xref: /openbmc/qemu/bsd-user/signal.c (revision a8aa8af9)
1 /*
2  *  Emulation of BSD signals
3  *
4  *  Copyright (c) 2003 - 2008 Fabrice Bellard
5  *  Copyright (c) 2013 Stacey Son
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "user/tswap-target.h"
25 #include "gdbstub/user.h"
26 #include "signal-common.h"
27 #include "trace.h"
28 #include "hw/core/tcg-cpu-ops.h"
29 #include "host-signal.h"
30 
31 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
32 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
33 
34 static struct target_sigaction sigact_table[TARGET_NSIG];
35 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
36 static void target_to_host_sigset_internal(sigset_t *d,
37         const target_sigset_t *s);
38 
39 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
40 {
41     return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
42 }
43 
44 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
45 {
46     return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
47         on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
48 }
49 
50 /*
51  * The BSD ABIs use the same signal numbers across all the CPU architectures, so
52  * (unlike Linux) these functions are just the identity mapping. This might not
53  * be true for XyzBSD running on AbcBSD, which doesn't currently work.
54  */
55 int host_to_target_signal(int sig)
56 {
57     return sig;
58 }
59 
60 int target_to_host_signal(int sig)
61 {
62     return sig;
63 }
64 
65 static inline void target_sigemptyset(target_sigset_t *set)
66 {
67     memset(set, 0, sizeof(*set));
68 }
69 
70 static inline void target_sigaddset(target_sigset_t *set, int signum)
71 {
72     signum--;
73     uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
74     set->__bits[signum / TARGET_NSIG_BPW] |= mask;
75 }
76 
77 static inline int target_sigismember(const target_sigset_t *set, int signum)
78 {
79     signum--;
80     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
81     return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
82 }
83 
84 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
85 static inline void rewind_if_in_safe_syscall(void *puc)
86 {
87     ucontext_t *uc = (ucontext_t *)puc;
88     uintptr_t pcreg = host_signal_pc(uc);
89 
90     if (pcreg > (uintptr_t)safe_syscall_start
91         && pcreg < (uintptr_t)safe_syscall_end) {
92         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
93     }
94 }
95 
96 /*
97  * Note: The following take advantage of the BSD signal property that all
98  * signals are available on all architectures.
99  */
100 static void host_to_target_sigset_internal(target_sigset_t *d,
101         const sigset_t *s)
102 {
103     int i;
104 
105     target_sigemptyset(d);
106     for (i = 1; i <= NSIG; i++) {
107         if (sigismember(s, i)) {
108             target_sigaddset(d, host_to_target_signal(i));
109         }
110     }
111 }
112 
113 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
114 {
115     target_sigset_t d1;
116     int i;
117 
118     host_to_target_sigset_internal(&d1, s);
119     for (i = 0; i < _SIG_WORDS; i++) {
120         d->__bits[i] = tswap32(d1.__bits[i]);
121     }
122 }
123 
124 static void target_to_host_sigset_internal(sigset_t *d,
125         const target_sigset_t *s)
126 {
127     int i;
128 
129     sigemptyset(d);
130     for (i = 1; i <= TARGET_NSIG; i++) {
131         if (target_sigismember(s, i)) {
132             sigaddset(d, target_to_host_signal(i));
133         }
134     }
135 }
136 
137 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
138 {
139     target_sigset_t s1;
140     int i;
141 
142     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
143         s1.__bits[i] = tswap32(s->__bits[i]);
144     }
145     target_to_host_sigset_internal(d, &s1);
146 }
147 
148 static bool has_trapno(int tsig)
149 {
150     return tsig == TARGET_SIGILL ||
151         tsig == TARGET_SIGFPE ||
152         tsig == TARGET_SIGSEGV ||
153         tsig == TARGET_SIGBUS ||
154         tsig == TARGET_SIGTRAP;
155 }
156 
157 /* Siginfo conversion. */
158 
159 /*
160  * Populate tinfo w/o swapping based on guessing which fields are valid.
161  */
162 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
163         const siginfo_t *info)
164 {
165     int sig = host_to_target_signal(info->si_signo);
166     int si_code = info->si_code;
167     int si_type;
168 
169     /*
170      * Make sure we that the variable portion of the target siginfo is zeroed
171      * out so we don't leak anything into that.
172      */
173     memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
174 
175     /*
176      * This is awkward, because we have to use a combination of the si_code and
177      * si_signo to figure out which of the union's members are valid.o We
178      * therefore make our best guess.
179      *
180      * Once we have made our guess, we record it in the top 16 bits of
181      * the si_code, so that tswap_siginfo() later can use it.
182      * tswap_siginfo() will strip these top bits out before writing
183      * si_code to the guest (sign-extending the lower bits).
184      */
185     tinfo->si_signo = sig;
186     tinfo->si_errno = info->si_errno;
187     tinfo->si_code = info->si_code;
188     tinfo->si_pid = info->si_pid;
189     tinfo->si_uid = info->si_uid;
190     tinfo->si_status = info->si_status;
191     tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
192     /*
193      * si_value is opaque to kernel. On all FreeBSD platforms,
194      * sizeof(sival_ptr) >= sizeof(sival_int) so the following
195      * always will copy the larger element.
196      */
197     tinfo->si_value.sival_ptr =
198         (abi_ulong)(unsigned long)info->si_value.sival_ptr;
199 
200     switch (si_code) {
201         /*
202          * All the SI_xxx codes that are defined here are global to
203          * all the signals (they have values that none of the other,
204          * more specific signal info will set).
205          */
206     case SI_USER:
207     case SI_LWP:
208     case SI_KERNEL:
209     case SI_QUEUE:
210     case SI_ASYNCIO:
211         /*
212          * Only the fixed parts are valid (though FreeBSD doesn't always
213          * set all the fields to non-zero values.
214          */
215         si_type = QEMU_SI_NOINFO;
216         break;
217     case SI_TIMER:
218         tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
219         tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
220         si_type = QEMU_SI_TIMER;
221         break;
222     case SI_MESGQ:
223         tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
224         si_type = QEMU_SI_MESGQ;
225         break;
226     default:
227         /*
228          * We have to go based on the signal number now to figure out
229          * what's valid.
230          */
231         si_type = QEMU_SI_NOINFO;
232         if (has_trapno(sig)) {
233             tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
234             si_type = QEMU_SI_FAULT;
235         }
236 #ifdef TARGET_SIGPOLL
237         /*
238          * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
239          * a chance it may popup in the future.
240          */
241         if (sig == TARGET_SIGPOLL) {
242             tinfo->_reason._poll._band = info->_reason._poll._band;
243             si_type = QEMU_SI_POLL;
244         }
245 #endif
246         /*
247          * Unsure that this can actually be generated, and our support for
248          * capsicum is somewhere between weak and non-existent, but if we get
249          * one, then we know what to save.
250          */
251 #ifdef QEMU_SI_CAPSICUM
252         if (sig == TARGET_SIGTRAP) {
253             tinfo->_reason._capsicum._syscall =
254                 info->_reason._capsicum._syscall;
255             si_type = QEMU_SI_CAPSICUM;
256         }
257 #endif
258         break;
259     }
260     tinfo->si_code = deposit32(si_code, 24, 8, si_type);
261 }
262 
263 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
264 {
265     int si_type = extract32(info->si_code, 24, 8);
266     int si_code = sextract32(info->si_code, 0, 24);
267 
268     __put_user(info->si_signo, &tinfo->si_signo);
269     __put_user(info->si_errno, &tinfo->si_errno);
270     __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
271     __put_user(info->si_pid, &tinfo->si_pid);
272     __put_user(info->si_uid, &tinfo->si_uid);
273     __put_user(info->si_status, &tinfo->si_status);
274     __put_user(info->si_addr, &tinfo->si_addr);
275     /*
276      * Unswapped, because we passed it through mostly untouched.  si_value is
277      * opaque to the kernel, so we didn't bother with potentially wasting cycles
278      * to swap it into host byte order.
279      */
280     tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
281 
282     /*
283      * We can use our internal marker of which fields in the structure
284      * are valid, rather than duplicating the guesswork of
285      * host_to_target_siginfo_noswap() here.
286      */
287     switch (si_type) {
288     case QEMU_SI_NOINFO:        /* No additional info */
289         break;
290     case QEMU_SI_FAULT:
291         __put_user(info->_reason._fault._trapno,
292                    &tinfo->_reason._fault._trapno);
293         break;
294     case QEMU_SI_TIMER:
295         __put_user(info->_reason._timer._timerid,
296                    &tinfo->_reason._timer._timerid);
297         __put_user(info->_reason._timer._overrun,
298                    &tinfo->_reason._timer._overrun);
299         break;
300     case QEMU_SI_MESGQ:
301         __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
302         break;
303     case QEMU_SI_POLL:
304         /* Note: Not generated on FreeBSD */
305         __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
306         break;
307 #ifdef QEMU_SI_CAPSICUM
308     case QEMU_SI_CAPSICUM:
309         __put_user(info->_reason._capsicum._syscall,
310                    &tinfo->_reason._capsicum._syscall);
311         break;
312 #endif
313     default:
314         g_assert_not_reached();
315     }
316 }
317 
318 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
319 {
320     host_to_target_siginfo_noswap(tinfo, info);
321     tswap_siginfo(tinfo, tinfo);
322 }
323 
324 int block_signals(void)
325 {
326     TaskState *ts = get_task_state(thread_cpu);
327     sigset_t set;
328 
329     /*
330      * It's OK to block everything including SIGSEGV, because we won't run any
331      * further guest code before unblocking signals in
332      * process_pending_signals(). We depend on the FreeBSD behavior here where
333      * this will only affect this thread's signal mask. We don't use
334      * pthread_sigmask which might seem more correct because that routine also
335      * does odd things with SIGCANCEL to implement pthread_cancel().
336      */
337     sigfillset(&set);
338     sigprocmask(SIG_SETMASK, &set, 0);
339 
340     return qatomic_xchg(&ts->signal_pending, 1);
341 }
342 
343 /* Returns 1 if given signal should dump core if not handled. */
344 static int core_dump_signal(int sig)
345 {
346     switch (sig) {
347     case TARGET_SIGABRT:
348     case TARGET_SIGFPE:
349     case TARGET_SIGILL:
350     case TARGET_SIGQUIT:
351     case TARGET_SIGSEGV:
352     case TARGET_SIGTRAP:
353     case TARGET_SIGBUS:
354         return 1;
355     default:
356         return 0;
357     }
358 }
359 
360 /* Abort execution with signal. */
361 static G_NORETURN
362 void dump_core_and_abort(int target_sig)
363 {
364     CPUState *cpu = thread_cpu;
365     CPUArchState *env = cpu_env(cpu);
366     TaskState *ts = get_task_state(cpu);
367     int core_dumped = 0;
368     int host_sig;
369     struct sigaction act;
370 
371     host_sig = target_to_host_signal(target_sig);
372     gdb_signalled(env, target_sig);
373 
374     /* Dump core if supported by target binary format */
375     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
376         stop_all_tasks();
377         core_dumped =
378             ((*ts->bprm->core_dump)(target_sig, env) == 0);
379     }
380     if (core_dumped) {
381         struct rlimit nodump;
382 
383         /*
384          * We already dumped the core of target process, we don't want
385          * a coredump of qemu itself.
386          */
387          getrlimit(RLIMIT_CORE, &nodump);
388          nodump.rlim_cur = 0;
389          setrlimit(RLIMIT_CORE, &nodump);
390          (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
391              "- %s\n", target_sig, strsignal(host_sig), "core dumped");
392     }
393 
394     /*
395      * The proper exit code for dying from an uncaught signal is
396      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
397      * a negative value.  To get the proper exit code we need to
398      * actually die from an uncaught signal.  Here the default signal
399      * handler is installed, we send ourself a signal and we wait for
400      * it to arrive.
401      */
402     memset(&act, 0, sizeof(act));
403     sigfillset(&act.sa_mask);
404     act.sa_handler = SIG_DFL;
405     sigaction(host_sig, &act, NULL);
406 
407     kill(getpid(), host_sig);
408 
409     /*
410      * Make sure the signal isn't masked (just reuse the mask inside
411      * of act).
412      */
413     sigdelset(&act.sa_mask, host_sig);
414     sigsuspend(&act.sa_mask);
415 
416     /* unreachable */
417     abort();
418 }
419 
420 /*
421  * Queue a signal so that it will be send to the virtual CPU as soon as
422  * possible.
423  */
424 void queue_signal(CPUArchState *env, int sig, int si_type,
425                   target_siginfo_t *info)
426 {
427     CPUState *cpu = env_cpu(env);
428     TaskState *ts = get_task_state(cpu);
429 
430     trace_user_queue_signal(env, sig);
431 
432     info->si_code = deposit32(info->si_code, 24, 8, si_type);
433 
434     ts->sync_signal.info = *info;
435     ts->sync_signal.pending = sig;
436     /* Signal that a new signal is pending. */
437     qatomic_set(&ts->signal_pending, 1);
438     return;
439 }
440 
441 static int fatal_signal(int sig)
442 {
443 
444     switch (sig) {
445     case TARGET_SIGCHLD:
446     case TARGET_SIGURG:
447     case TARGET_SIGWINCH:
448     case TARGET_SIGINFO:
449         /* Ignored by default. */
450         return 0;
451     case TARGET_SIGCONT:
452     case TARGET_SIGSTOP:
453     case TARGET_SIGTSTP:
454     case TARGET_SIGTTIN:
455     case TARGET_SIGTTOU:
456         /* Job control signals.  */
457         return 0;
458     default:
459         return 1;
460     }
461 }
462 
463 /*
464  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
465  * 'force' part is handled in process_pending_signals().
466  */
467 void force_sig_fault(int sig, int code, abi_ulong addr)
468 {
469     CPUState *cpu = thread_cpu;
470     target_siginfo_t info = {};
471 
472     info.si_signo = sig;
473     info.si_errno = 0;
474     info.si_code = code;
475     info.si_addr = addr;
476     queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
477 }
478 
479 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
480 {
481     CPUState *cpu = thread_cpu;
482     TaskState *ts = get_task_state(cpu);
483     target_siginfo_t tinfo;
484     ucontext_t *uc = puc;
485     struct emulated_sigtable *k;
486     int guest_sig;
487     uintptr_t pc = 0;
488     bool sync_sig = false;
489 
490     /*
491      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
492      * handling wrt signal blocking and unwinding.
493      */
494     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
495         MMUAccessType access_type;
496         uintptr_t host_addr;
497         abi_ptr guest_addr;
498         bool is_write;
499 
500         host_addr = (uintptr_t)info->si_addr;
501 
502         /*
503          * Convert forcefully to guest address space: addresses outside
504          * reserved_va are still valid to report via SEGV_MAPERR.
505          */
506         guest_addr = h2g_nocheck(host_addr);
507 
508         pc = host_signal_pc(uc);
509         is_write = host_signal_write(info, uc);
510         access_type = adjust_signal_pc(&pc, is_write);
511 
512         if (host_sig == SIGSEGV) {
513             bool maperr = true;
514 
515             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
516                 /* If this was a write to a TB protected page, restart. */
517                 if (is_write &&
518                     handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
519                                                 pc, guest_addr)) {
520                     return;
521                 }
522 
523                 /*
524                  * With reserved_va, the whole address space is PROT_NONE,
525                  * which means that we may get ACCERR when we want MAPERR.
526                  */
527                 if (page_get_flags(guest_addr) & PAGE_VALID) {
528                     maperr = false;
529                 } else {
530                     info->si_code = SEGV_MAPERR;
531                 }
532             }
533 
534             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
535             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
536         } else {
537             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
538             if (info->si_code == BUS_ADRALN) {
539                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
540             }
541         }
542 
543         sync_sig = true;
544     }
545 
546     /* Get the target signal number. */
547     guest_sig = host_to_target_signal(host_sig);
548     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
549         return;
550     }
551     trace_user_host_signal(cpu, host_sig, guest_sig);
552 
553     host_to_target_siginfo_noswap(&tinfo, info);
554 
555     k = &ts->sigtab[guest_sig - 1];
556     k->info = tinfo;
557     k->pending = guest_sig;
558     ts->signal_pending = 1;
559 
560     /*
561      * For synchronous signals, unwind the cpu state to the faulting
562      * insn and then exit back to the main loop so that the signal
563      * is delivered immediately.
564      */
565     if (sync_sig) {
566         cpu->exception_index = EXCP_INTERRUPT;
567         cpu_loop_exit_restore(cpu, pc);
568     }
569 
570     rewind_if_in_safe_syscall(puc);
571 
572     /*
573      * Block host signals until target signal handler entered. We
574      * can't block SIGSEGV or SIGBUS while we're executing guest
575      * code in case the guest code provokes one in the window between
576      * now and it getting out to the main loop. Signals will be
577      * unblocked again in process_pending_signals().
578      */
579     sigfillset(&uc->uc_sigmask);
580     sigdelset(&uc->uc_sigmask, SIGSEGV);
581     sigdelset(&uc->uc_sigmask, SIGBUS);
582 
583     /* Interrupt the virtual CPU as soon as possible. */
584     cpu_exit(thread_cpu);
585 }
586 
587 /* do_sigaltstack() returns target values and errnos. */
588 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
589 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
590 {
591     TaskState *ts = get_task_state(thread_cpu);
592     int ret;
593     target_stack_t oss;
594 
595     if (uoss_addr) {
596         /* Save current signal stack params */
597         oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
598         oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
599         oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
600     }
601 
602     if (uss_addr) {
603         target_stack_t *uss;
604         target_stack_t ss;
605         size_t minstacksize = TARGET_MINSIGSTKSZ;
606 
607         ret = -TARGET_EFAULT;
608         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
609             goto out;
610         }
611         __get_user(ss.ss_sp, &uss->ss_sp);
612         __get_user(ss.ss_size, &uss->ss_size);
613         __get_user(ss.ss_flags, &uss->ss_flags);
614         unlock_user_struct(uss, uss_addr, 0);
615 
616         ret = -TARGET_EPERM;
617         if (on_sig_stack(ts, sp)) {
618             goto out;
619         }
620 
621         ret = -TARGET_EINVAL;
622         if (ss.ss_flags != TARGET_SS_DISABLE
623             && ss.ss_flags != TARGET_SS_ONSTACK
624             && ss.ss_flags != 0) {
625             goto out;
626         }
627 
628         if (ss.ss_flags == TARGET_SS_DISABLE) {
629             ss.ss_size = 0;
630             ss.ss_sp = 0;
631         } else {
632             ret = -TARGET_ENOMEM;
633             if (ss.ss_size < minstacksize) {
634                 goto out;
635             }
636         }
637 
638         ts->sigaltstack_used.ss_sp = ss.ss_sp;
639         ts->sigaltstack_used.ss_size = ss.ss_size;
640     }
641 
642     if (uoss_addr) {
643         ret = -TARGET_EFAULT;
644         if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
645             goto out;
646         }
647     }
648 
649     ret = 0;
650 out:
651     return ret;
652 }
653 
654 /* do_sigaction() return host values and errnos */
655 int do_sigaction(int sig, const struct target_sigaction *act,
656         struct target_sigaction *oact)
657 {
658     struct target_sigaction *k;
659     struct sigaction act1;
660     int host_sig;
661     int ret = 0;
662 
663     if (sig < 1 || sig > TARGET_NSIG) {
664         return -TARGET_EINVAL;
665     }
666 
667     if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
668         act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
669         return -TARGET_EINVAL;
670     }
671 
672     if (block_signals()) {
673         return -TARGET_ERESTART;
674     }
675 
676     k = &sigact_table[sig - 1];
677     if (oact) {
678         oact->_sa_handler = tswapal(k->_sa_handler);
679         oact->sa_flags = tswap32(k->sa_flags);
680         oact->sa_mask = k->sa_mask;
681     }
682     if (act) {
683         k->_sa_handler = tswapal(act->_sa_handler);
684         k->sa_flags = tswap32(act->sa_flags);
685         k->sa_mask = act->sa_mask;
686 
687         /* Update the host signal state. */
688         host_sig = target_to_host_signal(sig);
689         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
690             memset(&act1, 0, sizeof(struct sigaction));
691             sigfillset(&act1.sa_mask);
692             act1.sa_flags = SA_SIGINFO;
693             if (k->sa_flags & TARGET_SA_RESTART) {
694                 act1.sa_flags |= SA_RESTART;
695             }
696             /*
697              *  Note: It is important to update the host kernel signal mask to
698              *  avoid getting unexpected interrupted system calls.
699              */
700             if (k->_sa_handler == TARGET_SIG_IGN) {
701                 act1.sa_sigaction = (void *)SIG_IGN;
702             } else if (k->_sa_handler == TARGET_SIG_DFL) {
703                 if (fatal_signal(sig)) {
704                     act1.sa_sigaction = host_signal_handler;
705                 } else {
706                     act1.sa_sigaction = (void *)SIG_DFL;
707                 }
708             } else {
709                 act1.sa_sigaction = host_signal_handler;
710             }
711             ret = sigaction(host_sig, &act1, NULL);
712         }
713     }
714     return ret;
715 }
716 
717 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
718         CPUArchState *env, size_t frame_size)
719 {
720     TaskState *ts = get_task_state(thread_cpu);
721     abi_ulong sp;
722 
723     /* Use default user stack */
724     sp = get_sp_from_cpustate(env);
725 
726     if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
727         sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
728     }
729 
730 /* TODO: make this a target_arch function / define */
731 #if defined(TARGET_ARM)
732     return (sp - frame_size) & ~7;
733 #elif defined(TARGET_AARCH64)
734     return (sp - frame_size) & ~15;
735 #else
736     return sp - frame_size;
737 #endif
738 }
739 
740 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
741 
742 static void setup_frame(int sig, int code, struct target_sigaction *ka,
743     target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
744 {
745     struct target_sigframe *frame;
746     abi_ulong frame_addr;
747     int i;
748 
749     frame_addr = get_sigframe(ka, env, sizeof(*frame));
750     trace_user_setup_frame(env, frame_addr);
751     if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
752         unlock_user_struct(frame, frame_addr, 1);
753         dump_core_and_abort(TARGET_SIGILL);
754         return;
755     }
756 
757     memset(frame, 0, sizeof(*frame));
758     setup_sigframe_arch(env, frame_addr, frame, 0);
759 
760     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
761         __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
762     }
763 
764     if (tinfo) {
765         frame->sf_si.si_signo = tinfo->si_signo;
766         frame->sf_si.si_errno = tinfo->si_errno;
767         frame->sf_si.si_code = tinfo->si_code;
768         frame->sf_si.si_pid = tinfo->si_pid;
769         frame->sf_si.si_uid = tinfo->si_uid;
770         frame->sf_si.si_status = tinfo->si_status;
771         frame->sf_si.si_addr = tinfo->si_addr;
772         /* see host_to_target_siginfo_noswap() for more details */
773         frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
774         /*
775          * At this point, whatever is in the _reason union is complete
776          * and in target order, so just copy the whole thing over, even
777          * if it's too large for this specific signal.
778          * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
779          * that's so.
780          */
781         memcpy(&frame->sf_si._reason, &tinfo->_reason,
782                sizeof(tinfo->_reason));
783     }
784 
785     set_sigtramp_args(env, sig, frame, frame_addr, ka);
786 
787     unlock_user_struct(frame, frame_addr, 1);
788 }
789 
790 static int reset_signal_mask(target_ucontext_t *ucontext)
791 {
792     int i;
793     sigset_t blocked;
794     target_sigset_t target_set;
795     TaskState *ts = get_task_state(thread_cpu);
796 
797     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
798         __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
799     }
800     target_to_host_sigset_internal(&blocked, &target_set);
801     ts->signal_mask = blocked;
802 
803     return 0;
804 }
805 
806 /* See sys/$M/$M/exec_machdep.c sigreturn() */
807 long do_sigreturn(CPUArchState *env, abi_ulong addr)
808 {
809     long ret;
810     abi_ulong target_ucontext;
811     target_ucontext_t *ucontext = NULL;
812 
813     /* Get the target ucontext address from the stack frame */
814     ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
815     if (is_error(ret)) {
816         return ret;
817     }
818     trace_user_do_sigreturn(env, addr);
819     if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
820         goto badframe;
821     }
822 
823     /* Set the register state back to before the signal. */
824     if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
825         goto badframe;
826     }
827 
828     /* And reset the signal mask. */
829     if (reset_signal_mask(ucontext)) {
830         goto badframe;
831     }
832 
833     unlock_user_struct(ucontext, target_ucontext, 0);
834     return -TARGET_EJUSTRETURN;
835 
836 badframe:
837     if (ucontext != NULL) {
838         unlock_user_struct(ucontext, target_ucontext, 0);
839     }
840     return -TARGET_EFAULT;
841 }
842 
843 void signal_init(void)
844 {
845     TaskState *ts = get_task_state(thread_cpu);
846     struct sigaction act;
847     struct sigaction oact;
848     int i;
849     int host_sig;
850 
851     /* Set the signal mask from the host mask. */
852     sigprocmask(0, 0, &ts->signal_mask);
853 
854     sigfillset(&act.sa_mask);
855     act.sa_sigaction = host_signal_handler;
856     act.sa_flags = SA_SIGINFO;
857 
858     for (i = 1; i <= TARGET_NSIG; i++) {
859         host_sig = target_to_host_signal(i);
860         sigaction(host_sig, NULL, &oact);
861         if (oact.sa_sigaction == (void *)SIG_IGN) {
862             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
863         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
864             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
865         }
866         /*
867          * If there's already a handler installed then something has
868          * gone horribly wrong, so don't even try to handle that case.
869          * Install some handlers for our own use.  We need at least
870          * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
871          * trap all signals because it affects syscall interrupt
872          * behavior.  But do trap all default-fatal signals.
873          */
874         if (fatal_signal(i)) {
875             sigaction(host_sig, &act, NULL);
876         }
877     }
878 }
879 
880 static void handle_pending_signal(CPUArchState *env, int sig,
881                                   struct emulated_sigtable *k)
882 {
883     CPUState *cpu = env_cpu(env);
884     TaskState *ts = get_task_state(cpu);
885     struct target_sigaction *sa;
886     int code;
887     sigset_t set;
888     abi_ulong handler;
889     target_siginfo_t tinfo;
890     target_sigset_t target_old_set;
891 
892     trace_user_handle_signal(env, sig);
893 
894     k->pending = 0;
895 
896     sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
897     if (!sig) {
898         sa = NULL;
899         handler = TARGET_SIG_IGN;
900     } else {
901         sa = &sigact_table[sig - 1];
902         handler = sa->_sa_handler;
903     }
904 
905     if (do_strace) {
906         print_taken_signal(sig, &k->info);
907     }
908 
909     if (handler == TARGET_SIG_DFL) {
910         /*
911          * default handler : ignore some signal. The other are job
912          * control or fatal.
913          */
914         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
915             sig == TARGET_SIGTTOU) {
916             kill(getpid(), SIGSTOP);
917         } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
918                    sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
919                    sig != TARGET_SIGCONT) {
920             dump_core_and_abort(sig);
921         }
922     } else if (handler == TARGET_SIG_IGN) {
923         /* ignore sig */
924     } else if (handler == TARGET_SIG_ERR) {
925         dump_core_and_abort(sig);
926     } else {
927         /* compute the blocked signals during the handler execution */
928         sigset_t *blocked_set;
929 
930         target_to_host_sigset(&set, &sa->sa_mask);
931         /*
932          * SA_NODEFER indicates that the current signal should not be
933          * blocked during the handler.
934          */
935         if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
936             sigaddset(&set, target_to_host_signal(sig));
937         }
938 
939         /*
940          * Save the previous blocked signal state to restore it at the
941          * end of the signal execution (see do_sigreturn).
942          */
943         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
944 
945         blocked_set = ts->in_sigsuspend ?
946             &ts->sigsuspend_mask : &ts->signal_mask;
947         sigorset(&ts->signal_mask, blocked_set, &set);
948         ts->in_sigsuspend = false;
949         sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
950 
951         /* XXX VM86 on x86 ??? */
952 
953         code = k->info.si_code; /* From host, so no si_type */
954         /* prepare the stack frame of the virtual CPU */
955         if (sa->sa_flags & TARGET_SA_SIGINFO) {
956             tswap_siginfo(&tinfo, &k->info);
957             setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
958         } else {
959             setup_frame(sig, code, sa, &target_old_set, NULL, env);
960         }
961         if (sa->sa_flags & TARGET_SA_RESETHAND) {
962             sa->_sa_handler = TARGET_SIG_DFL;
963         }
964     }
965 }
966 
967 void process_pending_signals(CPUArchState *env)
968 {
969     CPUState *cpu = env_cpu(env);
970     int sig;
971     sigset_t *blocked_set, set;
972     struct emulated_sigtable *k;
973     TaskState *ts = get_task_state(cpu);
974 
975     while (qatomic_read(&ts->signal_pending)) {
976         sigfillset(&set);
977         sigprocmask(SIG_SETMASK, &set, 0);
978 
979     restart_scan:
980         sig = ts->sync_signal.pending;
981         if (sig) {
982             /*
983              * Synchronous signals are forced by the emulated CPU in some way.
984              * If they are set to ignore, restore the default handler (see
985              * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
986              * though maybe this is done only when forcing exit for non SIGCHLD.
987              */
988             if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
989                 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
990                 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
991                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
992             }
993             handle_pending_signal(env, sig, &ts->sync_signal);
994         }
995 
996         k = ts->sigtab;
997         for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
998             blocked_set = ts->in_sigsuspend ?
999                 &ts->sigsuspend_mask : &ts->signal_mask;
1000             if (k->pending &&
1001                 !sigismember(blocked_set, target_to_host_signal(sig))) {
1002                 handle_pending_signal(env, sig, k);
1003                 /*
1004                  * Restart scan from the beginning, as handle_pending_signal
1005                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1006                  */
1007                 goto restart_scan;
1008             }
1009         }
1010 
1011         /*
1012          * Unblock signals and check one more time. Unblocking signals may cause
1013          * us to take another host signal, which will set signal_pending again.
1014          */
1015         qatomic_set(&ts->signal_pending, 0);
1016         ts->in_sigsuspend = false;
1017         set = ts->signal_mask;
1018         sigdelset(&set, SIGSEGV);
1019         sigdelset(&set, SIGBUS);
1020         sigprocmask(SIG_SETMASK, &set, 0);
1021     }
1022     ts->in_sigsuspend = false;
1023 }
1024 
1025 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1026                            MMUAccessType access_type, bool maperr, uintptr_t ra)
1027 {
1028     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1029 
1030     if (tcg_ops->record_sigsegv) {
1031         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1032     }
1033 
1034     force_sig_fault(TARGET_SIGSEGV,
1035                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1036                     addr);
1037     cpu->exception_index = EXCP_INTERRUPT;
1038     cpu_loop_exit_restore(cpu, ra);
1039 }
1040 
1041 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1042                           MMUAccessType access_type, uintptr_t ra)
1043 {
1044     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1045 
1046     if (tcg_ops->record_sigbus) {
1047         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1048     }
1049 
1050     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1051     cpu->exception_index = EXCP_INTERRUPT;
1052     cpu_loop_exit_restore(cpu, ra);
1053 }
1054