1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu.h" 23 #include "signal-common.h" 24 #include "trace.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "host-signal.h" 27 28 static struct target_sigaction sigact_table[TARGET_NSIG]; 29 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 30 static void target_to_host_sigset_internal(sigset_t *d, 31 const target_sigset_t *s); 32 33 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 34 { 35 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 36 } 37 38 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 39 { 40 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 41 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 42 } 43 44 /* 45 * The BSD ABIs use the same singal numbers across all the CPU architectures, so 46 * (unlike Linux) these functions are just the identity mapping. This might not 47 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 48 */ 49 int host_to_target_signal(int sig) 50 { 51 return sig; 52 } 53 54 int target_to_host_signal(int sig) 55 { 56 return sig; 57 } 58 59 static inline void target_sigemptyset(target_sigset_t *set) 60 { 61 memset(set, 0, sizeof(*set)); 62 } 63 64 static inline void target_sigaddset(target_sigset_t *set, int signum) 65 { 66 signum--; 67 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 68 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 69 } 70 71 static inline int target_sigismember(const target_sigset_t *set, int signum) 72 { 73 signum--; 74 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 75 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 76 } 77 78 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 79 static inline void rewind_if_in_safe_syscall(void *puc) 80 { 81 ucontext_t *uc = (ucontext_t *)puc; 82 uintptr_t pcreg = host_signal_pc(uc); 83 84 if (pcreg > (uintptr_t)safe_syscall_start 85 && pcreg < (uintptr_t)safe_syscall_end) { 86 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 87 } 88 } 89 90 /* 91 * Note: The following take advantage of the BSD signal property that all 92 * signals are available on all architectures. 93 */ 94 static void host_to_target_sigset_internal(target_sigset_t *d, 95 const sigset_t *s) 96 { 97 int i; 98 99 target_sigemptyset(d); 100 for (i = 1; i <= NSIG; i++) { 101 if (sigismember(s, i)) { 102 target_sigaddset(d, host_to_target_signal(i)); 103 } 104 } 105 } 106 107 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 108 { 109 target_sigset_t d1; 110 int i; 111 112 host_to_target_sigset_internal(&d1, s); 113 for (i = 0; i < _SIG_WORDS; i++) { 114 d->__bits[i] = tswap32(d1.__bits[i]); 115 } 116 } 117 118 static void target_to_host_sigset_internal(sigset_t *d, 119 const target_sigset_t *s) 120 { 121 int i; 122 123 sigemptyset(d); 124 for (i = 1; i <= TARGET_NSIG; i++) { 125 if (target_sigismember(s, i)) { 126 sigaddset(d, target_to_host_signal(i)); 127 } 128 } 129 } 130 131 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 132 { 133 target_sigset_t s1; 134 int i; 135 136 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 137 s1.__bits[i] = tswap32(s->__bits[i]); 138 } 139 target_to_host_sigset_internal(d, &s1); 140 } 141 142 static bool has_trapno(int tsig) 143 { 144 return tsig == TARGET_SIGILL || 145 tsig == TARGET_SIGFPE || 146 tsig == TARGET_SIGSEGV || 147 tsig == TARGET_SIGBUS || 148 tsig == TARGET_SIGTRAP; 149 } 150 151 /* Siginfo conversion. */ 152 153 /* 154 * Populate tinfo w/o swapping based on guessing which fields are valid. 155 */ 156 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 157 const siginfo_t *info) 158 { 159 int sig = host_to_target_signal(info->si_signo); 160 int si_code = info->si_code; 161 int si_type; 162 163 /* 164 * Make sure we that the variable portion of the target siginfo is zeroed 165 * out so we don't leak anything into that. 166 */ 167 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 168 169 /* 170 * This is awkward, because we have to use a combination of the si_code and 171 * si_signo to figure out which of the union's members are valid.o We 172 * therefore make our best guess. 173 * 174 * Once we have made our guess, we record it in the top 16 bits of 175 * the si_code, so that tswap_siginfo() later can use it. 176 * tswap_siginfo() will strip these top bits out before writing 177 * si_code to the guest (sign-extending the lower bits). 178 */ 179 tinfo->si_signo = sig; 180 tinfo->si_errno = info->si_errno; 181 tinfo->si_code = info->si_code; 182 tinfo->si_pid = info->si_pid; 183 tinfo->si_uid = info->si_uid; 184 tinfo->si_status = info->si_status; 185 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 186 /* 187 * si_value is opaque to kernel. On all FreeBSD platforms, 188 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 189 * always will copy the larger element. 190 */ 191 tinfo->si_value.sival_ptr = 192 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 193 194 switch (si_code) { 195 /* 196 * All the SI_xxx codes that are defined here are global to 197 * all the signals (they have values that none of the other, 198 * more specific signal info will set). 199 */ 200 case SI_USER: 201 case SI_LWP: 202 case SI_KERNEL: 203 case SI_QUEUE: 204 case SI_ASYNCIO: 205 /* 206 * Only the fixed parts are valid (though FreeBSD doesn't always 207 * set all the fields to non-zero values. 208 */ 209 si_type = QEMU_SI_NOINFO; 210 break; 211 case SI_TIMER: 212 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 213 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 214 si_type = QEMU_SI_TIMER; 215 break; 216 case SI_MESGQ: 217 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 218 si_type = QEMU_SI_MESGQ; 219 break; 220 default: 221 /* 222 * We have to go based on the signal number now to figure out 223 * what's valid. 224 */ 225 si_type = QEMU_SI_NOINFO; 226 if (has_trapno(sig)) { 227 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 228 si_type = QEMU_SI_FAULT; 229 } 230 #ifdef TARGET_SIGPOLL 231 /* 232 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 233 * a chance it may popup in the future. 234 */ 235 if (sig == TARGET_SIGPOLL) { 236 tinfo->_reason._poll._band = info->_reason._poll._band; 237 si_type = QEMU_SI_POLL; 238 } 239 #endif 240 /* 241 * Unsure that this can actually be generated, and our support for 242 * capsicum is somewhere between weak and non-existant, but if we get 243 * one, then we know what to save. 244 */ 245 #ifdef QEMU_SI_CAPSICUM 246 if (sig == TARGET_SIGTRAP) { 247 tinfo->_reason._capsicum._syscall = 248 info->_reason._capsicum._syscall; 249 si_type = QEMU_SI_CAPSICUM; 250 } 251 #endif 252 break; 253 } 254 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 255 } 256 257 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 258 { 259 int si_type = extract32(info->si_code, 24, 8); 260 int si_code = sextract32(info->si_code, 0, 24); 261 262 __put_user(info->si_signo, &tinfo->si_signo); 263 __put_user(info->si_errno, &tinfo->si_errno); 264 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 265 __put_user(info->si_pid, &tinfo->si_pid); 266 __put_user(info->si_uid, &tinfo->si_uid); 267 __put_user(info->si_status, &tinfo->si_status); 268 __put_user(info->si_addr, &tinfo->si_addr); 269 /* 270 * Unswapped, because we passed it through mostly untouched. si_value is 271 * opaque to the kernel, so we didn't bother with potentially wasting cycles 272 * to swap it into host byte order. 273 */ 274 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 275 276 /* 277 * We can use our internal marker of which fields in the structure 278 * are valid, rather than duplicating the guesswork of 279 * host_to_target_siginfo_noswap() here. 280 */ 281 switch (si_type) { 282 case QEMU_SI_NOINFO: /* No additional info */ 283 break; 284 case QEMU_SI_FAULT: 285 __put_user(info->_reason._fault._trapno, 286 &tinfo->_reason._fault._trapno); 287 break; 288 case QEMU_SI_TIMER: 289 __put_user(info->_reason._timer._timerid, 290 &tinfo->_reason._timer._timerid); 291 __put_user(info->_reason._timer._overrun, 292 &tinfo->_reason._timer._overrun); 293 break; 294 case QEMU_SI_MESGQ: 295 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 296 break; 297 case QEMU_SI_POLL: 298 /* Note: Not generated on FreeBSD */ 299 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 300 break; 301 #ifdef QEMU_SI_CAPSICUM 302 case QEMU_SI_CAPSICUM: 303 __put_user(info->_reason._capsicum._syscall, 304 &tinfo->_reason._capsicum._syscall); 305 break; 306 #endif 307 default: 308 g_assert_not_reached(); 309 } 310 } 311 312 int block_signals(void) 313 { 314 TaskState *ts = (TaskState *)thread_cpu->opaque; 315 sigset_t set; 316 317 /* 318 * It's OK to block everything including SIGSEGV, because we won't run any 319 * further guest code before unblocking signals in 320 * process_pending_signals(). We depend on the FreeBSD behaivor here where 321 * this will only affect this thread's signal mask. We don't use 322 * pthread_sigmask which might seem more correct because that routine also 323 * does odd things with SIGCANCEL to implement pthread_cancel(). 324 */ 325 sigfillset(&set); 326 sigprocmask(SIG_SETMASK, &set, 0); 327 328 return qatomic_xchg(&ts->signal_pending, 1); 329 } 330 331 /* Returns 1 if given signal should dump core if not handled. */ 332 static int core_dump_signal(int sig) 333 { 334 switch (sig) { 335 case TARGET_SIGABRT: 336 case TARGET_SIGFPE: 337 case TARGET_SIGILL: 338 case TARGET_SIGQUIT: 339 case TARGET_SIGSEGV: 340 case TARGET_SIGTRAP: 341 case TARGET_SIGBUS: 342 return 1; 343 default: 344 return 0; 345 } 346 } 347 348 /* Abort execution with signal. */ 349 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 350 { 351 CPUArchState *env = thread_cpu->env_ptr; 352 CPUState *cpu = env_cpu(env); 353 TaskState *ts = cpu->opaque; 354 int core_dumped = 0; 355 int host_sig; 356 struct sigaction act; 357 358 host_sig = target_to_host_signal(target_sig); 359 gdb_signalled(env, target_sig); 360 361 /* Dump core if supported by target binary format */ 362 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 363 stop_all_tasks(); 364 core_dumped = 365 ((*ts->bprm->core_dump)(target_sig, env) == 0); 366 } 367 if (core_dumped) { 368 struct rlimit nodump; 369 370 /* 371 * We already dumped the core of target process, we don't want 372 * a coredump of qemu itself. 373 */ 374 getrlimit(RLIMIT_CORE, &nodump); 375 nodump.rlim_cur = 0; 376 setrlimit(RLIMIT_CORE, &nodump); 377 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 378 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 379 } 380 381 /* 382 * The proper exit code for dying from an uncaught signal is 383 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 384 * a negative value. To get the proper exit code we need to 385 * actually die from an uncaught signal. Here the default signal 386 * handler is installed, we send ourself a signal and we wait for 387 * it to arrive. 388 */ 389 memset(&act, 0, sizeof(act)); 390 sigfillset(&act.sa_mask); 391 act.sa_handler = SIG_DFL; 392 sigaction(host_sig, &act, NULL); 393 394 kill(getpid(), host_sig); 395 396 /* 397 * Make sure the signal isn't masked (just reuse the mask inside 398 * of act). 399 */ 400 sigdelset(&act.sa_mask, host_sig); 401 sigsuspend(&act.sa_mask); 402 403 /* unreachable */ 404 abort(); 405 } 406 407 /* 408 * Queue a signal so that it will be send to the virtual CPU as soon as 409 * possible. 410 */ 411 void queue_signal(CPUArchState *env, int sig, int si_type, 412 target_siginfo_t *info) 413 { 414 CPUState *cpu = env_cpu(env); 415 TaskState *ts = cpu->opaque; 416 417 trace_user_queue_signal(env, sig); 418 419 info->si_code = deposit32(info->si_code, 24, 8, si_type); 420 421 ts->sync_signal.info = *info; 422 ts->sync_signal.pending = sig; 423 /* Signal that a new signal is pending. */ 424 qatomic_set(&ts->signal_pending, 1); 425 return; 426 } 427 428 static int fatal_signal(int sig) 429 { 430 431 switch (sig) { 432 case TARGET_SIGCHLD: 433 case TARGET_SIGURG: 434 case TARGET_SIGWINCH: 435 case TARGET_SIGINFO: 436 /* Ignored by default. */ 437 return 0; 438 case TARGET_SIGCONT: 439 case TARGET_SIGSTOP: 440 case TARGET_SIGTSTP: 441 case TARGET_SIGTTIN: 442 case TARGET_SIGTTOU: 443 /* Job control signals. */ 444 return 0; 445 default: 446 return 1; 447 } 448 } 449 450 /* 451 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 452 * 'force' part is handled in process_pending_signals(). 453 */ 454 void force_sig_fault(int sig, int code, abi_ulong addr) 455 { 456 CPUState *cpu = thread_cpu; 457 CPUArchState *env = cpu->env_ptr; 458 target_siginfo_t info = {}; 459 460 info.si_signo = sig; 461 info.si_errno = 0; 462 info.si_code = code; 463 info.si_addr = addr; 464 queue_signal(env, sig, QEMU_SI_FAULT, &info); 465 } 466 467 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 468 { 469 CPUArchState *env = thread_cpu->env_ptr; 470 CPUState *cpu = env_cpu(env); 471 TaskState *ts = cpu->opaque; 472 target_siginfo_t tinfo; 473 ucontext_t *uc = puc; 474 struct emulated_sigtable *k; 475 int guest_sig; 476 uintptr_t pc = 0; 477 bool sync_sig = false; 478 479 /* 480 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 481 * handling wrt signal blocking and unwinding. 482 */ 483 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 484 MMUAccessType access_type; 485 uintptr_t host_addr; 486 abi_ptr guest_addr; 487 bool is_write; 488 489 host_addr = (uintptr_t)info->si_addr; 490 491 /* 492 * Convert forcefully to guest address space: addresses outside 493 * reserved_va are still valid to report via SEGV_MAPERR. 494 */ 495 guest_addr = h2g_nocheck(host_addr); 496 497 pc = host_signal_pc(uc); 498 is_write = host_signal_write(info, uc); 499 access_type = adjust_signal_pc(&pc, is_write); 500 501 if (host_sig == SIGSEGV) { 502 bool maperr = true; 503 504 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 505 /* If this was a write to a TB protected page, restart. */ 506 if (is_write && 507 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 508 pc, guest_addr)) { 509 return; 510 } 511 512 /* 513 * With reserved_va, the whole address space is PROT_NONE, 514 * which means that we may get ACCERR when we want MAPERR. 515 */ 516 if (page_get_flags(guest_addr) & PAGE_VALID) { 517 maperr = false; 518 } else { 519 info->si_code = SEGV_MAPERR; 520 } 521 } 522 523 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 524 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 525 } else { 526 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 527 if (info->si_code == BUS_ADRALN) { 528 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 529 } 530 } 531 532 sync_sig = true; 533 } 534 535 /* Get the target signal number. */ 536 guest_sig = host_to_target_signal(host_sig); 537 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 538 return; 539 } 540 trace_user_host_signal(cpu, host_sig, guest_sig); 541 542 host_to_target_siginfo_noswap(&tinfo, info); 543 544 k = &ts->sigtab[guest_sig - 1]; 545 k->info = tinfo; 546 k->pending = guest_sig; 547 ts->signal_pending = 1; 548 549 /* 550 * For synchronous signals, unwind the cpu state to the faulting 551 * insn and then exit back to the main loop so that the signal 552 * is delivered immediately. 553 */ 554 if (sync_sig) { 555 cpu->exception_index = EXCP_INTERRUPT; 556 cpu_loop_exit_restore(cpu, pc); 557 } 558 559 rewind_if_in_safe_syscall(puc); 560 561 /* 562 * Block host signals until target signal handler entered. We 563 * can't block SIGSEGV or SIGBUS while we're executing guest 564 * code in case the guest code provokes one in the window between 565 * now and it getting out to the main loop. Signals will be 566 * unblocked again in process_pending_signals(). 567 */ 568 sigfillset(&uc->uc_sigmask); 569 sigdelset(&uc->uc_sigmask, SIGSEGV); 570 sigdelset(&uc->uc_sigmask, SIGBUS); 571 572 /* Interrupt the virtual CPU as soon as possible. */ 573 cpu_exit(thread_cpu); 574 } 575 576 /* do_sigaltstack() returns target values and errnos. */ 577 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ 578 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 579 { 580 TaskState *ts = (TaskState *)thread_cpu->opaque; 581 int ret; 582 target_stack_t oss; 583 584 if (uoss_addr) { 585 /* Save current signal stack params */ 586 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); 587 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); 588 oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); 589 } 590 591 if (uss_addr) { 592 target_stack_t *uss; 593 target_stack_t ss; 594 size_t minstacksize = TARGET_MINSIGSTKSZ; 595 596 ret = -TARGET_EFAULT; 597 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 598 goto out; 599 } 600 __get_user(ss.ss_sp, &uss->ss_sp); 601 __get_user(ss.ss_size, &uss->ss_size); 602 __get_user(ss.ss_flags, &uss->ss_flags); 603 unlock_user_struct(uss, uss_addr, 0); 604 605 ret = -TARGET_EPERM; 606 if (on_sig_stack(ts, sp)) { 607 goto out; 608 } 609 610 ret = -TARGET_EINVAL; 611 if (ss.ss_flags != TARGET_SS_DISABLE 612 && ss.ss_flags != TARGET_SS_ONSTACK 613 && ss.ss_flags != 0) { 614 goto out; 615 } 616 617 if (ss.ss_flags == TARGET_SS_DISABLE) { 618 ss.ss_size = 0; 619 ss.ss_sp = 0; 620 } else { 621 ret = -TARGET_ENOMEM; 622 if (ss.ss_size < minstacksize) { 623 goto out; 624 } 625 } 626 627 ts->sigaltstack_used.ss_sp = ss.ss_sp; 628 ts->sigaltstack_used.ss_size = ss.ss_size; 629 } 630 631 if (uoss_addr) { 632 ret = -TARGET_EFAULT; 633 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { 634 goto out; 635 } 636 } 637 638 ret = 0; 639 out: 640 return ret; 641 } 642 643 /* do_sigaction() return host values and errnos */ 644 int do_sigaction(int sig, const struct target_sigaction *act, 645 struct target_sigaction *oact) 646 { 647 struct target_sigaction *k; 648 struct sigaction act1; 649 int host_sig; 650 int ret = 0; 651 652 if (sig < 1 || sig > TARGET_NSIG) { 653 return -TARGET_EINVAL; 654 } 655 656 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && 657 act != NULL && act->_sa_handler != TARGET_SIG_DFL) { 658 return -TARGET_EINVAL; 659 } 660 661 if (block_signals()) { 662 return -TARGET_ERESTART; 663 } 664 665 k = &sigact_table[sig - 1]; 666 if (oact) { 667 oact->_sa_handler = tswapal(k->_sa_handler); 668 oact->sa_flags = tswap32(k->sa_flags); 669 oact->sa_mask = k->sa_mask; 670 } 671 if (act) { 672 k->_sa_handler = tswapal(act->_sa_handler); 673 k->sa_flags = tswap32(act->sa_flags); 674 k->sa_mask = act->sa_mask; 675 676 /* Update the host signal state. */ 677 host_sig = target_to_host_signal(sig); 678 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 679 memset(&act1, 0, sizeof(struct sigaction)); 680 sigfillset(&act1.sa_mask); 681 act1.sa_flags = SA_SIGINFO; 682 if (k->sa_flags & TARGET_SA_RESTART) { 683 act1.sa_flags |= SA_RESTART; 684 } 685 /* 686 * Note: It is important to update the host kernel signal mask to 687 * avoid getting unexpected interrupted system calls. 688 */ 689 if (k->_sa_handler == TARGET_SIG_IGN) { 690 act1.sa_sigaction = (void *)SIG_IGN; 691 } else if (k->_sa_handler == TARGET_SIG_DFL) { 692 if (fatal_signal(sig)) { 693 act1.sa_sigaction = host_signal_handler; 694 } else { 695 act1.sa_sigaction = (void *)SIG_DFL; 696 } 697 } else { 698 act1.sa_sigaction = host_signal_handler; 699 } 700 ret = sigaction(host_sig, &act1, NULL); 701 } 702 } 703 return ret; 704 } 705 706 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 707 CPUArchState *env, size_t frame_size) 708 { 709 TaskState *ts = (TaskState *)thread_cpu->opaque; 710 abi_ulong sp; 711 712 /* Use default user stack */ 713 sp = get_sp_from_cpustate(env); 714 715 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 716 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 717 } 718 719 /* TODO: make this a target_arch function / define */ 720 #if defined(TARGET_ARM) 721 return (sp - frame_size) & ~7; 722 #elif defined(TARGET_AARCH64) 723 return (sp - frame_size) & ~15; 724 #else 725 return sp - frame_size; 726 #endif 727 } 728 729 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 730 731 static void setup_frame(int sig, int code, struct target_sigaction *ka, 732 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 733 { 734 struct target_sigframe *frame; 735 abi_ulong frame_addr; 736 int i; 737 738 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 739 trace_user_setup_frame(env, frame_addr); 740 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 741 unlock_user_struct(frame, frame_addr, 1); 742 dump_core_and_abort(TARGET_SIGILL); 743 return; 744 } 745 746 memset(frame, 0, sizeof(*frame)); 747 setup_sigframe_arch(env, frame_addr, frame, 0); 748 749 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 750 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 751 } 752 753 if (tinfo) { 754 frame->sf_si.si_signo = tinfo->si_signo; 755 frame->sf_si.si_errno = tinfo->si_errno; 756 frame->sf_si.si_code = tinfo->si_code; 757 frame->sf_si.si_pid = tinfo->si_pid; 758 frame->sf_si.si_uid = tinfo->si_uid; 759 frame->sf_si.si_status = tinfo->si_status; 760 frame->sf_si.si_addr = tinfo->si_addr; 761 /* see host_to_target_siginfo_noswap() for more details */ 762 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 763 /* 764 * At this point, whatever is in the _reason union is complete 765 * and in target order, so just copy the whole thing over, even 766 * if it's too large for this specific signal. 767 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 768 * that's so. 769 */ 770 memcpy(&frame->sf_si._reason, &tinfo->_reason, 771 sizeof(tinfo->_reason)); 772 } 773 774 set_sigtramp_args(env, sig, frame, frame_addr, ka); 775 776 unlock_user_struct(frame, frame_addr, 1); 777 } 778 779 static int reset_signal_mask(target_ucontext_t *ucontext) 780 { 781 int i; 782 sigset_t blocked; 783 target_sigset_t target_set; 784 TaskState *ts = (TaskState *)thread_cpu->opaque; 785 786 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 787 if (__get_user(target_set.__bits[i], 788 &ucontext->uc_sigmask.__bits[i])) { 789 return -TARGET_EFAULT; 790 } 791 } 792 target_to_host_sigset_internal(&blocked, &target_set); 793 ts->signal_mask = blocked; 794 795 return 0; 796 } 797 798 /* See sys/$M/$M/exec_machdep.c sigreturn() */ 799 long do_sigreturn(CPUArchState *env, abi_ulong addr) 800 { 801 long ret; 802 abi_ulong target_ucontext; 803 target_ucontext_t *ucontext = NULL; 804 805 /* Get the target ucontext address from the stack frame */ 806 ret = get_ucontext_sigreturn(env, addr, &target_ucontext); 807 if (is_error(ret)) { 808 return ret; 809 } 810 trace_user_do_sigreturn(env, addr); 811 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { 812 goto badframe; 813 } 814 815 /* Set the register state back to before the signal. */ 816 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { 817 goto badframe; 818 } 819 820 /* And reset the signal mask. */ 821 if (reset_signal_mask(ucontext)) { 822 goto badframe; 823 } 824 825 unlock_user_struct(ucontext, target_ucontext, 0); 826 return -TARGET_EJUSTRETURN; 827 828 badframe: 829 if (ucontext != NULL) { 830 unlock_user_struct(ucontext, target_ucontext, 0); 831 } 832 return -TARGET_EFAULT; 833 } 834 835 void signal_init(void) 836 { 837 TaskState *ts = (TaskState *)thread_cpu->opaque; 838 struct sigaction act; 839 struct sigaction oact; 840 int i; 841 int host_sig; 842 843 /* Set the signal mask from the host mask. */ 844 sigprocmask(0, 0, &ts->signal_mask); 845 846 sigfillset(&act.sa_mask); 847 act.sa_sigaction = host_signal_handler; 848 act.sa_flags = SA_SIGINFO; 849 850 for (i = 1; i <= TARGET_NSIG; i++) { 851 #ifdef CONFIG_GPROF 852 if (i == TARGET_SIGPROF) { 853 continue; 854 } 855 #endif 856 host_sig = target_to_host_signal(i); 857 sigaction(host_sig, NULL, &oact); 858 if (oact.sa_sigaction == (void *)SIG_IGN) { 859 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 860 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 861 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 862 } 863 /* 864 * If there's already a handler installed then something has 865 * gone horribly wrong, so don't even try to handle that case. 866 * Install some handlers for our own use. We need at least 867 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 868 * trap all signals because it affects syscall interrupt 869 * behavior. But do trap all default-fatal signals. 870 */ 871 if (fatal_signal(i)) { 872 sigaction(host_sig, &act, NULL); 873 } 874 } 875 } 876 877 static void handle_pending_signal(CPUArchState *env, int sig, 878 struct emulated_sigtable *k) 879 { 880 CPUState *cpu = env_cpu(env); 881 TaskState *ts = cpu->opaque; 882 struct target_sigaction *sa; 883 int code; 884 sigset_t set; 885 abi_ulong handler; 886 target_siginfo_t tinfo; 887 target_sigset_t target_old_set; 888 889 trace_user_handle_signal(env, sig); 890 891 k->pending = 0; 892 893 sig = gdb_handlesig(cpu, sig); 894 if (!sig) { 895 sa = NULL; 896 handler = TARGET_SIG_IGN; 897 } else { 898 sa = &sigact_table[sig - 1]; 899 handler = sa->_sa_handler; 900 } 901 902 if (do_strace) { 903 print_taken_signal(sig, &k->info); 904 } 905 906 if (handler == TARGET_SIG_DFL) { 907 /* 908 * default handler : ignore some signal. The other are job 909 * control or fatal. 910 */ 911 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 912 sig == TARGET_SIGTTOU) { 913 kill(getpid(), SIGSTOP); 914 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 915 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 916 sig != TARGET_SIGCONT) { 917 dump_core_and_abort(sig); 918 } 919 } else if (handler == TARGET_SIG_IGN) { 920 /* ignore sig */ 921 } else if (handler == TARGET_SIG_ERR) { 922 dump_core_and_abort(sig); 923 } else { 924 /* compute the blocked signals during the handler execution */ 925 sigset_t *blocked_set; 926 927 target_to_host_sigset(&set, &sa->sa_mask); 928 /* 929 * SA_NODEFER indicates that the current signal should not be 930 * blocked during the handler. 931 */ 932 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 933 sigaddset(&set, target_to_host_signal(sig)); 934 } 935 936 /* 937 * Save the previous blocked signal state to restore it at the 938 * end of the signal execution (see do_sigreturn). 939 */ 940 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 941 942 blocked_set = ts->in_sigsuspend ? 943 &ts->sigsuspend_mask : &ts->signal_mask; 944 sigorset(&ts->signal_mask, blocked_set, &set); 945 ts->in_sigsuspend = false; 946 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 947 948 /* XXX VM86 on x86 ??? */ 949 950 code = k->info.si_code; /* From host, so no si_type */ 951 /* prepare the stack frame of the virtual CPU */ 952 if (sa->sa_flags & TARGET_SA_SIGINFO) { 953 tswap_siginfo(&tinfo, &k->info); 954 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 955 } else { 956 setup_frame(sig, code, sa, &target_old_set, NULL, env); 957 } 958 if (sa->sa_flags & TARGET_SA_RESETHAND) { 959 sa->_sa_handler = TARGET_SIG_DFL; 960 } 961 } 962 } 963 964 void process_pending_signals(CPUArchState *env) 965 { 966 CPUState *cpu = env_cpu(env); 967 int sig; 968 sigset_t *blocked_set, set; 969 struct emulated_sigtable *k; 970 TaskState *ts = cpu->opaque; 971 972 while (qatomic_read(&ts->signal_pending)) { 973 sigfillset(&set); 974 sigprocmask(SIG_SETMASK, &set, 0); 975 976 restart_scan: 977 sig = ts->sync_signal.pending; 978 if (sig) { 979 /* 980 * Synchronous signals are forced by the emulated CPU in some way. 981 * If they are set to ignore, restore the default handler (see 982 * sys/kern_sig.c trapsignal() and execsigs() for this behavior) 983 * though maybe this is done only when forcing exit for non SIGCHLD. 984 */ 985 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || 986 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 987 sigdelset(&ts->signal_mask, target_to_host_signal(sig)); 988 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 989 } 990 handle_pending_signal(env, sig, &ts->sync_signal); 991 } 992 993 k = ts->sigtab; 994 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { 995 blocked_set = ts->in_sigsuspend ? 996 &ts->sigsuspend_mask : &ts->signal_mask; 997 if (k->pending && 998 !sigismember(blocked_set, target_to_host_signal(sig))) { 999 handle_pending_signal(env, sig, k); 1000 /* 1001 * Restart scan from the beginning, as handle_pending_signal 1002 * might have resulted in a new synchronous signal (eg SIGSEGV). 1003 */ 1004 goto restart_scan; 1005 } 1006 } 1007 1008 /* 1009 * Unblock signals and check one more time. Unblocking signals may cause 1010 * us to take another host signal, which will set signal_pending again. 1011 */ 1012 qatomic_set(&ts->signal_pending, 0); 1013 ts->in_sigsuspend = false; 1014 set = ts->signal_mask; 1015 sigdelset(&set, SIGSEGV); 1016 sigdelset(&set, SIGBUS); 1017 sigprocmask(SIG_SETMASK, &set, 0); 1018 } 1019 ts->in_sigsuspend = false; 1020 } 1021 1022 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 1023 MMUAccessType access_type, bool maperr, uintptr_t ra) 1024 { 1025 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1026 1027 if (tcg_ops->record_sigsegv) { 1028 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 1029 } 1030 1031 force_sig_fault(TARGET_SIGSEGV, 1032 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 1033 addr); 1034 cpu->exception_index = EXCP_INTERRUPT; 1035 cpu_loop_exit_restore(cpu, ra); 1036 } 1037 1038 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 1039 MMUAccessType access_type, uintptr_t ra) 1040 { 1041 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1042 1043 if (tcg_ops->record_sigbus) { 1044 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 1045 } 1046 1047 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 1048 cpu->exception_index = EXCP_INTERRUPT; 1049 cpu_loop_exit_restore(cpu, ra); 1050 } 1051