xref: /openbmc/qemu/cpu-common.c (revision 009cd866)
1 /*
2  * CPU thread main loop - common bits for user and system mode emulation
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "sysemu/cpus.h"
25 #include "qemu/lockable.h"
26 #include "trace/trace-root.h"
27 
28 QemuMutex qemu_cpu_list_lock;
29 static QemuCond exclusive_cond;
30 static QemuCond exclusive_resume;
31 static QemuCond qemu_work_cond;
32 
33 /* >= 1 if a thread is inside start_exclusive/end_exclusive.  Written
34  * under qemu_cpu_list_lock, read with atomic operations.
35  */
36 static int pending_cpus;
37 
38 void qemu_init_cpu_list(void)
39 {
40     /* This is needed because qemu_init_cpu_list is also called by the
41      * child process in a fork.  */
42     pending_cpus = 0;
43 
44     qemu_mutex_init(&qemu_cpu_list_lock);
45     qemu_cond_init(&exclusive_cond);
46     qemu_cond_init(&exclusive_resume);
47     qemu_cond_init(&qemu_work_cond);
48 }
49 
50 void cpu_list_lock(void)
51 {
52     qemu_mutex_lock(&qemu_cpu_list_lock);
53 }
54 
55 void cpu_list_unlock(void)
56 {
57     qemu_mutex_unlock(&qemu_cpu_list_lock);
58 }
59 
60 static bool cpu_index_auto_assigned;
61 
62 static int cpu_get_free_index(void)
63 {
64     CPUState *some_cpu;
65     int max_cpu_index = 0;
66 
67     cpu_index_auto_assigned = true;
68     CPU_FOREACH(some_cpu) {
69         if (some_cpu->cpu_index >= max_cpu_index) {
70             max_cpu_index = some_cpu->cpu_index + 1;
71         }
72     }
73     return max_cpu_index;
74 }
75 
76 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
77 static unsigned int cpu_list_generation_id;
78 
79 unsigned int cpu_list_generation_id_get(void)
80 {
81     return cpu_list_generation_id;
82 }
83 
84 void cpu_list_add(CPUState *cpu)
85 {
86     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
87     if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
88         cpu->cpu_index = cpu_get_free_index();
89         assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
90     } else {
91         assert(!cpu_index_auto_assigned);
92     }
93     QTAILQ_INSERT_TAIL_RCU(&cpus, cpu, node);
94     cpu_list_generation_id++;
95 }
96 
97 void cpu_list_remove(CPUState *cpu)
98 {
99     QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
100     if (!QTAILQ_IN_USE(cpu, node)) {
101         /* there is nothing to undo since cpu_exec_init() hasn't been called */
102         return;
103     }
104 
105     QTAILQ_REMOVE_RCU(&cpus, cpu, node);
106     cpu->cpu_index = UNASSIGNED_CPU_INDEX;
107     cpu_list_generation_id++;
108 }
109 
110 CPUState *qemu_get_cpu(int index)
111 {
112     CPUState *cpu;
113 
114     CPU_FOREACH(cpu) {
115         if (cpu->cpu_index == index) {
116             return cpu;
117         }
118     }
119 
120     return NULL;
121 }
122 
123 /* current CPU in the current thread. It is only valid inside cpu_exec() */
124 __thread CPUState *current_cpu;
125 
126 struct qemu_work_item {
127     QSIMPLEQ_ENTRY(qemu_work_item) node;
128     run_on_cpu_func func;
129     run_on_cpu_data data;
130     bool free, exclusive, done;
131 };
132 
133 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
134 {
135     qemu_mutex_lock(&cpu->work_mutex);
136     QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
137     wi->done = false;
138     qemu_mutex_unlock(&cpu->work_mutex);
139 
140     qemu_cpu_kick(cpu);
141 }
142 
143 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
144                    QemuMutex *mutex)
145 {
146     struct qemu_work_item wi;
147 
148     if (qemu_cpu_is_self(cpu)) {
149         func(cpu, data);
150         return;
151     }
152 
153     wi.func = func;
154     wi.data = data;
155     wi.done = false;
156     wi.free = false;
157     wi.exclusive = false;
158 
159     queue_work_on_cpu(cpu, &wi);
160     while (!qatomic_load_acquire(&wi.done)) {
161         CPUState *self_cpu = current_cpu;
162 
163         qemu_cond_wait(&qemu_work_cond, mutex);
164         current_cpu = self_cpu;
165     }
166 }
167 
168 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
169 {
170     struct qemu_work_item *wi;
171 
172     wi = g_new0(struct qemu_work_item, 1);
173     wi->func = func;
174     wi->data = data;
175     wi->free = true;
176 
177     queue_work_on_cpu(cpu, wi);
178 }
179 
180 /* Wait for pending exclusive operations to complete.  The CPU list lock
181    must be held.  */
182 static inline void exclusive_idle(void)
183 {
184     while (pending_cpus) {
185         qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
186     }
187 }
188 
189 /* Start an exclusive operation.
190    Must only be called from outside cpu_exec.  */
191 void start_exclusive(void)
192 {
193     CPUState *other_cpu;
194     int running_cpus;
195 
196     if (current_cpu->exclusive_context_count) {
197         current_cpu->exclusive_context_count++;
198         return;
199     }
200 
201     qemu_mutex_lock(&qemu_cpu_list_lock);
202     exclusive_idle();
203 
204     /* Make all other cpus stop executing.  */
205     qatomic_set(&pending_cpus, 1);
206 
207     /* Write pending_cpus before reading other_cpu->running.  */
208     smp_mb();
209     running_cpus = 0;
210     CPU_FOREACH(other_cpu) {
211         if (qatomic_read(&other_cpu->running)) {
212             other_cpu->has_waiter = true;
213             running_cpus++;
214             qemu_cpu_kick(other_cpu);
215         }
216     }
217 
218     qatomic_set(&pending_cpus, running_cpus + 1);
219     while (pending_cpus > 1) {
220         qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
221     }
222 
223     /* Can release mutex, no one will enter another exclusive
224      * section until end_exclusive resets pending_cpus to 0.
225      */
226     qemu_mutex_unlock(&qemu_cpu_list_lock);
227 
228     current_cpu->exclusive_context_count = 1;
229 }
230 
231 /* Finish an exclusive operation.  */
232 void end_exclusive(void)
233 {
234     current_cpu->exclusive_context_count--;
235     if (current_cpu->exclusive_context_count) {
236         return;
237     }
238 
239     qemu_mutex_lock(&qemu_cpu_list_lock);
240     qatomic_set(&pending_cpus, 0);
241     qemu_cond_broadcast(&exclusive_resume);
242     qemu_mutex_unlock(&qemu_cpu_list_lock);
243 }
244 
245 /* Wait for exclusive ops to finish, and begin cpu execution.  */
246 void cpu_exec_start(CPUState *cpu)
247 {
248     qatomic_set(&cpu->running, true);
249 
250     /* Write cpu->running before reading pending_cpus.  */
251     smp_mb();
252 
253     /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
254      * After taking the lock we'll see cpu->has_waiter == true and run---not
255      * for long because start_exclusive kicked us.  cpu_exec_end will
256      * decrement pending_cpus and signal the waiter.
257      *
258      * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
259      * This includes the case when an exclusive item is running now.
260      * Then we'll see cpu->has_waiter == false and wait for the item to
261      * complete.
262      *
263      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
264      * see cpu->running == true, and it will kick the CPU.
265      */
266     if (unlikely(qatomic_read(&pending_cpus))) {
267         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
268         if (!cpu->has_waiter) {
269             /* Not counted in pending_cpus, let the exclusive item
270              * run.  Since we have the lock, just set cpu->running to true
271              * while holding it; no need to check pending_cpus again.
272              */
273             qatomic_set(&cpu->running, false);
274             exclusive_idle();
275             /* Now pending_cpus is zero.  */
276             qatomic_set(&cpu->running, true);
277         } else {
278             /* Counted in pending_cpus, go ahead and release the
279              * waiter at cpu_exec_end.
280              */
281         }
282     }
283 }
284 
285 /* Mark cpu as not executing, and release pending exclusive ops.  */
286 void cpu_exec_end(CPUState *cpu)
287 {
288     qatomic_set(&cpu->running, false);
289 
290     /* Write cpu->running before reading pending_cpus.  */
291     smp_mb();
292 
293     /* 1. start_exclusive saw cpu->running == true.  Then it will increment
294      * pending_cpus and wait for exclusive_cond.  After taking the lock
295      * we'll see cpu->has_waiter == true.
296      *
297      * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
298      * This includes the case when an exclusive item started after setting
299      * cpu->running to false and before we read pending_cpus.  Then we'll see
300      * cpu->has_waiter == false and not touch pending_cpus.  The next call to
301      * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
302      * for the item to complete.
303      *
304      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
305      * see cpu->running == false, and it can ignore this CPU until the
306      * next cpu_exec_start.
307      */
308     if (unlikely(qatomic_read(&pending_cpus))) {
309         QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
310         if (cpu->has_waiter) {
311             cpu->has_waiter = false;
312             qatomic_set(&pending_cpus, pending_cpus - 1);
313             if (pending_cpus == 1) {
314                 qemu_cond_signal(&exclusive_cond);
315             }
316         }
317     }
318 }
319 
320 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
321                            run_on_cpu_data data)
322 {
323     struct qemu_work_item *wi;
324 
325     wi = g_new0(struct qemu_work_item, 1);
326     wi->func = func;
327     wi->data = data;
328     wi->free = true;
329     wi->exclusive = true;
330 
331     queue_work_on_cpu(cpu, wi);
332 }
333 
334 void process_queued_cpu_work(CPUState *cpu)
335 {
336     struct qemu_work_item *wi;
337 
338     qemu_mutex_lock(&cpu->work_mutex);
339     if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
340         qemu_mutex_unlock(&cpu->work_mutex);
341         return;
342     }
343     while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
344         wi = QSIMPLEQ_FIRST(&cpu->work_list);
345         QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
346         qemu_mutex_unlock(&cpu->work_mutex);
347         if (wi->exclusive) {
348             /* Running work items outside the BQL avoids the following deadlock:
349              * 1) start_exclusive() is called with the BQL taken while another
350              * CPU is running; 2) cpu_exec in the other CPU tries to takes the
351              * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
352              * neither CPU can proceed.
353              */
354             qemu_mutex_unlock_iothread();
355             start_exclusive();
356             wi->func(cpu, wi->data);
357             end_exclusive();
358             qemu_mutex_lock_iothread();
359         } else {
360             wi->func(cpu, wi->data);
361         }
362         qemu_mutex_lock(&cpu->work_mutex);
363         if (wi->free) {
364             g_free(wi);
365         } else {
366             qatomic_store_release(&wi->done, true);
367         }
368     }
369     qemu_mutex_unlock(&cpu->work_mutex);
370     qemu_cond_broadcast(&qemu_work_cond);
371 }
372 
373 /* Add a breakpoint.  */
374 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
375                           CPUBreakpoint **breakpoint)
376 {
377     CPUClass *cc = CPU_GET_CLASS(cpu);
378     CPUBreakpoint *bp;
379 
380     if (cc->gdb_adjust_breakpoint) {
381         pc = cc->gdb_adjust_breakpoint(cpu, pc);
382     }
383 
384     bp = g_malloc(sizeof(*bp));
385 
386     bp->pc = pc;
387     bp->flags = flags;
388 
389     /* keep all GDB-injected breakpoints in front */
390     if (flags & BP_GDB) {
391         QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
392     } else {
393         QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
394     }
395 
396     if (breakpoint) {
397         *breakpoint = bp;
398     }
399 
400     trace_breakpoint_insert(cpu->cpu_index, pc, flags);
401     return 0;
402 }
403 
404 /* Remove a specific breakpoint.  */
405 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
406 {
407     CPUClass *cc = CPU_GET_CLASS(cpu);
408     CPUBreakpoint *bp;
409 
410     if (cc->gdb_adjust_breakpoint) {
411         pc = cc->gdb_adjust_breakpoint(cpu, pc);
412     }
413 
414     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
415         if (bp->pc == pc && bp->flags == flags) {
416             cpu_breakpoint_remove_by_ref(cpu, bp);
417             return 0;
418         }
419     }
420     return -ENOENT;
421 }
422 
423 /* Remove a specific breakpoint by reference.  */
424 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
425 {
426     QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);
427 
428     trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
429     g_free(bp);
430 }
431 
432 /* Remove all matching breakpoints. */
433 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
434 {
435     CPUBreakpoint *bp, *next;
436 
437     QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
438         if (bp->flags & mask) {
439             cpu_breakpoint_remove_by_ref(cpu, bp);
440         }
441     }
442 }
443