xref: /openbmc/qemu/bsd-user/signal.c (revision 5bfb75f15297a91161f720f997792dd9abc05dea)
1  /*
2   *  Emulation of BSD signals
3   *
4   *  Copyright (c) 2003 - 2008 Fabrice Bellard
5   *  Copyright (c) 2013 Stacey Son
6   *
7   *  This program is free software; you can redistribute it and/or modify
8   *  it under the terms of the GNU General Public License as published by
9   *  the Free Software Foundation; either version 2 of the License, or
10   *  (at your option) any later version.
11   *
12   *  This program is distributed in the hope that it will be useful,
13   *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14   *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   *  GNU General Public License for more details.
16   *
17   *  You should have received a copy of the GNU General Public License
18   *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19   */
20  
21  #include "qemu/osdep.h"
22  #include "qemu/log.h"
23  #include "qemu.h"
24  #include "gdbstub/user.h"
25  #include "signal-common.h"
26  #include "trace.h"
27  #include "hw/core/tcg-cpu-ops.h"
28  #include "host-signal.h"
29  
30  static struct target_sigaction sigact_table[TARGET_NSIG];
31  static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
32  static void target_to_host_sigset_internal(sigset_t *d,
33          const target_sigset_t *s);
34  
35  static inline int on_sig_stack(TaskState *ts, unsigned long sp)
36  {
37      return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
38  }
39  
40  static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
41  {
42      return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
43          on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
44  }
45  
46  /*
47   * The BSD ABIs use the same signal numbers across all the CPU architectures, so
48   * (unlike Linux) these functions are just the identity mapping. This might not
49   * be true for XyzBSD running on AbcBSD, which doesn't currently work.
50   */
51  int host_to_target_signal(int sig)
52  {
53      return sig;
54  }
55  
56  int target_to_host_signal(int sig)
57  {
58      return sig;
59  }
60  
61  static inline void target_sigemptyset(target_sigset_t *set)
62  {
63      memset(set, 0, sizeof(*set));
64  }
65  
66  static inline void target_sigaddset(target_sigset_t *set, int signum)
67  {
68      signum--;
69      uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
70      set->__bits[signum / TARGET_NSIG_BPW] |= mask;
71  }
72  
73  static inline int target_sigismember(const target_sigset_t *set, int signum)
74  {
75      signum--;
76      abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
77      return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
78  }
79  
80  /* Adjust the signal context to rewind out of safe-syscall if we're in it */
81  static inline void rewind_if_in_safe_syscall(void *puc)
82  {
83      ucontext_t *uc = (ucontext_t *)puc;
84      uintptr_t pcreg = host_signal_pc(uc);
85  
86      if (pcreg > (uintptr_t)safe_syscall_start
87          && pcreg < (uintptr_t)safe_syscall_end) {
88          host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
89      }
90  }
91  
92  /*
93   * Note: The following take advantage of the BSD signal property that all
94   * signals are available on all architectures.
95   */
96  static void host_to_target_sigset_internal(target_sigset_t *d,
97          const sigset_t *s)
98  {
99      int i;
100  
101      target_sigemptyset(d);
102      for (i = 1; i <= NSIG; i++) {
103          if (sigismember(s, i)) {
104              target_sigaddset(d, host_to_target_signal(i));
105          }
106      }
107  }
108  
109  void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
110  {
111      target_sigset_t d1;
112      int i;
113  
114      host_to_target_sigset_internal(&d1, s);
115      for (i = 0; i < _SIG_WORDS; i++) {
116          d->__bits[i] = tswap32(d1.__bits[i]);
117      }
118  }
119  
120  static void target_to_host_sigset_internal(sigset_t *d,
121          const target_sigset_t *s)
122  {
123      int i;
124  
125      sigemptyset(d);
126      for (i = 1; i <= TARGET_NSIG; i++) {
127          if (target_sigismember(s, i)) {
128              sigaddset(d, target_to_host_signal(i));
129          }
130      }
131  }
132  
133  void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
134  {
135      target_sigset_t s1;
136      int i;
137  
138      for (i = 0; i < TARGET_NSIG_WORDS; i++) {
139          s1.__bits[i] = tswap32(s->__bits[i]);
140      }
141      target_to_host_sigset_internal(d, &s1);
142  }
143  
144  static bool has_trapno(int tsig)
145  {
146      return tsig == TARGET_SIGILL ||
147          tsig == TARGET_SIGFPE ||
148          tsig == TARGET_SIGSEGV ||
149          tsig == TARGET_SIGBUS ||
150          tsig == TARGET_SIGTRAP;
151  }
152  
153  /* Siginfo conversion. */
154  
155  /*
156   * Populate tinfo w/o swapping based on guessing which fields are valid.
157   */
158  static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
159          const siginfo_t *info)
160  {
161      int sig = host_to_target_signal(info->si_signo);
162      int si_code = info->si_code;
163      int si_type;
164  
165      /*
166       * Make sure we that the variable portion of the target siginfo is zeroed
167       * out so we don't leak anything into that.
168       */
169      memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
170  
171      /*
172       * This is awkward, because we have to use a combination of the si_code and
173       * si_signo to figure out which of the union's members are valid.o We
174       * therefore make our best guess.
175       *
176       * Once we have made our guess, we record it in the top 16 bits of
177       * the si_code, so that tswap_siginfo() later can use it.
178       * tswap_siginfo() will strip these top bits out before writing
179       * si_code to the guest (sign-extending the lower bits).
180       */
181      tinfo->si_signo = sig;
182      tinfo->si_errno = info->si_errno;
183      tinfo->si_code = info->si_code;
184      tinfo->si_pid = info->si_pid;
185      tinfo->si_uid = info->si_uid;
186      tinfo->si_status = info->si_status;
187      tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
188      /*
189       * si_value is opaque to kernel. On all FreeBSD platforms,
190       * sizeof(sival_ptr) >= sizeof(sival_int) so the following
191       * always will copy the larger element.
192       */
193      tinfo->si_value.sival_ptr =
194          (abi_ulong)(unsigned long)info->si_value.sival_ptr;
195  
196      switch (si_code) {
197          /*
198           * All the SI_xxx codes that are defined here are global to
199           * all the signals (they have values that none of the other,
200           * more specific signal info will set).
201           */
202      case SI_USER:
203      case SI_LWP:
204      case SI_KERNEL:
205      case SI_QUEUE:
206      case SI_ASYNCIO:
207          /*
208           * Only the fixed parts are valid (though FreeBSD doesn't always
209           * set all the fields to non-zero values.
210           */
211          si_type = QEMU_SI_NOINFO;
212          break;
213      case SI_TIMER:
214          tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
215          tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
216          si_type = QEMU_SI_TIMER;
217          break;
218      case SI_MESGQ:
219          tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
220          si_type = QEMU_SI_MESGQ;
221          break;
222      default:
223          /*
224           * We have to go based on the signal number now to figure out
225           * what's valid.
226           */
227          si_type = QEMU_SI_NOINFO;
228          if (has_trapno(sig)) {
229              tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
230              si_type = QEMU_SI_FAULT;
231          }
232  #ifdef TARGET_SIGPOLL
233          /*
234           * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
235           * a chance it may popup in the future.
236           */
237          if (sig == TARGET_SIGPOLL) {
238              tinfo->_reason._poll._band = info->_reason._poll._band;
239              si_type = QEMU_SI_POLL;
240          }
241  #endif
242          /*
243           * Unsure that this can actually be generated, and our support for
244           * capsicum is somewhere between weak and non-existent, but if we get
245           * one, then we know what to save.
246           */
247  #ifdef QEMU_SI_CAPSICUM
248          if (sig == TARGET_SIGTRAP) {
249              tinfo->_reason._capsicum._syscall =
250                  info->_reason._capsicum._syscall;
251              si_type = QEMU_SI_CAPSICUM;
252          }
253  #endif
254          break;
255      }
256      tinfo->si_code = deposit32(si_code, 24, 8, si_type);
257  }
258  
259  static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
260  {
261      int si_type = extract32(info->si_code, 24, 8);
262      int si_code = sextract32(info->si_code, 0, 24);
263  
264      __put_user(info->si_signo, &tinfo->si_signo);
265      __put_user(info->si_errno, &tinfo->si_errno);
266      __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267      __put_user(info->si_pid, &tinfo->si_pid);
268      __put_user(info->si_uid, &tinfo->si_uid);
269      __put_user(info->si_status, &tinfo->si_status);
270      __put_user(info->si_addr, &tinfo->si_addr);
271      /*
272       * Unswapped, because we passed it through mostly untouched.  si_value is
273       * opaque to the kernel, so we didn't bother with potentially wasting cycles
274       * to swap it into host byte order.
275       */
276      tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
277  
278      /*
279       * We can use our internal marker of which fields in the structure
280       * are valid, rather than duplicating the guesswork of
281       * host_to_target_siginfo_noswap() here.
282       */
283      switch (si_type) {
284      case QEMU_SI_NOINFO:        /* No additional info */
285          break;
286      case QEMU_SI_FAULT:
287          __put_user(info->_reason._fault._trapno,
288                     &tinfo->_reason._fault._trapno);
289          break;
290      case QEMU_SI_TIMER:
291          __put_user(info->_reason._timer._timerid,
292                     &tinfo->_reason._timer._timerid);
293          __put_user(info->_reason._timer._overrun,
294                     &tinfo->_reason._timer._overrun);
295          break;
296      case QEMU_SI_MESGQ:
297          __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298          break;
299      case QEMU_SI_POLL:
300          /* Note: Not generated on FreeBSD */
301          __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302          break;
303  #ifdef QEMU_SI_CAPSICUM
304      case QEMU_SI_CAPSICUM:
305          __put_user(info->_reason._capsicum._syscall,
306                     &tinfo->_reason._capsicum._syscall);
307          break;
308  #endif
309      default:
310          g_assert_not_reached();
311      }
312  }
313  
314  void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
315  {
316      host_to_target_siginfo_noswap(tinfo, info);
317      tswap_siginfo(tinfo, tinfo);
318  }
319  
320  int block_signals(void)
321  {
322      TaskState *ts = (TaskState *)thread_cpu->opaque;
323      sigset_t set;
324  
325      /*
326       * It's OK to block everything including SIGSEGV, because we won't run any
327       * further guest code before unblocking signals in
328       * process_pending_signals(). We depend on the FreeBSD behavior here where
329       * this will only affect this thread's signal mask. We don't use
330       * pthread_sigmask which might seem more correct because that routine also
331       * does odd things with SIGCANCEL to implement pthread_cancel().
332       */
333      sigfillset(&set);
334      sigprocmask(SIG_SETMASK, &set, 0);
335  
336      return qatomic_xchg(&ts->signal_pending, 1);
337  }
338  
339  /* Returns 1 if given signal should dump core if not handled. */
340  static int core_dump_signal(int sig)
341  {
342      switch (sig) {
343      case TARGET_SIGABRT:
344      case TARGET_SIGFPE:
345      case TARGET_SIGILL:
346      case TARGET_SIGQUIT:
347      case TARGET_SIGSEGV:
348      case TARGET_SIGTRAP:
349      case TARGET_SIGBUS:
350          return 1;
351      default:
352          return 0;
353      }
354  }
355  
356  /* Abort execution with signal. */
357  static G_NORETURN
358  void dump_core_and_abort(int target_sig)
359  {
360      CPUState *cpu = thread_cpu;
361      CPUArchState *env = cpu_env(cpu);
362      TaskState *ts = cpu->opaque;
363      int core_dumped = 0;
364      int host_sig;
365      struct sigaction act;
366  
367      host_sig = target_to_host_signal(target_sig);
368      gdb_signalled(env, target_sig);
369  
370      /* Dump core if supported by target binary format */
371      if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
372          stop_all_tasks();
373          core_dumped =
374              ((*ts->bprm->core_dump)(target_sig, env) == 0);
375      }
376      if (core_dumped) {
377          struct rlimit nodump;
378  
379          /*
380           * We already dumped the core of target process, we don't want
381           * a coredump of qemu itself.
382           */
383           getrlimit(RLIMIT_CORE, &nodump);
384           nodump.rlim_cur = 0;
385           setrlimit(RLIMIT_CORE, &nodump);
386           (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
387               "- %s\n", target_sig, strsignal(host_sig), "core dumped");
388      }
389  
390      /*
391       * The proper exit code for dying from an uncaught signal is
392       * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
393       * a negative value.  To get the proper exit code we need to
394       * actually die from an uncaught signal.  Here the default signal
395       * handler is installed, we send ourself a signal and we wait for
396       * it to arrive.
397       */
398      memset(&act, 0, sizeof(act));
399      sigfillset(&act.sa_mask);
400      act.sa_handler = SIG_DFL;
401      sigaction(host_sig, &act, NULL);
402  
403      kill(getpid(), host_sig);
404  
405      /*
406       * Make sure the signal isn't masked (just reuse the mask inside
407       * of act).
408       */
409      sigdelset(&act.sa_mask, host_sig);
410      sigsuspend(&act.sa_mask);
411  
412      /* unreachable */
413      abort();
414  }
415  
416  /*
417   * Queue a signal so that it will be send to the virtual CPU as soon as
418   * possible.
419   */
420  void queue_signal(CPUArchState *env, int sig, int si_type,
421                    target_siginfo_t *info)
422  {
423      CPUState *cpu = env_cpu(env);
424      TaskState *ts = cpu->opaque;
425  
426      trace_user_queue_signal(env, sig);
427  
428      info->si_code = deposit32(info->si_code, 24, 8, si_type);
429  
430      ts->sync_signal.info = *info;
431      ts->sync_signal.pending = sig;
432      /* Signal that a new signal is pending. */
433      qatomic_set(&ts->signal_pending, 1);
434      return;
435  }
436  
437  static int fatal_signal(int sig)
438  {
439  
440      switch (sig) {
441      case TARGET_SIGCHLD:
442      case TARGET_SIGURG:
443      case TARGET_SIGWINCH:
444      case TARGET_SIGINFO:
445          /* Ignored by default. */
446          return 0;
447      case TARGET_SIGCONT:
448      case TARGET_SIGSTOP:
449      case TARGET_SIGTSTP:
450      case TARGET_SIGTTIN:
451      case TARGET_SIGTTOU:
452          /* Job control signals.  */
453          return 0;
454      default:
455          return 1;
456      }
457  }
458  
459  /*
460   * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
461   * 'force' part is handled in process_pending_signals().
462   */
463  void force_sig_fault(int sig, int code, abi_ulong addr)
464  {
465      CPUState *cpu = thread_cpu;
466      CPUArchState *env = cpu_env(cpu);
467      target_siginfo_t info = {};
468  
469      info.si_signo = sig;
470      info.si_errno = 0;
471      info.si_code = code;
472      info.si_addr = addr;
473      queue_signal(env, sig, QEMU_SI_FAULT, &info);
474  }
475  
476  static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
477  {
478      CPUState *cpu = thread_cpu;
479      TaskState *ts = cpu->opaque;
480      target_siginfo_t tinfo;
481      ucontext_t *uc = puc;
482      struct emulated_sigtable *k;
483      int guest_sig;
484      uintptr_t pc = 0;
485      bool sync_sig = false;
486  
487      /*
488       * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
489       * handling wrt signal blocking and unwinding.
490       */
491      if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
492          MMUAccessType access_type;
493          uintptr_t host_addr;
494          abi_ptr guest_addr;
495          bool is_write;
496  
497          host_addr = (uintptr_t)info->si_addr;
498  
499          /*
500           * Convert forcefully to guest address space: addresses outside
501           * reserved_va are still valid to report via SEGV_MAPERR.
502           */
503          guest_addr = h2g_nocheck(host_addr);
504  
505          pc = host_signal_pc(uc);
506          is_write = host_signal_write(info, uc);
507          access_type = adjust_signal_pc(&pc, is_write);
508  
509          if (host_sig == SIGSEGV) {
510              bool maperr = true;
511  
512              if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
513                  /* If this was a write to a TB protected page, restart. */
514                  if (is_write &&
515                      handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
516                                                  pc, guest_addr)) {
517                      return;
518                  }
519  
520                  /*
521                   * With reserved_va, the whole address space is PROT_NONE,
522                   * which means that we may get ACCERR when we want MAPERR.
523                   */
524                  if (page_get_flags(guest_addr) & PAGE_VALID) {
525                      maperr = false;
526                  } else {
527                      info->si_code = SEGV_MAPERR;
528                  }
529              }
530  
531              sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
532              cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
533          } else {
534              sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
535              if (info->si_code == BUS_ADRALN) {
536                  cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
537              }
538          }
539  
540          sync_sig = true;
541      }
542  
543      /* Get the target signal number. */
544      guest_sig = host_to_target_signal(host_sig);
545      if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
546          return;
547      }
548      trace_user_host_signal(cpu, host_sig, guest_sig);
549  
550      host_to_target_siginfo_noswap(&tinfo, info);
551  
552      k = &ts->sigtab[guest_sig - 1];
553      k->info = tinfo;
554      k->pending = guest_sig;
555      ts->signal_pending = 1;
556  
557      /*
558       * For synchronous signals, unwind the cpu state to the faulting
559       * insn and then exit back to the main loop so that the signal
560       * is delivered immediately.
561       */
562      if (sync_sig) {
563          cpu->exception_index = EXCP_INTERRUPT;
564          cpu_loop_exit_restore(cpu, pc);
565      }
566  
567      rewind_if_in_safe_syscall(puc);
568  
569      /*
570       * Block host signals until target signal handler entered. We
571       * can't block SIGSEGV or SIGBUS while we're executing guest
572       * code in case the guest code provokes one in the window between
573       * now and it getting out to the main loop. Signals will be
574       * unblocked again in process_pending_signals().
575       */
576      sigfillset(&uc->uc_sigmask);
577      sigdelset(&uc->uc_sigmask, SIGSEGV);
578      sigdelset(&uc->uc_sigmask, SIGBUS);
579  
580      /* Interrupt the virtual CPU as soon as possible. */
581      cpu_exit(thread_cpu);
582  }
583  
584  /* do_sigaltstack() returns target values and errnos. */
585  /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
586  abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
587  {
588      TaskState *ts = (TaskState *)thread_cpu->opaque;
589      int ret;
590      target_stack_t oss;
591  
592      if (uoss_addr) {
593          /* Save current signal stack params */
594          oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
595          oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
596          oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
597      }
598  
599      if (uss_addr) {
600          target_stack_t *uss;
601          target_stack_t ss;
602          size_t minstacksize = TARGET_MINSIGSTKSZ;
603  
604          ret = -TARGET_EFAULT;
605          if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
606              goto out;
607          }
608          __get_user(ss.ss_sp, &uss->ss_sp);
609          __get_user(ss.ss_size, &uss->ss_size);
610          __get_user(ss.ss_flags, &uss->ss_flags);
611          unlock_user_struct(uss, uss_addr, 0);
612  
613          ret = -TARGET_EPERM;
614          if (on_sig_stack(ts, sp)) {
615              goto out;
616          }
617  
618          ret = -TARGET_EINVAL;
619          if (ss.ss_flags != TARGET_SS_DISABLE
620              && ss.ss_flags != TARGET_SS_ONSTACK
621              && ss.ss_flags != 0) {
622              goto out;
623          }
624  
625          if (ss.ss_flags == TARGET_SS_DISABLE) {
626              ss.ss_size = 0;
627              ss.ss_sp = 0;
628          } else {
629              ret = -TARGET_ENOMEM;
630              if (ss.ss_size < minstacksize) {
631                  goto out;
632              }
633          }
634  
635          ts->sigaltstack_used.ss_sp = ss.ss_sp;
636          ts->sigaltstack_used.ss_size = ss.ss_size;
637      }
638  
639      if (uoss_addr) {
640          ret = -TARGET_EFAULT;
641          if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
642              goto out;
643          }
644      }
645  
646      ret = 0;
647  out:
648      return ret;
649  }
650  
651  /* do_sigaction() return host values and errnos */
652  int do_sigaction(int sig, const struct target_sigaction *act,
653          struct target_sigaction *oact)
654  {
655      struct target_sigaction *k;
656      struct sigaction act1;
657      int host_sig;
658      int ret = 0;
659  
660      if (sig < 1 || sig > TARGET_NSIG) {
661          return -TARGET_EINVAL;
662      }
663  
664      if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
665          act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
666          return -TARGET_EINVAL;
667      }
668  
669      if (block_signals()) {
670          return -TARGET_ERESTART;
671      }
672  
673      k = &sigact_table[sig - 1];
674      if (oact) {
675          oact->_sa_handler = tswapal(k->_sa_handler);
676          oact->sa_flags = tswap32(k->sa_flags);
677          oact->sa_mask = k->sa_mask;
678      }
679      if (act) {
680          k->_sa_handler = tswapal(act->_sa_handler);
681          k->sa_flags = tswap32(act->sa_flags);
682          k->sa_mask = act->sa_mask;
683  
684          /* Update the host signal state. */
685          host_sig = target_to_host_signal(sig);
686          if (host_sig != SIGSEGV && host_sig != SIGBUS) {
687              memset(&act1, 0, sizeof(struct sigaction));
688              sigfillset(&act1.sa_mask);
689              act1.sa_flags = SA_SIGINFO;
690              if (k->sa_flags & TARGET_SA_RESTART) {
691                  act1.sa_flags |= SA_RESTART;
692              }
693              /*
694               *  Note: It is important to update the host kernel signal mask to
695               *  avoid getting unexpected interrupted system calls.
696               */
697              if (k->_sa_handler == TARGET_SIG_IGN) {
698                  act1.sa_sigaction = (void *)SIG_IGN;
699              } else if (k->_sa_handler == TARGET_SIG_DFL) {
700                  if (fatal_signal(sig)) {
701                      act1.sa_sigaction = host_signal_handler;
702                  } else {
703                      act1.sa_sigaction = (void *)SIG_DFL;
704                  }
705              } else {
706                  act1.sa_sigaction = host_signal_handler;
707              }
708              ret = sigaction(host_sig, &act1, NULL);
709          }
710      }
711      return ret;
712  }
713  
714  static inline abi_ulong get_sigframe(struct target_sigaction *ka,
715          CPUArchState *env, size_t frame_size)
716  {
717      TaskState *ts = (TaskState *)thread_cpu->opaque;
718      abi_ulong sp;
719  
720      /* Use default user stack */
721      sp = get_sp_from_cpustate(env);
722  
723      if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
724          sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
725      }
726  
727  /* TODO: make this a target_arch function / define */
728  #if defined(TARGET_ARM)
729      return (sp - frame_size) & ~7;
730  #elif defined(TARGET_AARCH64)
731      return (sp - frame_size) & ~15;
732  #else
733      return sp - frame_size;
734  #endif
735  }
736  
737  /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
738  
739  static void setup_frame(int sig, int code, struct target_sigaction *ka,
740      target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
741  {
742      struct target_sigframe *frame;
743      abi_ulong frame_addr;
744      int i;
745  
746      frame_addr = get_sigframe(ka, env, sizeof(*frame));
747      trace_user_setup_frame(env, frame_addr);
748      if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
749          unlock_user_struct(frame, frame_addr, 1);
750          dump_core_and_abort(TARGET_SIGILL);
751          return;
752      }
753  
754      memset(frame, 0, sizeof(*frame));
755      setup_sigframe_arch(env, frame_addr, frame, 0);
756  
757      for (i = 0; i < TARGET_NSIG_WORDS; i++) {
758          __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
759      }
760  
761      if (tinfo) {
762          frame->sf_si.si_signo = tinfo->si_signo;
763          frame->sf_si.si_errno = tinfo->si_errno;
764          frame->sf_si.si_code = tinfo->si_code;
765          frame->sf_si.si_pid = tinfo->si_pid;
766          frame->sf_si.si_uid = tinfo->si_uid;
767          frame->sf_si.si_status = tinfo->si_status;
768          frame->sf_si.si_addr = tinfo->si_addr;
769          /* see host_to_target_siginfo_noswap() for more details */
770          frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
771          /*
772           * At this point, whatever is in the _reason union is complete
773           * and in target order, so just copy the whole thing over, even
774           * if it's too large for this specific signal.
775           * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
776           * that's so.
777           */
778          memcpy(&frame->sf_si._reason, &tinfo->_reason,
779                 sizeof(tinfo->_reason));
780      }
781  
782      set_sigtramp_args(env, sig, frame, frame_addr, ka);
783  
784      unlock_user_struct(frame, frame_addr, 1);
785  }
786  
787  static int reset_signal_mask(target_ucontext_t *ucontext)
788  {
789      int i;
790      sigset_t blocked;
791      target_sigset_t target_set;
792      TaskState *ts = (TaskState *)thread_cpu->opaque;
793  
794      for (i = 0; i < TARGET_NSIG_WORDS; i++) {
795          __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
796      }
797      target_to_host_sigset_internal(&blocked, &target_set);
798      ts->signal_mask = blocked;
799  
800      return 0;
801  }
802  
803  /* See sys/$M/$M/exec_machdep.c sigreturn() */
804  long do_sigreturn(CPUArchState *env, abi_ulong addr)
805  {
806      long ret;
807      abi_ulong target_ucontext;
808      target_ucontext_t *ucontext = NULL;
809  
810      /* Get the target ucontext address from the stack frame */
811      ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
812      if (is_error(ret)) {
813          return ret;
814      }
815      trace_user_do_sigreturn(env, addr);
816      if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
817          goto badframe;
818      }
819  
820      /* Set the register state back to before the signal. */
821      if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
822          goto badframe;
823      }
824  
825      /* And reset the signal mask. */
826      if (reset_signal_mask(ucontext)) {
827          goto badframe;
828      }
829  
830      unlock_user_struct(ucontext, target_ucontext, 0);
831      return -TARGET_EJUSTRETURN;
832  
833  badframe:
834      if (ucontext != NULL) {
835          unlock_user_struct(ucontext, target_ucontext, 0);
836      }
837      return -TARGET_EFAULT;
838  }
839  
840  void signal_init(void)
841  {
842      TaskState *ts = (TaskState *)thread_cpu->opaque;
843      struct sigaction act;
844      struct sigaction oact;
845      int i;
846      int host_sig;
847  
848      /* Set the signal mask from the host mask. */
849      sigprocmask(0, 0, &ts->signal_mask);
850  
851      sigfillset(&act.sa_mask);
852      act.sa_sigaction = host_signal_handler;
853      act.sa_flags = SA_SIGINFO;
854  
855      for (i = 1; i <= TARGET_NSIG; i++) {
856          host_sig = target_to_host_signal(i);
857          sigaction(host_sig, NULL, &oact);
858          if (oact.sa_sigaction == (void *)SIG_IGN) {
859              sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
860          } else if (oact.sa_sigaction == (void *)SIG_DFL) {
861              sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
862          }
863          /*
864           * If there's already a handler installed then something has
865           * gone horribly wrong, so don't even try to handle that case.
866           * Install some handlers for our own use.  We need at least
867           * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
868           * trap all signals because it affects syscall interrupt
869           * behavior.  But do trap all default-fatal signals.
870           */
871          if (fatal_signal(i)) {
872              sigaction(host_sig, &act, NULL);
873          }
874      }
875  }
876  
877  static void handle_pending_signal(CPUArchState *env, int sig,
878                                    struct emulated_sigtable *k)
879  {
880      CPUState *cpu = env_cpu(env);
881      TaskState *ts = cpu->opaque;
882      struct target_sigaction *sa;
883      int code;
884      sigset_t set;
885      abi_ulong handler;
886      target_siginfo_t tinfo;
887      target_sigset_t target_old_set;
888  
889      trace_user_handle_signal(env, sig);
890  
891      k->pending = 0;
892  
893      sig = gdb_handlesig(cpu, sig);
894      if (!sig) {
895          sa = NULL;
896          handler = TARGET_SIG_IGN;
897      } else {
898          sa = &sigact_table[sig - 1];
899          handler = sa->_sa_handler;
900      }
901  
902      if (do_strace) {
903          print_taken_signal(sig, &k->info);
904      }
905  
906      if (handler == TARGET_SIG_DFL) {
907          /*
908           * default handler : ignore some signal. The other are job
909           * control or fatal.
910           */
911          if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
912              sig == TARGET_SIGTTOU) {
913              kill(getpid(), SIGSTOP);
914          } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
915                     sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
916                     sig != TARGET_SIGCONT) {
917              dump_core_and_abort(sig);
918          }
919      } else if (handler == TARGET_SIG_IGN) {
920          /* ignore sig */
921      } else if (handler == TARGET_SIG_ERR) {
922          dump_core_and_abort(sig);
923      } else {
924          /* compute the blocked signals during the handler execution */
925          sigset_t *blocked_set;
926  
927          target_to_host_sigset(&set, &sa->sa_mask);
928          /*
929           * SA_NODEFER indicates that the current signal should not be
930           * blocked during the handler.
931           */
932          if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
933              sigaddset(&set, target_to_host_signal(sig));
934          }
935  
936          /*
937           * Save the previous blocked signal state to restore it at the
938           * end of the signal execution (see do_sigreturn).
939           */
940          host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
941  
942          blocked_set = ts->in_sigsuspend ?
943              &ts->sigsuspend_mask : &ts->signal_mask;
944          sigorset(&ts->signal_mask, blocked_set, &set);
945          ts->in_sigsuspend = false;
946          sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
947  
948          /* XXX VM86 on x86 ??? */
949  
950          code = k->info.si_code; /* From host, so no si_type */
951          /* prepare the stack frame of the virtual CPU */
952          if (sa->sa_flags & TARGET_SA_SIGINFO) {
953              tswap_siginfo(&tinfo, &k->info);
954              setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
955          } else {
956              setup_frame(sig, code, sa, &target_old_set, NULL, env);
957          }
958          if (sa->sa_flags & TARGET_SA_RESETHAND) {
959              sa->_sa_handler = TARGET_SIG_DFL;
960          }
961      }
962  }
963  
964  void process_pending_signals(CPUArchState *env)
965  {
966      CPUState *cpu = env_cpu(env);
967      int sig;
968      sigset_t *blocked_set, set;
969      struct emulated_sigtable *k;
970      TaskState *ts = cpu->opaque;
971  
972      while (qatomic_read(&ts->signal_pending)) {
973          sigfillset(&set);
974          sigprocmask(SIG_SETMASK, &set, 0);
975  
976      restart_scan:
977          sig = ts->sync_signal.pending;
978          if (sig) {
979              /*
980               * Synchronous signals are forced by the emulated CPU in some way.
981               * If they are set to ignore, restore the default handler (see
982               * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
983               * though maybe this is done only when forcing exit for non SIGCHLD.
984               */
985              if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
986                  sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
987                  sigdelset(&ts->signal_mask, target_to_host_signal(sig));
988                  sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
989              }
990              handle_pending_signal(env, sig, &ts->sync_signal);
991          }
992  
993          k = ts->sigtab;
994          for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
995              blocked_set = ts->in_sigsuspend ?
996                  &ts->sigsuspend_mask : &ts->signal_mask;
997              if (k->pending &&
998                  !sigismember(blocked_set, target_to_host_signal(sig))) {
999                  handle_pending_signal(env, sig, k);
1000                  /*
1001                   * Restart scan from the beginning, as handle_pending_signal
1002                   * might have resulted in a new synchronous signal (eg SIGSEGV).
1003                   */
1004                  goto restart_scan;
1005              }
1006          }
1007  
1008          /*
1009           * Unblock signals and check one more time. Unblocking signals may cause
1010           * us to take another host signal, which will set signal_pending again.
1011           */
1012          qatomic_set(&ts->signal_pending, 0);
1013          ts->in_sigsuspend = false;
1014          set = ts->signal_mask;
1015          sigdelset(&set, SIGSEGV);
1016          sigdelset(&set, SIGBUS);
1017          sigprocmask(SIG_SETMASK, &set, 0);
1018      }
1019      ts->in_sigsuspend = false;
1020  }
1021  
1022  void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1023                             MMUAccessType access_type, bool maperr, uintptr_t ra)
1024  {
1025      const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1026  
1027      if (tcg_ops->record_sigsegv) {
1028          tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1029      }
1030  
1031      force_sig_fault(TARGET_SIGSEGV,
1032                      maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1033                      addr);
1034      cpu->exception_index = EXCP_INTERRUPT;
1035      cpu_loop_exit_restore(cpu, ra);
1036  }
1037  
1038  void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1039                            MMUAccessType access_type, uintptr_t ra)
1040  {
1041      const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1042  
1043      if (tcg_ops->record_sigbus) {
1044          tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1045      }
1046  
1047      force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1048      cpu->exception_index = EXCP_INTERRUPT;
1049      cpu_loop_exit_restore(cpu, ra);
1050  }
1051