xref: /openbmc/qemu/bsd-user/signal.c (revision c6e1b31b)
1 /*
2  *  Emulation of BSD signals
3  *
4  *  Copyright (c) 2003 - 2008 Fabrice Bellard
5  *  Copyright (c) 2013 Stacey Son
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "gdbstub/user.h"
25 #include "signal-common.h"
26 #include "trace.h"
27 #include "hw/core/tcg-cpu-ops.h"
28 #include "host-signal.h"
29 
30 static struct target_sigaction sigact_table[TARGET_NSIG];
31 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
32 static void target_to_host_sigset_internal(sigset_t *d,
33         const target_sigset_t *s);
34 
35 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
36 {
37     return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
38 }
39 
40 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
41 {
42     return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
43         on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
44 }
45 
46 /*
47  * The BSD ABIs use the same signal numbers across all the CPU architectures, so
48  * (unlike Linux) these functions are just the identity mapping. This might not
49  * be true for XyzBSD running on AbcBSD, which doesn't currently work.
50  */
51 int host_to_target_signal(int sig)
52 {
53     return sig;
54 }
55 
56 int target_to_host_signal(int sig)
57 {
58     return sig;
59 }
60 
61 static inline void target_sigemptyset(target_sigset_t *set)
62 {
63     memset(set, 0, sizeof(*set));
64 }
65 
66 static inline void target_sigaddset(target_sigset_t *set, int signum)
67 {
68     signum--;
69     uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
70     set->__bits[signum / TARGET_NSIG_BPW] |= mask;
71 }
72 
73 static inline int target_sigismember(const target_sigset_t *set, int signum)
74 {
75     signum--;
76     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
77     return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
78 }
79 
80 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
81 static inline void rewind_if_in_safe_syscall(void *puc)
82 {
83     ucontext_t *uc = (ucontext_t *)puc;
84     uintptr_t pcreg = host_signal_pc(uc);
85 
86     if (pcreg > (uintptr_t)safe_syscall_start
87         && pcreg < (uintptr_t)safe_syscall_end) {
88         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
89     }
90 }
91 
92 /*
93  * Note: The following take advantage of the BSD signal property that all
94  * signals are available on all architectures.
95  */
96 static void host_to_target_sigset_internal(target_sigset_t *d,
97         const sigset_t *s)
98 {
99     int i;
100 
101     target_sigemptyset(d);
102     for (i = 1; i <= NSIG; i++) {
103         if (sigismember(s, i)) {
104             target_sigaddset(d, host_to_target_signal(i));
105         }
106     }
107 }
108 
109 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
110 {
111     target_sigset_t d1;
112     int i;
113 
114     host_to_target_sigset_internal(&d1, s);
115     for (i = 0; i < _SIG_WORDS; i++) {
116         d->__bits[i] = tswap32(d1.__bits[i]);
117     }
118 }
119 
120 static void target_to_host_sigset_internal(sigset_t *d,
121         const target_sigset_t *s)
122 {
123     int i;
124 
125     sigemptyset(d);
126     for (i = 1; i <= TARGET_NSIG; i++) {
127         if (target_sigismember(s, i)) {
128             sigaddset(d, target_to_host_signal(i));
129         }
130     }
131 }
132 
133 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
134 {
135     target_sigset_t s1;
136     int i;
137 
138     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
139         s1.__bits[i] = tswap32(s->__bits[i]);
140     }
141     target_to_host_sigset_internal(d, &s1);
142 }
143 
144 static bool has_trapno(int tsig)
145 {
146     return tsig == TARGET_SIGILL ||
147         tsig == TARGET_SIGFPE ||
148         tsig == TARGET_SIGSEGV ||
149         tsig == TARGET_SIGBUS ||
150         tsig == TARGET_SIGTRAP;
151 }
152 
153 /* Siginfo conversion. */
154 
155 /*
156  * Populate tinfo w/o swapping based on guessing which fields are valid.
157  */
158 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
159         const siginfo_t *info)
160 {
161     int sig = host_to_target_signal(info->si_signo);
162     int si_code = info->si_code;
163     int si_type;
164 
165     /*
166      * Make sure we that the variable portion of the target siginfo is zeroed
167      * out so we don't leak anything into that.
168      */
169     memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
170 
171     /*
172      * This is awkward, because we have to use a combination of the si_code and
173      * si_signo to figure out which of the union's members are valid.o We
174      * therefore make our best guess.
175      *
176      * Once we have made our guess, we record it in the top 16 bits of
177      * the si_code, so that tswap_siginfo() later can use it.
178      * tswap_siginfo() will strip these top bits out before writing
179      * si_code to the guest (sign-extending the lower bits).
180      */
181     tinfo->si_signo = sig;
182     tinfo->si_errno = info->si_errno;
183     tinfo->si_code = info->si_code;
184     tinfo->si_pid = info->si_pid;
185     tinfo->si_uid = info->si_uid;
186     tinfo->si_status = info->si_status;
187     tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
188     /*
189      * si_value is opaque to kernel. On all FreeBSD platforms,
190      * sizeof(sival_ptr) >= sizeof(sival_int) so the following
191      * always will copy the larger element.
192      */
193     tinfo->si_value.sival_ptr =
194         (abi_ulong)(unsigned long)info->si_value.sival_ptr;
195 
196     switch (si_code) {
197         /*
198          * All the SI_xxx codes that are defined here are global to
199          * all the signals (they have values that none of the other,
200          * more specific signal info will set).
201          */
202     case SI_USER:
203     case SI_LWP:
204     case SI_KERNEL:
205     case SI_QUEUE:
206     case SI_ASYNCIO:
207         /*
208          * Only the fixed parts are valid (though FreeBSD doesn't always
209          * set all the fields to non-zero values.
210          */
211         si_type = QEMU_SI_NOINFO;
212         break;
213     case SI_TIMER:
214         tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
215         tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
216         si_type = QEMU_SI_TIMER;
217         break;
218     case SI_MESGQ:
219         tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
220         si_type = QEMU_SI_MESGQ;
221         break;
222     default:
223         /*
224          * We have to go based on the signal number now to figure out
225          * what's valid.
226          */
227         si_type = QEMU_SI_NOINFO;
228         if (has_trapno(sig)) {
229             tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
230             si_type = QEMU_SI_FAULT;
231         }
232 #ifdef TARGET_SIGPOLL
233         /*
234          * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
235          * a chance it may popup in the future.
236          */
237         if (sig == TARGET_SIGPOLL) {
238             tinfo->_reason._poll._band = info->_reason._poll._band;
239             si_type = QEMU_SI_POLL;
240         }
241 #endif
242         /*
243          * Unsure that this can actually be generated, and our support for
244          * capsicum is somewhere between weak and non-existent, but if we get
245          * one, then we know what to save.
246          */
247 #ifdef QEMU_SI_CAPSICUM
248         if (sig == TARGET_SIGTRAP) {
249             tinfo->_reason._capsicum._syscall =
250                 info->_reason._capsicum._syscall;
251             si_type = QEMU_SI_CAPSICUM;
252         }
253 #endif
254         break;
255     }
256     tinfo->si_code = deposit32(si_code, 24, 8, si_type);
257 }
258 
259 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
260 {
261     int si_type = extract32(info->si_code, 24, 8);
262     int si_code = sextract32(info->si_code, 0, 24);
263 
264     __put_user(info->si_signo, &tinfo->si_signo);
265     __put_user(info->si_errno, &tinfo->si_errno);
266     __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267     __put_user(info->si_pid, &tinfo->si_pid);
268     __put_user(info->si_uid, &tinfo->si_uid);
269     __put_user(info->si_status, &tinfo->si_status);
270     __put_user(info->si_addr, &tinfo->si_addr);
271     /*
272      * Unswapped, because we passed it through mostly untouched.  si_value is
273      * opaque to the kernel, so we didn't bother with potentially wasting cycles
274      * to swap it into host byte order.
275      */
276     tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
277 
278     /*
279      * We can use our internal marker of which fields in the structure
280      * are valid, rather than duplicating the guesswork of
281      * host_to_target_siginfo_noswap() here.
282      */
283     switch (si_type) {
284     case QEMU_SI_NOINFO:        /* No additional info */
285         break;
286     case QEMU_SI_FAULT:
287         __put_user(info->_reason._fault._trapno,
288                    &tinfo->_reason._fault._trapno);
289         break;
290     case QEMU_SI_TIMER:
291         __put_user(info->_reason._timer._timerid,
292                    &tinfo->_reason._timer._timerid);
293         __put_user(info->_reason._timer._overrun,
294                    &tinfo->_reason._timer._overrun);
295         break;
296     case QEMU_SI_MESGQ:
297         __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298         break;
299     case QEMU_SI_POLL:
300         /* Note: Not generated on FreeBSD */
301         __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302         break;
303 #ifdef QEMU_SI_CAPSICUM
304     case QEMU_SI_CAPSICUM:
305         __put_user(info->_reason._capsicum._syscall,
306                    &tinfo->_reason._capsicum._syscall);
307         break;
308 #endif
309     default:
310         g_assert_not_reached();
311     }
312 }
313 
314 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
315 {
316     host_to_target_siginfo_noswap(tinfo, info);
317     tswap_siginfo(tinfo, tinfo);
318 }
319 
320 int block_signals(void)
321 {
322     TaskState *ts = (TaskState *)thread_cpu->opaque;
323     sigset_t set;
324 
325     /*
326      * It's OK to block everything including SIGSEGV, because we won't run any
327      * further guest code before unblocking signals in
328      * process_pending_signals(). We depend on the FreeBSD behavior here where
329      * this will only affect this thread's signal mask. We don't use
330      * pthread_sigmask which might seem more correct because that routine also
331      * does odd things with SIGCANCEL to implement pthread_cancel().
332      */
333     sigfillset(&set);
334     sigprocmask(SIG_SETMASK, &set, 0);
335 
336     return qatomic_xchg(&ts->signal_pending, 1);
337 }
338 
339 /* Returns 1 if given signal should dump core if not handled. */
340 static int core_dump_signal(int sig)
341 {
342     switch (sig) {
343     case TARGET_SIGABRT:
344     case TARGET_SIGFPE:
345     case TARGET_SIGILL:
346     case TARGET_SIGQUIT:
347     case TARGET_SIGSEGV:
348     case TARGET_SIGTRAP:
349     case TARGET_SIGBUS:
350         return 1;
351     default:
352         return 0;
353     }
354 }
355 
356 /* Abort execution with signal. */
357 static G_NORETURN
358 void dump_core_and_abort(int target_sig)
359 {
360     CPUState *cpu = thread_cpu;
361     CPUArchState *env = cpu_env(cpu);
362     TaskState *ts = cpu->opaque;
363     int core_dumped = 0;
364     int host_sig;
365     struct sigaction act;
366 
367     host_sig = target_to_host_signal(target_sig);
368     gdb_signalled(env, target_sig);
369 
370     /* Dump core if supported by target binary format */
371     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
372         stop_all_tasks();
373         core_dumped =
374             ((*ts->bprm->core_dump)(target_sig, env) == 0);
375     }
376     if (core_dumped) {
377         struct rlimit nodump;
378 
379         /*
380          * We already dumped the core of target process, we don't want
381          * a coredump of qemu itself.
382          */
383          getrlimit(RLIMIT_CORE, &nodump);
384          nodump.rlim_cur = 0;
385          setrlimit(RLIMIT_CORE, &nodump);
386          (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
387              "- %s\n", target_sig, strsignal(host_sig), "core dumped");
388     }
389 
390     /*
391      * The proper exit code for dying from an uncaught signal is
392      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
393      * a negative value.  To get the proper exit code we need to
394      * actually die from an uncaught signal.  Here the default signal
395      * handler is installed, we send ourself a signal and we wait for
396      * it to arrive.
397      */
398     memset(&act, 0, sizeof(act));
399     sigfillset(&act.sa_mask);
400     act.sa_handler = SIG_DFL;
401     sigaction(host_sig, &act, NULL);
402 
403     kill(getpid(), host_sig);
404 
405     /*
406      * Make sure the signal isn't masked (just reuse the mask inside
407      * of act).
408      */
409     sigdelset(&act.sa_mask, host_sig);
410     sigsuspend(&act.sa_mask);
411 
412     /* unreachable */
413     abort();
414 }
415 
416 /*
417  * Queue a signal so that it will be send to the virtual CPU as soon as
418  * possible.
419  */
420 void queue_signal(CPUArchState *env, int sig, int si_type,
421                   target_siginfo_t *info)
422 {
423     CPUState *cpu = env_cpu(env);
424     TaskState *ts = cpu->opaque;
425 
426     trace_user_queue_signal(env, sig);
427 
428     info->si_code = deposit32(info->si_code, 24, 8, si_type);
429 
430     ts->sync_signal.info = *info;
431     ts->sync_signal.pending = sig;
432     /* Signal that a new signal is pending. */
433     qatomic_set(&ts->signal_pending, 1);
434     return;
435 }
436 
437 static int fatal_signal(int sig)
438 {
439 
440     switch (sig) {
441     case TARGET_SIGCHLD:
442     case TARGET_SIGURG:
443     case TARGET_SIGWINCH:
444     case TARGET_SIGINFO:
445         /* Ignored by default. */
446         return 0;
447     case TARGET_SIGCONT:
448     case TARGET_SIGSTOP:
449     case TARGET_SIGTSTP:
450     case TARGET_SIGTTIN:
451     case TARGET_SIGTTOU:
452         /* Job control signals.  */
453         return 0;
454     default:
455         return 1;
456     }
457 }
458 
459 /*
460  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
461  * 'force' part is handled in process_pending_signals().
462  */
463 void force_sig_fault(int sig, int code, abi_ulong addr)
464 {
465     CPUState *cpu = thread_cpu;
466     CPUArchState *env = cpu_env(cpu);
467     target_siginfo_t info = {};
468 
469     info.si_signo = sig;
470     info.si_errno = 0;
471     info.si_code = code;
472     info.si_addr = addr;
473     queue_signal(env, sig, QEMU_SI_FAULT, &info);
474 }
475 
476 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
477 {
478     CPUState *cpu = thread_cpu;
479     TaskState *ts = cpu->opaque;
480     target_siginfo_t tinfo;
481     ucontext_t *uc = puc;
482     struct emulated_sigtable *k;
483     int guest_sig;
484     uintptr_t pc = 0;
485     bool sync_sig = false;
486 
487     /*
488      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
489      * handling wrt signal blocking and unwinding.
490      */
491     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
492         MMUAccessType access_type;
493         uintptr_t host_addr;
494         abi_ptr guest_addr;
495         bool is_write;
496 
497         host_addr = (uintptr_t)info->si_addr;
498 
499         /*
500          * Convert forcefully to guest address space: addresses outside
501          * reserved_va are still valid to report via SEGV_MAPERR.
502          */
503         guest_addr = h2g_nocheck(host_addr);
504 
505         pc = host_signal_pc(uc);
506         is_write = host_signal_write(info, uc);
507         access_type = adjust_signal_pc(&pc, is_write);
508 
509         if (host_sig == SIGSEGV) {
510             bool maperr = true;
511 
512             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
513                 /* If this was a write to a TB protected page, restart. */
514                 if (is_write &&
515                     handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
516                                                 pc, guest_addr)) {
517                     return;
518                 }
519 
520                 /*
521                  * With reserved_va, the whole address space is PROT_NONE,
522                  * which means that we may get ACCERR when we want MAPERR.
523                  */
524                 if (page_get_flags(guest_addr) & PAGE_VALID) {
525                     maperr = false;
526                 } else {
527                     info->si_code = SEGV_MAPERR;
528                 }
529             }
530 
531             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
532             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
533         } else {
534             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
535             if (info->si_code == BUS_ADRALN) {
536                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
537             }
538         }
539 
540         sync_sig = true;
541     }
542 
543     /* Get the target signal number. */
544     guest_sig = host_to_target_signal(host_sig);
545     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
546         return;
547     }
548     trace_user_host_signal(cpu, host_sig, guest_sig);
549 
550     host_to_target_siginfo_noswap(&tinfo, info);
551 
552     k = &ts->sigtab[guest_sig - 1];
553     k->info = tinfo;
554     k->pending = guest_sig;
555     ts->signal_pending = 1;
556 
557     /*
558      * For synchronous signals, unwind the cpu state to the faulting
559      * insn and then exit back to the main loop so that the signal
560      * is delivered immediately.
561      */
562     if (sync_sig) {
563         cpu->exception_index = EXCP_INTERRUPT;
564         cpu_loop_exit_restore(cpu, pc);
565     }
566 
567     rewind_if_in_safe_syscall(puc);
568 
569     /*
570      * Block host signals until target signal handler entered. We
571      * can't block SIGSEGV or SIGBUS while we're executing guest
572      * code in case the guest code provokes one in the window between
573      * now and it getting out to the main loop. Signals will be
574      * unblocked again in process_pending_signals().
575      */
576     sigfillset(&uc->uc_sigmask);
577     sigdelset(&uc->uc_sigmask, SIGSEGV);
578     sigdelset(&uc->uc_sigmask, SIGBUS);
579 
580     /* Interrupt the virtual CPU as soon as possible. */
581     cpu_exit(thread_cpu);
582 }
583 
584 /* do_sigaltstack() returns target values and errnos. */
585 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
586 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
587 {
588     TaskState *ts = (TaskState *)thread_cpu->opaque;
589     int ret;
590     target_stack_t oss;
591 
592     if (uoss_addr) {
593         /* Save current signal stack params */
594         oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
595         oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
596         oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
597     }
598 
599     if (uss_addr) {
600         target_stack_t *uss;
601         target_stack_t ss;
602         size_t minstacksize = TARGET_MINSIGSTKSZ;
603 
604         ret = -TARGET_EFAULT;
605         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
606             goto out;
607         }
608         __get_user(ss.ss_sp, &uss->ss_sp);
609         __get_user(ss.ss_size, &uss->ss_size);
610         __get_user(ss.ss_flags, &uss->ss_flags);
611         unlock_user_struct(uss, uss_addr, 0);
612 
613         ret = -TARGET_EPERM;
614         if (on_sig_stack(ts, sp)) {
615             goto out;
616         }
617 
618         ret = -TARGET_EINVAL;
619         if (ss.ss_flags != TARGET_SS_DISABLE
620             && ss.ss_flags != TARGET_SS_ONSTACK
621             && ss.ss_flags != 0) {
622             goto out;
623         }
624 
625         if (ss.ss_flags == TARGET_SS_DISABLE) {
626             ss.ss_size = 0;
627             ss.ss_sp = 0;
628         } else {
629             ret = -TARGET_ENOMEM;
630             if (ss.ss_size < minstacksize) {
631                 goto out;
632             }
633         }
634 
635         ts->sigaltstack_used.ss_sp = ss.ss_sp;
636         ts->sigaltstack_used.ss_size = ss.ss_size;
637     }
638 
639     if (uoss_addr) {
640         ret = -TARGET_EFAULT;
641         if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
642             goto out;
643         }
644     }
645 
646     ret = 0;
647 out:
648     return ret;
649 }
650 
651 /* do_sigaction() return host values and errnos */
652 int do_sigaction(int sig, const struct target_sigaction *act,
653         struct target_sigaction *oact)
654 {
655     struct target_sigaction *k;
656     struct sigaction act1;
657     int host_sig;
658     int ret = 0;
659 
660     if (sig < 1 || sig > TARGET_NSIG) {
661         return -TARGET_EINVAL;
662     }
663 
664     if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
665         act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
666         return -TARGET_EINVAL;
667     }
668 
669     if (block_signals()) {
670         return -TARGET_ERESTART;
671     }
672 
673     k = &sigact_table[sig - 1];
674     if (oact) {
675         oact->_sa_handler = tswapal(k->_sa_handler);
676         oact->sa_flags = tswap32(k->sa_flags);
677         oact->sa_mask = k->sa_mask;
678     }
679     if (act) {
680         k->_sa_handler = tswapal(act->_sa_handler);
681         k->sa_flags = tswap32(act->sa_flags);
682         k->sa_mask = act->sa_mask;
683 
684         /* Update the host signal state. */
685         host_sig = target_to_host_signal(sig);
686         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
687             memset(&act1, 0, sizeof(struct sigaction));
688             sigfillset(&act1.sa_mask);
689             act1.sa_flags = SA_SIGINFO;
690             if (k->sa_flags & TARGET_SA_RESTART) {
691                 act1.sa_flags |= SA_RESTART;
692             }
693             /*
694              *  Note: It is important to update the host kernel signal mask to
695              *  avoid getting unexpected interrupted system calls.
696              */
697             if (k->_sa_handler == TARGET_SIG_IGN) {
698                 act1.sa_sigaction = (void *)SIG_IGN;
699             } else if (k->_sa_handler == TARGET_SIG_DFL) {
700                 if (fatal_signal(sig)) {
701                     act1.sa_sigaction = host_signal_handler;
702                 } else {
703                     act1.sa_sigaction = (void *)SIG_DFL;
704                 }
705             } else {
706                 act1.sa_sigaction = host_signal_handler;
707             }
708             ret = sigaction(host_sig, &act1, NULL);
709         }
710     }
711     return ret;
712 }
713 
714 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
715         CPUArchState *env, size_t frame_size)
716 {
717     TaskState *ts = (TaskState *)thread_cpu->opaque;
718     abi_ulong sp;
719 
720     /* Use default user stack */
721     sp = get_sp_from_cpustate(env);
722 
723     if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
724         sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
725     }
726 
727 /* TODO: make this a target_arch function / define */
728 #if defined(TARGET_ARM)
729     return (sp - frame_size) & ~7;
730 #elif defined(TARGET_AARCH64)
731     return (sp - frame_size) & ~15;
732 #else
733     return sp - frame_size;
734 #endif
735 }
736 
737 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
738 
739 static void setup_frame(int sig, int code, struct target_sigaction *ka,
740     target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
741 {
742     struct target_sigframe *frame;
743     abi_ulong frame_addr;
744     int i;
745 
746     frame_addr = get_sigframe(ka, env, sizeof(*frame));
747     trace_user_setup_frame(env, frame_addr);
748     if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
749         unlock_user_struct(frame, frame_addr, 1);
750         dump_core_and_abort(TARGET_SIGILL);
751         return;
752     }
753 
754     memset(frame, 0, sizeof(*frame));
755     setup_sigframe_arch(env, frame_addr, frame, 0);
756 
757     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
758         __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
759     }
760 
761     if (tinfo) {
762         frame->sf_si.si_signo = tinfo->si_signo;
763         frame->sf_si.si_errno = tinfo->si_errno;
764         frame->sf_si.si_code = tinfo->si_code;
765         frame->sf_si.si_pid = tinfo->si_pid;
766         frame->sf_si.si_uid = tinfo->si_uid;
767         frame->sf_si.si_status = tinfo->si_status;
768         frame->sf_si.si_addr = tinfo->si_addr;
769         /* see host_to_target_siginfo_noswap() for more details */
770         frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
771         /*
772          * At this point, whatever is in the _reason union is complete
773          * and in target order, so just copy the whole thing over, even
774          * if it's too large for this specific signal.
775          * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
776          * that's so.
777          */
778         memcpy(&frame->sf_si._reason, &tinfo->_reason,
779                sizeof(tinfo->_reason));
780     }
781 
782     set_sigtramp_args(env, sig, frame, frame_addr, ka);
783 
784     unlock_user_struct(frame, frame_addr, 1);
785 }
786 
787 static int reset_signal_mask(target_ucontext_t *ucontext)
788 {
789     int i;
790     sigset_t blocked;
791     target_sigset_t target_set;
792     TaskState *ts = (TaskState *)thread_cpu->opaque;
793 
794     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
795         __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
796     }
797     target_to_host_sigset_internal(&blocked, &target_set);
798     ts->signal_mask = blocked;
799 
800     return 0;
801 }
802 
803 /* See sys/$M/$M/exec_machdep.c sigreturn() */
804 long do_sigreturn(CPUArchState *env, abi_ulong addr)
805 {
806     long ret;
807     abi_ulong target_ucontext;
808     target_ucontext_t *ucontext = NULL;
809 
810     /* Get the target ucontext address from the stack frame */
811     ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
812     if (is_error(ret)) {
813         return ret;
814     }
815     trace_user_do_sigreturn(env, addr);
816     if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
817         goto badframe;
818     }
819 
820     /* Set the register state back to before the signal. */
821     if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
822         goto badframe;
823     }
824 
825     /* And reset the signal mask. */
826     if (reset_signal_mask(ucontext)) {
827         goto badframe;
828     }
829 
830     unlock_user_struct(ucontext, target_ucontext, 0);
831     return -TARGET_EJUSTRETURN;
832 
833 badframe:
834     if (ucontext != NULL) {
835         unlock_user_struct(ucontext, target_ucontext, 0);
836     }
837     return -TARGET_EFAULT;
838 }
839 
840 void signal_init(void)
841 {
842     TaskState *ts = (TaskState *)thread_cpu->opaque;
843     struct sigaction act;
844     struct sigaction oact;
845     int i;
846     int host_sig;
847 
848     /* Set the signal mask from the host mask. */
849     sigprocmask(0, 0, &ts->signal_mask);
850 
851     sigfillset(&act.sa_mask);
852     act.sa_sigaction = host_signal_handler;
853     act.sa_flags = SA_SIGINFO;
854 
855     for (i = 1; i <= TARGET_NSIG; i++) {
856         host_sig = target_to_host_signal(i);
857         sigaction(host_sig, NULL, &oact);
858         if (oact.sa_sigaction == (void *)SIG_IGN) {
859             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
860         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
861             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
862         }
863         /*
864          * If there's already a handler installed then something has
865          * gone horribly wrong, so don't even try to handle that case.
866          * Install some handlers for our own use.  We need at least
867          * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
868          * trap all signals because it affects syscall interrupt
869          * behavior.  But do trap all default-fatal signals.
870          */
871         if (fatal_signal(i)) {
872             sigaction(host_sig, &act, NULL);
873         }
874     }
875 }
876 
877 static void handle_pending_signal(CPUArchState *env, int sig,
878                                   struct emulated_sigtable *k)
879 {
880     CPUState *cpu = env_cpu(env);
881     TaskState *ts = cpu->opaque;
882     struct target_sigaction *sa;
883     int code;
884     sigset_t set;
885     abi_ulong handler;
886     target_siginfo_t tinfo;
887     target_sigset_t target_old_set;
888 
889     trace_user_handle_signal(env, sig);
890 
891     k->pending = 0;
892 
893     sig = gdb_handlesig(cpu, sig);
894     if (!sig) {
895         sa = NULL;
896         handler = TARGET_SIG_IGN;
897     } else {
898         sa = &sigact_table[sig - 1];
899         handler = sa->_sa_handler;
900     }
901 
902     if (do_strace) {
903         print_taken_signal(sig, &k->info);
904     }
905 
906     if (handler == TARGET_SIG_DFL) {
907         /*
908          * default handler : ignore some signal. The other are job
909          * control or fatal.
910          */
911         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
912             sig == TARGET_SIGTTOU) {
913             kill(getpid(), SIGSTOP);
914         } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
915                    sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
916                    sig != TARGET_SIGCONT) {
917             dump_core_and_abort(sig);
918         }
919     } else if (handler == TARGET_SIG_IGN) {
920         /* ignore sig */
921     } else if (handler == TARGET_SIG_ERR) {
922         dump_core_and_abort(sig);
923     } else {
924         /* compute the blocked signals during the handler execution */
925         sigset_t *blocked_set;
926 
927         target_to_host_sigset(&set, &sa->sa_mask);
928         /*
929          * SA_NODEFER indicates that the current signal should not be
930          * blocked during the handler.
931          */
932         if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
933             sigaddset(&set, target_to_host_signal(sig));
934         }
935 
936         /*
937          * Save the previous blocked signal state to restore it at the
938          * end of the signal execution (see do_sigreturn).
939          */
940         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
941 
942         blocked_set = ts->in_sigsuspend ?
943             &ts->sigsuspend_mask : &ts->signal_mask;
944         sigorset(&ts->signal_mask, blocked_set, &set);
945         ts->in_sigsuspend = false;
946         sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
947 
948         /* XXX VM86 on x86 ??? */
949 
950         code = k->info.si_code; /* From host, so no si_type */
951         /* prepare the stack frame of the virtual CPU */
952         if (sa->sa_flags & TARGET_SA_SIGINFO) {
953             tswap_siginfo(&tinfo, &k->info);
954             setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
955         } else {
956             setup_frame(sig, code, sa, &target_old_set, NULL, env);
957         }
958         if (sa->sa_flags & TARGET_SA_RESETHAND) {
959             sa->_sa_handler = TARGET_SIG_DFL;
960         }
961     }
962 }
963 
964 void process_pending_signals(CPUArchState *env)
965 {
966     CPUState *cpu = env_cpu(env);
967     int sig;
968     sigset_t *blocked_set, set;
969     struct emulated_sigtable *k;
970     TaskState *ts = cpu->opaque;
971 
972     while (qatomic_read(&ts->signal_pending)) {
973         sigfillset(&set);
974         sigprocmask(SIG_SETMASK, &set, 0);
975 
976     restart_scan:
977         sig = ts->sync_signal.pending;
978         if (sig) {
979             /*
980              * Synchronous signals are forced by the emulated CPU in some way.
981              * If they are set to ignore, restore the default handler (see
982              * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
983              * though maybe this is done only when forcing exit for non SIGCHLD.
984              */
985             if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
986                 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
987                 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
988                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
989             }
990             handle_pending_signal(env, sig, &ts->sync_signal);
991         }
992 
993         k = ts->sigtab;
994         for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
995             blocked_set = ts->in_sigsuspend ?
996                 &ts->sigsuspend_mask : &ts->signal_mask;
997             if (k->pending &&
998                 !sigismember(blocked_set, target_to_host_signal(sig))) {
999                 handle_pending_signal(env, sig, k);
1000                 /*
1001                  * Restart scan from the beginning, as handle_pending_signal
1002                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1003                  */
1004                 goto restart_scan;
1005             }
1006         }
1007 
1008         /*
1009          * Unblock signals and check one more time. Unblocking signals may cause
1010          * us to take another host signal, which will set signal_pending again.
1011          */
1012         qatomic_set(&ts->signal_pending, 0);
1013         ts->in_sigsuspend = false;
1014         set = ts->signal_mask;
1015         sigdelset(&set, SIGSEGV);
1016         sigdelset(&set, SIGBUS);
1017         sigprocmask(SIG_SETMASK, &set, 0);
1018     }
1019     ts->in_sigsuspend = false;
1020 }
1021 
1022 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1023                            MMUAccessType access_type, bool maperr, uintptr_t ra)
1024 {
1025     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1026 
1027     if (tcg_ops->record_sigsegv) {
1028         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1029     }
1030 
1031     force_sig_fault(TARGET_SIGSEGV,
1032                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1033                     addr);
1034     cpu->exception_index = EXCP_INTERRUPT;
1035     cpu_loop_exit_restore(cpu, ra);
1036 }
1037 
1038 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1039                           MMUAccessType access_type, uintptr_t ra)
1040 {
1041     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1042 
1043     if (tcg_ops->record_sigbus) {
1044         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1045     }
1046 
1047     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1048     cpu->exception_index = EXCP_INTERRUPT;
1049     cpu_loop_exit_restore(cpu, ra);
1050 }
1051