1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "qemu.h" 24 #include "signal-common.h" 25 #include "trace.h" 26 #include "hw/core/tcg-cpu-ops.h" 27 #include "host-signal.h" 28 29 static struct target_sigaction sigact_table[TARGET_NSIG]; 30 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 31 static void target_to_host_sigset_internal(sigset_t *d, 32 const target_sigset_t *s); 33 34 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 35 { 36 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 37 } 38 39 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 40 { 41 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 42 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 43 } 44 45 /* 46 * The BSD ABIs use the same singal numbers across all the CPU architectures, so 47 * (unlike Linux) these functions are just the identity mapping. This might not 48 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 49 */ 50 int host_to_target_signal(int sig) 51 { 52 return sig; 53 } 54 55 int target_to_host_signal(int sig) 56 { 57 return sig; 58 } 59 60 static inline void target_sigemptyset(target_sigset_t *set) 61 { 62 memset(set, 0, sizeof(*set)); 63 } 64 65 static inline void target_sigaddset(target_sigset_t *set, int signum) 66 { 67 signum--; 68 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 69 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 70 } 71 72 static inline int target_sigismember(const target_sigset_t *set, int signum) 73 { 74 signum--; 75 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 76 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 77 } 78 79 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 80 static inline void rewind_if_in_safe_syscall(void *puc) 81 { 82 ucontext_t *uc = (ucontext_t *)puc; 83 uintptr_t pcreg = host_signal_pc(uc); 84 85 if (pcreg > (uintptr_t)safe_syscall_start 86 && pcreg < (uintptr_t)safe_syscall_end) { 87 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 88 } 89 } 90 91 /* 92 * Note: The following take advantage of the BSD signal property that all 93 * signals are available on all architectures. 94 */ 95 static void host_to_target_sigset_internal(target_sigset_t *d, 96 const sigset_t *s) 97 { 98 int i; 99 100 target_sigemptyset(d); 101 for (i = 1; i <= NSIG; i++) { 102 if (sigismember(s, i)) { 103 target_sigaddset(d, host_to_target_signal(i)); 104 } 105 } 106 } 107 108 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 109 { 110 target_sigset_t d1; 111 int i; 112 113 host_to_target_sigset_internal(&d1, s); 114 for (i = 0; i < _SIG_WORDS; i++) { 115 d->__bits[i] = tswap32(d1.__bits[i]); 116 } 117 } 118 119 static void target_to_host_sigset_internal(sigset_t *d, 120 const target_sigset_t *s) 121 { 122 int i; 123 124 sigemptyset(d); 125 for (i = 1; i <= TARGET_NSIG; i++) { 126 if (target_sigismember(s, i)) { 127 sigaddset(d, target_to_host_signal(i)); 128 } 129 } 130 } 131 132 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 133 { 134 target_sigset_t s1; 135 int i; 136 137 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 138 s1.__bits[i] = tswap32(s->__bits[i]); 139 } 140 target_to_host_sigset_internal(d, &s1); 141 } 142 143 static bool has_trapno(int tsig) 144 { 145 return tsig == TARGET_SIGILL || 146 tsig == TARGET_SIGFPE || 147 tsig == TARGET_SIGSEGV || 148 tsig == TARGET_SIGBUS || 149 tsig == TARGET_SIGTRAP; 150 } 151 152 /* Siginfo conversion. */ 153 154 /* 155 * Populate tinfo w/o swapping based on guessing which fields are valid. 156 */ 157 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 158 const siginfo_t *info) 159 { 160 int sig = host_to_target_signal(info->si_signo); 161 int si_code = info->si_code; 162 int si_type; 163 164 /* 165 * Make sure we that the variable portion of the target siginfo is zeroed 166 * out so we don't leak anything into that. 167 */ 168 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 169 170 /* 171 * This is awkward, because we have to use a combination of the si_code and 172 * si_signo to figure out which of the union's members are valid.o We 173 * therefore make our best guess. 174 * 175 * Once we have made our guess, we record it in the top 16 bits of 176 * the si_code, so that tswap_siginfo() later can use it. 177 * tswap_siginfo() will strip these top bits out before writing 178 * si_code to the guest (sign-extending the lower bits). 179 */ 180 tinfo->si_signo = sig; 181 tinfo->si_errno = info->si_errno; 182 tinfo->si_code = info->si_code; 183 tinfo->si_pid = info->si_pid; 184 tinfo->si_uid = info->si_uid; 185 tinfo->si_status = info->si_status; 186 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 187 /* 188 * si_value is opaque to kernel. On all FreeBSD platforms, 189 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 190 * always will copy the larger element. 191 */ 192 tinfo->si_value.sival_ptr = 193 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 194 195 switch (si_code) { 196 /* 197 * All the SI_xxx codes that are defined here are global to 198 * all the signals (they have values that none of the other, 199 * more specific signal info will set). 200 */ 201 case SI_USER: 202 case SI_LWP: 203 case SI_KERNEL: 204 case SI_QUEUE: 205 case SI_ASYNCIO: 206 /* 207 * Only the fixed parts are valid (though FreeBSD doesn't always 208 * set all the fields to non-zero values. 209 */ 210 si_type = QEMU_SI_NOINFO; 211 break; 212 case SI_TIMER: 213 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 214 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 215 si_type = QEMU_SI_TIMER; 216 break; 217 case SI_MESGQ: 218 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 219 si_type = QEMU_SI_MESGQ; 220 break; 221 default: 222 /* 223 * We have to go based on the signal number now to figure out 224 * what's valid. 225 */ 226 si_type = QEMU_SI_NOINFO; 227 if (has_trapno(sig)) { 228 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 229 si_type = QEMU_SI_FAULT; 230 } 231 #ifdef TARGET_SIGPOLL 232 /* 233 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 234 * a chance it may popup in the future. 235 */ 236 if (sig == TARGET_SIGPOLL) { 237 tinfo->_reason._poll._band = info->_reason._poll._band; 238 si_type = QEMU_SI_POLL; 239 } 240 #endif 241 /* 242 * Unsure that this can actually be generated, and our support for 243 * capsicum is somewhere between weak and non-existant, but if we get 244 * one, then we know what to save. 245 */ 246 #ifdef QEMU_SI_CAPSICUM 247 if (sig == TARGET_SIGTRAP) { 248 tinfo->_reason._capsicum._syscall = 249 info->_reason._capsicum._syscall; 250 si_type = QEMU_SI_CAPSICUM; 251 } 252 #endif 253 break; 254 } 255 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 256 } 257 258 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 259 { 260 int si_type = extract32(info->si_code, 24, 8); 261 int si_code = sextract32(info->si_code, 0, 24); 262 263 __put_user(info->si_signo, &tinfo->si_signo); 264 __put_user(info->si_errno, &tinfo->si_errno); 265 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 266 __put_user(info->si_pid, &tinfo->si_pid); 267 __put_user(info->si_uid, &tinfo->si_uid); 268 __put_user(info->si_status, &tinfo->si_status); 269 __put_user(info->si_addr, &tinfo->si_addr); 270 /* 271 * Unswapped, because we passed it through mostly untouched. si_value is 272 * opaque to the kernel, so we didn't bother with potentially wasting cycles 273 * to swap it into host byte order. 274 */ 275 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 276 277 /* 278 * We can use our internal marker of which fields in the structure 279 * are valid, rather than duplicating the guesswork of 280 * host_to_target_siginfo_noswap() here. 281 */ 282 switch (si_type) { 283 case QEMU_SI_NOINFO: /* No additional info */ 284 break; 285 case QEMU_SI_FAULT: 286 __put_user(info->_reason._fault._trapno, 287 &tinfo->_reason._fault._trapno); 288 break; 289 case QEMU_SI_TIMER: 290 __put_user(info->_reason._timer._timerid, 291 &tinfo->_reason._timer._timerid); 292 __put_user(info->_reason._timer._overrun, 293 &tinfo->_reason._timer._overrun); 294 break; 295 case QEMU_SI_MESGQ: 296 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 297 break; 298 case QEMU_SI_POLL: 299 /* Note: Not generated on FreeBSD */ 300 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 301 break; 302 #ifdef QEMU_SI_CAPSICUM 303 case QEMU_SI_CAPSICUM: 304 __put_user(info->_reason._capsicum._syscall, 305 &tinfo->_reason._capsicum._syscall); 306 break; 307 #endif 308 default: 309 g_assert_not_reached(); 310 } 311 } 312 313 int block_signals(void) 314 { 315 TaskState *ts = (TaskState *)thread_cpu->opaque; 316 sigset_t set; 317 318 /* 319 * It's OK to block everything including SIGSEGV, because we won't run any 320 * further guest code before unblocking signals in 321 * process_pending_signals(). We depend on the FreeBSD behaivor here where 322 * this will only affect this thread's signal mask. We don't use 323 * pthread_sigmask which might seem more correct because that routine also 324 * does odd things with SIGCANCEL to implement pthread_cancel(). 325 */ 326 sigfillset(&set); 327 sigprocmask(SIG_SETMASK, &set, 0); 328 329 return qatomic_xchg(&ts->signal_pending, 1); 330 } 331 332 /* Returns 1 if given signal should dump core if not handled. */ 333 static int core_dump_signal(int sig) 334 { 335 switch (sig) { 336 case TARGET_SIGABRT: 337 case TARGET_SIGFPE: 338 case TARGET_SIGILL: 339 case TARGET_SIGQUIT: 340 case TARGET_SIGSEGV: 341 case TARGET_SIGTRAP: 342 case TARGET_SIGBUS: 343 return 1; 344 default: 345 return 0; 346 } 347 } 348 349 /* Abort execution with signal. */ 350 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 351 { 352 CPUArchState *env = thread_cpu->env_ptr; 353 CPUState *cpu = env_cpu(env); 354 TaskState *ts = cpu->opaque; 355 int core_dumped = 0; 356 int host_sig; 357 struct sigaction act; 358 359 host_sig = target_to_host_signal(target_sig); 360 gdb_signalled(env, target_sig); 361 362 /* Dump core if supported by target binary format */ 363 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 364 stop_all_tasks(); 365 core_dumped = 366 ((*ts->bprm->core_dump)(target_sig, env) == 0); 367 } 368 if (core_dumped) { 369 struct rlimit nodump; 370 371 /* 372 * We already dumped the core of target process, we don't want 373 * a coredump of qemu itself. 374 */ 375 getrlimit(RLIMIT_CORE, &nodump); 376 nodump.rlim_cur = 0; 377 setrlimit(RLIMIT_CORE, &nodump); 378 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 379 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 380 } 381 382 /* 383 * The proper exit code for dying from an uncaught signal is 384 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 385 * a negative value. To get the proper exit code we need to 386 * actually die from an uncaught signal. Here the default signal 387 * handler is installed, we send ourself a signal and we wait for 388 * it to arrive. 389 */ 390 memset(&act, 0, sizeof(act)); 391 sigfillset(&act.sa_mask); 392 act.sa_handler = SIG_DFL; 393 sigaction(host_sig, &act, NULL); 394 395 kill(getpid(), host_sig); 396 397 /* 398 * Make sure the signal isn't masked (just reuse the mask inside 399 * of act). 400 */ 401 sigdelset(&act.sa_mask, host_sig); 402 sigsuspend(&act.sa_mask); 403 404 /* unreachable */ 405 abort(); 406 } 407 408 /* 409 * Queue a signal so that it will be send to the virtual CPU as soon as 410 * possible. 411 */ 412 void queue_signal(CPUArchState *env, int sig, int si_type, 413 target_siginfo_t *info) 414 { 415 CPUState *cpu = env_cpu(env); 416 TaskState *ts = cpu->opaque; 417 418 trace_user_queue_signal(env, sig); 419 420 info->si_code = deposit32(info->si_code, 24, 8, si_type); 421 422 ts->sync_signal.info = *info; 423 ts->sync_signal.pending = sig; 424 /* Signal that a new signal is pending. */ 425 qatomic_set(&ts->signal_pending, 1); 426 return; 427 } 428 429 static int fatal_signal(int sig) 430 { 431 432 switch (sig) { 433 case TARGET_SIGCHLD: 434 case TARGET_SIGURG: 435 case TARGET_SIGWINCH: 436 case TARGET_SIGINFO: 437 /* Ignored by default. */ 438 return 0; 439 case TARGET_SIGCONT: 440 case TARGET_SIGSTOP: 441 case TARGET_SIGTSTP: 442 case TARGET_SIGTTIN: 443 case TARGET_SIGTTOU: 444 /* Job control signals. */ 445 return 0; 446 default: 447 return 1; 448 } 449 } 450 451 /* 452 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 453 * 'force' part is handled in process_pending_signals(). 454 */ 455 void force_sig_fault(int sig, int code, abi_ulong addr) 456 { 457 CPUState *cpu = thread_cpu; 458 CPUArchState *env = cpu->env_ptr; 459 target_siginfo_t info = {}; 460 461 info.si_signo = sig; 462 info.si_errno = 0; 463 info.si_code = code; 464 info.si_addr = addr; 465 queue_signal(env, sig, QEMU_SI_FAULT, &info); 466 } 467 468 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 469 { 470 CPUArchState *env = thread_cpu->env_ptr; 471 CPUState *cpu = env_cpu(env); 472 TaskState *ts = cpu->opaque; 473 target_siginfo_t tinfo; 474 ucontext_t *uc = puc; 475 struct emulated_sigtable *k; 476 int guest_sig; 477 uintptr_t pc = 0; 478 bool sync_sig = false; 479 480 /* 481 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 482 * handling wrt signal blocking and unwinding. 483 */ 484 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 485 MMUAccessType access_type; 486 uintptr_t host_addr; 487 abi_ptr guest_addr; 488 bool is_write; 489 490 host_addr = (uintptr_t)info->si_addr; 491 492 /* 493 * Convert forcefully to guest address space: addresses outside 494 * reserved_va are still valid to report via SEGV_MAPERR. 495 */ 496 guest_addr = h2g_nocheck(host_addr); 497 498 pc = host_signal_pc(uc); 499 is_write = host_signal_write(info, uc); 500 access_type = adjust_signal_pc(&pc, is_write); 501 502 if (host_sig == SIGSEGV) { 503 bool maperr = true; 504 505 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 506 /* If this was a write to a TB protected page, restart. */ 507 if (is_write && 508 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 509 pc, guest_addr)) { 510 return; 511 } 512 513 /* 514 * With reserved_va, the whole address space is PROT_NONE, 515 * which means that we may get ACCERR when we want MAPERR. 516 */ 517 if (page_get_flags(guest_addr) & PAGE_VALID) { 518 maperr = false; 519 } else { 520 info->si_code = SEGV_MAPERR; 521 } 522 } 523 524 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 525 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 526 } else { 527 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 528 if (info->si_code == BUS_ADRALN) { 529 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 530 } 531 } 532 533 sync_sig = true; 534 } 535 536 /* Get the target signal number. */ 537 guest_sig = host_to_target_signal(host_sig); 538 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 539 return; 540 } 541 trace_user_host_signal(cpu, host_sig, guest_sig); 542 543 host_to_target_siginfo_noswap(&tinfo, info); 544 545 k = &ts->sigtab[guest_sig - 1]; 546 k->info = tinfo; 547 k->pending = guest_sig; 548 ts->signal_pending = 1; 549 550 /* 551 * For synchronous signals, unwind the cpu state to the faulting 552 * insn and then exit back to the main loop so that the signal 553 * is delivered immediately. 554 */ 555 if (sync_sig) { 556 cpu->exception_index = EXCP_INTERRUPT; 557 cpu_loop_exit_restore(cpu, pc); 558 } 559 560 rewind_if_in_safe_syscall(puc); 561 562 /* 563 * Block host signals until target signal handler entered. We 564 * can't block SIGSEGV or SIGBUS while we're executing guest 565 * code in case the guest code provokes one in the window between 566 * now and it getting out to the main loop. Signals will be 567 * unblocked again in process_pending_signals(). 568 */ 569 sigfillset(&uc->uc_sigmask); 570 sigdelset(&uc->uc_sigmask, SIGSEGV); 571 sigdelset(&uc->uc_sigmask, SIGBUS); 572 573 /* Interrupt the virtual CPU as soon as possible. */ 574 cpu_exit(thread_cpu); 575 } 576 577 /* do_sigaltstack() returns target values and errnos. */ 578 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ 579 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 580 { 581 TaskState *ts = (TaskState *)thread_cpu->opaque; 582 int ret; 583 target_stack_t oss; 584 585 if (uoss_addr) { 586 /* Save current signal stack params */ 587 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); 588 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); 589 oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); 590 } 591 592 if (uss_addr) { 593 target_stack_t *uss; 594 target_stack_t ss; 595 size_t minstacksize = TARGET_MINSIGSTKSZ; 596 597 ret = -TARGET_EFAULT; 598 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 599 goto out; 600 } 601 __get_user(ss.ss_sp, &uss->ss_sp); 602 __get_user(ss.ss_size, &uss->ss_size); 603 __get_user(ss.ss_flags, &uss->ss_flags); 604 unlock_user_struct(uss, uss_addr, 0); 605 606 ret = -TARGET_EPERM; 607 if (on_sig_stack(ts, sp)) { 608 goto out; 609 } 610 611 ret = -TARGET_EINVAL; 612 if (ss.ss_flags != TARGET_SS_DISABLE 613 && ss.ss_flags != TARGET_SS_ONSTACK 614 && ss.ss_flags != 0) { 615 goto out; 616 } 617 618 if (ss.ss_flags == TARGET_SS_DISABLE) { 619 ss.ss_size = 0; 620 ss.ss_sp = 0; 621 } else { 622 ret = -TARGET_ENOMEM; 623 if (ss.ss_size < minstacksize) { 624 goto out; 625 } 626 } 627 628 ts->sigaltstack_used.ss_sp = ss.ss_sp; 629 ts->sigaltstack_used.ss_size = ss.ss_size; 630 } 631 632 if (uoss_addr) { 633 ret = -TARGET_EFAULT; 634 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { 635 goto out; 636 } 637 } 638 639 ret = 0; 640 out: 641 return ret; 642 } 643 644 /* do_sigaction() return host values and errnos */ 645 int do_sigaction(int sig, const struct target_sigaction *act, 646 struct target_sigaction *oact) 647 { 648 struct target_sigaction *k; 649 struct sigaction act1; 650 int host_sig; 651 int ret = 0; 652 653 if (sig < 1 || sig > TARGET_NSIG) { 654 return -TARGET_EINVAL; 655 } 656 657 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && 658 act != NULL && act->_sa_handler != TARGET_SIG_DFL) { 659 return -TARGET_EINVAL; 660 } 661 662 if (block_signals()) { 663 return -TARGET_ERESTART; 664 } 665 666 k = &sigact_table[sig - 1]; 667 if (oact) { 668 oact->_sa_handler = tswapal(k->_sa_handler); 669 oact->sa_flags = tswap32(k->sa_flags); 670 oact->sa_mask = k->sa_mask; 671 } 672 if (act) { 673 k->_sa_handler = tswapal(act->_sa_handler); 674 k->sa_flags = tswap32(act->sa_flags); 675 k->sa_mask = act->sa_mask; 676 677 /* Update the host signal state. */ 678 host_sig = target_to_host_signal(sig); 679 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 680 memset(&act1, 0, sizeof(struct sigaction)); 681 sigfillset(&act1.sa_mask); 682 act1.sa_flags = SA_SIGINFO; 683 if (k->sa_flags & TARGET_SA_RESTART) { 684 act1.sa_flags |= SA_RESTART; 685 } 686 /* 687 * Note: It is important to update the host kernel signal mask to 688 * avoid getting unexpected interrupted system calls. 689 */ 690 if (k->_sa_handler == TARGET_SIG_IGN) { 691 act1.sa_sigaction = (void *)SIG_IGN; 692 } else if (k->_sa_handler == TARGET_SIG_DFL) { 693 if (fatal_signal(sig)) { 694 act1.sa_sigaction = host_signal_handler; 695 } else { 696 act1.sa_sigaction = (void *)SIG_DFL; 697 } 698 } else { 699 act1.sa_sigaction = host_signal_handler; 700 } 701 ret = sigaction(host_sig, &act1, NULL); 702 } 703 } 704 return ret; 705 } 706 707 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 708 CPUArchState *env, size_t frame_size) 709 { 710 TaskState *ts = (TaskState *)thread_cpu->opaque; 711 abi_ulong sp; 712 713 /* Use default user stack */ 714 sp = get_sp_from_cpustate(env); 715 716 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 717 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 718 } 719 720 /* TODO: make this a target_arch function / define */ 721 #if defined(TARGET_ARM) 722 return (sp - frame_size) & ~7; 723 #elif defined(TARGET_AARCH64) 724 return (sp - frame_size) & ~15; 725 #else 726 return sp - frame_size; 727 #endif 728 } 729 730 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 731 732 static void setup_frame(int sig, int code, struct target_sigaction *ka, 733 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 734 { 735 struct target_sigframe *frame; 736 abi_ulong frame_addr; 737 int i; 738 739 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 740 trace_user_setup_frame(env, frame_addr); 741 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 742 unlock_user_struct(frame, frame_addr, 1); 743 dump_core_and_abort(TARGET_SIGILL); 744 return; 745 } 746 747 memset(frame, 0, sizeof(*frame)); 748 setup_sigframe_arch(env, frame_addr, frame, 0); 749 750 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 751 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 752 } 753 754 if (tinfo) { 755 frame->sf_si.si_signo = tinfo->si_signo; 756 frame->sf_si.si_errno = tinfo->si_errno; 757 frame->sf_si.si_code = tinfo->si_code; 758 frame->sf_si.si_pid = tinfo->si_pid; 759 frame->sf_si.si_uid = tinfo->si_uid; 760 frame->sf_si.si_status = tinfo->si_status; 761 frame->sf_si.si_addr = tinfo->si_addr; 762 /* see host_to_target_siginfo_noswap() for more details */ 763 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 764 /* 765 * At this point, whatever is in the _reason union is complete 766 * and in target order, so just copy the whole thing over, even 767 * if it's too large for this specific signal. 768 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 769 * that's so. 770 */ 771 memcpy(&frame->sf_si._reason, &tinfo->_reason, 772 sizeof(tinfo->_reason)); 773 } 774 775 set_sigtramp_args(env, sig, frame, frame_addr, ka); 776 777 unlock_user_struct(frame, frame_addr, 1); 778 } 779 780 static int reset_signal_mask(target_ucontext_t *ucontext) 781 { 782 int i; 783 sigset_t blocked; 784 target_sigset_t target_set; 785 TaskState *ts = (TaskState *)thread_cpu->opaque; 786 787 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 788 if (__get_user(target_set.__bits[i], 789 &ucontext->uc_sigmask.__bits[i])) { 790 return -TARGET_EFAULT; 791 } 792 } 793 target_to_host_sigset_internal(&blocked, &target_set); 794 ts->signal_mask = blocked; 795 796 return 0; 797 } 798 799 /* See sys/$M/$M/exec_machdep.c sigreturn() */ 800 long do_sigreturn(CPUArchState *env, abi_ulong addr) 801 { 802 long ret; 803 abi_ulong target_ucontext; 804 target_ucontext_t *ucontext = NULL; 805 806 /* Get the target ucontext address from the stack frame */ 807 ret = get_ucontext_sigreturn(env, addr, &target_ucontext); 808 if (is_error(ret)) { 809 return ret; 810 } 811 trace_user_do_sigreturn(env, addr); 812 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { 813 goto badframe; 814 } 815 816 /* Set the register state back to before the signal. */ 817 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { 818 goto badframe; 819 } 820 821 /* And reset the signal mask. */ 822 if (reset_signal_mask(ucontext)) { 823 goto badframe; 824 } 825 826 unlock_user_struct(ucontext, target_ucontext, 0); 827 return -TARGET_EJUSTRETURN; 828 829 badframe: 830 if (ucontext != NULL) { 831 unlock_user_struct(ucontext, target_ucontext, 0); 832 } 833 return -TARGET_EFAULT; 834 } 835 836 void signal_init(void) 837 { 838 TaskState *ts = (TaskState *)thread_cpu->opaque; 839 struct sigaction act; 840 struct sigaction oact; 841 int i; 842 int host_sig; 843 844 /* Set the signal mask from the host mask. */ 845 sigprocmask(0, 0, &ts->signal_mask); 846 847 sigfillset(&act.sa_mask); 848 act.sa_sigaction = host_signal_handler; 849 act.sa_flags = SA_SIGINFO; 850 851 for (i = 1; i <= TARGET_NSIG; i++) { 852 #ifdef CONFIG_GPROF 853 if (i == TARGET_SIGPROF) { 854 continue; 855 } 856 #endif 857 host_sig = target_to_host_signal(i); 858 sigaction(host_sig, NULL, &oact); 859 if (oact.sa_sigaction == (void *)SIG_IGN) { 860 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 861 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 862 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 863 } 864 /* 865 * If there's already a handler installed then something has 866 * gone horribly wrong, so don't even try to handle that case. 867 * Install some handlers for our own use. We need at least 868 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 869 * trap all signals because it affects syscall interrupt 870 * behavior. But do trap all default-fatal signals. 871 */ 872 if (fatal_signal(i)) { 873 sigaction(host_sig, &act, NULL); 874 } 875 } 876 } 877 878 static void handle_pending_signal(CPUArchState *env, int sig, 879 struct emulated_sigtable *k) 880 { 881 CPUState *cpu = env_cpu(env); 882 TaskState *ts = cpu->opaque; 883 struct target_sigaction *sa; 884 int code; 885 sigset_t set; 886 abi_ulong handler; 887 target_siginfo_t tinfo; 888 target_sigset_t target_old_set; 889 890 trace_user_handle_signal(env, sig); 891 892 k->pending = 0; 893 894 sig = gdb_handlesig(cpu, sig); 895 if (!sig) { 896 sa = NULL; 897 handler = TARGET_SIG_IGN; 898 } else { 899 sa = &sigact_table[sig - 1]; 900 handler = sa->_sa_handler; 901 } 902 903 if (do_strace) { 904 print_taken_signal(sig, &k->info); 905 } 906 907 if (handler == TARGET_SIG_DFL) { 908 /* 909 * default handler : ignore some signal. The other are job 910 * control or fatal. 911 */ 912 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 913 sig == TARGET_SIGTTOU) { 914 kill(getpid(), SIGSTOP); 915 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 916 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 917 sig != TARGET_SIGCONT) { 918 dump_core_and_abort(sig); 919 } 920 } else if (handler == TARGET_SIG_IGN) { 921 /* ignore sig */ 922 } else if (handler == TARGET_SIG_ERR) { 923 dump_core_and_abort(sig); 924 } else { 925 /* compute the blocked signals during the handler execution */ 926 sigset_t *blocked_set; 927 928 target_to_host_sigset(&set, &sa->sa_mask); 929 /* 930 * SA_NODEFER indicates that the current signal should not be 931 * blocked during the handler. 932 */ 933 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 934 sigaddset(&set, target_to_host_signal(sig)); 935 } 936 937 /* 938 * Save the previous blocked signal state to restore it at the 939 * end of the signal execution (see do_sigreturn). 940 */ 941 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 942 943 blocked_set = ts->in_sigsuspend ? 944 &ts->sigsuspend_mask : &ts->signal_mask; 945 sigorset(&ts->signal_mask, blocked_set, &set); 946 ts->in_sigsuspend = false; 947 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 948 949 /* XXX VM86 on x86 ??? */ 950 951 code = k->info.si_code; /* From host, so no si_type */ 952 /* prepare the stack frame of the virtual CPU */ 953 if (sa->sa_flags & TARGET_SA_SIGINFO) { 954 tswap_siginfo(&tinfo, &k->info); 955 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 956 } else { 957 setup_frame(sig, code, sa, &target_old_set, NULL, env); 958 } 959 if (sa->sa_flags & TARGET_SA_RESETHAND) { 960 sa->_sa_handler = TARGET_SIG_DFL; 961 } 962 } 963 } 964 965 void process_pending_signals(CPUArchState *env) 966 { 967 CPUState *cpu = env_cpu(env); 968 int sig; 969 sigset_t *blocked_set, set; 970 struct emulated_sigtable *k; 971 TaskState *ts = cpu->opaque; 972 973 while (qatomic_read(&ts->signal_pending)) { 974 sigfillset(&set); 975 sigprocmask(SIG_SETMASK, &set, 0); 976 977 restart_scan: 978 sig = ts->sync_signal.pending; 979 if (sig) { 980 /* 981 * Synchronous signals are forced by the emulated CPU in some way. 982 * If they are set to ignore, restore the default handler (see 983 * sys/kern_sig.c trapsignal() and execsigs() for this behavior) 984 * though maybe this is done only when forcing exit for non SIGCHLD. 985 */ 986 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || 987 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 988 sigdelset(&ts->signal_mask, target_to_host_signal(sig)); 989 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 990 } 991 handle_pending_signal(env, sig, &ts->sync_signal); 992 } 993 994 k = ts->sigtab; 995 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { 996 blocked_set = ts->in_sigsuspend ? 997 &ts->sigsuspend_mask : &ts->signal_mask; 998 if (k->pending && 999 !sigismember(blocked_set, target_to_host_signal(sig))) { 1000 handle_pending_signal(env, sig, k); 1001 /* 1002 * Restart scan from the beginning, as handle_pending_signal 1003 * might have resulted in a new synchronous signal (eg SIGSEGV). 1004 */ 1005 goto restart_scan; 1006 } 1007 } 1008 1009 /* 1010 * Unblock signals and check one more time. Unblocking signals may cause 1011 * us to take another host signal, which will set signal_pending again. 1012 */ 1013 qatomic_set(&ts->signal_pending, 0); 1014 ts->in_sigsuspend = false; 1015 set = ts->signal_mask; 1016 sigdelset(&set, SIGSEGV); 1017 sigdelset(&set, SIGBUS); 1018 sigprocmask(SIG_SETMASK, &set, 0); 1019 } 1020 ts->in_sigsuspend = false; 1021 } 1022 1023 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 1024 MMUAccessType access_type, bool maperr, uintptr_t ra) 1025 { 1026 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1027 1028 if (tcg_ops->record_sigsegv) { 1029 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 1030 } 1031 1032 force_sig_fault(TARGET_SIGSEGV, 1033 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 1034 addr); 1035 cpu->exception_index = EXCP_INTERRUPT; 1036 cpu_loop_exit_restore(cpu, ra); 1037 } 1038 1039 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 1040 MMUAccessType access_type, uintptr_t ra) 1041 { 1042 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1043 1044 if (tcg_ops->record_sigbus) { 1045 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 1046 } 1047 1048 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 1049 cpu->exception_index = EXCP_INTERRUPT; 1050 cpu_loop_exit_restore(cpu, ra); 1051 } 1052