1 /* 2 * Lockstep Execution Plugin 3 * 4 * Allows you to execute two QEMU instances in lockstep and report 5 * when their execution diverges. This is mainly useful for developers 6 * who want to see where a change to TCG code generation has 7 * introduced a subtle and hard to find bug. 8 * 9 * Caveats: 10 * - single-threaded linux-user apps only with non-deterministic syscalls 11 * - no MTTCG enabled system emulation (icount may help) 12 * 13 * While icount makes things more deterministic it doesn't mean a 14 * particular run may execute the exact same sequence of blocks. An 15 * asynchronous event (for example X11 graphics update) may cause a 16 * block to end early and a new partial block to start. This means 17 * serial only test cases are a better bet. -d nochain may also help. 18 * 19 * This code is not thread safe! 20 * 21 * Copyright (c) 2020 Linaro Ltd 22 * 23 * SPDX-License-Identifier: GPL-2.0-or-later 24 */ 25 26 #include <glib.h> 27 #include <inttypes.h> 28 #include <unistd.h> 29 #include <sys/socket.h> 30 #include <sys/un.h> 31 #include <stdio.h> 32 #include <errno.h> 33 34 #include <qemu-plugin.h> 35 36 QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; 37 38 /* saved so we can uninstall later */ 39 static qemu_plugin_id_t our_id; 40 41 static unsigned long bb_count; 42 static unsigned long insn_count; 43 44 /* Information about a translated block */ 45 typedef struct { 46 uint64_t pc; 47 uint64_t insns; 48 } BlockInfo; 49 50 /* Information about an execution state in the log */ 51 typedef struct { 52 BlockInfo *block; 53 unsigned long insn_count; 54 unsigned long block_count; 55 } ExecInfo; 56 57 /* The execution state we compare */ 58 typedef struct { 59 uint64_t pc; 60 unsigned long insn_count; 61 } ExecState; 62 63 typedef struct { 64 GSList *log_pos; 65 int distance; 66 } DivergeState; 67 68 /* list of translated block info */ 69 static GSList *blocks; 70 71 /* execution log and points of divergence */ 72 static GSList *log, *divergence_log; 73 74 static int socket_fd; 75 static char *path_to_unlink; 76 77 static bool verbose; 78 79 static void plugin_cleanup(qemu_plugin_id_t id) 80 { 81 /* Free our block data */ 82 g_slist_free_full(blocks, &g_free); 83 g_slist_free_full(log, &g_free); 84 g_slist_free(divergence_log); 85 86 close(socket_fd); 87 if (path_to_unlink) { 88 unlink(path_to_unlink); 89 } 90 } 91 92 static void plugin_exit(qemu_plugin_id_t id, void *p) 93 { 94 g_autoptr(GString) out = g_string_new("No divergence :-)\n"); 95 g_string_append_printf(out, "Executed %ld/%d blocks\n", 96 bb_count, g_slist_length(log)); 97 g_string_append_printf(out, "Executed ~%ld instructions\n", insn_count); 98 qemu_plugin_outs(out->str); 99 100 plugin_cleanup(id); 101 } 102 103 static void report_divergance(ExecState *us, ExecState *them) 104 { 105 DivergeState divrec = { log, 0 }; 106 g_autoptr(GString) out = g_string_new(""); 107 bool diverged = false; 108 109 /* 110 * If we have diverged before did we get back on track or are we 111 * totally losing it? 112 */ 113 if (divergence_log) { 114 DivergeState *last = (DivergeState *) divergence_log->data; 115 GSList *entry; 116 117 for (entry = log; g_slist_next(entry); entry = g_slist_next(entry)) { 118 if (entry == last->log_pos) { 119 break; 120 } 121 divrec.distance++; 122 } 123 124 /* 125 * If the last two records are so close it is likely we will 126 * not recover synchronisation with the other end. 127 */ 128 if (divrec.distance == 1 && last->distance == 1) { 129 diverged = true; 130 } 131 } 132 divergence_log = g_slist_prepend(divergence_log, 133 g_memdup2(&divrec, sizeof(divrec))); 134 135 /* Output short log entry of going out of sync... */ 136 if (verbose || divrec.distance == 1 || diverged) { 137 g_string_printf(out, 138 "@ 0x%016" PRIx64 " vs 0x%016" PRIx64 139 " (%d/%d since last)\n", 140 us->pc, them->pc, g_slist_length(divergence_log), 141 divrec.distance); 142 qemu_plugin_outs(out->str); 143 } 144 145 if (diverged) { 146 int i; 147 GSList *entry; 148 149 g_string_printf(out, 150 "Δ insn_count @ 0x%016" PRIx64 151 " (%ld) vs 0x%016" PRIx64 " (%ld)\n", 152 us->pc, us->insn_count, them->pc, them->insn_count); 153 154 for (entry = log, i = 0; 155 g_slist_next(entry) && i < 5; 156 entry = g_slist_next(entry), i++) { 157 ExecInfo *prev = (ExecInfo *) entry->data; 158 g_string_append_printf(out, 159 " previously @ 0x%016" PRIx64 "/%" PRId64 160 " (%ld insns)\n", 161 prev->block->pc, prev->block->insns, 162 prev->insn_count); 163 } 164 qemu_plugin_outs(out->str); 165 qemu_plugin_outs("too much divergence... giving up."); 166 qemu_plugin_uninstall(our_id, plugin_cleanup); 167 } 168 } 169 170 static void vcpu_tb_exec(unsigned int cpu_index, void *udata) 171 { 172 BlockInfo *bi = (BlockInfo *) udata; 173 ExecState us, them; 174 ssize_t bytes; 175 ExecInfo *exec; 176 177 us.pc = bi->pc; 178 us.insn_count = insn_count; 179 180 /* 181 * Write our current position to the other end. If we fail the 182 * other end has probably died and we should shut down gracefully. 183 */ 184 bytes = write(socket_fd, &us, sizeof(ExecState)); 185 if (bytes < sizeof(ExecState)) { 186 qemu_plugin_outs(bytes < 0 ? 187 "problem writing to socket" : 188 "wrote less than expected to socket"); 189 qemu_plugin_uninstall(our_id, plugin_cleanup); 190 return; 191 } 192 193 /* 194 * Now read where our peer has reached. Again a failure probably 195 * indicates the other end died and we should close down cleanly. 196 */ 197 bytes = read(socket_fd, &them, sizeof(ExecState)); 198 if (bytes < sizeof(ExecState)) { 199 qemu_plugin_outs(bytes < 0 ? 200 "problem reading from socket" : 201 "read less than expected"); 202 qemu_plugin_uninstall(our_id, plugin_cleanup); 203 return; 204 } 205 206 /* 207 * Compare and report if we have diverged. 208 */ 209 if (us.pc != them.pc) { 210 report_divergance(&us, &them); 211 } 212 213 /* 214 * Assume this block will execute fully and record it 215 * in the execution log. 216 */ 217 insn_count += bi->insns; 218 bb_count++; 219 exec = g_new0(ExecInfo, 1); 220 exec->block = bi; 221 exec->insn_count = insn_count; 222 exec->block_count = bb_count; 223 log = g_slist_prepend(log, exec); 224 } 225 226 static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) 227 { 228 BlockInfo *bi = g_new0(BlockInfo, 1); 229 bi->pc = qemu_plugin_tb_vaddr(tb); 230 bi->insns = qemu_plugin_tb_n_insns(tb); 231 232 /* save a reference so we can free later */ 233 blocks = g_slist_prepend(blocks, bi); 234 qemu_plugin_register_vcpu_tb_exec_cb(tb, vcpu_tb_exec, 235 QEMU_PLUGIN_CB_NO_REGS, (void *)bi); 236 } 237 238 239 /* 240 * Instead of encoding master/slave status into what is essentially 241 * two peers we shall just take the simple approach of checking for 242 * the existence of the pipe and assuming if it's not there we are the 243 * first process. 244 */ 245 static bool setup_socket(const char *path) 246 { 247 struct sockaddr_un sockaddr; 248 const gsize pathlen = sizeof(sockaddr.sun_path) - 1; 249 int fd; 250 251 fd = socket(AF_UNIX, SOCK_STREAM, 0); 252 if (fd < 0) { 253 perror("create socket"); 254 return false; 255 } 256 257 sockaddr.sun_family = AF_UNIX; 258 if (g_strlcpy(sockaddr.sun_path, path, pathlen) >= pathlen) { 259 perror("bad path"); 260 return false; 261 } 262 263 if (bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) < 0) { 264 perror("bind socket"); 265 close(fd); 266 return false; 267 } 268 269 /* remember to clean-up */ 270 path_to_unlink = g_strdup(path); 271 272 if (listen(fd, 1) < 0) { 273 perror("listen socket"); 274 close(fd); 275 return false; 276 } 277 278 socket_fd = accept(fd, NULL, NULL); 279 if (socket_fd < 0 && errno != EINTR) { 280 perror("accept socket"); 281 close(fd); 282 return false; 283 } 284 285 qemu_plugin_outs("setup_socket::ready\n"); 286 287 close(fd); 288 return true; 289 } 290 291 static bool connect_socket(const char *path) 292 { 293 int fd; 294 struct sockaddr_un sockaddr; 295 const gsize pathlen = sizeof(sockaddr.sun_path) - 1; 296 297 fd = socket(AF_UNIX, SOCK_STREAM, 0); 298 if (fd < 0) { 299 perror("create socket"); 300 return false; 301 } 302 303 sockaddr.sun_family = AF_UNIX; 304 if (g_strlcpy(sockaddr.sun_path, path, pathlen) >= pathlen) { 305 perror("bad path"); 306 return false; 307 } 308 309 if (connect(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) < 0) { 310 perror("failed to connect"); 311 close(fd); 312 return false; 313 } 314 315 qemu_plugin_outs("connect_socket::ready\n"); 316 317 socket_fd = fd; 318 return true; 319 } 320 321 static bool setup_unix_socket(const char *path) 322 { 323 if (g_file_test(path, G_FILE_TEST_EXISTS)) { 324 return connect_socket(path); 325 } else { 326 return setup_socket(path); 327 } 328 } 329 330 331 QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, 332 const qemu_info_t *info, 333 int argc, char **argv) 334 { 335 int i; 336 g_autofree char *sock_path = NULL; 337 338 for (i = 0; i < argc; i++) { 339 char *p = argv[i]; 340 g_auto(GStrv) tokens = g_strsplit(p, "=", 2); 341 342 if (g_strcmp0(tokens[0], "verbose") == 0) { 343 if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &verbose)) { 344 fprintf(stderr, "boolean argument parsing failed: %s\n", p); 345 return -1; 346 } 347 } else if (g_strcmp0(tokens[0], "sockpath") == 0) { 348 sock_path = tokens[1]; 349 } else { 350 fprintf(stderr, "option parsing failed: %s\n", p); 351 return -1; 352 } 353 } 354 355 if (sock_path == NULL) { 356 fprintf(stderr, "Need a socket path to talk to other instance.\n"); 357 return -1; 358 } 359 360 if (!setup_unix_socket(sock_path)) { 361 fprintf(stderr, "Failed to setup socket for communications.\n"); 362 return -1; 363 } 364 365 our_id = id; 366 367 qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); 368 qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); 369 return 0; 370 } 371