1 /*
2 * CPU thread main loop - common bits for user and system mode emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "sysemu/cpus.h"
25 #include "qemu/lockable.h"
26 #include "trace/trace-root.h"
27
28 QemuMutex qemu_cpu_list_lock;
29 static QemuCond exclusive_cond;
30 static QemuCond exclusive_resume;
31 static QemuCond qemu_work_cond;
32
33 /* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
34 * under qemu_cpu_list_lock, read with atomic operations.
35 */
36 static int pending_cpus;
37
qemu_init_cpu_list(void)38 void qemu_init_cpu_list(void)
39 {
40 /* This is needed because qemu_init_cpu_list is also called by the
41 * child process in a fork. */
42 pending_cpus = 0;
43
44 qemu_mutex_init(&qemu_cpu_list_lock);
45 qemu_cond_init(&exclusive_cond);
46 qemu_cond_init(&exclusive_resume);
47 qemu_cond_init(&qemu_work_cond);
48 }
49
cpu_list_lock(void)50 void cpu_list_lock(void)
51 {
52 qemu_mutex_lock(&qemu_cpu_list_lock);
53 }
54
cpu_list_unlock(void)55 void cpu_list_unlock(void)
56 {
57 qemu_mutex_unlock(&qemu_cpu_list_lock);
58 }
59
60
cpu_get_free_index(void)61 int cpu_get_free_index(void)
62 {
63 CPUState *some_cpu;
64 int max_cpu_index = 0;
65
66 CPU_FOREACH(some_cpu) {
67 if (some_cpu->cpu_index >= max_cpu_index) {
68 max_cpu_index = some_cpu->cpu_index + 1;
69 }
70 }
71 return max_cpu_index;
72 }
73
74 CPUTailQ cpus_queue = QTAILQ_HEAD_INITIALIZER(cpus_queue);
75 static unsigned int cpu_list_generation_id;
76
cpu_list_generation_id_get(void)77 unsigned int cpu_list_generation_id_get(void)
78 {
79 return cpu_list_generation_id;
80 }
81
cpu_list_add(CPUState * cpu)82 void cpu_list_add(CPUState *cpu)
83 {
84 static bool cpu_index_auto_assigned;
85
86 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
87 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
88 cpu_index_auto_assigned = true;
89 cpu->cpu_index = cpu_get_free_index();
90 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
91 } else {
92 assert(!cpu_index_auto_assigned);
93 }
94 QTAILQ_INSERT_TAIL_RCU(&cpus_queue, cpu, node);
95 cpu_list_generation_id++;
96 }
97
cpu_list_remove(CPUState * cpu)98 void cpu_list_remove(CPUState *cpu)
99 {
100 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
101 if (!QTAILQ_IN_USE(cpu, node)) {
102 /* there is nothing to undo since cpu_exec_init() hasn't been called */
103 return;
104 }
105
106 QTAILQ_REMOVE_RCU(&cpus_queue, cpu, node);
107 cpu->cpu_index = UNASSIGNED_CPU_INDEX;
108 cpu_list_generation_id++;
109 }
110
qemu_get_cpu(int index)111 CPUState *qemu_get_cpu(int index)
112 {
113 CPUState *cpu;
114
115 CPU_FOREACH(cpu) {
116 if (cpu->cpu_index == index) {
117 return cpu;
118 }
119 }
120
121 return NULL;
122 }
123
124 /* current CPU in the current thread. It is only valid inside cpu_exec() */
125 __thread CPUState *current_cpu;
126
127 struct qemu_work_item {
128 QSIMPLEQ_ENTRY(qemu_work_item) node;
129 run_on_cpu_func func;
130 run_on_cpu_data data;
131 bool free, exclusive, done;
132 };
133
queue_work_on_cpu(CPUState * cpu,struct qemu_work_item * wi)134 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
135 {
136 qemu_mutex_lock(&cpu->work_mutex);
137 QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
138 wi->done = false;
139 qemu_mutex_unlock(&cpu->work_mutex);
140
141 qemu_cpu_kick(cpu);
142 }
143
do_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data,QemuMutex * mutex)144 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
145 QemuMutex *mutex)
146 {
147 struct qemu_work_item wi;
148
149 if (qemu_cpu_is_self(cpu)) {
150 func(cpu, data);
151 return;
152 }
153
154 wi.func = func;
155 wi.data = data;
156 wi.done = false;
157 wi.free = false;
158 wi.exclusive = false;
159
160 queue_work_on_cpu(cpu, &wi);
161 while (!qatomic_load_acquire(&wi.done)) {
162 CPUState *self_cpu = current_cpu;
163
164 qemu_cond_wait(&qemu_work_cond, mutex);
165 current_cpu = self_cpu;
166 }
167 }
168
async_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)169 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
170 {
171 struct qemu_work_item *wi;
172
173 wi = g_new0(struct qemu_work_item, 1);
174 wi->func = func;
175 wi->data = data;
176 wi->free = true;
177
178 queue_work_on_cpu(cpu, wi);
179 }
180
181 /* Wait for pending exclusive operations to complete. The CPU list lock
182 must be held. */
exclusive_idle(void)183 static inline void exclusive_idle(void)
184 {
185 while (pending_cpus) {
186 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
187 }
188 }
189
190 /* Start an exclusive operation.
191 Must only be called from outside cpu_exec. */
start_exclusive(void)192 void start_exclusive(void)
193 {
194 CPUState *other_cpu;
195 int running_cpus;
196
197 /* Ensure we are not running, or start_exclusive will be blocked. */
198 g_assert(!current_cpu->running);
199
200 if (current_cpu->exclusive_context_count) {
201 current_cpu->exclusive_context_count++;
202 return;
203 }
204
205 qemu_mutex_lock(&qemu_cpu_list_lock);
206 exclusive_idle();
207
208 /* Make all other cpus stop executing. */
209 qatomic_set(&pending_cpus, 1);
210
211 /* Write pending_cpus before reading other_cpu->running. */
212 smp_mb();
213 running_cpus = 0;
214 CPU_FOREACH(other_cpu) {
215 if (qatomic_read(&other_cpu->running)) {
216 other_cpu->has_waiter = true;
217 running_cpus++;
218 qemu_cpu_kick(other_cpu);
219 }
220 }
221
222 qatomic_set(&pending_cpus, running_cpus + 1);
223 while (pending_cpus > 1) {
224 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
225 }
226
227 /* Can release mutex, no one will enter another exclusive
228 * section until end_exclusive resets pending_cpus to 0.
229 */
230 qemu_mutex_unlock(&qemu_cpu_list_lock);
231
232 current_cpu->exclusive_context_count = 1;
233 }
234
235 /* Finish an exclusive operation. */
end_exclusive(void)236 void end_exclusive(void)
237 {
238 current_cpu->exclusive_context_count--;
239 if (current_cpu->exclusive_context_count) {
240 return;
241 }
242
243 qemu_mutex_lock(&qemu_cpu_list_lock);
244 qatomic_set(&pending_cpus, 0);
245 qemu_cond_broadcast(&exclusive_resume);
246 qemu_mutex_unlock(&qemu_cpu_list_lock);
247 }
248
249 /* Wait for exclusive ops to finish, and begin cpu execution. */
cpu_exec_start(CPUState * cpu)250 void cpu_exec_start(CPUState *cpu)
251 {
252 qatomic_set(&cpu->running, true);
253
254 /* Write cpu->running before reading pending_cpus. */
255 smp_mb();
256
257 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
258 * After taking the lock we'll see cpu->has_waiter == true and run---not
259 * for long because start_exclusive kicked us. cpu_exec_end will
260 * decrement pending_cpus and signal the waiter.
261 *
262 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
263 * This includes the case when an exclusive item is running now.
264 * Then we'll see cpu->has_waiter == false and wait for the item to
265 * complete.
266 *
267 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
268 * see cpu->running == true, and it will kick the CPU.
269 */
270 if (unlikely(qatomic_read(&pending_cpus))) {
271 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
272 if (!cpu->has_waiter) {
273 /* Not counted in pending_cpus, let the exclusive item
274 * run. Since we have the lock, just set cpu->running to true
275 * while holding it; no need to check pending_cpus again.
276 */
277 qatomic_set(&cpu->running, false);
278 exclusive_idle();
279 /* Now pending_cpus is zero. */
280 qatomic_set(&cpu->running, true);
281 } else {
282 /* Counted in pending_cpus, go ahead and release the
283 * waiter at cpu_exec_end.
284 */
285 }
286 }
287 }
288
289 /* Mark cpu as not executing, and release pending exclusive ops. */
cpu_exec_end(CPUState * cpu)290 void cpu_exec_end(CPUState *cpu)
291 {
292 qatomic_set(&cpu->running, false);
293
294 /* Write cpu->running before reading pending_cpus. */
295 smp_mb();
296
297 /* 1. start_exclusive saw cpu->running == true. Then it will increment
298 * pending_cpus and wait for exclusive_cond. After taking the lock
299 * we'll see cpu->has_waiter == true.
300 *
301 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
302 * This includes the case when an exclusive item started after setting
303 * cpu->running to false and before we read pending_cpus. Then we'll see
304 * cpu->has_waiter == false and not touch pending_cpus. The next call to
305 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
306 * for the item to complete.
307 *
308 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
309 * see cpu->running == false, and it can ignore this CPU until the
310 * next cpu_exec_start.
311 */
312 if (unlikely(qatomic_read(&pending_cpus))) {
313 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
314 if (cpu->has_waiter) {
315 cpu->has_waiter = false;
316 qatomic_set(&pending_cpus, pending_cpus - 1);
317 if (pending_cpus == 1) {
318 qemu_cond_signal(&exclusive_cond);
319 }
320 }
321 }
322 }
323
async_safe_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)324 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
325 run_on_cpu_data data)
326 {
327 struct qemu_work_item *wi;
328
329 wi = g_new0(struct qemu_work_item, 1);
330 wi->func = func;
331 wi->data = data;
332 wi->free = true;
333 wi->exclusive = true;
334
335 queue_work_on_cpu(cpu, wi);
336 }
337
free_queued_cpu_work(CPUState * cpu)338 void free_queued_cpu_work(CPUState *cpu)
339 {
340 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
341 struct qemu_work_item *wi = QSIMPLEQ_FIRST(&cpu->work_list);
342 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
343 if (wi->free) {
344 g_free(wi);
345 }
346 }
347 }
348
process_queued_cpu_work(CPUState * cpu)349 void process_queued_cpu_work(CPUState *cpu)
350 {
351 struct qemu_work_item *wi;
352
353 qemu_mutex_lock(&cpu->work_mutex);
354 if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
355 qemu_mutex_unlock(&cpu->work_mutex);
356 return;
357 }
358 while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
359 wi = QSIMPLEQ_FIRST(&cpu->work_list);
360 QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
361 qemu_mutex_unlock(&cpu->work_mutex);
362 if (wi->exclusive) {
363 /* Running work items outside the BQL avoids the following deadlock:
364 * 1) start_exclusive() is called with the BQL taken while another
365 * CPU is running; 2) cpu_exec in the other CPU tries to takes the
366 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
367 * neither CPU can proceed.
368 */
369 bql_unlock();
370 start_exclusive();
371 wi->func(cpu, wi->data);
372 end_exclusive();
373 bql_lock();
374 } else {
375 wi->func(cpu, wi->data);
376 }
377 qemu_mutex_lock(&cpu->work_mutex);
378 if (wi->free) {
379 g_free(wi);
380 } else {
381 qatomic_store_release(&wi->done, true);
382 }
383 }
384 qemu_mutex_unlock(&cpu->work_mutex);
385 qemu_cond_broadcast(&qemu_work_cond);
386 }
387
388 /* Add a breakpoint. */
cpu_breakpoint_insert(CPUState * cpu,vaddr pc,int flags,CPUBreakpoint ** breakpoint)389 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
390 CPUBreakpoint **breakpoint)
391 {
392 CPUClass *cc = CPU_GET_CLASS(cpu);
393 CPUBreakpoint *bp;
394
395 if (cc->gdb_adjust_breakpoint) {
396 pc = cc->gdb_adjust_breakpoint(cpu, pc);
397 }
398
399 bp = g_malloc(sizeof(*bp));
400
401 bp->pc = pc;
402 bp->flags = flags;
403
404 /* keep all GDB-injected breakpoints in front */
405 if (flags & BP_GDB) {
406 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
407 } else {
408 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
409 }
410
411 if (breakpoint) {
412 *breakpoint = bp;
413 }
414
415 trace_breakpoint_insert(cpu->cpu_index, pc, flags);
416 return 0;
417 }
418
419 /* Remove a specific breakpoint. */
cpu_breakpoint_remove(CPUState * cpu,vaddr pc,int flags)420 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
421 {
422 CPUClass *cc = CPU_GET_CLASS(cpu);
423 CPUBreakpoint *bp;
424
425 if (cc->gdb_adjust_breakpoint) {
426 pc = cc->gdb_adjust_breakpoint(cpu, pc);
427 }
428
429 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
430 if (bp->pc == pc && bp->flags == flags) {
431 cpu_breakpoint_remove_by_ref(cpu, bp);
432 return 0;
433 }
434 }
435 return -ENOENT;
436 }
437
438 /* Remove a specific breakpoint by reference. */
cpu_breakpoint_remove_by_ref(CPUState * cpu,CPUBreakpoint * bp)439 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
440 {
441 QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);
442
443 trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
444 g_free(bp);
445 }
446
447 /* Remove all matching breakpoints. */
cpu_breakpoint_remove_all(CPUState * cpu,int mask)448 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
449 {
450 CPUBreakpoint *bp, *next;
451
452 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
453 if (bp->flags & mask) {
454 cpu_breakpoint_remove_by_ref(cpu, bp);
455 }
456 }
457 }
458