xref: /openbmc/qemu/contrib/plugins/execlog.c (revision 0cc14182)
1 /*
2  * Copyright (C) 2021, Alexandre Iooss <erdnaxe@crans.org>
3  *
4  * Log instruction execution with memory access and register changes
5  *
6  * License: GNU GPL, version 2 or later.
7  *   See the COPYING file in the top-level directory.
8  */
9 #include <glib.h>
10 #include <inttypes.h>
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <unistd.h>
15 
16 #include <qemu-plugin.h>
17 
18 typedef struct {
19     struct qemu_plugin_register *handle;
20     GByteArray *last;
21     GByteArray *new;
22     const char *name;
23 } Register;
24 
25 typedef struct CPU {
26     /* Store last executed instruction on each vCPU as a GString */
27     GString *last_exec;
28     /* Ptr array of Register */
29     GPtrArray *registers;
30 } CPU;
31 
32 QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
33 
34 static GArray *cpus;
35 static GRWLock expand_array_lock;
36 
37 static GPtrArray *imatches;
38 static GArray *amatches;
39 static GPtrArray *rmatches;
40 static bool disas_assist;
41 static GMutex add_reg_name_lock;
42 static GPtrArray *all_reg_names;
43 
44 static CPU *get_cpu(int vcpu_index)
45 {
46     CPU *c;
47     g_rw_lock_reader_lock(&expand_array_lock);
48     c = &g_array_index(cpus, CPU, vcpu_index);
49     g_rw_lock_reader_unlock(&expand_array_lock);
50 
51     return c;
52 }
53 
54 /**
55  * Add memory read or write information to current instruction log
56  */
57 static void vcpu_mem(unsigned int cpu_index, qemu_plugin_meminfo_t info,
58                      uint64_t vaddr, void *udata)
59 {
60     CPU *c = get_cpu(cpu_index);
61     GString *s = c->last_exec;
62 
63     /* Find vCPU in array */
64 
65     /* Indicate type of memory access */
66     if (qemu_plugin_mem_is_store(info)) {
67         g_string_append(s, ", store");
68     } else {
69         g_string_append(s, ", load");
70     }
71 
72     /* If full system emulation log physical address and device name */
73     struct qemu_plugin_hwaddr *hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
74     if (hwaddr) {
75         uint64_t addr = qemu_plugin_hwaddr_phys_addr(hwaddr);
76         const char *name = qemu_plugin_hwaddr_device_name(hwaddr);
77         g_string_append_printf(s, ", 0x%08"PRIx64", %s", addr, name);
78     } else {
79         g_string_append_printf(s, ", 0x%08"PRIx64, vaddr);
80     }
81 }
82 
83 /**
84  * Log instruction execution, outputting the last one.
85  *
86  * vcpu_insn_exec() is a copy and paste of vcpu_insn_exec_with_regs()
87  * without the checking of register values when we've attempted to
88  * optimise with disas_assist.
89  */
90 static void insn_check_regs(CPU *cpu)
91 {
92     for (int n = 0; n < cpu->registers->len; n++) {
93         Register *reg = cpu->registers->pdata[n];
94         int sz;
95 
96         g_byte_array_set_size(reg->new, 0);
97         sz = qemu_plugin_read_register(reg->handle, reg->new);
98         g_assert(sz == reg->last->len);
99 
100         if (memcmp(reg->last->data, reg->new->data, sz)) {
101             GByteArray *temp = reg->last;
102             g_string_append_printf(cpu->last_exec, ", %s -> 0x", reg->name);
103             /* TODO: handle BE properly */
104             for (int i = sz; i >= 0; i--) {
105                 g_string_append_printf(cpu->last_exec, "%02x",
106                                        reg->new->data[i]);
107             }
108             reg->last = reg->new;
109             reg->new = temp;
110         }
111     }
112 }
113 
114 /* Log last instruction while checking registers */
115 static void vcpu_insn_exec_with_regs(unsigned int cpu_index, void *udata)
116 {
117     CPU *cpu = get_cpu(cpu_index);
118 
119     /* Print previous instruction in cache */
120     if (cpu->last_exec->len) {
121         if (cpu->registers) {
122             insn_check_regs(cpu);
123         }
124 
125         qemu_plugin_outs(cpu->last_exec->str);
126         qemu_plugin_outs("\n");
127     }
128 
129     /* Store new instruction in cache */
130     /* vcpu_mem will add memory access information to last_exec */
131     g_string_printf(cpu->last_exec, "%u, ", cpu_index);
132     g_string_append(cpu->last_exec, (char *)udata);
133 }
134 
135 /* Log last instruction while checking registers, ignore next */
136 static void vcpu_insn_exec_only_regs(unsigned int cpu_index, void *udata)
137 {
138     CPU *cpu = get_cpu(cpu_index);
139 
140     /* Print previous instruction in cache */
141     if (cpu->last_exec->len) {
142         if (cpu->registers) {
143             insn_check_regs(cpu);
144         }
145 
146         qemu_plugin_outs(cpu->last_exec->str);
147         qemu_plugin_outs("\n");
148     }
149 
150     /* reset */
151     cpu->last_exec->len = 0;
152 }
153 
154 /* Log last instruction without checking regs, setup next */
155 static void vcpu_insn_exec(unsigned int cpu_index, void *udata)
156 {
157     CPU *cpu = get_cpu(cpu_index);
158 
159     /* Print previous instruction in cache */
160     if (cpu->last_exec->len) {
161         qemu_plugin_outs(cpu->last_exec->str);
162         qemu_plugin_outs("\n");
163     }
164 
165     /* Store new instruction in cache */
166     /* vcpu_mem will add memory access information to last_exec */
167     g_string_printf(cpu->last_exec, "%u, ", cpu_index);
168     g_string_append(cpu->last_exec, (char *)udata);
169 }
170 
171 /**
172  * On translation block new translation
173  *
174  * QEMU convert code by translation block (TB). By hooking here we can then hook
175  * a callback on each instruction and memory access.
176  */
177 static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
178 {
179     struct qemu_plugin_insn *insn;
180     bool skip = (imatches || amatches);
181     bool check_regs_this = rmatches;
182     bool check_regs_next = false;
183 
184     size_t n = qemu_plugin_tb_n_insns(tb);
185     for (size_t i = 0; i < n; i++) {
186         char *insn_disas;
187         uint64_t insn_vaddr;
188 
189         /*
190          * `insn` is shared between translations in QEMU, copy needed data here.
191          * `output` is never freed as it might be used multiple times during
192          * the emulation lifetime.
193          * We only consider the first 32 bits of the instruction, this may be
194          * a limitation for CISC architectures.
195          */
196         insn = qemu_plugin_tb_get_insn(tb, i);
197         insn_disas = qemu_plugin_insn_disas(insn);
198         insn_vaddr = qemu_plugin_insn_vaddr(insn);
199 
200         /*
201          * If we are filtering we better check out if we have any
202          * hits. The skip "latches" so we can track memory accesses
203          * after the instruction we care about. Also enable register
204          * checking on the next instruction.
205          */
206         if (skip && imatches) {
207             int j;
208             for (j = 0; j < imatches->len && skip; j++) {
209                 char *m = g_ptr_array_index(imatches, j);
210                 if (g_str_has_prefix(insn_disas, m)) {
211                     skip = false;
212                     check_regs_next = rmatches;
213                 }
214             }
215         }
216 
217         if (skip && amatches) {
218             int j;
219             for (j = 0; j < amatches->len && skip; j++) {
220                 uint64_t v = g_array_index(amatches, uint64_t, j);
221                 if (v == insn_vaddr) {
222                     skip = false;
223                 }
224             }
225         }
226 
227         /*
228          * Check the disassembly to see if a register we care about
229          * will be affected by this instruction. This relies on the
230          * dissembler doing something sensible for the registers we
231          * care about.
232          */
233         if (disas_assist && rmatches) {
234             check_regs_next = false;
235             gchar *args = g_strstr_len(insn_disas, -1, " ");
236             for (int n = 0; n < all_reg_names->len; n++) {
237                 gchar *reg = g_ptr_array_index(all_reg_names, n);
238                 if (g_strrstr(args, reg)) {
239                     check_regs_next = true;
240                     skip = false;
241                 }
242             }
243         }
244 
245         /*
246          * We now have 3 choices:
247          *
248          * - Log insn
249          * - Log insn while checking registers
250          * - Don't log this insn but check if last insn changed registers
251          */
252 
253         if (skip) {
254             if (check_regs_this) {
255                 qemu_plugin_register_vcpu_insn_exec_cb(insn,
256                                                        vcpu_insn_exec_only_regs,
257                                                        QEMU_PLUGIN_CB_R_REGS,
258                                                        NULL);
259             }
260         } else {
261             uint32_t insn_opcode;
262             insn_opcode = *((uint32_t *)qemu_plugin_insn_data(insn));
263             char *output = g_strdup_printf("0x%"PRIx64", 0x%"PRIx32", \"%s\"",
264                                            insn_vaddr, insn_opcode, insn_disas);
265 
266             /* Register callback on memory read or write */
267             qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem,
268                                              QEMU_PLUGIN_CB_NO_REGS,
269                                              QEMU_PLUGIN_MEM_RW, NULL);
270 
271             /* Register callback on instruction */
272             if (check_regs_this) {
273                 qemu_plugin_register_vcpu_insn_exec_cb(
274                     insn, vcpu_insn_exec_with_regs,
275                     QEMU_PLUGIN_CB_R_REGS,
276                     output);
277             } else {
278                 qemu_plugin_register_vcpu_insn_exec_cb(
279                     insn, vcpu_insn_exec,
280                     QEMU_PLUGIN_CB_NO_REGS,
281                     output);
282             }
283 
284             /* reset skip */
285             skip = (imatches || amatches);
286         }
287 
288         /* set regs for next */
289         if (disas_assist && rmatches) {
290             check_regs_this = check_regs_next;
291         }
292 
293         g_free(insn_disas);
294     }
295 }
296 
297 static Register *init_vcpu_register(qemu_plugin_reg_descriptor *desc)
298 {
299     Register *reg = g_new0(Register, 1);
300     g_autofree gchar *lower = g_utf8_strdown(desc->name, -1);
301     int r;
302 
303     reg->handle = desc->handle;
304     reg->name = g_intern_string(lower);
305     reg->last = g_byte_array_new();
306     reg->new = g_byte_array_new();
307 
308     /* read the initial value */
309     r = qemu_plugin_read_register(reg->handle, reg->last);
310     g_assert(r > 0);
311     return reg;
312 }
313 
314 static GPtrArray *registers_init(int vcpu_index)
315 {
316     g_autoptr(GPtrArray) registers = g_ptr_array_new();
317     g_autoptr(GArray) reg_list = qemu_plugin_get_registers();
318 
319     if (rmatches && reg_list->len) {
320         /*
321          * Go through each register in the complete list and
322          * see if we want to track it.
323          */
324         for (int r = 0; r < reg_list->len; r++) {
325             qemu_plugin_reg_descriptor *rd = &g_array_index(
326                 reg_list, qemu_plugin_reg_descriptor, r);
327             for (int p = 0; p < rmatches->len; p++) {
328                 g_autoptr(GPatternSpec) pat = g_pattern_spec_new(rmatches->pdata[p]);
329                 g_autofree gchar *rd_lower = g_utf8_strdown(rd->name, -1);
330                 if (g_pattern_match_string(pat, rd->name) ||
331                     g_pattern_match_string(pat, rd_lower)) {
332                     Register *reg = init_vcpu_register(rd);
333                     g_ptr_array_add(registers, reg);
334 
335                     /* we need a list of regnames at TB translation time */
336                     if (disas_assist) {
337                         g_mutex_lock(&add_reg_name_lock);
338                         if (!g_ptr_array_find(all_reg_names, reg->name, NULL)) {
339                             g_ptr_array_add(all_reg_names, reg->name);
340                         }
341                         g_mutex_unlock(&add_reg_name_lock);
342                     }
343                 }
344             }
345         }
346     }
347 
348     return registers->len ? g_steal_pointer(&registers) : NULL;
349 }
350 
351 /*
352  * Initialise a new vcpu/thread with:
353  *   - last_exec tracking data
354  *   - list of tracked registers
355  *   - initial value of registers
356  *
357  * As we could have multiple threads trying to do this we need to
358  * serialise the expansion under a lock.
359  */
360 static void vcpu_init(qemu_plugin_id_t id, unsigned int vcpu_index)
361 {
362     CPU *c;
363 
364     g_rw_lock_writer_lock(&expand_array_lock);
365     if (vcpu_index >= cpus->len) {
366         g_array_set_size(cpus, vcpu_index + 1);
367     }
368     g_rw_lock_writer_unlock(&expand_array_lock);
369 
370     c = get_cpu(vcpu_index);
371     c->last_exec = g_string_new(NULL);
372     c->registers = registers_init(vcpu_index);
373 }
374 
375 /**
376  * On plugin exit, print last instruction in cache
377  */
378 static void plugin_exit(qemu_plugin_id_t id, void *p)
379 {
380     guint i;
381     g_rw_lock_reader_lock(&expand_array_lock);
382     for (i = 0; i < cpus->len; i++) {
383         CPU *c = get_cpu(i);
384         if (c->last_exec && c->last_exec->str) {
385             qemu_plugin_outs(c->last_exec->str);
386             qemu_plugin_outs("\n");
387         }
388     }
389     g_rw_lock_reader_unlock(&expand_array_lock);
390 }
391 
392 /* Add a match to the array of matches */
393 static void parse_insn_match(char *match)
394 {
395     if (!imatches) {
396         imatches = g_ptr_array_new();
397     }
398     g_ptr_array_add(imatches, g_strdup(match));
399 }
400 
401 static void parse_vaddr_match(char *match)
402 {
403     uint64_t v = g_ascii_strtoull(match, NULL, 16);
404 
405     if (!amatches) {
406         amatches = g_array_new(false, true, sizeof(uint64_t));
407     }
408     g_array_append_val(amatches, v);
409 }
410 
411 /*
412  * We have to wait until vCPUs are started before we can check the
413  * patterns find anything.
414  */
415 static void add_regpat(char *regpat)
416 {
417     if (!rmatches) {
418         rmatches = g_ptr_array_new();
419     }
420     g_ptr_array_add(rmatches, g_strdup(regpat));
421 }
422 
423 /**
424  * Install the plugin
425  */
426 QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
427                                            const qemu_info_t *info, int argc,
428                                            char **argv)
429 {
430     /*
431      * Initialize dynamic array to cache vCPU instruction. In user mode
432      * we don't know the size before emulation.
433      */
434     cpus = g_array_sized_new(true, true, sizeof(CPU),
435                              info->system_emulation ? info->system.max_vcpus : 1);
436 
437     for (int i = 0; i < argc; i++) {
438         char *opt = argv[i];
439         g_auto(GStrv) tokens = g_strsplit(opt, "=", 2);
440         if (g_strcmp0(tokens[0], "ifilter") == 0) {
441             parse_insn_match(tokens[1]);
442         } else if (g_strcmp0(tokens[0], "afilter") == 0) {
443             parse_vaddr_match(tokens[1]);
444         } else if (g_strcmp0(tokens[0], "reg") == 0) {
445             add_regpat(tokens[1]);
446         } else if (g_strcmp0(tokens[0], "rdisas") == 0) {
447             if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &disas_assist)) {
448                 fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
449                 return -1;
450             }
451             all_reg_names = g_ptr_array_new();
452         } else {
453             fprintf(stderr, "option parsing failed: %s\n", opt);
454             return -1;
455         }
456     }
457 
458     /* Register init, translation block and exit callbacks */
459     qemu_plugin_register_vcpu_init_cb(id, vcpu_init);
460     qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
461     qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
462 
463     return 0;
464 }
465