_id; 80 } 81 82 void cpu_list_add(CPUState *cpu) 83 { 84 static bool cpu_index_auto_assigned; 85 86 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 87 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) { 88 cpu_index_auto_assigned = true; 89 cpu->cpu_index = cpu_get_free_index(); 90 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX); 91 } else { 92 assert(!cpu_index_auto_assigned); 93 } 94 QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node); 95 cpu_list_generation_id++; 96 } 97 98 void cpu_list_remove(CPUState *cpu) 99 { 100 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 101 if (!QTAILQ_IN_USE(cpu, node)) { 102 /* there is nothing to undo since cpu_exec_init() hasn't been called */ 103 return; 104 } 105 106 QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node); 107 cpu->cpu_index = UNASSIGNED_CPU_INDEX; 108 cpu_list_generation_id++; 109 } 110 111 CPUState *qemu_get_cpu(int index) 112 { 113 CPUState *cpu; 114 115 CPU_FOREACH(cpu) { 116 if (cpu->cpu_index == index) { 117 return cpu; 118 } 119 } 120 121 return NULL; 122 } 123 124 /* current CPU in the current thread. It is only valid inside cpu_exec() */ 125 __thread CPUState *current_cpu; 126 127 struct qemu_work_item { 128 QSIMPLEQ_ENTRY(qemu_work_item) node; 129 run_on_cpu_func func; 130 run_on_cpu_data data; 131 bool free, exclusive, done; 132 }; 133 134 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi) 135 { 136 qemu_mutex_lock(&cpu->work_mutex); 137 QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node); 138 wi->done = false; 139 qemu_mutex_unlock(&cpu->work_mutex); 140 141 qemu_cpu_kick(cpu); 142 } 143 144 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 145 QemuMutex *mutex) 146 { 147 struct qemu_work_item wi; 148 149 if (qemu_cpu_is_self(cpu)) { 150 func(cpu, data); 151 return; 152 } 153 154 wi.func = func; 155 wi.data = data; 156 wi.done = false; 157 wi.free = false; 158 wi.exclusive = false; 159 160 queue_work_on_cpu(cpu, &wi); 161 while (!qatomic_load_acquire(&wi.done)) { 162 CPUState *self_cpu = current_cpu; 163 164 qemu_cond_wait(&qemu_work_cond, mutex); 165 current_cpu = self_cpu; 166 } 167 } 168 169 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) 170 { 171 struct qemu_work_item *wi; 172 173 wi = g_new0(struct qemu_work_item, 1); 174 wi->func = func; 175 wi->data = data; 176 wi->free = true; 177 178 queue_work_on_cpu(cpu, wi); 179 } 180 181 /* Wait for pending exclusive operations to complete. The CPU list lock 182 must be held. */ 183 static inline void exclusive_idle(void) 184 { 185 while (pending_cpus) { 186 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock); 187 } 188 } 189 190 /* Start an exclusive operation. 191 Must only be called from outside cpu_exec. */ 192 void start_exclusive(void) 193 { 194 CPUState *other_cpu; 195 int running_cpus; 196 197 if (current_cpu->exclusive_context_count) { 198 current_cpu->exclusive_context_count++; 199 return; 200 } 201 202 qemu_mutex_lock(&qemu_cpu_list_lock); 203 exclusive_idle(); 204 205 /* Make all other cpus stop executing. */ 206 qatomic_set(&pending_cpus, 1); 207 208 /* Write pending_cpus before reading other_cpu->running. */ 209 smp_mb(); 210 running_cpus = 0; 211 CPU_FOREACH(other_cpu) { 212 if (qatomic_read(&other_cpu->running)) { 213 other_cpu->has_waiter = true; 214 running_cpus++; 215 qemu_cpu_kick(other_cpu); 216 } 217 } 218 219 qatomic_set(&pending_cpus, running_cpus + 1); 220 while (pending_cpus > 1) { 221 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock); 222 } 223 224 /* Can release mutex, no one will enter another exclusive 225 * section until end_exclusive resets pending_cpus to 0. 226 */ 227 qemu_mutex_unlock(&qemu_cpu_list_lock); 228 229 current_cpu->exclusive_context_count = 1; 230 } 231 232 /* Finish an exclusive operation. */ 233 void end_exclusive(void) 234 { 235 current_cpu->exclusive_context_count--; 236 if (current_cpu->exclusive_context_count) { 237 return; 238 } 239 240 qemu_mutex_lock(&qemu_cpu_list_lock); 241 qatomic_set(&pending_cpus, 0); 242 qemu_cond_broadcast(&exclusive_resume); 243 qemu_mutex_unlock(&qemu_cpu_list_lock); 244 } 245 246 /* Wait for exclusive ops to finish, and begin cpu execution. */ 247 void cpu_exec_start(CPUState *cpu) 248 { 249 qatomic_set(&cpu->running, true); 250 251 /* Write cpu->running before reading pending_cpus. */ 252 smp_mb(); 253 254 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1. 255 * After taking the lock we'll see cpu->has_waiter == true and run---not 256 * for long because start_exclusive kicked us. cpu_exec_end will 257 * decrement pending_cpus and signal the waiter. 258 * 259 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1. 260 * This includes the case when an exclusive item is running now. 261 * Then we'll see cpu->has_waiter == false and wait for the item to 262 * complete. 263 * 264 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 265 * see cpu->running == true, and it will kick the CPU. 266 */ 267 if (unlikely(qatomic_read(&pending_cpus))) { 268 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 269 if (!cpu->has_waiter) { 270 /* Not counted in pending_cpus, let the exclusive item 271 * run. Since we have the lock, just set cpu->running to true 272 * while holding it; no need to check pending_cpus again. 273 */ 274 qatomic_set(&cpu->running, false); 275 exclusive_idle(); 276 /* Now pending_cpus is zero. */ 277 qatomic_set(&cpu->running, true); 278 } else { 279 /* Counted in pending_cpus, go ahead and release the 280 * waiter at cpu_exec_end. 281 */ 282 } 283 } 284 } 285 286 /* Mark cpu as not executing, and release pending exclusive ops. */ 287 void cpu_exec_end(CPUState *cpu) 288 { 289 qatomic_set(&cpu->running, false); 290 291 /* Write cpu->running before reading pending_cpus. */ 292 smp_mb(); 293 294 /* 1. start_exclusive saw cpu->running == true. Then it will increment 295 * pending_cpus and wait for exclusive_cond. After taking the lock 296 * we'll see cpu->has_waiter == true. 297 * 298 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1. 299 * This includes the case when an exclusive item started after setting 300 * cpu->running to false and before we read pending_cpus. Then we'll see 301 * cpu->has_waiter == false and not touch pending_cpus. The next call to 302 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting 303 * for the item to complete. 304 * 305 * 3. pending_cpus == 0. Then start_exclusive is definitely going to 306 * see cpu->running == false, and it can ignore this CPU until the 307 * next cpu_exec_start. 308 */ 309 if (unlikely(qatomic_read(&pending_cpus))) { 310 QEMU_LOCK_GUARD(&qemu_cpu_list_lock); 311 if (cpu->has_waiter) { 312 cpu->has_waiter = false; 313 qatomic_set(&pending_cpus, pending_cpus - 1); 314 if (pending_cpus == 1) { 315 qemu_cond_signal(&exclusive_cond); 316 } 317 } 318 } 319 } 320 321 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, 322 run_on_cpu_data data) 323 { 324 struct qemu_work_item *wi; 325 326 wi = g_new0(struct qemu_work_item, 1); 327 wi->func = func; 328 wi->data = data; 329 wi->free = true; 330 wi->exclusive = true; 331 332 queue_work_on_cpu(cpu, wi); 333 } 334 335 void free_queued_cpu_work(CPUState *cpu) 336 { 337 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { 338 struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list); 339 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); 340 if (wi->free) { 341 g_free(wi); 342 } 343 } 344 } 345 346 void process_queued_cpu_work(CPUState *cpu) 347 { 348 struct qemu_work_item *wi; 349 350 qemu_mutex_lock(&cpu->work_mutex); 351 if (QSIMPLEQ_EMPTY(&cpu->work_list)) { 352 qemu_mutex_unlock(&cpu->work_mutex); 353 return; 354 } 355 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) { 356 wi = QSIMPLEQ_FIRST(&cpu->work_list); 357 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node); 358 qemu_mutex_unlock(&cpu->work_mutex); 359 if (wi->exclusive) { 360 /* Running work items outside the BQL avoids the following deadlock: 361 * 1) start_exclusive() is called with the BQL taken while another 362 * CPU is running; 2) cpu_exec in the other CPU tries to takes the 363 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so 364 * neither CPU can proceed. 365 */ 366 bql_unlock(); 367 start_exclusive(); 368 wi->func(cpu, wi->data); 369 end_exclusive(); 370 bql_lock(); 371 } else { 372 wi->func(cpu, wi->data); 373 } 374 qemu_mutex_lock(&cpu->work_mutex); 375 if (wi->free) { 376 g_free(wi); 377 } else { 378 qatomic_store_release(&wi->done, true); 379 } 380 } 381 qemu_mutex_unlock(&cpu->work_mutex); 382 qemu_cond_broadcast(&qemu_work_cond); 383 } 384 385 /* Add a breakpoint. */ 386 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 387 CPUBreakpoint **breakpoint) 388 { 389 CPUClass *cc = CPU_GET_CLASS(cpu); 390 CPUBreakpoint *bp; 391 392 if (cc->gdb_adjust_breakpoint) { 393 pc = cc->gdb_adjust_breakpoint(cpu, pc); 394 } 395 396 bp = g_malloc(sizeof(*bp)); 397 398 bp->pc = pc; 399 bp->flags = flags; 400 401 /* keep all GDB-injected breakpoints in front */ 402 if (flags & BP_GDB) { 403 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); 404 } else { 405 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); 406 } 407 408 if (breakpoint) { 409 *breakpoint = bp; 410 } 411 412 trace_breakpoint_insert(cpu->cpu_index, pc, flags); 413 return 0; 414 } 415 416 /* Remove a specific breakpoint. */ 417 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) 418 { 419 CPUClass *cc = CPU_GET_CLASS(cpu); 420 CPUBreakpoint *bp; 421 422 if (cc->gdb_adjust_breakpoint) { 423 pc = cc->gdb_adjust_breakpoint(cpu, pc); 424 } 425 426 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 427 if (bp->pc == pc && bp->flags == flags) { 428 cpu_breakpoint_remove_by_ref(cpu, bp); 429 return 0; 430 } 431 } 432 return -ENOENT; 433 } 434 435 /* Remove a specific breakpoint by reference. */ 436 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp) 437 { 438 QTAILQ_REMOVE(&cpu->breakpoints, bp, entry); 439 440 trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags); 441 g_free(bp); 442 } 443 444 /* Remove all matching breakpoints. */ 445 void cpu_breakpoint_remove_all(CPUState *cpu, int mask) 446 { 447 CPUBreakpoint *bp, *next; 448 449 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { 450 if (bp->flags & mask) { 451 cpu_breakpoint_remove_by_ref(cpu, bp); 452 } 453 } 454 } 455