1 /* 2 * qemu bsd user mode definition 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 #ifndef QEMU_H 18 #define QEMU_H 19 20 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "exec/cpu_ldst.h" 24 25 #undef DEBUG_REMAP 26 #ifdef DEBUG_REMAP 27 #endif /* DEBUG_REMAP */ 28 29 #include "exec/user/abitypes.h" 30 31 enum BSDType { 32 target_freebsd, 33 target_netbsd, 34 target_openbsd, 35 }; 36 extern enum BSDType bsd_type; 37 38 #include "syscall_defs.h" 39 #include "target_syscall.h" 40 #include "target_signal.h" 41 #include "exec/gdbstub.h" 42 43 #if defined(CONFIG_USE_NPTL) 44 #define THREAD __thread 45 #else 46 #define THREAD 47 #endif 48 49 /* This struct is used to hold certain information about the image. 50 * Basically, it replicates in user space what would be certain 51 * task_struct fields in the kernel 52 */ 53 struct image_info { 54 abi_ulong load_addr; 55 abi_ulong start_code; 56 abi_ulong end_code; 57 abi_ulong start_data; 58 abi_ulong end_data; 59 abi_ulong start_brk; 60 abi_ulong brk; 61 abi_ulong start_mmap; 62 abi_ulong mmap; 63 abi_ulong rss; 64 abi_ulong start_stack; 65 abi_ulong entry; 66 abi_ulong code_offset; 67 abi_ulong data_offset; 68 int personality; 69 }; 70 71 #define MAX_SIGQUEUE_SIZE 1024 72 73 struct sigqueue { 74 struct sigqueue *next; 75 //target_siginfo_t info; 76 }; 77 78 struct emulated_sigtable { 79 int pending; /* true if signal is pending */ 80 struct sigqueue *first; 81 struct sigqueue info; /* in order to always have memory for the 82 first signal, we put it here */ 83 }; 84 85 /* NOTE: we force a big alignment so that the stack stored after is 86 aligned too */ 87 typedef struct TaskState { 88 pid_t ts_tid; /* tid (or pid) of this task */ 89 90 struct TaskState *next; 91 int used; /* non zero if used */ 92 struct image_info *info; 93 94 struct emulated_sigtable sigtab[TARGET_NSIG]; 95 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ 96 struct sigqueue *first_free; /* first free siginfo queue entry */ 97 int signal_pending; /* non zero if a signal may be pending */ 98 99 uint8_t stack[0]; 100 } __attribute__((aligned(16))) TaskState; 101 102 void init_task_state(TaskState *ts); 103 extern const char *qemu_uname_release; 104 extern unsigned long mmap_min_addr; 105 106 /* ??? See if we can avoid exposing so much of the loader internals. */ 107 /* 108 * MAX_ARG_PAGES defines the number of pages allocated for arguments 109 * and envelope for the new program. 32 should suffice, this gives 110 * a maximum env+arg of 128kB w/4KB pages! 111 */ 112 #define MAX_ARG_PAGES 32 113 114 /* 115 * This structure is used to hold the arguments that are 116 * used when loading binaries. 117 */ 118 struct linux_binprm { 119 char buf[128]; 120 void *page[MAX_ARG_PAGES]; 121 abi_ulong p; 122 int fd; 123 int e_uid, e_gid; 124 int argc, envc; 125 char **argv; 126 char **envp; 127 char * filename; /* Name of binary */ 128 }; 129 130 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); 131 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, 132 abi_ulong stringp, int push_ptr); 133 int loader_exec(const char * filename, char ** argv, char ** envp, 134 struct target_pt_regs * regs, struct image_info *infop); 135 136 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 137 struct image_info * info); 138 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 139 struct image_info * info); 140 141 abi_long memcpy_to_target(abi_ulong dest, const void *src, 142 unsigned long len); 143 void target_set_brk(abi_ulong new_brk); 144 abi_long do_brk(abi_ulong new_brk); 145 void syscall_init(void); 146 abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1, 147 abi_long arg2, abi_long arg3, abi_long arg4, 148 abi_long arg5, abi_long arg6, abi_long arg7, 149 abi_long arg8); 150 abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1, 151 abi_long arg2, abi_long arg3, abi_long arg4, 152 abi_long arg5, abi_long arg6); 153 abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1, 154 abi_long arg2, abi_long arg3, abi_long arg4, 155 abi_long arg5, abi_long arg6); 156 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); 157 extern THREAD CPUState *thread_cpu; 158 void cpu_loop(CPUArchState *env); 159 char *target_strerror(int err); 160 int get_osversion(void); 161 void fork_start(void); 162 void fork_end(int child); 163 164 #include "qemu/log.h" 165 166 /* strace.c */ 167 struct syscallname { 168 int nr; 169 const char *name; 170 const char *format; 171 void (*call)(const struct syscallname *, 172 abi_long, abi_long, abi_long, 173 abi_long, abi_long, abi_long); 174 void (*result)(const struct syscallname *, abi_long); 175 }; 176 177 void 178 print_freebsd_syscall(int num, 179 abi_long arg1, abi_long arg2, abi_long arg3, 180 abi_long arg4, abi_long arg5, abi_long arg6); 181 void print_freebsd_syscall_ret(int num, abi_long ret); 182 void 183 print_netbsd_syscall(int num, 184 abi_long arg1, abi_long arg2, abi_long arg3, 185 abi_long arg4, abi_long arg5, abi_long arg6); 186 void print_netbsd_syscall_ret(int num, abi_long ret); 187 void 188 print_openbsd_syscall(int num, 189 abi_long arg1, abi_long arg2, abi_long arg3, 190 abi_long arg4, abi_long arg5, abi_long arg6); 191 void print_openbsd_syscall_ret(int num, abi_long ret); 192 extern int do_strace; 193 194 /* signal.c */ 195 void process_pending_signals(CPUArchState *cpu_env); 196 void signal_init(void); 197 //int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); 198 //void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); 199 //void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); 200 long do_sigreturn(CPUArchState *env); 201 long do_rt_sigreturn(CPUArchState *env); 202 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); 203 204 /* mmap.c */ 205 int target_mprotect(abi_ulong start, abi_ulong len, int prot); 206 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, 207 int flags, int fd, abi_ulong offset); 208 int target_munmap(abi_ulong start, abi_ulong len); 209 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, 210 abi_ulong new_size, unsigned long flags, 211 abi_ulong new_addr); 212 int target_msync(abi_ulong start, abi_ulong len, int flags); 213 extern unsigned long last_brk; 214 void mmap_fork_start(void); 215 void mmap_fork_end(int child); 216 217 /* main.c */ 218 extern unsigned long x86_stack_size; 219 220 /* user access */ 221 222 #define VERIFY_READ 0 223 #define VERIFY_WRITE 1 /* implies read access */ 224 225 static inline int access_ok(int type, abi_ulong addr, abi_ulong size) 226 { 227 return page_check_range((target_ulong)addr, size, 228 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; 229 } 230 231 /* NOTE __get_user and __put_user use host pointers and don't check access. */ 232 /* These are usually used to access struct data members once the 233 * struct has been locked - usually with lock_user_struct(). 234 */ 235 #define __put_user(x, hptr)\ 236 ({\ 237 int size = sizeof(*hptr);\ 238 switch(size) {\ 239 case 1:\ 240 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\ 241 break;\ 242 case 2:\ 243 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\ 244 break;\ 245 case 4:\ 246 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\ 247 break;\ 248 case 8:\ 249 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\ 250 break;\ 251 default:\ 252 abort();\ 253 }\ 254 0;\ 255 }) 256 257 #define __get_user(x, hptr) \ 258 ({\ 259 int size = sizeof(*hptr);\ 260 switch(size) {\ 261 case 1:\ 262 x = (typeof(*hptr))*(uint8_t *)(hptr);\ 263 break;\ 264 case 2:\ 265 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\ 266 break;\ 267 case 4:\ 268 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\ 269 break;\ 270 case 8:\ 271 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\ 272 break;\ 273 default:\ 274 /* avoid warning */\ 275 x = 0;\ 276 abort();\ 277 }\ 278 0;\ 279 }) 280 281 /* put_user()/get_user() take a guest address and check access */ 282 /* These are usually used to access an atomic data type, such as an int, 283 * that has been passed by address. These internally perform locking 284 * and unlocking on the data type. 285 */ 286 #define put_user(x, gaddr, target_type) \ 287 ({ \ 288 abi_ulong __gaddr = (gaddr); \ 289 target_type *__hptr; \ 290 abi_long __ret; \ 291 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ 292 __ret = __put_user((x), __hptr); \ 293 unlock_user(__hptr, __gaddr, sizeof(target_type)); \ 294 } else \ 295 __ret = -TARGET_EFAULT; \ 296 __ret; \ 297 }) 298 299 #define get_user(x, gaddr, target_type) \ 300 ({ \ 301 abi_ulong __gaddr = (gaddr); \ 302 target_type *__hptr; \ 303 abi_long __ret; \ 304 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ 305 __ret = __get_user((x), __hptr); \ 306 unlock_user(__hptr, __gaddr, 0); \ 307 } else { \ 308 /* avoid warning */ \ 309 (x) = 0; \ 310 __ret = -TARGET_EFAULT; \ 311 } \ 312 __ret; \ 313 }) 314 315 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) 316 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) 317 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) 318 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) 319 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) 320 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) 321 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) 322 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) 323 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) 324 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) 325 326 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) 327 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) 328 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) 329 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) 330 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) 331 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) 332 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) 333 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) 334 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) 335 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) 336 337 /* copy_from_user() and copy_to_user() are usually used to copy data 338 * buffers between the target and host. These internally perform 339 * locking/unlocking of the memory. 340 */ 341 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); 342 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); 343 344 /* Functions for accessing guest memory. The tget and tput functions 345 read/write single values, byteswapping as necessary. The lock_user function 346 gets a pointer to a contiguous area of guest memory, but does not perform 347 any byteswapping. lock_user may return either a pointer to the guest 348 memory, or a temporary buffer. */ 349 350 /* Lock an area of guest memory into the host. If copy is true then the 351 host area will have the same contents as the guest. */ 352 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) 353 { 354 if (!access_ok(type, guest_addr, len)) 355 return NULL; 356 #ifdef DEBUG_REMAP 357 { 358 void *addr; 359 addr = g_malloc(len); 360 if (copy) 361 memcpy(addr, g2h(guest_addr), len); 362 else 363 memset(addr, 0, len); 364 return addr; 365 } 366 #else 367 return g2h(guest_addr); 368 #endif 369 } 370 371 /* Unlock an area of guest memory. The first LEN bytes must be 372 flushed back to guest memory. host_ptr = NULL is explicitly 373 allowed and does nothing. */ 374 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, 375 long len) 376 { 377 378 #ifdef DEBUG_REMAP 379 if (!host_ptr) 380 return; 381 if (host_ptr == g2h(guest_addr)) 382 return; 383 if (len > 0) 384 memcpy(g2h(guest_addr), host_ptr, len); 385 g_free(host_ptr); 386 #endif 387 } 388 389 /* Return the length of a string in target memory or -TARGET_EFAULT if 390 access error. */ 391 abi_long target_strlen(abi_ulong gaddr); 392 393 /* Like lock_user but for null terminated strings. */ 394 static inline void *lock_user_string(abi_ulong guest_addr) 395 { 396 abi_long len; 397 len = target_strlen(guest_addr); 398 if (len < 0) 399 return NULL; 400 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); 401 } 402 403 /* Helper macros for locking/unlocking a target struct. */ 404 #define lock_user_struct(type, host_ptr, guest_addr, copy) \ 405 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) 406 #define unlock_user_struct(host_ptr, guest_addr, copy) \ 407 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) 408 409 #if defined(CONFIG_USE_NPTL) 410 #include <pthread.h> 411 #endif 412 413 #endif /* QEMU_H */ 414