xref: /openbmc/qemu/bsd-user/signal.c (revision 9b4b4e510bcb8b1c3c4789615dce3b520aa1f1d3)
1  /*
2   *  Emulation of BSD signals
3   *
4   *  Copyright (c) 2003 - 2008 Fabrice Bellard
5   *  Copyright (c) 2013 Stacey Son
6   *
7   *  This program is free software; you can redistribute it and/or modify
8   *  it under the terms of the GNU General Public License as published by
9   *  the Free Software Foundation; either version 2 of the License, or
10   *  (at your option) any later version.
11   *
12   *  This program is distributed in the hope that it will be useful,
13   *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14   *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   *  GNU General Public License for more details.
16   *
17   *  You should have received a copy of the GNU General Public License
18   *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19   */
20  
21  #include "qemu/osdep.h"
22  #include "qemu/log.h"
23  #include "qemu.h"
24  #include "gdbstub/user.h"
25  #include "signal-common.h"
26  #include "trace.h"
27  #include "hw/core/tcg-cpu-ops.h"
28  #include "host-signal.h"
29  
30  static struct target_sigaction sigact_table[TARGET_NSIG];
31  static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
32  static void target_to_host_sigset_internal(sigset_t *d,
33          const target_sigset_t *s);
34  
35  static inline int on_sig_stack(TaskState *ts, unsigned long sp)
36  {
37      return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
38  }
39  
40  static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
41  {
42      return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
43          on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
44  }
45  
46  /*
47   * The BSD ABIs use the same signal numbers across all the CPU architectures, so
48   * (unlike Linux) these functions are just the identity mapping. This might not
49   * be true for XyzBSD running on AbcBSD, which doesn't currently work.
50   */
51  int host_to_target_signal(int sig)
52  {
53      return sig;
54  }
55  
56  int target_to_host_signal(int sig)
57  {
58      return sig;
59  }
60  
61  static inline void target_sigemptyset(target_sigset_t *set)
62  {
63      memset(set, 0, sizeof(*set));
64  }
65  
66  static inline void target_sigaddset(target_sigset_t *set, int signum)
67  {
68      signum--;
69      uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
70      set->__bits[signum / TARGET_NSIG_BPW] |= mask;
71  }
72  
73  static inline int target_sigismember(const target_sigset_t *set, int signum)
74  {
75      signum--;
76      abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
77      return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
78  }
79  
80  /* Adjust the signal context to rewind out of safe-syscall if we're in it */
81  static inline void rewind_if_in_safe_syscall(void *puc)
82  {
83      ucontext_t *uc = (ucontext_t *)puc;
84      uintptr_t pcreg = host_signal_pc(uc);
85  
86      if (pcreg > (uintptr_t)safe_syscall_start
87          && pcreg < (uintptr_t)safe_syscall_end) {
88          host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
89      }
90  }
91  
92  /*
93   * Note: The following take advantage of the BSD signal property that all
94   * signals are available on all architectures.
95   */
96  static void host_to_target_sigset_internal(target_sigset_t *d,
97          const sigset_t *s)
98  {
99      int i;
100  
101      target_sigemptyset(d);
102      for (i = 1; i <= NSIG; i++) {
103          if (sigismember(s, i)) {
104              target_sigaddset(d, host_to_target_signal(i));
105          }
106      }
107  }
108  
109  void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
110  {
111      target_sigset_t d1;
112      int i;
113  
114      host_to_target_sigset_internal(&d1, s);
115      for (i = 0; i < _SIG_WORDS; i++) {
116          d->__bits[i] = tswap32(d1.__bits[i]);
117      }
118  }
119  
120  static void target_to_host_sigset_internal(sigset_t *d,
121          const target_sigset_t *s)
122  {
123      int i;
124  
125      sigemptyset(d);
126      for (i = 1; i <= TARGET_NSIG; i++) {
127          if (target_sigismember(s, i)) {
128              sigaddset(d, target_to_host_signal(i));
129          }
130      }
131  }
132  
133  void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
134  {
135      target_sigset_t s1;
136      int i;
137  
138      for (i = 0; i < TARGET_NSIG_WORDS; i++) {
139          s1.__bits[i] = tswap32(s->__bits[i]);
140      }
141      target_to_host_sigset_internal(d, &s1);
142  }
143  
144  static bool has_trapno(int tsig)
145  {
146      return tsig == TARGET_SIGILL ||
147          tsig == TARGET_SIGFPE ||
148          tsig == TARGET_SIGSEGV ||
149          tsig == TARGET_SIGBUS ||
150          tsig == TARGET_SIGTRAP;
151  }
152  
153  /* Siginfo conversion. */
154  
155  /*
156   * Populate tinfo w/o swapping based on guessing which fields are valid.
157   */
158  static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
159          const siginfo_t *info)
160  {
161      int sig = host_to_target_signal(info->si_signo);
162      int si_code = info->si_code;
163      int si_type;
164  
165      /*
166       * Make sure we that the variable portion of the target siginfo is zeroed
167       * out so we don't leak anything into that.
168       */
169      memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
170  
171      /*
172       * This is awkward, because we have to use a combination of the si_code and
173       * si_signo to figure out which of the union's members are valid.o We
174       * therefore make our best guess.
175       *
176       * Once we have made our guess, we record it in the top 16 bits of
177       * the si_code, so that tswap_siginfo() later can use it.
178       * tswap_siginfo() will strip these top bits out before writing
179       * si_code to the guest (sign-extending the lower bits).
180       */
181      tinfo->si_signo = sig;
182      tinfo->si_errno = info->si_errno;
183      tinfo->si_code = info->si_code;
184      tinfo->si_pid = info->si_pid;
185      tinfo->si_uid = info->si_uid;
186      tinfo->si_status = info->si_status;
187      tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
188      /*
189       * si_value is opaque to kernel. On all FreeBSD platforms,
190       * sizeof(sival_ptr) >= sizeof(sival_int) so the following
191       * always will copy the larger element.
192       */
193      tinfo->si_value.sival_ptr =
194          (abi_ulong)(unsigned long)info->si_value.sival_ptr;
195  
196      switch (si_code) {
197          /*
198           * All the SI_xxx codes that are defined here are global to
199           * all the signals (they have values that none of the other,
200           * more specific signal info will set).
201           */
202      case SI_USER:
203      case SI_LWP:
204      case SI_KERNEL:
205      case SI_QUEUE:
206      case SI_ASYNCIO:
207          /*
208           * Only the fixed parts are valid (though FreeBSD doesn't always
209           * set all the fields to non-zero values.
210           */
211          si_type = QEMU_SI_NOINFO;
212          break;
213      case SI_TIMER:
214          tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
215          tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
216          si_type = QEMU_SI_TIMER;
217          break;
218      case SI_MESGQ:
219          tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
220          si_type = QEMU_SI_MESGQ;
221          break;
222      default:
223          /*
224           * We have to go based on the signal number now to figure out
225           * what's valid.
226           */
227          si_type = QEMU_SI_NOINFO;
228          if (has_trapno(sig)) {
229              tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
230              si_type = QEMU_SI_FAULT;
231          }
232  #ifdef TARGET_SIGPOLL
233          /*
234           * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
235           * a chance it may popup in the future.
236           */
237          if (sig == TARGET_SIGPOLL) {
238              tinfo->_reason._poll._band = info->_reason._poll._band;
239              si_type = QEMU_SI_POLL;
240          }
241  #endif
242          /*
243           * Unsure that this can actually be generated, and our support for
244           * capsicum is somewhere between weak and non-existent, but if we get
245           * one, then we know what to save.
246           */
247  #ifdef QEMU_SI_CAPSICUM
248          if (sig == TARGET_SIGTRAP) {
249              tinfo->_reason._capsicum._syscall =
250                  info->_reason._capsicum._syscall;
251              si_type = QEMU_SI_CAPSICUM;
252          }
253  #endif
254          break;
255      }
256      tinfo->si_code = deposit32(si_code, 24, 8, si_type);
257  }
258  
259  static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
260  {
261      int si_type = extract32(info->si_code, 24, 8);
262      int si_code = sextract32(info->si_code, 0, 24);
263  
264      __put_user(info->si_signo, &tinfo->si_signo);
265      __put_user(info->si_errno, &tinfo->si_errno);
266      __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267      __put_user(info->si_pid, &tinfo->si_pid);
268      __put_user(info->si_uid, &tinfo->si_uid);
269      __put_user(info->si_status, &tinfo->si_status);
270      __put_user(info->si_addr, &tinfo->si_addr);
271      /*
272       * Unswapped, because we passed it through mostly untouched.  si_value is
273       * opaque to the kernel, so we didn't bother with potentially wasting cycles
274       * to swap it into host byte order.
275       */
276      tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
277  
278      /*
279       * We can use our internal marker of which fields in the structure
280       * are valid, rather than duplicating the guesswork of
281       * host_to_target_siginfo_noswap() here.
282       */
283      switch (si_type) {
284      case QEMU_SI_NOINFO:        /* No additional info */
285          break;
286      case QEMU_SI_FAULT:
287          __put_user(info->_reason._fault._trapno,
288                     &tinfo->_reason._fault._trapno);
289          break;
290      case QEMU_SI_TIMER:
291          __put_user(info->_reason._timer._timerid,
292                     &tinfo->_reason._timer._timerid);
293          __put_user(info->_reason._timer._overrun,
294                     &tinfo->_reason._timer._overrun);
295          break;
296      case QEMU_SI_MESGQ:
297          __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298          break;
299      case QEMU_SI_POLL:
300          /* Note: Not generated on FreeBSD */
301          __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302          break;
303  #ifdef QEMU_SI_CAPSICUM
304      case QEMU_SI_CAPSICUM:
305          __put_user(info->_reason._capsicum._syscall,
306                     &tinfo->_reason._capsicum._syscall);
307          break;
308  #endif
309      default:
310          g_assert_not_reached();
311      }
312  }
313  
314  int block_signals(void)
315  {
316      TaskState *ts = (TaskState *)thread_cpu->opaque;
317      sigset_t set;
318  
319      /*
320       * It's OK to block everything including SIGSEGV, because we won't run any
321       * further guest code before unblocking signals in
322       * process_pending_signals(). We depend on the FreeBSD behavior here where
323       * this will only affect this thread's signal mask. We don't use
324       * pthread_sigmask which might seem more correct because that routine also
325       * does odd things with SIGCANCEL to implement pthread_cancel().
326       */
327      sigfillset(&set);
328      sigprocmask(SIG_SETMASK, &set, 0);
329  
330      return qatomic_xchg(&ts->signal_pending, 1);
331  }
332  
333  /* Returns 1 if given signal should dump core if not handled. */
334  static int core_dump_signal(int sig)
335  {
336      switch (sig) {
337      case TARGET_SIGABRT:
338      case TARGET_SIGFPE:
339      case TARGET_SIGILL:
340      case TARGET_SIGQUIT:
341      case TARGET_SIGSEGV:
342      case TARGET_SIGTRAP:
343      case TARGET_SIGBUS:
344          return 1;
345      default:
346          return 0;
347      }
348  }
349  
350  /* Abort execution with signal. */
351  static G_NORETURN
352  void dump_core_and_abort(int target_sig)
353  {
354      CPUArchState *env = thread_cpu->env_ptr;
355      CPUState *cpu = env_cpu(env);
356      TaskState *ts = cpu->opaque;
357      int core_dumped = 0;
358      int host_sig;
359      struct sigaction act;
360  
361      host_sig = target_to_host_signal(target_sig);
362      gdb_signalled(env, target_sig);
363  
364      /* Dump core if supported by target binary format */
365      if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
366          stop_all_tasks();
367          core_dumped =
368              ((*ts->bprm->core_dump)(target_sig, env) == 0);
369      }
370      if (core_dumped) {
371          struct rlimit nodump;
372  
373          /*
374           * We already dumped the core of target process, we don't want
375           * a coredump of qemu itself.
376           */
377           getrlimit(RLIMIT_CORE, &nodump);
378           nodump.rlim_cur = 0;
379           setrlimit(RLIMIT_CORE, &nodump);
380           (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
381               "- %s\n", target_sig, strsignal(host_sig), "core dumped");
382      }
383  
384      /*
385       * The proper exit code for dying from an uncaught signal is
386       * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
387       * a negative value.  To get the proper exit code we need to
388       * actually die from an uncaught signal.  Here the default signal
389       * handler is installed, we send ourself a signal and we wait for
390       * it to arrive.
391       */
392      memset(&act, 0, sizeof(act));
393      sigfillset(&act.sa_mask);
394      act.sa_handler = SIG_DFL;
395      sigaction(host_sig, &act, NULL);
396  
397      kill(getpid(), host_sig);
398  
399      /*
400       * Make sure the signal isn't masked (just reuse the mask inside
401       * of act).
402       */
403      sigdelset(&act.sa_mask, host_sig);
404      sigsuspend(&act.sa_mask);
405  
406      /* unreachable */
407      abort();
408  }
409  
410  /*
411   * Queue a signal so that it will be send to the virtual CPU as soon as
412   * possible.
413   */
414  void queue_signal(CPUArchState *env, int sig, int si_type,
415                    target_siginfo_t *info)
416  {
417      CPUState *cpu = env_cpu(env);
418      TaskState *ts = cpu->opaque;
419  
420      trace_user_queue_signal(env, sig);
421  
422      info->si_code = deposit32(info->si_code, 24, 8, si_type);
423  
424      ts->sync_signal.info = *info;
425      ts->sync_signal.pending = sig;
426      /* Signal that a new signal is pending. */
427      qatomic_set(&ts->signal_pending, 1);
428      return;
429  }
430  
431  static int fatal_signal(int sig)
432  {
433  
434      switch (sig) {
435      case TARGET_SIGCHLD:
436      case TARGET_SIGURG:
437      case TARGET_SIGWINCH:
438      case TARGET_SIGINFO:
439          /* Ignored by default. */
440          return 0;
441      case TARGET_SIGCONT:
442      case TARGET_SIGSTOP:
443      case TARGET_SIGTSTP:
444      case TARGET_SIGTTIN:
445      case TARGET_SIGTTOU:
446          /* Job control signals.  */
447          return 0;
448      default:
449          return 1;
450      }
451  }
452  
453  /*
454   * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
455   * 'force' part is handled in process_pending_signals().
456   */
457  void force_sig_fault(int sig, int code, abi_ulong addr)
458  {
459      CPUState *cpu = thread_cpu;
460      CPUArchState *env = cpu->env_ptr;
461      target_siginfo_t info = {};
462  
463      info.si_signo = sig;
464      info.si_errno = 0;
465      info.si_code = code;
466      info.si_addr = addr;
467      queue_signal(env, sig, QEMU_SI_FAULT, &info);
468  }
469  
470  static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
471  {
472      CPUArchState *env = thread_cpu->env_ptr;
473      CPUState *cpu = env_cpu(env);
474      TaskState *ts = cpu->opaque;
475      target_siginfo_t tinfo;
476      ucontext_t *uc = puc;
477      struct emulated_sigtable *k;
478      int guest_sig;
479      uintptr_t pc = 0;
480      bool sync_sig = false;
481  
482      /*
483       * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
484       * handling wrt signal blocking and unwinding.
485       */
486      if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
487          MMUAccessType access_type;
488          uintptr_t host_addr;
489          abi_ptr guest_addr;
490          bool is_write;
491  
492          host_addr = (uintptr_t)info->si_addr;
493  
494          /*
495           * Convert forcefully to guest address space: addresses outside
496           * reserved_va are still valid to report via SEGV_MAPERR.
497           */
498          guest_addr = h2g_nocheck(host_addr);
499  
500          pc = host_signal_pc(uc);
501          is_write = host_signal_write(info, uc);
502          access_type = adjust_signal_pc(&pc, is_write);
503  
504          if (host_sig == SIGSEGV) {
505              bool maperr = true;
506  
507              if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
508                  /* If this was a write to a TB protected page, restart. */
509                  if (is_write &&
510                      handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
511                                                  pc, guest_addr)) {
512                      return;
513                  }
514  
515                  /*
516                   * With reserved_va, the whole address space is PROT_NONE,
517                   * which means that we may get ACCERR when we want MAPERR.
518                   */
519                  if (page_get_flags(guest_addr) & PAGE_VALID) {
520                      maperr = false;
521                  } else {
522                      info->si_code = SEGV_MAPERR;
523                  }
524              }
525  
526              sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
527              cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
528          } else {
529              sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
530              if (info->si_code == BUS_ADRALN) {
531                  cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
532              }
533          }
534  
535          sync_sig = true;
536      }
537  
538      /* Get the target signal number. */
539      guest_sig = host_to_target_signal(host_sig);
540      if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
541          return;
542      }
543      trace_user_host_signal(cpu, host_sig, guest_sig);
544  
545      host_to_target_siginfo_noswap(&tinfo, info);
546  
547      k = &ts->sigtab[guest_sig - 1];
548      k->info = tinfo;
549      k->pending = guest_sig;
550      ts->signal_pending = 1;
551  
552      /*
553       * For synchronous signals, unwind the cpu state to the faulting
554       * insn and then exit back to the main loop so that the signal
555       * is delivered immediately.
556       */
557      if (sync_sig) {
558          cpu->exception_index = EXCP_INTERRUPT;
559          cpu_loop_exit_restore(cpu, pc);
560      }
561  
562      rewind_if_in_safe_syscall(puc);
563  
564      /*
565       * Block host signals until target signal handler entered. We
566       * can't block SIGSEGV or SIGBUS while we're executing guest
567       * code in case the guest code provokes one in the window between
568       * now and it getting out to the main loop. Signals will be
569       * unblocked again in process_pending_signals().
570       */
571      sigfillset(&uc->uc_sigmask);
572      sigdelset(&uc->uc_sigmask, SIGSEGV);
573      sigdelset(&uc->uc_sigmask, SIGBUS);
574  
575      /* Interrupt the virtual CPU as soon as possible. */
576      cpu_exit(thread_cpu);
577  }
578  
579  /* do_sigaltstack() returns target values and errnos. */
580  /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
581  abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
582  {
583      TaskState *ts = (TaskState *)thread_cpu->opaque;
584      int ret;
585      target_stack_t oss;
586  
587      if (uoss_addr) {
588          /* Save current signal stack params */
589          oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
590          oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
591          oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
592      }
593  
594      if (uss_addr) {
595          target_stack_t *uss;
596          target_stack_t ss;
597          size_t minstacksize = TARGET_MINSIGSTKSZ;
598  
599          ret = -TARGET_EFAULT;
600          if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
601              goto out;
602          }
603          __get_user(ss.ss_sp, &uss->ss_sp);
604          __get_user(ss.ss_size, &uss->ss_size);
605          __get_user(ss.ss_flags, &uss->ss_flags);
606          unlock_user_struct(uss, uss_addr, 0);
607  
608          ret = -TARGET_EPERM;
609          if (on_sig_stack(ts, sp)) {
610              goto out;
611          }
612  
613          ret = -TARGET_EINVAL;
614          if (ss.ss_flags != TARGET_SS_DISABLE
615              && ss.ss_flags != TARGET_SS_ONSTACK
616              && ss.ss_flags != 0) {
617              goto out;
618          }
619  
620          if (ss.ss_flags == TARGET_SS_DISABLE) {
621              ss.ss_size = 0;
622              ss.ss_sp = 0;
623          } else {
624              ret = -TARGET_ENOMEM;
625              if (ss.ss_size < minstacksize) {
626                  goto out;
627              }
628          }
629  
630          ts->sigaltstack_used.ss_sp = ss.ss_sp;
631          ts->sigaltstack_used.ss_size = ss.ss_size;
632      }
633  
634      if (uoss_addr) {
635          ret = -TARGET_EFAULT;
636          if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
637              goto out;
638          }
639      }
640  
641      ret = 0;
642  out:
643      return ret;
644  }
645  
646  /* do_sigaction() return host values and errnos */
647  int do_sigaction(int sig, const struct target_sigaction *act,
648          struct target_sigaction *oact)
649  {
650      struct target_sigaction *k;
651      struct sigaction act1;
652      int host_sig;
653      int ret = 0;
654  
655      if (sig < 1 || sig > TARGET_NSIG) {
656          return -TARGET_EINVAL;
657      }
658  
659      if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
660          act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
661          return -TARGET_EINVAL;
662      }
663  
664      if (block_signals()) {
665          return -TARGET_ERESTART;
666      }
667  
668      k = &sigact_table[sig - 1];
669      if (oact) {
670          oact->_sa_handler = tswapal(k->_sa_handler);
671          oact->sa_flags = tswap32(k->sa_flags);
672          oact->sa_mask = k->sa_mask;
673      }
674      if (act) {
675          k->_sa_handler = tswapal(act->_sa_handler);
676          k->sa_flags = tswap32(act->sa_flags);
677          k->sa_mask = act->sa_mask;
678  
679          /* Update the host signal state. */
680          host_sig = target_to_host_signal(sig);
681          if (host_sig != SIGSEGV && host_sig != SIGBUS) {
682              memset(&act1, 0, sizeof(struct sigaction));
683              sigfillset(&act1.sa_mask);
684              act1.sa_flags = SA_SIGINFO;
685              if (k->sa_flags & TARGET_SA_RESTART) {
686                  act1.sa_flags |= SA_RESTART;
687              }
688              /*
689               *  Note: It is important to update the host kernel signal mask to
690               *  avoid getting unexpected interrupted system calls.
691               */
692              if (k->_sa_handler == TARGET_SIG_IGN) {
693                  act1.sa_sigaction = (void *)SIG_IGN;
694              } else if (k->_sa_handler == TARGET_SIG_DFL) {
695                  if (fatal_signal(sig)) {
696                      act1.sa_sigaction = host_signal_handler;
697                  } else {
698                      act1.sa_sigaction = (void *)SIG_DFL;
699                  }
700              } else {
701                  act1.sa_sigaction = host_signal_handler;
702              }
703              ret = sigaction(host_sig, &act1, NULL);
704          }
705      }
706      return ret;
707  }
708  
709  static inline abi_ulong get_sigframe(struct target_sigaction *ka,
710          CPUArchState *env, size_t frame_size)
711  {
712      TaskState *ts = (TaskState *)thread_cpu->opaque;
713      abi_ulong sp;
714  
715      /* Use default user stack */
716      sp = get_sp_from_cpustate(env);
717  
718      if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
719          sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
720      }
721  
722  /* TODO: make this a target_arch function / define */
723  #if defined(TARGET_ARM)
724      return (sp - frame_size) & ~7;
725  #elif defined(TARGET_AARCH64)
726      return (sp - frame_size) & ~15;
727  #else
728      return sp - frame_size;
729  #endif
730  }
731  
732  /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
733  
734  static void setup_frame(int sig, int code, struct target_sigaction *ka,
735      target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
736  {
737      struct target_sigframe *frame;
738      abi_ulong frame_addr;
739      int i;
740  
741      frame_addr = get_sigframe(ka, env, sizeof(*frame));
742      trace_user_setup_frame(env, frame_addr);
743      if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
744          unlock_user_struct(frame, frame_addr, 1);
745          dump_core_and_abort(TARGET_SIGILL);
746          return;
747      }
748  
749      memset(frame, 0, sizeof(*frame));
750      setup_sigframe_arch(env, frame_addr, frame, 0);
751  
752      for (i = 0; i < TARGET_NSIG_WORDS; i++) {
753          __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
754      }
755  
756      if (tinfo) {
757          frame->sf_si.si_signo = tinfo->si_signo;
758          frame->sf_si.si_errno = tinfo->si_errno;
759          frame->sf_si.si_code = tinfo->si_code;
760          frame->sf_si.si_pid = tinfo->si_pid;
761          frame->sf_si.si_uid = tinfo->si_uid;
762          frame->sf_si.si_status = tinfo->si_status;
763          frame->sf_si.si_addr = tinfo->si_addr;
764          /* see host_to_target_siginfo_noswap() for more details */
765          frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
766          /*
767           * At this point, whatever is in the _reason union is complete
768           * and in target order, so just copy the whole thing over, even
769           * if it's too large for this specific signal.
770           * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
771           * that's so.
772           */
773          memcpy(&frame->sf_si._reason, &tinfo->_reason,
774                 sizeof(tinfo->_reason));
775      }
776  
777      set_sigtramp_args(env, sig, frame, frame_addr, ka);
778  
779      unlock_user_struct(frame, frame_addr, 1);
780  }
781  
782  static int reset_signal_mask(target_ucontext_t *ucontext)
783  {
784      int i;
785      sigset_t blocked;
786      target_sigset_t target_set;
787      TaskState *ts = (TaskState *)thread_cpu->opaque;
788  
789      for (i = 0; i < TARGET_NSIG_WORDS; i++) {
790          __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
791      }
792      target_to_host_sigset_internal(&blocked, &target_set);
793      ts->signal_mask = blocked;
794  
795      return 0;
796  }
797  
798  /* See sys/$M/$M/exec_machdep.c sigreturn() */
799  long do_sigreturn(CPUArchState *env, abi_ulong addr)
800  {
801      long ret;
802      abi_ulong target_ucontext;
803      target_ucontext_t *ucontext = NULL;
804  
805      /* Get the target ucontext address from the stack frame */
806      ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
807      if (is_error(ret)) {
808          return ret;
809      }
810      trace_user_do_sigreturn(env, addr);
811      if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
812          goto badframe;
813      }
814  
815      /* Set the register state back to before the signal. */
816      if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
817          goto badframe;
818      }
819  
820      /* And reset the signal mask. */
821      if (reset_signal_mask(ucontext)) {
822          goto badframe;
823      }
824  
825      unlock_user_struct(ucontext, target_ucontext, 0);
826      return -TARGET_EJUSTRETURN;
827  
828  badframe:
829      if (ucontext != NULL) {
830          unlock_user_struct(ucontext, target_ucontext, 0);
831      }
832      return -TARGET_EFAULT;
833  }
834  
835  void signal_init(void)
836  {
837      TaskState *ts = (TaskState *)thread_cpu->opaque;
838      struct sigaction act;
839      struct sigaction oact;
840      int i;
841      int host_sig;
842  
843      /* Set the signal mask from the host mask. */
844      sigprocmask(0, 0, &ts->signal_mask);
845  
846      sigfillset(&act.sa_mask);
847      act.sa_sigaction = host_signal_handler;
848      act.sa_flags = SA_SIGINFO;
849  
850      for (i = 1; i <= TARGET_NSIG; i++) {
851  #ifdef CONFIG_GPROF
852          if (i == TARGET_SIGPROF) {
853              continue;
854          }
855  #endif
856          host_sig = target_to_host_signal(i);
857          sigaction(host_sig, NULL, &oact);
858          if (oact.sa_sigaction == (void *)SIG_IGN) {
859              sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
860          } else if (oact.sa_sigaction == (void *)SIG_DFL) {
861              sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
862          }
863          /*
864           * If there's already a handler installed then something has
865           * gone horribly wrong, so don't even try to handle that case.
866           * Install some handlers for our own use.  We need at least
867           * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
868           * trap all signals because it affects syscall interrupt
869           * behavior.  But do trap all default-fatal signals.
870           */
871          if (fatal_signal(i)) {
872              sigaction(host_sig, &act, NULL);
873          }
874      }
875  }
876  
877  static void handle_pending_signal(CPUArchState *env, int sig,
878                                    struct emulated_sigtable *k)
879  {
880      CPUState *cpu = env_cpu(env);
881      TaskState *ts = cpu->opaque;
882      struct target_sigaction *sa;
883      int code;
884      sigset_t set;
885      abi_ulong handler;
886      target_siginfo_t tinfo;
887      target_sigset_t target_old_set;
888  
889      trace_user_handle_signal(env, sig);
890  
891      k->pending = 0;
892  
893      sig = gdb_handlesig(cpu, sig);
894      if (!sig) {
895          sa = NULL;
896          handler = TARGET_SIG_IGN;
897      } else {
898          sa = &sigact_table[sig - 1];
899          handler = sa->_sa_handler;
900      }
901  
902      if (do_strace) {
903          print_taken_signal(sig, &k->info);
904      }
905  
906      if (handler == TARGET_SIG_DFL) {
907          /*
908           * default handler : ignore some signal. The other are job
909           * control or fatal.
910           */
911          if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
912              sig == TARGET_SIGTTOU) {
913              kill(getpid(), SIGSTOP);
914          } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
915                     sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
916                     sig != TARGET_SIGCONT) {
917              dump_core_and_abort(sig);
918          }
919      } else if (handler == TARGET_SIG_IGN) {
920          /* ignore sig */
921      } else if (handler == TARGET_SIG_ERR) {
922          dump_core_and_abort(sig);
923      } else {
924          /* compute the blocked signals during the handler execution */
925          sigset_t *blocked_set;
926  
927          target_to_host_sigset(&set, &sa->sa_mask);
928          /*
929           * SA_NODEFER indicates that the current signal should not be
930           * blocked during the handler.
931           */
932          if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
933              sigaddset(&set, target_to_host_signal(sig));
934          }
935  
936          /*
937           * Save the previous blocked signal state to restore it at the
938           * end of the signal execution (see do_sigreturn).
939           */
940          host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
941  
942          blocked_set = ts->in_sigsuspend ?
943              &ts->sigsuspend_mask : &ts->signal_mask;
944          sigorset(&ts->signal_mask, blocked_set, &set);
945          ts->in_sigsuspend = false;
946          sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
947  
948          /* XXX VM86 on x86 ??? */
949  
950          code = k->info.si_code; /* From host, so no si_type */
951          /* prepare the stack frame of the virtual CPU */
952          if (sa->sa_flags & TARGET_SA_SIGINFO) {
953              tswap_siginfo(&tinfo, &k->info);
954              setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
955          } else {
956              setup_frame(sig, code, sa, &target_old_set, NULL, env);
957          }
958          if (sa->sa_flags & TARGET_SA_RESETHAND) {
959              sa->_sa_handler = TARGET_SIG_DFL;
960          }
961      }
962  }
963  
964  void process_pending_signals(CPUArchState *env)
965  {
966      CPUState *cpu = env_cpu(env);
967      int sig;
968      sigset_t *blocked_set, set;
969      struct emulated_sigtable *k;
970      TaskState *ts = cpu->opaque;
971  
972      while (qatomic_read(&ts->signal_pending)) {
973          sigfillset(&set);
974          sigprocmask(SIG_SETMASK, &set, 0);
975  
976      restart_scan:
977          sig = ts->sync_signal.pending;
978          if (sig) {
979              /*
980               * Synchronous signals are forced by the emulated CPU in some way.
981               * If they are set to ignore, restore the default handler (see
982               * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
983               * though maybe this is done only when forcing exit for non SIGCHLD.
984               */
985              if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
986                  sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
987                  sigdelset(&ts->signal_mask, target_to_host_signal(sig));
988                  sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
989              }
990              handle_pending_signal(env, sig, &ts->sync_signal);
991          }
992  
993          k = ts->sigtab;
994          for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
995              blocked_set = ts->in_sigsuspend ?
996                  &ts->sigsuspend_mask : &ts->signal_mask;
997              if (k->pending &&
998                  !sigismember(blocked_set, target_to_host_signal(sig))) {
999                  handle_pending_signal(env, sig, k);
1000                  /*
1001                   * Restart scan from the beginning, as handle_pending_signal
1002                   * might have resulted in a new synchronous signal (eg SIGSEGV).
1003                   */
1004                  goto restart_scan;
1005              }
1006          }
1007  
1008          /*
1009           * Unblock signals and check one more time. Unblocking signals may cause
1010           * us to take another host signal, which will set signal_pending again.
1011           */
1012          qatomic_set(&ts->signal_pending, 0);
1013          ts->in_sigsuspend = false;
1014          set = ts->signal_mask;
1015          sigdelset(&set, SIGSEGV);
1016          sigdelset(&set, SIGBUS);
1017          sigprocmask(SIG_SETMASK, &set, 0);
1018      }
1019      ts->in_sigsuspend = false;
1020  }
1021  
1022  void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1023                             MMUAccessType access_type, bool maperr, uintptr_t ra)
1024  {
1025      const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1026  
1027      if (tcg_ops->record_sigsegv) {
1028          tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1029      }
1030  
1031      force_sig_fault(TARGET_SIGSEGV,
1032                      maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1033                      addr);
1034      cpu->exception_index = EXCP_INTERRUPT;
1035      cpu_loop_exit_restore(cpu, ra);
1036  }
1037  
1038  void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1039                            MMUAccessType access_type, uintptr_t ra)
1040  {
1041      const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1042  
1043      if (tcg_ops->record_sigbus) {
1044          tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1045      }
1046  
1047      force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1048      cpu->exception_index = EXCP_INTERRUPT;
1049      cpu_loop_exit_restore(cpu, ra);
1050  }
1051