1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 21 #include "cpu.h" 22 #include "exec/cpu_ldst.h" 23 24 #undef DEBUG_REMAP 25 #ifdef DEBUG_REMAP 26 #endif /* DEBUG_REMAP */ 27 28 #include "exec/user/abitypes.h" 29 30 extern char **environ; 31 32 enum BSDType { 33 target_freebsd, 34 target_netbsd, 35 target_openbsd, 36 }; 37 extern enum BSDType bsd_type; 38 39 #include "syscall_defs.h" 40 #include "target_syscall.h" 41 #include "exec/gdbstub.h" 42 43 #if defined(CONFIG_USE_NPTL) 44 #define THREAD __thread 45 #else 46 #define THREAD 47 #endif 48 49 /* 50 * This struct is used to hold certain information about the image. Basically, 51 * it replicates in user space what would be certain task_struct fields in the 52 * kernel 53 */ 54 struct image_info { 55 abi_ulong load_addr; 56 abi_ulong start_code; 57 abi_ulong end_code; 58 abi_ulong start_data; 59 abi_ulong end_data; 60 abi_ulong start_brk; 61 abi_ulong brk; 62 abi_ulong start_mmap; 63 abi_ulong mmap; 64 abi_ulong rss; 65 abi_ulong start_stack; 66 abi_ulong entry; 67 abi_ulong code_offset; 68 abi_ulong data_offset; 69 int personality; 70 }; 71 72 #define MAX_SIGQUEUE_SIZE 1024 73 74 struct sigqueue { 75 struct sigqueue *next; 76 }; 77 78 struct emulated_sigtable { 79 int pending; /* true if signal is pending */ 80 struct sigqueue *first; 81 /* in order to always have memory for the first signal, we put it here */ 82 struct sigqueue info; 83 }; 84 85 /* 86 * NOTE: we force a big alignment so that the stack stored after is aligned too 87 */ 88 typedef struct TaskState { 89 pid_t ts_tid; /* tid (or pid) of this task */ 90 91 struct TaskState *next; 92 int used; /* non zero if used */ 93 struct image_info *info; 94 95 struct emulated_sigtable sigtab[TARGET_NSIG]; 96 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 97 struct sigqueue *first_free; /* first free siginfo queue entry */ 98 int signal_pending; /* non zero if a signal may be pending */ 99 100 uint8_t stack[]; 101 } __attribute__((aligned(16))) TaskState; 102 103 void init_task_state(TaskState *ts); 104 extern const char *qemu_uname_release; 105 extern unsigned long mmap_min_addr; 106 107 /* 108 * MAX_ARG_PAGES defines the number of pages allocated for arguments 109 * and envelope for the new program. 32 should suffice, this gives 110 * a maximum env+arg of 128kB w/4KB pages! 111 */ 112 #define MAX_ARG_PAGES 32 113 114 /* 115 * This structure is used to hold the arguments that are 116 * used when loading binaries. 117 */ 118 struct bsd_binprm { 119 char buf[128]; 120 void *page[MAX_ARG_PAGES]; 121 abi_ulong p; 122 int fd; 123 int e_uid, e_gid; 124 int argc, envc; 125 char **argv; 126 char **envp; 127 char *filename; /* Name of binary */ 128 }; 129 130 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 131 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 132 abi_ulong stringp, int push_ptr); 133 int loader_exec(const char *filename, char **argv, char **envp, 134 struct target_pt_regs *regs, struct image_info *infop); 135 136 int load_elf_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 137 struct image_info *info); 138 int load_flt_binary(struct bsd_binprm *bprm, struct target_pt_regs *regs, 139 struct image_info *info); 140 141 abi_long memcpy_to_target(abi_ulong dest, const void *src, 142 unsigned long len); 143 void target_set_brk(abi_ulong new_brk); 144 abi_long do_brk(abi_ulong new_brk); 145 void syscall_init(void); 146 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 147 abi_long arg2, abi_long arg3, abi_long arg4, 148 abi_long arg5, abi_long arg6, abi_long arg7, 149 abi_long arg8); 150 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 151 abi_long arg2, abi_long arg3, abi_long arg4, 152 abi_long arg5, abi_long arg6); 153 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 154 abi_long arg2, abi_long arg3, abi_long arg4, 155 abi_long arg5, abi_long arg6); 156 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 157 extern THREAD CPUState *thread_cpu; 158 void cpu_loop(CPUArchState *env); 159 char *target_strerror(int err); 160 int get_osversion(void); 161 void fork_start(void); 162 void fork_end(int child); 163 164 #include "qemu/log.h" 165 166 /* strace.c */ 167 struct syscallname { 168 int nr; 169 const char *name; 170 const char *format; 171 void (*call)(const struct syscallname *, 172 abi_long, abi_long, abi_long, 173 abi_long, abi_long, abi_long); 174 void (*result)(const struct syscallname *, abi_long); 175 }; 176 177 void 178 print_freebsd_syscall(int num, 179 abi_long arg1, abi_long arg2, abi_long arg3, 180 abi_long arg4, abi_long arg5, abi_long arg6); 181 void print_freebsd_syscall_ret(int num, abi_long ret); 182 void 183 print_netbsd_syscall(int num, 184 abi_long arg1, abi_long arg2, abi_long arg3, 185 abi_long arg4, abi_long arg5, abi_long arg6); 186 void print_netbsd_syscall_ret(int num, abi_long ret); 187 void 188 print_openbsd_syscall(int num, 189 abi_long arg1, abi_long arg2, abi_long arg3, 190 abi_long arg4, abi_long arg5, abi_long arg6); 191 void print_openbsd_syscall_ret(int num, abi_long ret); 192 extern int do_strace; 193 194 /* signal.c */ 195 void process_pending_signals(CPUArchState *cpu_env); 196 void signal_init(void); 197 long do_sigreturn(CPUArchState *env); 198 long do_rt_sigreturn(CPUArchState *env); 199 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 200 201 /* mmap.c */ 202 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 203 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 204 int flags, int fd, abi_ulong offset); 205 int target_munmap(abi_ulong start, abi_ulong len); 206 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 207 abi_ulong new_size, unsigned long flags, 208 abi_ulong new_addr); 209 int target_msync(abi_ulong start, abi_ulong len, int flags); 210 extern unsigned long last_brk; 211 void mmap_fork_start(void); 212 void mmap_fork_end(int child); 213 214 /* main.c */ 215 extern unsigned long x86_stack_size; 216 217 /* user access */ 218 219 #define VERIFY_READ PAGE_READ 220 #define VERIFY_WRITE (PAGE_READ | PAGE_WRITE) 221 222 static inline bool access_ok(int type, abi_ulong addr, abi_ulong size) 223 { 224 return page_check_range((target_ulong)addr, size, type) == 0; 225 } 226 227 /* 228 * NOTE __get_user and __put_user use host pointers and don't check access. 229 * 230 * These are usually used to access struct data members once the struct has been 231 * locked - usually with lock_user_struct(). 232 */ 233 #define __put_user(x, hptr)\ 234 ({\ 235 int size = sizeof(*hptr);\ 236 switch (size) {\ 237 case 1:\ 238 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 239 break;\ 240 case 2:\ 241 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 242 break;\ 243 case 4:\ 244 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 245 break;\ 246 case 8:\ 247 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 248 break;\ 249 default:\ 250 abort();\ 251 } \ 252 0;\ 253 }) 254 255 #define __get_user(x, hptr) \ 256 ({\ 257 int size = sizeof(*hptr);\ 258 switch (size) {\ 259 case 1:\ 260 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 261 break;\ 262 case 2:\ 263 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 264 break;\ 265 case 4:\ 266 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 267 break;\ 268 case 8:\ 269 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 270 break;\ 271 default:\ 272 x = 0;\ 273 abort();\ 274 } \ 275 0;\ 276 }) 277 278 /* 279 * put_user()/get_user() take a guest address and check access 280 * 281 * These are usually used to access an atomic data type, such as an int, that 282 * has been passed by address. These internally perform locking and unlocking 283 * on the data type. 284 */ 285 #define put_user(x, gaddr, target_type) \ 286 ({ \ 287 abi_ulong __gaddr = (gaddr); \ 288 target_type *__hptr; \ 289 abi_long __ret; \ 290 __hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0); \ 291 if (__hptr) { \ 292 __ret = __put_user((x), __hptr); \ 293 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 294 } else \ 295 __ret = -TARGET_EFAULT; \ 296 __ret; \ 297 }) 298 299 #define get_user(x, gaddr, target_type) \ 300 ({ \ 301 abi_ulong __gaddr = (gaddr); \ 302 target_type *__hptr; \ 303 abi_long __ret; \ 304 __hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1); \ 305 if (__hptr) { \ 306 __ret = __get_user((x), __hptr); \ 307 unlock_user(__hptr, __gaddr, 0); \ 308 } else { \ 309 (x) = 0; \ 310 __ret = -TARGET_EFAULT; \ 311 } \ 312 __ret; \ 313 }) 314 315 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 316 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 317 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 318 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 319 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 320 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 321 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 322 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 323 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 324 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 325 326 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 327 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 328 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 329 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 330 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 331 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 332 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 333 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 334 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 335 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 336 337 /* 338 * copy_from_user() and copy_to_user() are usually used to copy data 339 * buffers between the target and host. These internally perform 340 * locking/unlocking of the memory. 341 */ 342 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 343 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 344 345 /* 346 * Functions for accessing guest memory. The tget and tput functions 347 * read/write single values, byteswapping as necessary. The lock_user function 348 * gets a pointer to a contiguous area of guest memory, but does not perform 349 * any byteswapping. lock_user may return either a pointer to the guest 350 * memory, or a temporary buffer. 351 */ 352 353 /* 354 * Lock an area of guest memory into the host. If copy is true then the 355 * host area will have the same contents as the guest. 356 */ 357 static inline void *lock_user(int type, abi_ulong guest_addr, long len, 358 int copy) 359 { 360 if (!access_ok(type, guest_addr, len)) { 361 return NULL; 362 } 363 #ifdef DEBUG_REMAP 364 { 365 void *addr; 366 addr = g_malloc(len); 367 if (copy) { 368 memcpy(addr, g2h_untagged(guest_addr), len); 369 } else { 370 memset(addr, 0, len); 371 } 372 return addr; 373 } 374 #else 375 return g2h_untagged(guest_addr); 376 #endif 377 } 378 379 /* 380 * Unlock an area of guest memory. The first LEN bytes must be flushed back to 381 * guest memory. host_ptr = NULL is explicitly allowed and does nothing. 382 */ 383 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 384 long len) 385 { 386 387 #ifdef DEBUG_REMAP 388 if (!host_ptr) { 389 return; 390 } 391 if (host_ptr == g2h_untagged(guest_addr)) { 392 return; 393 } 394 if (len > 0) { 395 memcpy(g2h_untagged(guest_addr), host_ptr, len); 396 } 397 g_free(host_ptr); 398 #endif 399 } 400 401 /* 402 * Return the length of a string in target memory or -TARGET_EFAULT if access 403 * error. 404 */ 405 abi_long target_strlen(abi_ulong gaddr); 406 407 /* Like lock_user but for null terminated strings. */ 408 static inline void *lock_user_string(abi_ulong guest_addr) 409 { 410 abi_long len; 411 len = target_strlen(guest_addr); 412 if (len < 0) { 413 return NULL; 414 } 415 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 416 } 417 418 /* Helper macros for locking/unlocking a target struct. */ 419 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 420 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 421 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 422 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 423 424 #if defined(CONFIG_USE_NPTL) 425 #include <pthread.h> 426 #endif 427 428 #endif /* QEMU_H */ 429