1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "qemu.h" 24 #include "exec/page-protection.h" 25 #include "user/tswap-target.h" 26 #include "gdbstub/user.h" 27 #include "signal-common.h" 28 #include "trace.h" 29 #include "hw/core/tcg-cpu-ops.h" 30 #include "host-signal.h" 31 32 /* target_siginfo_t must fit in gdbstub's siginfo save area. */ 33 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); 34 35 static struct target_sigaction sigact_table[TARGET_NSIG]; 36 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 37 static void target_to_host_sigset_internal(sigset_t *d, 38 const target_sigset_t *s); 39 40 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 41 { 42 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 43 } 44 45 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 46 { 47 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 48 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 49 } 50 51 /* 52 * The BSD ABIs use the same signal numbers across all the CPU architectures, so 53 * (unlike Linux) these functions are just the identity mapping. This might not 54 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 55 */ 56 int host_to_target_signal(int sig) 57 { 58 return sig; 59 } 60 61 int target_to_host_signal(int sig) 62 { 63 return sig; 64 } 65 66 static inline void target_sigemptyset(target_sigset_t *set) 67 { 68 memset(set, 0, sizeof(*set)); 69 } 70 71 static inline void target_sigaddset(target_sigset_t *set, int signum) 72 { 73 signum--; 74 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 75 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 76 } 77 78 static inline int target_sigismember(const target_sigset_t *set, int signum) 79 { 80 signum--; 81 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 82 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 83 } 84 85 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 86 static inline void rewind_if_in_safe_syscall(void *puc) 87 { 88 ucontext_t *uc = (ucontext_t *)puc; 89 uintptr_t pcreg = host_signal_pc(uc); 90 91 if (pcreg > (uintptr_t)safe_syscall_start 92 && pcreg < (uintptr_t)safe_syscall_end) { 93 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 94 } 95 } 96 97 /* 98 * Note: The following take advantage of the BSD signal property that all 99 * signals are available on all architectures. 100 */ 101 static void host_to_target_sigset_internal(target_sigset_t *d, 102 const sigset_t *s) 103 { 104 int i; 105 106 target_sigemptyset(d); 107 for (i = 1; i <= NSIG; i++) { 108 if (sigismember(s, i)) { 109 target_sigaddset(d, host_to_target_signal(i)); 110 } 111 } 112 } 113 114 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 115 { 116 target_sigset_t d1; 117 int i; 118 119 host_to_target_sigset_internal(&d1, s); 120 for (i = 0; i < _SIG_WORDS; i++) { 121 d->__bits[i] = tswap32(d1.__bits[i]); 122 } 123 } 124 125 static void target_to_host_sigset_internal(sigset_t *d, 126 const target_sigset_t *s) 127 { 128 int i; 129 130 sigemptyset(d); 131 for (i = 1; i <= TARGET_NSIG; i++) { 132 if (target_sigismember(s, i)) { 133 sigaddset(d, target_to_host_signal(i)); 134 } 135 } 136 } 137 138 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 139 { 140 target_sigset_t s1; 141 int i; 142 143 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 144 s1.__bits[i] = tswap32(s->__bits[i]); 145 } 146 target_to_host_sigset_internal(d, &s1); 147 } 148 149 static bool has_trapno(int tsig) 150 { 151 return tsig == TARGET_SIGILL || 152 tsig == TARGET_SIGFPE || 153 tsig == TARGET_SIGSEGV || 154 tsig == TARGET_SIGBUS || 155 tsig == TARGET_SIGTRAP; 156 } 157 158 /* Siginfo conversion. */ 159 160 /* 161 * Populate tinfo w/o swapping based on guessing which fields are valid. 162 */ 163 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 164 const siginfo_t *info) 165 { 166 int sig = host_to_target_signal(info->si_signo); 167 int si_code = info->si_code; 168 int si_type; 169 170 /* 171 * Make sure we that the variable portion of the target siginfo is zeroed 172 * out so we don't leak anything into that. 173 */ 174 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 175 176 /* 177 * This is awkward, because we have to use a combination of the si_code and 178 * si_signo to figure out which of the union's members are valid.o We 179 * therefore make our best guess. 180 * 181 * Once we have made our guess, we record it in the top 16 bits of 182 * the si_code, so that tswap_siginfo() later can use it. 183 * tswap_siginfo() will strip these top bits out before writing 184 * si_code to the guest (sign-extending the lower bits). 185 */ 186 tinfo->si_signo = sig; 187 tinfo->si_errno = info->si_errno; 188 tinfo->si_code = info->si_code; 189 tinfo->si_pid = info->si_pid; 190 tinfo->si_uid = info->si_uid; 191 tinfo->si_status = info->si_status; 192 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 193 /* 194 * si_value is opaque to kernel. On all FreeBSD platforms, 195 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 196 * always will copy the larger element. 197 */ 198 tinfo->si_value.sival_ptr = 199 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 200 201 switch (si_code) { 202 /* 203 * All the SI_xxx codes that are defined here are global to 204 * all the signals (they have values that none of the other, 205 * more specific signal info will set). 206 */ 207 case SI_USER: 208 case SI_LWP: 209 case SI_KERNEL: 210 case SI_QUEUE: 211 case SI_ASYNCIO: 212 /* 213 * Only the fixed parts are valid (though FreeBSD doesn't always 214 * set all the fields to non-zero values. 215 */ 216 si_type = QEMU_SI_NOINFO; 217 break; 218 case SI_TIMER: 219 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 220 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 221 si_type = QEMU_SI_TIMER; 222 break; 223 case SI_MESGQ: 224 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 225 si_type = QEMU_SI_MESGQ; 226 break; 227 default: 228 /* 229 * We have to go based on the signal number now to figure out 230 * what's valid. 231 */ 232 si_type = QEMU_SI_NOINFO; 233 if (has_trapno(sig)) { 234 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 235 si_type = QEMU_SI_FAULT; 236 } 237 #ifdef TARGET_SIGPOLL 238 /* 239 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 240 * a chance it may popup in the future. 241 */ 242 if (sig == TARGET_SIGPOLL) { 243 tinfo->_reason._poll._band = info->_reason._poll._band; 244 si_type = QEMU_SI_POLL; 245 } 246 #endif 247 /* 248 * Unsure that this can actually be generated, and our support for 249 * capsicum is somewhere between weak and non-existent, but if we get 250 * one, then we know what to save. 251 */ 252 #ifdef QEMU_SI_CAPSICUM 253 if (sig == TARGET_SIGTRAP) { 254 tinfo->_reason._capsicum._syscall = 255 info->_reason._capsicum._syscall; 256 si_type = QEMU_SI_CAPSICUM; 257 } 258 #endif 259 break; 260 } 261 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 262 } 263 264 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 265 { 266 int si_type = extract32(info->si_code, 24, 8); 267 int si_code = sextract32(info->si_code, 0, 24); 268 269 __put_user(info->si_signo, &tinfo->si_signo); 270 __put_user(info->si_errno, &tinfo->si_errno); 271 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 272 __put_user(info->si_pid, &tinfo->si_pid); 273 __put_user(info->si_uid, &tinfo->si_uid); 274 __put_user(info->si_status, &tinfo->si_status); 275 __put_user(info->si_addr, &tinfo->si_addr); 276 /* 277 * Unswapped, because we passed it through mostly untouched. si_value is 278 * opaque to the kernel, so we didn't bother with potentially wasting cycles 279 * to swap it into host byte order. 280 */ 281 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 282 283 /* 284 * We can use our internal marker of which fields in the structure 285 * are valid, rather than duplicating the guesswork of 286 * host_to_target_siginfo_noswap() here. 287 */ 288 switch (si_type) { 289 case QEMU_SI_NOINFO: /* No additional info */ 290 break; 291 case QEMU_SI_FAULT: 292 __put_user(info->_reason._fault._trapno, 293 &tinfo->_reason._fault._trapno); 294 break; 295 case QEMU_SI_TIMER: 296 __put_user(info->_reason._timer._timerid, 297 &tinfo->_reason._timer._timerid); 298 __put_user(info->_reason._timer._overrun, 299 &tinfo->_reason._timer._overrun); 300 break; 301 case QEMU_SI_MESGQ: 302 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 303 break; 304 case QEMU_SI_POLL: 305 /* Note: Not generated on FreeBSD */ 306 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 307 break; 308 #ifdef QEMU_SI_CAPSICUM 309 case QEMU_SI_CAPSICUM: 310 __put_user(info->_reason._capsicum._syscall, 311 &tinfo->_reason._capsicum._syscall); 312 break; 313 #endif 314 default: 315 g_assert_not_reached(); 316 } 317 } 318 319 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 320 { 321 host_to_target_siginfo_noswap(tinfo, info); 322 tswap_siginfo(tinfo, tinfo); 323 } 324 325 int block_signals(void) 326 { 327 TaskState *ts = get_task_state(thread_cpu); 328 sigset_t set; 329 330 /* 331 * It's OK to block everything including SIGSEGV, because we won't run any 332 * further guest code before unblocking signals in 333 * process_pending_signals(). We depend on the FreeBSD behavior here where 334 * this will only affect this thread's signal mask. We don't use 335 * pthread_sigmask which might seem more correct because that routine also 336 * does odd things with SIGCANCEL to implement pthread_cancel(). 337 */ 338 sigfillset(&set); 339 sigprocmask(SIG_SETMASK, &set, 0); 340 341 return qatomic_xchg(&ts->signal_pending, 1); 342 } 343 344 /* Returns 1 if given signal should dump core if not handled. */ 345 static int core_dump_signal(int sig) 346 { 347 switch (sig) { 348 case TARGET_SIGABRT: 349 case TARGET_SIGFPE: 350 case TARGET_SIGILL: 351 case TARGET_SIGQUIT: 352 case TARGET_SIGSEGV: 353 case TARGET_SIGTRAP: 354 case TARGET_SIGBUS: 355 return 1; 356 default: 357 return 0; 358 } 359 } 360 361 /* Abort execution with signal. */ 362 static G_NORETURN 363 void dump_core_and_abort(int target_sig) 364 { 365 CPUState *cpu = thread_cpu; 366 CPUArchState *env = cpu_env(cpu); 367 TaskState *ts = get_task_state(cpu); 368 int core_dumped = 0; 369 int host_sig; 370 struct sigaction act; 371 372 host_sig = target_to_host_signal(target_sig); 373 gdb_signalled(env, target_sig); 374 375 /* Dump core if supported by target binary format */ 376 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 377 stop_all_tasks(); 378 core_dumped = 379 ((*ts->bprm->core_dump)(target_sig, env) == 0); 380 } 381 if (core_dumped) { 382 struct rlimit nodump; 383 384 /* 385 * We already dumped the core of target process, we don't want 386 * a coredump of qemu itself. 387 */ 388 getrlimit(RLIMIT_CORE, &nodump); 389 nodump.rlim_cur = 0; 390 setrlimit(RLIMIT_CORE, &nodump); 391 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 392 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 393 } 394 395 /* 396 * The proper exit code for dying from an uncaught signal is 397 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 398 * a negative value. To get the proper exit code we need to 399 * actually die from an uncaught signal. Here the default signal 400 * handler is installed, we send ourself a signal and we wait for 401 * it to arrive. 402 */ 403 memset(&act, 0, sizeof(act)); 404 sigfillset(&act.sa_mask); 405 act.sa_handler = SIG_DFL; 406 sigaction(host_sig, &act, NULL); 407 408 kill(getpid(), host_sig); 409 410 /* 411 * Make sure the signal isn't masked (just reuse the mask inside 412 * of act). 413 */ 414 sigdelset(&act.sa_mask, host_sig); 415 sigsuspend(&act.sa_mask); 416 417 /* unreachable */ 418 abort(); 419 } 420 421 /* 422 * Queue a signal so that it will be send to the virtual CPU as soon as 423 * possible. 424 */ 425 void queue_signal(CPUArchState *env, int sig, int si_type, 426 target_siginfo_t *info) 427 { 428 CPUState *cpu = env_cpu(env); 429 TaskState *ts = get_task_state(cpu); 430 431 trace_user_queue_signal(env, sig); 432 433 info->si_code = deposit32(info->si_code, 24, 8, si_type); 434 435 ts->sync_signal.info = *info; 436 ts->sync_signal.pending = sig; 437 /* Signal that a new signal is pending. */ 438 qatomic_set(&ts->signal_pending, 1); 439 return; 440 } 441 442 static int fatal_signal(int sig) 443 { 444 445 switch (sig) { 446 case TARGET_SIGCHLD: 447 case TARGET_SIGURG: 448 case TARGET_SIGWINCH: 449 case TARGET_SIGINFO: 450 /* Ignored by default. */ 451 return 0; 452 case TARGET_SIGCONT: 453 case TARGET_SIGSTOP: 454 case TARGET_SIGTSTP: 455 case TARGET_SIGTTIN: 456 case TARGET_SIGTTOU: 457 /* Job control signals. */ 458 return 0; 459 default: 460 return 1; 461 } 462 } 463 464 /* 465 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 466 * 'force' part is handled in process_pending_signals(). 467 */ 468 void force_sig_fault(int sig, int code, abi_ulong addr) 469 { 470 CPUState *cpu = thread_cpu; 471 target_siginfo_t info = {}; 472 473 info.si_signo = sig; 474 info.si_errno = 0; 475 info.si_code = code; 476 info.si_addr = addr; 477 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); 478 } 479 480 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 481 { 482 CPUState *cpu = thread_cpu; 483 TaskState *ts = get_task_state(cpu); 484 target_siginfo_t tinfo; 485 ucontext_t *uc = puc; 486 struct emulated_sigtable *k; 487 int guest_sig; 488 uintptr_t pc = 0; 489 bool sync_sig = false; 490 491 /* 492 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 493 * handling wrt signal blocking and unwinding. 494 */ 495 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 496 MMUAccessType access_type; 497 uintptr_t host_addr; 498 abi_ptr guest_addr; 499 bool is_write; 500 501 host_addr = (uintptr_t)info->si_addr; 502 503 /* 504 * Convert forcefully to guest address space: addresses outside 505 * reserved_va are still valid to report via SEGV_MAPERR. 506 */ 507 guest_addr = h2g_nocheck(host_addr); 508 509 pc = host_signal_pc(uc); 510 is_write = host_signal_write(info, uc); 511 access_type = adjust_signal_pc(&pc, is_write); 512 513 if (host_sig == SIGSEGV) { 514 bool maperr = true; 515 516 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 517 /* If this was a write to a TB protected page, restart. */ 518 if (is_write && 519 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 520 pc, guest_addr)) { 521 return; 522 } 523 524 /* 525 * With reserved_va, the whole address space is PROT_NONE, 526 * which means that we may get ACCERR when we want MAPERR. 527 */ 528 if (page_get_flags(guest_addr) & PAGE_VALID) { 529 maperr = false; 530 } else { 531 info->si_code = SEGV_MAPERR; 532 } 533 } 534 535 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 536 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 537 } else { 538 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 539 if (info->si_code == BUS_ADRALN) { 540 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 541 } 542 } 543 544 sync_sig = true; 545 } 546 547 /* Get the target signal number. */ 548 guest_sig = host_to_target_signal(host_sig); 549 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 550 return; 551 } 552 trace_user_host_signal(cpu, host_sig, guest_sig); 553 554 host_to_target_siginfo_noswap(&tinfo, info); 555 556 k = &ts->sigtab[guest_sig - 1]; 557 k->info = tinfo; 558 k->pending = guest_sig; 559 ts->signal_pending = 1; 560 561 /* 562 * For synchronous signals, unwind the cpu state to the faulting 563 * insn and then exit back to the main loop so that the signal 564 * is delivered immediately. 565 */ 566 if (sync_sig) { 567 cpu->exception_index = EXCP_INTERRUPT; 568 cpu_loop_exit_restore(cpu, pc); 569 } 570 571 rewind_if_in_safe_syscall(puc); 572 573 /* 574 * Block host signals until target signal handler entered. We 575 * can't block SIGSEGV or SIGBUS while we're executing guest 576 * code in case the guest code provokes one in the window between 577 * now and it getting out to the main loop. Signals will be 578 * unblocked again in process_pending_signals(). 579 */ 580 sigfillset(&uc->uc_sigmask); 581 sigdelset(&uc->uc_sigmask, SIGSEGV); 582 sigdelset(&uc->uc_sigmask, SIGBUS); 583 584 /* Interrupt the virtual CPU as soon as possible. */ 585 cpu_exit(thread_cpu); 586 } 587 588 /* do_sigaltstack() returns target values and errnos. */ 589 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ 590 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 591 { 592 TaskState *ts = get_task_state(thread_cpu); 593 int ret; 594 target_stack_t oss; 595 596 if (uoss_addr) { 597 /* Save current signal stack params */ 598 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); 599 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); 600 oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); 601 } 602 603 if (uss_addr) { 604 target_stack_t *uss; 605 target_stack_t ss; 606 size_t minstacksize = TARGET_MINSIGSTKSZ; 607 608 ret = -TARGET_EFAULT; 609 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 610 goto out; 611 } 612 __get_user(ss.ss_sp, &uss->ss_sp); 613 __get_user(ss.ss_size, &uss->ss_size); 614 __get_user(ss.ss_flags, &uss->ss_flags); 615 unlock_user_struct(uss, uss_addr, 0); 616 617 ret = -TARGET_EPERM; 618 if (on_sig_stack(ts, sp)) { 619 goto out; 620 } 621 622 ret = -TARGET_EINVAL; 623 if (ss.ss_flags != TARGET_SS_DISABLE 624 && ss.ss_flags != TARGET_SS_ONSTACK 625 && ss.ss_flags != 0) { 626 goto out; 627 } 628 629 if (ss.ss_flags == TARGET_SS_DISABLE) { 630 ss.ss_size = 0; 631 ss.ss_sp = 0; 632 } else { 633 ret = -TARGET_ENOMEM; 634 if (ss.ss_size < minstacksize) { 635 goto out; 636 } 637 } 638 639 ts->sigaltstack_used.ss_sp = ss.ss_sp; 640 ts->sigaltstack_used.ss_size = ss.ss_size; 641 } 642 643 if (uoss_addr) { 644 ret = -TARGET_EFAULT; 645 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { 646 goto out; 647 } 648 } 649 650 ret = 0; 651 out: 652 return ret; 653 } 654 655 /* do_sigaction() return host values and errnos */ 656 int do_sigaction(int sig, const struct target_sigaction *act, 657 struct target_sigaction *oact) 658 { 659 struct target_sigaction *k; 660 struct sigaction act1; 661 int host_sig; 662 int ret = 0; 663 664 if (sig < 1 || sig > TARGET_NSIG) { 665 return -TARGET_EINVAL; 666 } 667 668 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && 669 act != NULL && act->_sa_handler != TARGET_SIG_DFL) { 670 return -TARGET_EINVAL; 671 } 672 673 if (block_signals()) { 674 return -TARGET_ERESTART; 675 } 676 677 k = &sigact_table[sig - 1]; 678 if (oact) { 679 oact->_sa_handler = tswapal(k->_sa_handler); 680 oact->sa_flags = tswap32(k->sa_flags); 681 oact->sa_mask = k->sa_mask; 682 } 683 if (act) { 684 k->_sa_handler = tswapal(act->_sa_handler); 685 k->sa_flags = tswap32(act->sa_flags); 686 k->sa_mask = act->sa_mask; 687 688 /* Update the host signal state. */ 689 host_sig = target_to_host_signal(sig); 690 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 691 memset(&act1, 0, sizeof(struct sigaction)); 692 sigfillset(&act1.sa_mask); 693 act1.sa_flags = SA_SIGINFO; 694 if (k->sa_flags & TARGET_SA_RESTART) { 695 act1.sa_flags |= SA_RESTART; 696 } 697 /* 698 * Note: It is important to update the host kernel signal mask to 699 * avoid getting unexpected interrupted system calls. 700 */ 701 if (k->_sa_handler == TARGET_SIG_IGN) { 702 act1.sa_sigaction = (void *)SIG_IGN; 703 } else if (k->_sa_handler == TARGET_SIG_DFL) { 704 if (fatal_signal(sig)) { 705 act1.sa_sigaction = host_signal_handler; 706 } else { 707 act1.sa_sigaction = (void *)SIG_DFL; 708 } 709 } else { 710 act1.sa_sigaction = host_signal_handler; 711 } 712 ret = sigaction(host_sig, &act1, NULL); 713 } 714 } 715 return ret; 716 } 717 718 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 719 CPUArchState *env, size_t frame_size) 720 { 721 TaskState *ts = get_task_state(thread_cpu); 722 abi_ulong sp; 723 724 /* Use default user stack */ 725 sp = get_sp_from_cpustate(env); 726 727 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 728 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 729 } 730 731 /* TODO: make this a target_arch function / define */ 732 #if defined(TARGET_ARM) 733 return (sp - frame_size) & ~7; 734 #elif defined(TARGET_AARCH64) 735 return (sp - frame_size) & ~15; 736 #else 737 return sp - frame_size; 738 #endif 739 } 740 741 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 742 743 static void setup_frame(int sig, int code, struct target_sigaction *ka, 744 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 745 { 746 struct target_sigframe *frame; 747 abi_ulong frame_addr; 748 int i; 749 750 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 751 trace_user_setup_frame(env, frame_addr); 752 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 753 unlock_user_struct(frame, frame_addr, 1); 754 dump_core_and_abort(TARGET_SIGILL); 755 return; 756 } 757 758 memset(frame, 0, sizeof(*frame)); 759 setup_sigframe_arch(env, frame_addr, frame, 0); 760 761 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 762 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 763 } 764 765 if (tinfo) { 766 frame->sf_si.si_signo = tinfo->si_signo; 767 frame->sf_si.si_errno = tinfo->si_errno; 768 frame->sf_si.si_code = tinfo->si_code; 769 frame->sf_si.si_pid = tinfo->si_pid; 770 frame->sf_si.si_uid = tinfo->si_uid; 771 frame->sf_si.si_status = tinfo->si_status; 772 frame->sf_si.si_addr = tinfo->si_addr; 773 /* see host_to_target_siginfo_noswap() for more details */ 774 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 775 /* 776 * At this point, whatever is in the _reason union is complete 777 * and in target order, so just copy the whole thing over, even 778 * if it's too large for this specific signal. 779 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 780 * that's so. 781 */ 782 memcpy(&frame->sf_si._reason, &tinfo->_reason, 783 sizeof(tinfo->_reason)); 784 } 785 786 set_sigtramp_args(env, sig, frame, frame_addr, ka); 787 788 unlock_user_struct(frame, frame_addr, 1); 789 } 790 791 static int reset_signal_mask(target_ucontext_t *ucontext) 792 { 793 int i; 794 sigset_t blocked; 795 target_sigset_t target_set; 796 TaskState *ts = get_task_state(thread_cpu); 797 798 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 799 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]); 800 } 801 target_to_host_sigset_internal(&blocked, &target_set); 802 ts->signal_mask = blocked; 803 804 return 0; 805 } 806 807 /* See sys/$M/$M/exec_machdep.c sigreturn() */ 808 long do_sigreturn(CPUArchState *env, abi_ulong addr) 809 { 810 long ret; 811 abi_ulong target_ucontext; 812 target_ucontext_t *ucontext = NULL; 813 814 /* Get the target ucontext address from the stack frame */ 815 ret = get_ucontext_sigreturn(env, addr, &target_ucontext); 816 if (is_error(ret)) { 817 return ret; 818 } 819 trace_user_do_sigreturn(env, addr); 820 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { 821 goto badframe; 822 } 823 824 /* Set the register state back to before the signal. */ 825 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { 826 goto badframe; 827 } 828 829 /* And reset the signal mask. */ 830 if (reset_signal_mask(ucontext)) { 831 goto badframe; 832 } 833 834 unlock_user_struct(ucontext, target_ucontext, 0); 835 return -TARGET_EJUSTRETURN; 836 837 badframe: 838 if (ucontext != NULL) { 839 unlock_user_struct(ucontext, target_ucontext, 0); 840 } 841 return -TARGET_EFAULT; 842 } 843 844 void signal_init(void) 845 { 846 TaskState *ts = get_task_state(thread_cpu); 847 struct sigaction act; 848 struct sigaction oact; 849 int i; 850 int host_sig; 851 852 /* Set the signal mask from the host mask. */ 853 sigprocmask(0, 0, &ts->signal_mask); 854 855 sigfillset(&act.sa_mask); 856 act.sa_sigaction = host_signal_handler; 857 act.sa_flags = SA_SIGINFO; 858 859 for (i = 1; i <= TARGET_NSIG; i++) { 860 host_sig = target_to_host_signal(i); 861 sigaction(host_sig, NULL, &oact); 862 if (oact.sa_sigaction == (void *)SIG_IGN) { 863 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 864 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 865 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 866 } 867 /* 868 * If there's already a handler installed then something has 869 * gone horribly wrong, so don't even try to handle that case. 870 * Install some handlers for our own use. We need at least 871 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 872 * trap all signals because it affects syscall interrupt 873 * behavior. But do trap all default-fatal signals. 874 */ 875 if (fatal_signal(i)) { 876 sigaction(host_sig, &act, NULL); 877 } 878 } 879 } 880 881 static void handle_pending_signal(CPUArchState *env, int sig, 882 struct emulated_sigtable *k) 883 { 884 CPUState *cpu = env_cpu(env); 885 TaskState *ts = get_task_state(cpu); 886 struct target_sigaction *sa; 887 int code; 888 sigset_t set; 889 abi_ulong handler; 890 target_siginfo_t tinfo; 891 target_sigset_t target_old_set; 892 893 trace_user_handle_signal(env, sig); 894 895 k->pending = 0; 896 897 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); 898 if (!sig) { 899 sa = NULL; 900 handler = TARGET_SIG_IGN; 901 } else { 902 sa = &sigact_table[sig - 1]; 903 handler = sa->_sa_handler; 904 } 905 906 if (do_strace) { 907 print_taken_signal(sig, &k->info); 908 } 909 910 if (handler == TARGET_SIG_DFL) { 911 /* 912 * default handler : ignore some signal. The other are job 913 * control or fatal. 914 */ 915 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 916 sig == TARGET_SIGTTOU) { 917 kill(getpid(), SIGSTOP); 918 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 919 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 920 sig != TARGET_SIGCONT) { 921 dump_core_and_abort(sig); 922 } 923 } else if (handler == TARGET_SIG_IGN) { 924 /* ignore sig */ 925 } else if (handler == TARGET_SIG_ERR) { 926 dump_core_and_abort(sig); 927 } else { 928 /* compute the blocked signals during the handler execution */ 929 sigset_t *blocked_set; 930 931 target_to_host_sigset(&set, &sa->sa_mask); 932 /* 933 * SA_NODEFER indicates that the current signal should not be 934 * blocked during the handler. 935 */ 936 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 937 sigaddset(&set, target_to_host_signal(sig)); 938 } 939 940 /* 941 * Save the previous blocked signal state to restore it at the 942 * end of the signal execution (see do_sigreturn). 943 */ 944 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 945 946 blocked_set = ts->in_sigsuspend ? 947 &ts->sigsuspend_mask : &ts->signal_mask; 948 sigorset(&ts->signal_mask, blocked_set, &set); 949 ts->in_sigsuspend = false; 950 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 951 952 /* XXX VM86 on x86 ??? */ 953 954 code = k->info.si_code; /* From host, so no si_type */ 955 /* prepare the stack frame of the virtual CPU */ 956 if (sa->sa_flags & TARGET_SA_SIGINFO) { 957 tswap_siginfo(&tinfo, &k->info); 958 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 959 } else { 960 setup_frame(sig, code, sa, &target_old_set, NULL, env); 961 } 962 if (sa->sa_flags & TARGET_SA_RESETHAND) { 963 sa->_sa_handler = TARGET_SIG_DFL; 964 } 965 } 966 } 967 968 void process_pending_signals(CPUArchState *env) 969 { 970 CPUState *cpu = env_cpu(env); 971 int sig; 972 sigset_t *blocked_set, set; 973 struct emulated_sigtable *k; 974 TaskState *ts = get_task_state(cpu); 975 976 while (qatomic_read(&ts->signal_pending)) { 977 sigfillset(&set); 978 sigprocmask(SIG_SETMASK, &set, 0); 979 980 restart_scan: 981 sig = ts->sync_signal.pending; 982 if (sig) { 983 /* 984 * Synchronous signals are forced by the emulated CPU in some way. 985 * If they are set to ignore, restore the default handler (see 986 * sys/kern_sig.c trapsignal() and execsigs() for this behavior) 987 * though maybe this is done only when forcing exit for non SIGCHLD. 988 */ 989 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || 990 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 991 sigdelset(&ts->signal_mask, target_to_host_signal(sig)); 992 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 993 } 994 handle_pending_signal(env, sig, &ts->sync_signal); 995 } 996 997 k = ts->sigtab; 998 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { 999 blocked_set = ts->in_sigsuspend ? 1000 &ts->sigsuspend_mask : &ts->signal_mask; 1001 if (k->pending && 1002 !sigismember(blocked_set, target_to_host_signal(sig))) { 1003 handle_pending_signal(env, sig, k); 1004 /* 1005 * Restart scan from the beginning, as handle_pending_signal 1006 * might have resulted in a new synchronous signal (eg SIGSEGV). 1007 */ 1008 goto restart_scan; 1009 } 1010 } 1011 1012 /* 1013 * Unblock signals and check one more time. Unblocking signals may cause 1014 * us to take another host signal, which will set signal_pending again. 1015 */ 1016 qatomic_set(&ts->signal_pending, 0); 1017 ts->in_sigsuspend = false; 1018 set = ts->signal_mask; 1019 sigdelset(&set, SIGSEGV); 1020 sigdelset(&set, SIGBUS); 1021 sigprocmask(SIG_SETMASK, &set, 0); 1022 } 1023 ts->in_sigsuspend = false; 1024 } 1025 1026 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 1027 MMUAccessType access_type, bool maperr, uintptr_t ra) 1028 { 1029 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1030 1031 if (tcg_ops->record_sigsegv) { 1032 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 1033 } 1034 1035 force_sig_fault(TARGET_SIGSEGV, 1036 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 1037 addr); 1038 cpu->exception_index = EXCP_INTERRUPT; 1039 cpu_loop_exit_restore(cpu, ra); 1040 } 1041 1042 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 1043 MMUAccessType access_type, uintptr_t ra) 1044 { 1045 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1046 1047 if (tcg_ops->record_sigbus) { 1048 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 1049 } 1050 1051 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 1052 cpu->exception_index = EXCP_INTERRUPT; 1053 cpu_loop_exit_restore(cpu, ra); 1054 } 1055