1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "qemu.h" 24 #include "gdbstub/user.h" 25 #include "signal-common.h" 26 #include "trace.h" 27 #include "hw/core/tcg-cpu-ops.h" 28 #include "host-signal.h" 29 30 /* target_siginfo_t must fit in gdbstub's siginfo save area. */ 31 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); 32 33 static struct target_sigaction sigact_table[TARGET_NSIG]; 34 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 35 static void target_to_host_sigset_internal(sigset_t *d, 36 const target_sigset_t *s); 37 38 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 39 { 40 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 41 } 42 43 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 44 { 45 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 46 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 47 } 48 49 /* 50 * The BSD ABIs use the same signal numbers across all the CPU architectures, so 51 * (unlike Linux) these functions are just the identity mapping. This might not 52 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 53 */ 54 int host_to_target_signal(int sig) 55 { 56 return sig; 57 } 58 59 int target_to_host_signal(int sig) 60 { 61 return sig; 62 } 63 64 static inline void target_sigemptyset(target_sigset_t *set) 65 { 66 memset(set, 0, sizeof(*set)); 67 } 68 69 static inline void target_sigaddset(target_sigset_t *set, int signum) 70 { 71 signum--; 72 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 73 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 74 } 75 76 static inline int target_sigismember(const target_sigset_t *set, int signum) 77 { 78 signum--; 79 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 80 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 81 } 82 83 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 84 static inline void rewind_if_in_safe_syscall(void *puc) 85 { 86 ucontext_t *uc = (ucontext_t *)puc; 87 uintptr_t pcreg = host_signal_pc(uc); 88 89 if (pcreg > (uintptr_t)safe_syscall_start 90 && pcreg < (uintptr_t)safe_syscall_end) { 91 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 92 } 93 } 94 95 /* 96 * Note: The following take advantage of the BSD signal property that all 97 * signals are available on all architectures. 98 */ 99 static void host_to_target_sigset_internal(target_sigset_t *d, 100 const sigset_t *s) 101 { 102 int i; 103 104 target_sigemptyset(d); 105 for (i = 1; i <= NSIG; i++) { 106 if (sigismember(s, i)) { 107 target_sigaddset(d, host_to_target_signal(i)); 108 } 109 } 110 } 111 112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 113 { 114 target_sigset_t d1; 115 int i; 116 117 host_to_target_sigset_internal(&d1, s); 118 for (i = 0; i < _SIG_WORDS; i++) { 119 d->__bits[i] = tswap32(d1.__bits[i]); 120 } 121 } 122 123 static void target_to_host_sigset_internal(sigset_t *d, 124 const target_sigset_t *s) 125 { 126 int i; 127 128 sigemptyset(d); 129 for (i = 1; i <= TARGET_NSIG; i++) { 130 if (target_sigismember(s, i)) { 131 sigaddset(d, target_to_host_signal(i)); 132 } 133 } 134 } 135 136 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 137 { 138 target_sigset_t s1; 139 int i; 140 141 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 142 s1.__bits[i] = tswap32(s->__bits[i]); 143 } 144 target_to_host_sigset_internal(d, &s1); 145 } 146 147 static bool has_trapno(int tsig) 148 { 149 return tsig == TARGET_SIGILL || 150 tsig == TARGET_SIGFPE || 151 tsig == TARGET_SIGSEGV || 152 tsig == TARGET_SIGBUS || 153 tsig == TARGET_SIGTRAP; 154 } 155 156 /* Siginfo conversion. */ 157 158 /* 159 * Populate tinfo w/o swapping based on guessing which fields are valid. 160 */ 161 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 162 const siginfo_t *info) 163 { 164 int sig = host_to_target_signal(info->si_signo); 165 int si_code = info->si_code; 166 int si_type; 167 168 /* 169 * Make sure we that the variable portion of the target siginfo is zeroed 170 * out so we don't leak anything into that. 171 */ 172 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 173 174 /* 175 * This is awkward, because we have to use a combination of the si_code and 176 * si_signo to figure out which of the union's members are valid.o We 177 * therefore make our best guess. 178 * 179 * Once we have made our guess, we record it in the top 16 bits of 180 * the si_code, so that tswap_siginfo() later can use it. 181 * tswap_siginfo() will strip these top bits out before writing 182 * si_code to the guest (sign-extending the lower bits). 183 */ 184 tinfo->si_signo = sig; 185 tinfo->si_errno = info->si_errno; 186 tinfo->si_code = info->si_code; 187 tinfo->si_pid = info->si_pid; 188 tinfo->si_uid = info->si_uid; 189 tinfo->si_status = info->si_status; 190 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 191 /* 192 * si_value is opaque to kernel. On all FreeBSD platforms, 193 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 194 * always will copy the larger element. 195 */ 196 tinfo->si_value.sival_ptr = 197 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 198 199 switch (si_code) { 200 /* 201 * All the SI_xxx codes that are defined here are global to 202 * all the signals (they have values that none of the other, 203 * more specific signal info will set). 204 */ 205 case SI_USER: 206 case SI_LWP: 207 case SI_KERNEL: 208 case SI_QUEUE: 209 case SI_ASYNCIO: 210 /* 211 * Only the fixed parts are valid (though FreeBSD doesn't always 212 * set all the fields to non-zero values. 213 */ 214 si_type = QEMU_SI_NOINFO; 215 break; 216 case SI_TIMER: 217 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 218 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 219 si_type = QEMU_SI_TIMER; 220 break; 221 case SI_MESGQ: 222 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 223 si_type = QEMU_SI_MESGQ; 224 break; 225 default: 226 /* 227 * We have to go based on the signal number now to figure out 228 * what's valid. 229 */ 230 si_type = QEMU_SI_NOINFO; 231 if (has_trapno(sig)) { 232 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 233 si_type = QEMU_SI_FAULT; 234 } 235 #ifdef TARGET_SIGPOLL 236 /* 237 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 238 * a chance it may popup in the future. 239 */ 240 if (sig == TARGET_SIGPOLL) { 241 tinfo->_reason._poll._band = info->_reason._poll._band; 242 si_type = QEMU_SI_POLL; 243 } 244 #endif 245 /* 246 * Unsure that this can actually be generated, and our support for 247 * capsicum is somewhere between weak and non-existent, but if we get 248 * one, then we know what to save. 249 */ 250 #ifdef QEMU_SI_CAPSICUM 251 if (sig == TARGET_SIGTRAP) { 252 tinfo->_reason._capsicum._syscall = 253 info->_reason._capsicum._syscall; 254 si_type = QEMU_SI_CAPSICUM; 255 } 256 #endif 257 break; 258 } 259 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 260 } 261 262 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 263 { 264 int si_type = extract32(info->si_code, 24, 8); 265 int si_code = sextract32(info->si_code, 0, 24); 266 267 __put_user(info->si_signo, &tinfo->si_signo); 268 __put_user(info->si_errno, &tinfo->si_errno); 269 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 270 __put_user(info->si_pid, &tinfo->si_pid); 271 __put_user(info->si_uid, &tinfo->si_uid); 272 __put_user(info->si_status, &tinfo->si_status); 273 __put_user(info->si_addr, &tinfo->si_addr); 274 /* 275 * Unswapped, because we passed it through mostly untouched. si_value is 276 * opaque to the kernel, so we didn't bother with potentially wasting cycles 277 * to swap it into host byte order. 278 */ 279 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 280 281 /* 282 * We can use our internal marker of which fields in the structure 283 * are valid, rather than duplicating the guesswork of 284 * host_to_target_siginfo_noswap() here. 285 */ 286 switch (si_type) { 287 case QEMU_SI_NOINFO: /* No additional info */ 288 break; 289 case QEMU_SI_FAULT: 290 __put_user(info->_reason._fault._trapno, 291 &tinfo->_reason._fault._trapno); 292 break; 293 case QEMU_SI_TIMER: 294 __put_user(info->_reason._timer._timerid, 295 &tinfo->_reason._timer._timerid); 296 __put_user(info->_reason._timer._overrun, 297 &tinfo->_reason._timer._overrun); 298 break; 299 case QEMU_SI_MESGQ: 300 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 301 break; 302 case QEMU_SI_POLL: 303 /* Note: Not generated on FreeBSD */ 304 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 305 break; 306 #ifdef QEMU_SI_CAPSICUM 307 case QEMU_SI_CAPSICUM: 308 __put_user(info->_reason._capsicum._syscall, 309 &tinfo->_reason._capsicum._syscall); 310 break; 311 #endif 312 default: 313 g_assert_not_reached(); 314 } 315 } 316 317 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 318 { 319 host_to_target_siginfo_noswap(tinfo, info); 320 tswap_siginfo(tinfo, tinfo); 321 } 322 323 int block_signals(void) 324 { 325 TaskState *ts = get_task_state(thread_cpu); 326 sigset_t set; 327 328 /* 329 * It's OK to block everything including SIGSEGV, because we won't run any 330 * further guest code before unblocking signals in 331 * process_pending_signals(). We depend on the FreeBSD behavior here where 332 * this will only affect this thread's signal mask. We don't use 333 * pthread_sigmask which might seem more correct because that routine also 334 * does odd things with SIGCANCEL to implement pthread_cancel(). 335 */ 336 sigfillset(&set); 337 sigprocmask(SIG_SETMASK, &set, 0); 338 339 return qatomic_xchg(&ts->signal_pending, 1); 340 } 341 342 /* Returns 1 if given signal should dump core if not handled. */ 343 static int core_dump_signal(int sig) 344 { 345 switch (sig) { 346 case TARGET_SIGABRT: 347 case TARGET_SIGFPE: 348 case TARGET_SIGILL: 349 case TARGET_SIGQUIT: 350 case TARGET_SIGSEGV: 351 case TARGET_SIGTRAP: 352 case TARGET_SIGBUS: 353 return 1; 354 default: 355 return 0; 356 } 357 } 358 359 /* Abort execution with signal. */ 360 static G_NORETURN 361 void dump_core_and_abort(int target_sig) 362 { 363 CPUState *cpu = thread_cpu; 364 CPUArchState *env = cpu_env(cpu); 365 TaskState *ts = get_task_state(cpu); 366 int core_dumped = 0; 367 int host_sig; 368 struct sigaction act; 369 370 host_sig = target_to_host_signal(target_sig); 371 gdb_signalled(env, target_sig); 372 373 /* Dump core if supported by target binary format */ 374 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 375 stop_all_tasks(); 376 core_dumped = 377 ((*ts->bprm->core_dump)(target_sig, env) == 0); 378 } 379 if (core_dumped) { 380 struct rlimit nodump; 381 382 /* 383 * We already dumped the core of target process, we don't want 384 * a coredump of qemu itself. 385 */ 386 getrlimit(RLIMIT_CORE, &nodump); 387 nodump.rlim_cur = 0; 388 setrlimit(RLIMIT_CORE, &nodump); 389 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 390 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 391 } 392 393 /* 394 * The proper exit code for dying from an uncaught signal is 395 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 396 * a negative value. To get the proper exit code we need to 397 * actually die from an uncaught signal. Here the default signal 398 * handler is installed, we send ourself a signal and we wait for 399 * it to arrive. 400 */ 401 memset(&act, 0, sizeof(act)); 402 sigfillset(&act.sa_mask); 403 act.sa_handler = SIG_DFL; 404 sigaction(host_sig, &act, NULL); 405 406 kill(getpid(), host_sig); 407 408 /* 409 * Make sure the signal isn't masked (just reuse the mask inside 410 * of act). 411 */ 412 sigdelset(&act.sa_mask, host_sig); 413 sigsuspend(&act.sa_mask); 414 415 /* unreachable */ 416 abort(); 417 } 418 419 /* 420 * Queue a signal so that it will be send to the virtual CPU as soon as 421 * possible. 422 */ 423 void queue_signal(CPUArchState *env, int sig, int si_type, 424 target_siginfo_t *info) 425 { 426 CPUState *cpu = env_cpu(env); 427 TaskState *ts = get_task_state(cpu); 428 429 trace_user_queue_signal(env, sig); 430 431 info->si_code = deposit32(info->si_code, 24, 8, si_type); 432 433 ts->sync_signal.info = *info; 434 ts->sync_signal.pending = sig; 435 /* Signal that a new signal is pending. */ 436 qatomic_set(&ts->signal_pending, 1); 437 return; 438 } 439 440 static int fatal_signal(int sig) 441 { 442 443 switch (sig) { 444 case TARGET_SIGCHLD: 445 case TARGET_SIGURG: 446 case TARGET_SIGWINCH: 447 case TARGET_SIGINFO: 448 /* Ignored by default. */ 449 return 0; 450 case TARGET_SIGCONT: 451 case TARGET_SIGSTOP: 452 case TARGET_SIGTSTP: 453 case TARGET_SIGTTIN: 454 case TARGET_SIGTTOU: 455 /* Job control signals. */ 456 return 0; 457 default: 458 return 1; 459 } 460 } 461 462 /* 463 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 464 * 'force' part is handled in process_pending_signals(). 465 */ 466 void force_sig_fault(int sig, int code, abi_ulong addr) 467 { 468 CPUState *cpu = thread_cpu; 469 target_siginfo_t info = {}; 470 471 info.si_signo = sig; 472 info.si_errno = 0; 473 info.si_code = code; 474 info.si_addr = addr; 475 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); 476 } 477 478 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 479 { 480 CPUState *cpu = thread_cpu; 481 TaskState *ts = get_task_state(cpu); 482 target_siginfo_t tinfo; 483 ucontext_t *uc = puc; 484 struct emulated_sigtable *k; 485 int guest_sig; 486 uintptr_t pc = 0; 487 bool sync_sig = false; 488 489 /* 490 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 491 * handling wrt signal blocking and unwinding. 492 */ 493 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 494 MMUAccessType access_type; 495 uintptr_t host_addr; 496 abi_ptr guest_addr; 497 bool is_write; 498 499 host_addr = (uintptr_t)info->si_addr; 500 501 /* 502 * Convert forcefully to guest address space: addresses outside 503 * reserved_va are still valid to report via SEGV_MAPERR. 504 */ 505 guest_addr = h2g_nocheck(host_addr); 506 507 pc = host_signal_pc(uc); 508 is_write = host_signal_write(info, uc); 509 access_type = adjust_signal_pc(&pc, is_write); 510 511 if (host_sig == SIGSEGV) { 512 bool maperr = true; 513 514 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 515 /* If this was a write to a TB protected page, restart. */ 516 if (is_write && 517 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 518 pc, guest_addr)) { 519 return; 520 } 521 522 /* 523 * With reserved_va, the whole address space is PROT_NONE, 524 * which means that we may get ACCERR when we want MAPERR. 525 */ 526 if (page_get_flags(guest_addr) & PAGE_VALID) { 527 maperr = false; 528 } else { 529 info->si_code = SEGV_MAPERR; 530 } 531 } 532 533 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 534 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 535 } else { 536 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 537 if (info->si_code == BUS_ADRALN) { 538 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 539 } 540 } 541 542 sync_sig = true; 543 } 544 545 /* Get the target signal number. */ 546 guest_sig = host_to_target_signal(host_sig); 547 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 548 return; 549 } 550 trace_user_host_signal(cpu, host_sig, guest_sig); 551 552 host_to_target_siginfo_noswap(&tinfo, info); 553 554 k = &ts->sigtab[guest_sig - 1]; 555 k->info = tinfo; 556 k->pending = guest_sig; 557 ts->signal_pending = 1; 558 559 /* 560 * For synchronous signals, unwind the cpu state to the faulting 561 * insn and then exit back to the main loop so that the signal 562 * is delivered immediately. 563 */ 564 if (sync_sig) { 565 cpu->exception_index = EXCP_INTERRUPT; 566 cpu_loop_exit_restore(cpu, pc); 567 } 568 569 rewind_if_in_safe_syscall(puc); 570 571 /* 572 * Block host signals until target signal handler entered. We 573 * can't block SIGSEGV or SIGBUS while we're executing guest 574 * code in case the guest code provokes one in the window between 575 * now and it getting out to the main loop. Signals will be 576 * unblocked again in process_pending_signals(). 577 */ 578 sigfillset(&uc->uc_sigmask); 579 sigdelset(&uc->uc_sigmask, SIGSEGV); 580 sigdelset(&uc->uc_sigmask, SIGBUS); 581 582 /* Interrupt the virtual CPU as soon as possible. */ 583 cpu_exit(thread_cpu); 584 } 585 586 /* do_sigaltstack() returns target values and errnos. */ 587 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ 588 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 589 { 590 TaskState *ts = get_task_state(thread_cpu); 591 int ret; 592 target_stack_t oss; 593 594 if (uoss_addr) { 595 /* Save current signal stack params */ 596 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); 597 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); 598 oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); 599 } 600 601 if (uss_addr) { 602 target_stack_t *uss; 603 target_stack_t ss; 604 size_t minstacksize = TARGET_MINSIGSTKSZ; 605 606 ret = -TARGET_EFAULT; 607 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 608 goto out; 609 } 610 __get_user(ss.ss_sp, &uss->ss_sp); 611 __get_user(ss.ss_size, &uss->ss_size); 612 __get_user(ss.ss_flags, &uss->ss_flags); 613 unlock_user_struct(uss, uss_addr, 0); 614 615 ret = -TARGET_EPERM; 616 if (on_sig_stack(ts, sp)) { 617 goto out; 618 } 619 620 ret = -TARGET_EINVAL; 621 if (ss.ss_flags != TARGET_SS_DISABLE 622 && ss.ss_flags != TARGET_SS_ONSTACK 623 && ss.ss_flags != 0) { 624 goto out; 625 } 626 627 if (ss.ss_flags == TARGET_SS_DISABLE) { 628 ss.ss_size = 0; 629 ss.ss_sp = 0; 630 } else { 631 ret = -TARGET_ENOMEM; 632 if (ss.ss_size < minstacksize) { 633 goto out; 634 } 635 } 636 637 ts->sigaltstack_used.ss_sp = ss.ss_sp; 638 ts->sigaltstack_used.ss_size = ss.ss_size; 639 } 640 641 if (uoss_addr) { 642 ret = -TARGET_EFAULT; 643 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { 644 goto out; 645 } 646 } 647 648 ret = 0; 649 out: 650 return ret; 651 } 652 653 /* do_sigaction() return host values and errnos */ 654 int do_sigaction(int sig, const struct target_sigaction *act, 655 struct target_sigaction *oact) 656 { 657 struct target_sigaction *k; 658 struct sigaction act1; 659 int host_sig; 660 int ret = 0; 661 662 if (sig < 1 || sig > TARGET_NSIG) { 663 return -TARGET_EINVAL; 664 } 665 666 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && 667 act != NULL && act->_sa_handler != TARGET_SIG_DFL) { 668 return -TARGET_EINVAL; 669 } 670 671 if (block_signals()) { 672 return -TARGET_ERESTART; 673 } 674 675 k = &sigact_table[sig - 1]; 676 if (oact) { 677 oact->_sa_handler = tswapal(k->_sa_handler); 678 oact->sa_flags = tswap32(k->sa_flags); 679 oact->sa_mask = k->sa_mask; 680 } 681 if (act) { 682 k->_sa_handler = tswapal(act->_sa_handler); 683 k->sa_flags = tswap32(act->sa_flags); 684 k->sa_mask = act->sa_mask; 685 686 /* Update the host signal state. */ 687 host_sig = target_to_host_signal(sig); 688 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 689 memset(&act1, 0, sizeof(struct sigaction)); 690 sigfillset(&act1.sa_mask); 691 act1.sa_flags = SA_SIGINFO; 692 if (k->sa_flags & TARGET_SA_RESTART) { 693 act1.sa_flags |= SA_RESTART; 694 } 695 /* 696 * Note: It is important to update the host kernel signal mask to 697 * avoid getting unexpected interrupted system calls. 698 */ 699 if (k->_sa_handler == TARGET_SIG_IGN) { 700 act1.sa_sigaction = (void *)SIG_IGN; 701 } else if (k->_sa_handler == TARGET_SIG_DFL) { 702 if (fatal_signal(sig)) { 703 act1.sa_sigaction = host_signal_handler; 704 } else { 705 act1.sa_sigaction = (void *)SIG_DFL; 706 } 707 } else { 708 act1.sa_sigaction = host_signal_handler; 709 } 710 ret = sigaction(host_sig, &act1, NULL); 711 } 712 } 713 return ret; 714 } 715 716 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 717 CPUArchState *env, size_t frame_size) 718 { 719 TaskState *ts = get_task_state(thread_cpu); 720 abi_ulong sp; 721 722 /* Use default user stack */ 723 sp = get_sp_from_cpustate(env); 724 725 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 726 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 727 } 728 729 /* TODO: make this a target_arch function / define */ 730 #if defined(TARGET_ARM) 731 return (sp - frame_size) & ~7; 732 #elif defined(TARGET_AARCH64) 733 return (sp - frame_size) & ~15; 734 #else 735 return sp - frame_size; 736 #endif 737 } 738 739 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 740 741 static void setup_frame(int sig, int code, struct target_sigaction *ka, 742 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 743 { 744 struct target_sigframe *frame; 745 abi_ulong frame_addr; 746 int i; 747 748 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 749 trace_user_setup_frame(env, frame_addr); 750 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 751 unlock_user_struct(frame, frame_addr, 1); 752 dump_core_and_abort(TARGET_SIGILL); 753 return; 754 } 755 756 memset(frame, 0, sizeof(*frame)); 757 setup_sigframe_arch(env, frame_addr, frame, 0); 758 759 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 760 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 761 } 762 763 if (tinfo) { 764 frame->sf_si.si_signo = tinfo->si_signo; 765 frame->sf_si.si_errno = tinfo->si_errno; 766 frame->sf_si.si_code = tinfo->si_code; 767 frame->sf_si.si_pid = tinfo->si_pid; 768 frame->sf_si.si_uid = tinfo->si_uid; 769 frame->sf_si.si_status = tinfo->si_status; 770 frame->sf_si.si_addr = tinfo->si_addr; 771 /* see host_to_target_siginfo_noswap() for more details */ 772 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 773 /* 774 * At this point, whatever is in the _reason union is complete 775 * and in target order, so just copy the whole thing over, even 776 * if it's too large for this specific signal. 777 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 778 * that's so. 779 */ 780 memcpy(&frame->sf_si._reason, &tinfo->_reason, 781 sizeof(tinfo->_reason)); 782 } 783 784 set_sigtramp_args(env, sig, frame, frame_addr, ka); 785 786 unlock_user_struct(frame, frame_addr, 1); 787 } 788 789 static int reset_signal_mask(target_ucontext_t *ucontext) 790 { 791 int i; 792 sigset_t blocked; 793 target_sigset_t target_set; 794 TaskState *ts = get_task_state(thread_cpu); 795 796 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 797 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]); 798 } 799 target_to_host_sigset_internal(&blocked, &target_set); 800 ts->signal_mask = blocked; 801 802 return 0; 803 } 804 805 /* See sys/$M/$M/exec_machdep.c sigreturn() */ 806 long do_sigreturn(CPUArchState *env, abi_ulong addr) 807 { 808 long ret; 809 abi_ulong target_ucontext; 810 target_ucontext_t *ucontext = NULL; 811 812 /* Get the target ucontext address from the stack frame */ 813 ret = get_ucontext_sigreturn(env, addr, &target_ucontext); 814 if (is_error(ret)) { 815 return ret; 816 } 817 trace_user_do_sigreturn(env, addr); 818 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { 819 goto badframe; 820 } 821 822 /* Set the register state back to before the signal. */ 823 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { 824 goto badframe; 825 } 826 827 /* And reset the signal mask. */ 828 if (reset_signal_mask(ucontext)) { 829 goto badframe; 830 } 831 832 unlock_user_struct(ucontext, target_ucontext, 0); 833 return -TARGET_EJUSTRETURN; 834 835 badframe: 836 if (ucontext != NULL) { 837 unlock_user_struct(ucontext, target_ucontext, 0); 838 } 839 return -TARGET_EFAULT; 840 } 841 842 void signal_init(void) 843 { 844 TaskState *ts = get_task_state(thread_cpu); 845 struct sigaction act; 846 struct sigaction oact; 847 int i; 848 int host_sig; 849 850 /* Set the signal mask from the host mask. */ 851 sigprocmask(0, 0, &ts->signal_mask); 852 853 sigfillset(&act.sa_mask); 854 act.sa_sigaction = host_signal_handler; 855 act.sa_flags = SA_SIGINFO; 856 857 for (i = 1; i <= TARGET_NSIG; i++) { 858 host_sig = target_to_host_signal(i); 859 sigaction(host_sig, NULL, &oact); 860 if (oact.sa_sigaction == (void *)SIG_IGN) { 861 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 862 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 863 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 864 } 865 /* 866 * If there's already a handler installed then something has 867 * gone horribly wrong, so don't even try to handle that case. 868 * Install some handlers for our own use. We need at least 869 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 870 * trap all signals because it affects syscall interrupt 871 * behavior. But do trap all default-fatal signals. 872 */ 873 if (fatal_signal(i)) { 874 sigaction(host_sig, &act, NULL); 875 } 876 } 877 } 878 879 static void handle_pending_signal(CPUArchState *env, int sig, 880 struct emulated_sigtable *k) 881 { 882 CPUState *cpu = env_cpu(env); 883 TaskState *ts = get_task_state(cpu); 884 struct target_sigaction *sa; 885 int code; 886 sigset_t set; 887 abi_ulong handler; 888 target_siginfo_t tinfo; 889 target_sigset_t target_old_set; 890 891 trace_user_handle_signal(env, sig); 892 893 k->pending = 0; 894 895 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); 896 if (!sig) { 897 sa = NULL; 898 handler = TARGET_SIG_IGN; 899 } else { 900 sa = &sigact_table[sig - 1]; 901 handler = sa->_sa_handler; 902 } 903 904 if (do_strace) { 905 print_taken_signal(sig, &k->info); 906 } 907 908 if (handler == TARGET_SIG_DFL) { 909 /* 910 * default handler : ignore some signal. The other are job 911 * control or fatal. 912 */ 913 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 914 sig == TARGET_SIGTTOU) { 915 kill(getpid(), SIGSTOP); 916 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 917 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 918 sig != TARGET_SIGCONT) { 919 dump_core_and_abort(sig); 920 } 921 } else if (handler == TARGET_SIG_IGN) { 922 /* ignore sig */ 923 } else if (handler == TARGET_SIG_ERR) { 924 dump_core_and_abort(sig); 925 } else { 926 /* compute the blocked signals during the handler execution */ 927 sigset_t *blocked_set; 928 929 target_to_host_sigset(&set, &sa->sa_mask); 930 /* 931 * SA_NODEFER indicates that the current signal should not be 932 * blocked during the handler. 933 */ 934 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 935 sigaddset(&set, target_to_host_signal(sig)); 936 } 937 938 /* 939 * Save the previous blocked signal state to restore it at the 940 * end of the signal execution (see do_sigreturn). 941 */ 942 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 943 944 blocked_set = ts->in_sigsuspend ? 945 &ts->sigsuspend_mask : &ts->signal_mask; 946 sigorset(&ts->signal_mask, blocked_set, &set); 947 ts->in_sigsuspend = false; 948 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 949 950 /* XXX VM86 on x86 ??? */ 951 952 code = k->info.si_code; /* From host, so no si_type */ 953 /* prepare the stack frame of the virtual CPU */ 954 if (sa->sa_flags & TARGET_SA_SIGINFO) { 955 tswap_siginfo(&tinfo, &k->info); 956 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 957 } else { 958 setup_frame(sig, code, sa, &target_old_set, NULL, env); 959 } 960 if (sa->sa_flags & TARGET_SA_RESETHAND) { 961 sa->_sa_handler = TARGET_SIG_DFL; 962 } 963 } 964 } 965 966 void process_pending_signals(CPUArchState *env) 967 { 968 CPUState *cpu = env_cpu(env); 969 int sig; 970 sigset_t *blocked_set, set; 971 struct emulated_sigtable *k; 972 TaskState *ts = get_task_state(cpu); 973 974 while (qatomic_read(&ts->signal_pending)) { 975 sigfillset(&set); 976 sigprocmask(SIG_SETMASK, &set, 0); 977 978 restart_scan: 979 sig = ts->sync_signal.pending; 980 if (sig) { 981 /* 982 * Synchronous signals are forced by the emulated CPU in some way. 983 * If they are set to ignore, restore the default handler (see 984 * sys/kern_sig.c trapsignal() and execsigs() for this behavior) 985 * though maybe this is done only when forcing exit for non SIGCHLD. 986 */ 987 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || 988 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 989 sigdelset(&ts->signal_mask, target_to_host_signal(sig)); 990 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 991 } 992 handle_pending_signal(env, sig, &ts->sync_signal); 993 } 994 995 k = ts->sigtab; 996 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { 997 blocked_set = ts->in_sigsuspend ? 998 &ts->sigsuspend_mask : &ts->signal_mask; 999 if (k->pending && 1000 !sigismember(blocked_set, target_to_host_signal(sig))) { 1001 handle_pending_signal(env, sig, k); 1002 /* 1003 * Restart scan from the beginning, as handle_pending_signal 1004 * might have resulted in a new synchronous signal (eg SIGSEGV). 1005 */ 1006 goto restart_scan; 1007 } 1008 } 1009 1010 /* 1011 * Unblock signals and check one more time. Unblocking signals may cause 1012 * us to take another host signal, which will set signal_pending again. 1013 */ 1014 qatomic_set(&ts->signal_pending, 0); 1015 ts->in_sigsuspend = false; 1016 set = ts->signal_mask; 1017 sigdelset(&set, SIGSEGV); 1018 sigdelset(&set, SIGBUS); 1019 sigprocmask(SIG_SETMASK, &set, 0); 1020 } 1021 ts->in_sigsuspend = false; 1022 } 1023 1024 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 1025 MMUAccessType access_type, bool maperr, uintptr_t ra) 1026 { 1027 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1028 1029 if (tcg_ops->record_sigsegv) { 1030 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 1031 } 1032 1033 force_sig_fault(TARGET_SIGSEGV, 1034 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 1035 addr); 1036 cpu->exception_index = EXCP_INTERRUPT; 1037 cpu_loop_exit_restore(cpu, ra); 1038 } 1039 1040 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 1041 MMUAccessType access_type, uintptr_t ra) 1042 { 1043 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1044 1045 if (tcg_ops->record_sigbus) { 1046 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 1047 } 1048 1049 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 1050 cpu->exception_index = EXCP_INTERRUPT; 1051 cpu_loop_exit_restore(cpu, ra); 1052 } 1053