xref: /openbmc/qemu/cpu-common.c (revision 29318db1)
1 /*
2  * CPU thread main loop - common bits for user and system mode emulation
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "sysemu/cpus.h"
25 #include "qemu/lockable.h"
26 #include "trace/trace-root.h"
27 
28 QemuMutex qemu_cpu_list_lock;
29 static QemuCond exclusive_cond;
30 static QemuCond exclusive_resume;
31 static QemuCond qemu_work_cond;
32 
33 /* >= 1 if a thread is inside start_exclusive/end_exclusive.  Written
34  * under qemu_cpu_list_lock, read with atomic operations.
35  */
36 static int pending_cpus;
37 
38 void qemu_init_cpu_list(void)
39 {
40     /* This is needed because qemu_init_cpu_list is also called by the
41      * child process in a fork.  */
42     pending_cpus = 0;
43 
44     qemu_mutex_init(&qemu_cpu_list_lock);
45     qemu_cond_init(&exclusive_cond);
46     qemu_cond_init(&exclusive_resume);
47     qemu_cond_init(&qemu_work_cond);
48 }
49 
50 void cpu_list_lock(void)
51 {
52     qemu_mutex_lock(&qemu_cpu_list_lock);
53 }
54 
55 void cpu_list_unlock(void)
56 {
57     qemu_mutex_unlock(&qemu_cpu_list_lock);
58 }
59 
60 
61 int cpu_get_free_index(void)
62 {
63     CPUState *some_cpu;
64     int max_cpu_index = 0;
65 
66     CPU_FOREACH(some_cpu) {
67         if (some_cpu->cpu_index >= max_cpu_index) {
68             max_cpu_index = some_cpu->cpu_index + 1;
69         }
70     }
71     return max_cpu_index;
72 }
73 
74 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue);
75 static unsigned int cpu_list_generation_id;
76 
77 unsigned int cpu_list_generation_id_get(void)
78 {
79     return cpu_list_generation_id;
80 }
81 
82 void cpu_list_add(CPUState *cpu)
83 {
84     static bool cpu_index_auto_assigned;
85 
86     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
87     if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
88         cpu_index_auto_assigned = true;
89         cpu->cpu_index = cpu_get_free_index();
90         assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
91     } else {
92         assert(!cpu_index_auto_assigned);
93     }
94     QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node);
95     cpu_list_generation_id++;
96 }
97 
98 void cpu_list_remove(CPUState *cpu)
99 {
100     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
101     if (!QTAILQ_IN_USE(cpu, node)) {
102         /* there is nothing to undo since cpu_exec_init() hasn't been called */
103         return;
104     }
105 
106     QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node);
107     cpu->cpu_index = UNASSIGNED_CPU_INDEX;
108     cpu_list_generation_id++;
109 }
110 
111 CPUState *qemu_get_cpu(int index)
112 {
113     CPUState *cpu;
114 
115     CPU_FOREACH(cpu) {
116         if (cpu->cpu_index == index) {
117             return cpu;
118         }
119     }
120 
121     return NULL;
122 }
123 
124 /* current CPU in the current thread. It is only valid inside cpu_exec() */
125 __thread CPUState *current_cpu;
126 
127 struct qemu_work_item {
128     QSIMPLEQ_ENTRY(qemu_work_item) node;
129     run_on_cpu_func func;
130     run_on_cpu_data data;
131     bool free, exclusive, done;
132 };
133 
134 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
135 {
136     qemu_mutex_lock(&cpu->work_mutex);
137     QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
138     wi->done = false;
139     qemu_mutex_unlock(&cpu->work_mutex);
140 
141     qemu_cpu_kick(cpu);
142 }
143 
144 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
145                    QemuMutex *mutex)
146 {
147     struct qemu_work_item wi;
148 
149     if (qemu_cpu_is_self(cpu)) {
150         func(cpu, data);
151         return;
152     }
153 
154     wi.func = func;
155     wi.data = data;
156     wi.done = false;
157     wi.free = false;
158     wi.exclusive = false;
159 
160     queue_work_on_cpu(cpu, &wi);
161     while (!qatomic_load_acquire(&wi.done)) {
162         CPUState *self_cpu = current_cpu;
163 
164         qemu_cond_wait(&qemu_work_cond, mutex);
165         current_cpu = self_cpu;
166     }
167 }
168 
169 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
170 {
171     struct qemu_work_item *wi;
172 
173     wi = g_new0(struct qemu_work_item, 1);
174     wi->func = func;
175     wi->data = data;
176     wi->free = true;
177 
178     queue_work_on_cpu(cpu, wi);
179 }
180 
181 /* Wait for pending exclusive operations to complete.  The CPU list lock
182    must be held.  */
183 static inline void exclusive_idle(void)
184 {
185     while (pending_cpus) {
186         qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
187     }
188 }
189 
190 /* Start an exclusive operation.
191    Must only be called from outside cpu_exec.  */
192 void start_exclusive(void)
193 {
194     CPUState *other_cpu;
195     int running_cpus;
196 
197     if (current_cpu->exclusive_context_count) {
198         current_cpu->exclusive_context_count++;
199         return;
200     }
201 
202     qemu_mutex_lock(&qemu_cpu_list_lock);
203     exclusive_idle();
204 
205     /* Make all other cpus stop executing.  */
206     qatomic_set(&pending_cpus, 1);
207 
208     /* Write pending_cpus before reading other_cpu->running.  */
209     smp_mb();
210     running_cpus = 0;
211     CPU_FOREACH(other_cpu) {
212         if (qatomic_read(&other_cpu->running)) {
213             other_cpu->has_waiter = true;
214             running_cpus++;
215             qemu_cpu_kick(other_cpu);
216         }
217     }
218 
219     qatomic_set(&pending_cpus, running_cpus + 1);
220     while (pending_cpus > 1) {
221         qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
222     }
223 
224     /* Can release mutex, no one will enter another exclusive
225      * section until end_exclusive resets pending_cpus to 0.
226      */
227     qemu_mutex_unlock(&qemu_cpu_list_lock);
228 
229     current_cpu->exclusive_context_count = 1;
230 }
231 
232 /* Finish an exclusive operation.  */
233 void end_exclusive(void)
234 {
235     current_cpu->exclusive_context_count--;
236     if (current_cpu->exclusive_context_count) {
237         return;
238     }
239 
240     qemu_mutex_lock(&qemu_cpu_list_lock);
241     qatomic_set(&pending_cpus, 0);
242     qemu_cond_broadcast(&exclusive_resume);
243     qemu_mutex_unlock(&qemu_cpu_list_lock);
244 }
245 
246 /* Wait for exclusive ops to finish, and begin cpu execution.  */
247 void cpu_exec_start(CPUState *cpu)
248 {
249     qatomic_set(&cpu->running, true);
250 
251     /* Write cpu->running before reading pending_cpus.  */
252     smp_mb();
253 
254     /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
255      * After taking the lock we'll see cpu->has_waiter == true and run---not
256      * for long because start_exclusive kicked us.  cpu_exec_end will
257      * decrement pending_cpus and signal the waiter.
258      *
259      * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
260      * This includes the case when an exclusive item is running now.
261      * Then we'll see cpu->has_waiter == false and wait for the item to
262      * complete.
263      *
264      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
265      * see cpu->running == true, and it will kick the CPU.
266      */
267     if (unlikely(qatomic_read(&pending_cpus))) {
268         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
269         if (!cpu->has_waiter) {
270             /* Not counted in pending_cpus, let the exclusive item
271              * run.  Since we have the lock, just set cpu->running to true
272              * while holding it; no need to check pending_cpus again.
273              */
274             qatomic_set(&cpu->running, false);
275             exclusive_idle();
276             /* Now pending_cpus is zero.  */
277             qatomic_set(&cpu->running, true);
278         } else {
279             /* Counted in pending_cpus, go ahead and release the
280              * waiter at cpu_exec_end.
281              */
282         }
283     }
284 }
285 
286 /* Mark cpu as not executing, and release pending exclusive ops.  */
287 void cpu_exec_end(CPUState *cpu)
288 {
289     qatomic_set(&cpu->running, false);
290 
291     /* Write cpu->running before reading pending_cpus.  */
292     smp_mb();
293 
294     /* 1. start_exclusive saw cpu->running == true.  Then it will increment
295      * pending_cpus and wait for exclusive_cond.  After taking the lock
296      * we'll see cpu->has_waiter == true.
297      *
298      * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
299      * This includes the case when an exclusive item started after setting
300      * cpu->running to false and before we read pending_cpus.  Then we'll see
301      * cpu->has_waiter == false and not touch pending_cpus.  The next call to
302      * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
303      * for the item to complete.
304      *
305      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
306      * see cpu->running == false, and it can ignore this CPU until the
307      * next cpu_exec_start.
308      */
309     if (unlikely(qatomic_read(&pending_cpus))) {
310         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
311         if (cpu->has_waiter) {
312             cpu->has_waiter = false;
313             qatomic_set(&pending_cpus, pending_cpus - 1);
314             if (pending_cpus == 1) {
315                 qemu_cond_signal(&exclusive_cond);
316             }
317         }
318     }
319 }
320 
321 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
322                            run_on_cpu_data data)
323 {
324     struct qemu_work_item *wi;
325 
326     wi = g_new0(struct qemu_work_item, 1);
327     wi->func = func;
328     wi->data = data;
329     wi->free = true;
330     wi->exclusive = true;
331 
332     queue_work_on_cpu(cpu, wi);
333 }
334 
335 void free_queued_cpu_work(CPUState *cpu)
336 {
337     while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
338         struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list);
339         QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
340         if (wi->free) {
341             g_free(wi);
342         }
343     }
344 }
345 
346 void process_queued_cpu_work(CPUState *cpu)
347 {
348     struct qemu_work_item *wi;
349 
350     qemu_mutex_lock(&cpu->work_mutex);
351     if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
352         qemu_mutex_unlock(&cpu->work_mutex);
353         return;
354     }
355     while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
356         wi = QSIMPLEQ_FIRST(&cpu->work_list);
357         QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
358         qemu_mutex_unlock(&cpu->work_mutex);
359         if (wi->exclusive) {
360             /* Running work items outside the BQL avoids the following deadlock:
361              * 1) start_exclusive() is called with the BQL taken while another
362              * CPU is running; 2) cpu_exec in the other CPU tries to takes the
363              * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
364              * neither CPU can proceed.
365              */
366             bql_unlock();
367             start_exclusive();
368             wi->func(cpu, wi->data);
369             end_exclusive();
370             bql_lock();
371         } else {
372             wi->func(cpu, wi->data);
373         }
374         qemu_mutex_lock(&cpu->work_mutex);
375         if (wi->free) {
376             g_free(wi);
377         } else {
378             qatomic_store_release(&wi->done, true);
379         }
380     }
381     qemu_mutex_unlock(&cpu->work_mutex);
382     qemu_cond_broadcast(&qemu_work_cond);
383 }
384 
385 /* Add a breakpoint.  */
386 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
387                           CPUBreakpoint **breakpoint)
388 {
389     CPUClass *cc = CPU_GET_CLASS(cpu);
390     CPUBreakpoint *bp;
391 
392     if (cc->gdb_adjust_breakpoint) {
393         pc = cc->gdb_adjust_breakpoint(cpu, pc);
394     }
395 
396     bp = g_malloc(sizeof(*bp));
397 
398     bp->pc = pc;
399     bp->flags = flags;
400 
401     /* keep all GDB-injected breakpoints in front */
402     if (flags & BP_GDB) {
403         QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
404     } else {
405         QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
406     }
407 
408     if (breakpoint) {
409         *breakpoint = bp;
410     }
411 
412     trace_breakpoint_insert(cpu->cpu_index, pc, flags);
413     return 0;
414 }
415 
416 /* Remove a specific breakpoint.  */
417 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
418 {
419     CPUClass *cc = CPU_GET_CLASS(cpu);
420     CPUBreakpoint *bp;
421 
422     if (cc->gdb_adjust_breakpoint) {
423         pc = cc->gdb_adjust_breakpoint(cpu, pc);
424     }
425 
426     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
427         if (bp->pc == pc && bp->flags == flags) {
428             cpu_breakpoint_remove_by_ref(cpu, bp);
429             return 0;
430         }
431     }
432     return -ENOENT;
433 }
434 
435 /* Remove a specific breakpoint by reference.  */
436 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
437 {
438     QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);
439 
440     trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
441     g_free(bp);
442 }
443 
444 /* Remove all matching breakpoints. */
445 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
446 {
447     CPUBreakpoint *bp, *next;
448 
449     QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
450         if (bp->flags & mask) {
451             cpu_breakpoint_remove_by_ref(cpu, bp);
452         }
453     }
454 }
455