1 /* 2 * x86_64 cpu init and loop 3 * 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #ifndef _TARGET_ARCH_CPU_H_ 20 #define _TARGET_ARCH_CPU_H_ 21 22 #include "target_arch.h" 23 #include "signal-common.h" 24 25 #define TARGET_DEFAULT_CPU_MODEL "qemu64" 26 27 static inline void target_cpu_init(CPUX86State *env, 28 struct target_pt_regs *regs) 29 { 30 uint64_t *gdt_table; 31 32 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 33 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 34 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 35 env->cr[4] |= CR4_OSFXSR_MASK; 36 env->hflags |= HF_OSFXSR_MASK; 37 } 38 39 /* enable 64 bit mode if possible */ 40 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 41 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 42 exit(1); 43 } 44 env->cr[4] |= CR4_PAE_MASK; 45 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 46 env->hflags |= HF_LMA_MASK; 47 48 /* flags setup : we activate the IRQs by default as in user mode */ 49 env->eflags |= IF_MASK; 50 51 /* register setup */ 52 env->regs[R_EAX] = regs->rax; 53 env->regs[R_EBX] = regs->rbx; 54 env->regs[R_ECX] = regs->rcx; 55 env->regs[R_EDX] = regs->rdx; 56 env->regs[R_ESI] = regs->rsi; 57 env->regs[R_EDI] = regs->rdi; 58 env->regs[R_EBP] = regs->rbp; 59 env->regs[R_ESP] = regs->rsp; 60 env->eip = regs->rip; 61 62 /* interrupt setup */ 63 env->idt.limit = 511; 64 65 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 66 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); 67 bsd_x86_64_set_idt_base(env->idt.base); 68 bsd_x86_64_set_idt(0, 0); 69 bsd_x86_64_set_idt(1, 0); 70 bsd_x86_64_set_idt(2, 0); 71 bsd_x86_64_set_idt(3, 3); 72 bsd_x86_64_set_idt(4, 3); 73 bsd_x86_64_set_idt(5, 0); 74 bsd_x86_64_set_idt(6, 0); 75 bsd_x86_64_set_idt(7, 0); 76 bsd_x86_64_set_idt(8, 0); 77 bsd_x86_64_set_idt(9, 0); 78 bsd_x86_64_set_idt(10, 0); 79 bsd_x86_64_set_idt(11, 0); 80 bsd_x86_64_set_idt(12, 0); 81 bsd_x86_64_set_idt(13, 0); 82 bsd_x86_64_set_idt(14, 0); 83 bsd_x86_64_set_idt(15, 0); 84 bsd_x86_64_set_idt(16, 0); 85 bsd_x86_64_set_idt(17, 0); 86 bsd_x86_64_set_idt(18, 0); 87 bsd_x86_64_set_idt(19, 0); 88 bsd_x86_64_set_idt(0x80, 3); 89 90 /* segment setup */ 91 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 92 PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); 93 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 94 gdt_table = g2h_untagged(env->gdt.base); 95 96 /* 64 bit code segment */ 97 bsd_x86_64_write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 98 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_L_MASK 99 | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 100 101 bsd_x86_64_write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 102 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 103 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 104 105 cpu_x86_load_seg(env, R_CS, __USER_CS); 106 cpu_x86_load_seg(env, R_SS, __USER_DS); 107 cpu_x86_load_seg(env, R_DS, 0); 108 cpu_x86_load_seg(env, R_ES, 0); 109 cpu_x86_load_seg(env, R_FS, 0); 110 cpu_x86_load_seg(env, R_GS, 0); 111 } 112 113 static inline void target_cpu_loop(CPUX86State *env) 114 { 115 CPUState *cs = env_cpu(env); 116 int trapnr; 117 abi_ulong pc; 118 /* target_siginfo_t info; */ 119 120 for (;;) { 121 cpu_exec_start(cs); 122 trapnr = cpu_exec(cs); 123 cpu_exec_end(cs); 124 process_queued_cpu_work(cs); 125 126 switch (trapnr) { 127 case 0x80: 128 /* syscall from int $0x80 */ 129 if (bsd_type == target_freebsd) { 130 abi_ulong params = (abi_ulong) env->regs[R_ESP] + 131 sizeof(int32_t); 132 int32_t syscall_nr = env->regs[R_EAX]; 133 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8; 134 135 if (syscall_nr == TARGET_FREEBSD_NR_syscall) { 136 get_user_s32(syscall_nr, params); 137 params += sizeof(int32_t); 138 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) { 139 get_user_s32(syscall_nr, params); 140 params += sizeof(int64_t); 141 } 142 get_user_s32(arg1, params); 143 params += sizeof(int32_t); 144 get_user_s32(arg2, params); 145 params += sizeof(int32_t); 146 get_user_s32(arg3, params); 147 params += sizeof(int32_t); 148 get_user_s32(arg4, params); 149 params += sizeof(int32_t); 150 get_user_s32(arg5, params); 151 params += sizeof(int32_t); 152 get_user_s32(arg6, params); 153 params += sizeof(int32_t); 154 get_user_s32(arg7, params); 155 params += sizeof(int32_t); 156 get_user_s32(arg8, params); 157 env->regs[R_EAX] = do_freebsd_syscall(env, 158 syscall_nr, 159 arg1, 160 arg2, 161 arg3, 162 arg4, 163 arg5, 164 arg6, 165 arg7, 166 arg8); 167 } else { /* if (bsd_type == target_openbsd) */ 168 env->regs[R_EAX] = do_openbsd_syscall(env, 169 env->regs[R_EAX], 170 env->regs[R_EBX], 171 env->regs[R_ECX], 172 env->regs[R_EDX], 173 env->regs[R_ESI], 174 env->regs[R_EDI], 175 env->regs[R_EBP]); 176 } 177 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 178 env->regs[R_EAX] = -env->regs[R_EAX]; 179 env->eflags |= CC_C; 180 } else { 181 env->eflags &= ~CC_C; 182 } 183 break; 184 185 case EXCP_SYSCALL: 186 /* syscall from syscall instruction */ 187 if (bsd_type == target_freebsd) { 188 env->regs[R_EAX] = do_freebsd_syscall(env, 189 env->regs[R_EAX], 190 env->regs[R_EDI], 191 env->regs[R_ESI], 192 env->regs[R_EDX], 193 env->regs[R_ECX], 194 env->regs[8], 195 env->regs[9], 0, 0); 196 } else { /* if (bsd_type == target_openbsd) */ 197 env->regs[R_EAX] = do_openbsd_syscall(env, 198 env->regs[R_EAX], 199 env->regs[R_EDI], 200 env->regs[R_ESI], 201 env->regs[R_EDX], 202 env->regs[10], 203 env->regs[8], 204 env->regs[9]); 205 } 206 env->eip = env->exception_next_eip; 207 if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) { 208 env->regs[R_EAX] = -env->regs[R_EAX]; 209 env->eflags |= CC_C; 210 } else { 211 env->eflags &= ~CC_C; 212 } 213 break; 214 215 case EXCP_INTERRUPT: 216 /* just indicate that signals should be handled asap */ 217 break; 218 219 case EXCP_ATOMIC: 220 cpu_exec_step_atomic(cs); 221 break; 222 223 default: 224 pc = env->segs[R_CS].base + env->eip; 225 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - " 226 "aborting\n", (long)pc, trapnr); 227 abort(); 228 } 229 process_pending_signals(env); 230 } 231 } 232 233 static inline void target_cpu_clone_regs(CPUX86State *env, target_ulong newsp) 234 { 235 if (newsp) { 236 env->regs[R_ESP] = newsp; 237 } 238 env->regs[R_EAX] = 0; 239 } 240 241 static inline void target_cpu_reset(CPUArchState *env) 242 { 243 cpu_reset(env_cpu(env)); 244 } 245 246 #endif /* ! _TARGET_ARCH_CPU_H_ */ 247